WorldWideScience

Sample records for c6 glioma cells

  1. Ketamine suppresses the proliferation of rat C6 glioma cells.

    Science.gov (United States)

    Niwa, Hidetomo; Furukawa, Ken-Ichi; Seya, Kazuhiko; Hirota, Kazuyoshi

    2017-10-01

    The present study investigated the effects of N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, on the growth of gliomas. To analyze the effects of ketamine treatment, rat C6 glioma cells arising from astrocytes, and RNB cells representing non-malignant astrocytes, were examined. In ketamine-treated C6 cells, the gene expression changes associated with cell proliferation following ketamine treatment were evaluated using a cDNA microarray. A cell proliferation assay was performed to analyze the dose-dependent proliferation of C6 glioma and RNB cells following culture (72 h) with ketamine treatment (0-100 µM). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed following cell incubation with/without ketamine, to confirm if the ketamine-induced cell death of C6 glioma and RNB cells were due to apoptosis. In addition, cell proliferation and TUNEL assays were performed following cell incubations with a selective NMDAR antagonist, D-2-amino-5-phosphonovaleric acid (D-AP5). Analysis of the cDNA microarray indicated that the growth of C6 glioma cells were suppressed by the effects of ketamine. Furthermore, results of the proliferation assay confirmed that ketamine treatment inhibited C6 cell proliferation, most notably at a dose of 30 µM (n=7, 66.4%; Pcells, with a significant effect on the rate of death observed at all tested concentrations (3, 10, 30 and 100 µM). Results of the aforementioned proliferation and TUNEL assay experiments were reproduced when ketamine was replaced with a selective NMDAR antagonist, D-AP5. However, the NMDARantagonist-induced effects were not observed in RNB cell cultures. Although it would be premature to apply the results from the present study to human cases, these results indicated that ketamine is an anesthetic candidate providing potential benefit for glioma resection.

  2. [Study in the killing effect of Myxoma virus to C6 glioma cell in vitro].

    Science.gov (United States)

    Zang, Meng; Zhang, Qiu-Sheng; Liang, Shi-Jie; Ji, Tao; Lin, Heng-Zhou; Li, Wei-Ping

    2012-02-01

    To evaluate the susceptibility of C6 glioma cells to Myxoma virus and the killing effect of Myxoma virus to the C6 glioma cells in vitro. C6 glioma cells were infected with myxoma virus, used death virus as the negative control, 5-FU as the positive control, DEMD as blank control. The number of living cells were counted every 24 h, and Western-Blot method, inverted microscope and MTT assay were applicated to observe the cell morphology and survival rate in each group. The cell number were decreased rapidly in virus effected group and 5-FU group, with significant differences to the negative and blank control groups. And cells in virus effected group appeared cytopathic effect. C6 glioma cells were susceptible to myxoma virus and myxoma virus had killing effect to C6 glioma cells in vitro.

  3. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  4. Effect of Aspirin and Indomethacin on Prostaglandin E2 Synthesis in C6 Glioma Cells

    OpenAIRE

    Hwang, Shiuh-Lin; Lee, Kung-Shing; Lin, Chih-Lung; Lieu, Ann-Shung; Cheng, Chi-Yun; Loh, Joon-Khim; Hwang, Yan-Fen; Su, Yu-Feng; Howng, Shen-Long

    2004-01-01

    Prostaglandin E2 (PGE2) plays an important role in immunosuppression and tumor growth. PGE2 inhibitors such as aspirin and indomethacin suppress experimental tumor growth. Little is known of the relationship between PGE2 synthesis in brain tumors and the dose of aspirin or indomethacin. The present study was undertaken to evaluate the effect of different doses of aspirin and indomethacin on PGE2 synthesis in C6 glioma cells. C6 glioma cells were incubated with different concentrations (2, 4, ...

  5. In vitro study of haematoporphyrin monomethyl ether-mediated sonodynamic effects on C6 glioma cells.

    Science.gov (United States)

    Li, Jian-hua; Song, Da-yong; Xu, Yong-gang; Huang, Zheng; Yue, Wu

    2008-09-01

    To study the cytotoxicity induced by haematoporphyrin monomethyl ether (HMME)-mediated sonodynamic therapy (SDT) on C6 glioma cells. The potent photosensitizer HMME was used as the sensitizer. Rat C6 glioma cells were incubated with HMME (10 microg/mL) in the dark for 2 h and then subjected to ultrasound treatment at 1.0 MHz and 0.5 W/cm2 for 2 min. The growth inhibition rate at different time points after SDT was determined by MTT assay. The apoptotic rate and cell circle profiles were examined with flow cytometry. Fine structures were observed with transmission electron microscope (TEM). The sonodynamic effect on the glioma cells was also studied in the absence or presence of various reactive oxygen species (ROS) scavengers. The growth inhibition rate of C6 glioma cells after SDT significantly increased. SDT also increased the apoptosis and proliferation rate (APR). TEM examination showed the morphological features of apoptosis or necrosis. The addition of NaN(3) showed a strong protective effect again SDT. Our data indicated that SDT could kill C6 glioma cells in vitro and possibility through induction of apoptosis and necrosis. Singlet oxygen ((1)O2) may play an important role in SDT.

  6. Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells.

    Science.gov (United States)

    Joshi, Arundhati; Rastedt, Wiebke; Faber, Kathrin; Schultz, Aaron G; Bulcke, Felix; Dringen, Ralf

    2016-11-01

    Copper oxide nanoparticles (CuO-NPs) are frequently used for many technical applications, but are also known for their cell toxic potential. In order to investigate a potential use of CuO-NPs as a therapeutic drug for glioma treatment, we have investigated the consequences of an application of CuO-NPs on the cellular copper content and cell viability of C6 glioma cells. CuO-NPs were synthesized by a wet-chemical method and were coated with dimercaptosuccinic acid and bovine serum albumin to improve colloidal stability in physiological media. Application of these protein-coated nanoparticles (pCuO-NPs) to C6 cells caused a strong time-, concentration- and temperature-dependent copper accumulation and severe cell death. The observed loss in cellular MTT-reduction capacity, the loss in cellular LDH activity and the increase in the number of propidium iodide-positive cells correlated well with the specific cellular copper content. C6 glioma cells were less vulnerable to pCuO-NPs compared to primary astrocytes and toxicity of pCuO-NPs to C6 cells was only observed for incubation conditions that increased specific cellular copper contents above 20 nmol copper per mg protein. Both cellular copper accumulation as well as the pCuO-NP-induced toxicity in C6 cells were prevented by application of copper chelators, but not by endocytosis inhibitors, suggesting that liberation of copper ions from the pCuO-NPs is the first step leading to the observed toxicity of pCuO-NP-treated glioma cells.

  7. Effect of Aspirin and Indomethacin on Prostaglandin E2 Synthesis in C6 Glioma Cells

    Directory of Open Access Journals (Sweden)

    Shiuh-Lin Hwang

    2004-01-01

    Full Text Available Prostaglandin E2 (PGE2 plays an important role in immunosuppression and tumor growth. PGE2 inhibitors such as aspirin and indomethacin suppress experimental tumor growth. Little is known of the relationship between PGE2 synthesis in brain tumors and the dose of aspirin or indomethacin. The present study was undertaken to evaluate the effect of different doses of aspirin and indomethacin on PGE2 synthesis in C6 glioma cells. C6 glioma cells were incubated with different concentrations (2, 4, and 8 μM of aspirin and indomethacin for 1, 2, 4, 6, 8, 12, and 24 hours. Intracellular PGE2 concentration was measured by enzyme immunoassay. Each concentration of aspirin and indomethacin effectively inhibited PGE2 synthesis. Concentrations of 2, 4, and 8 μM of aspirin significantly inhibited PGE2 production at 6, 4, and 1 hours, respectively, and the inhibition persisted for more than 24 hours (p 0.05. Indomethacin 8 μM was effective at 1 hour and the inhibition persisted beyond 24 hours (p < 0.05. Our study demonstrates that aspirin and indomethacin inhibit PGE2 synthesis in C6 glioma cells and that low-dose aspirin is as effective as high-dose aspirin. This study may encourage future clinical use of low-dose aspirin in the prevention or treatment of brain tumors.

  8. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression

    Directory of Open Access Journals (Sweden)

    G. Song

    Full Text Available Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs, collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  9. Cinnamon polyphenols regulate S100β, sirtuins, and neuroactive proteins in rat C6 glioma cells.

    Science.gov (United States)

    Qin, Bolin; Panickar, Kiran S; Anderson, Richard A

    2014-02-01

    Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma cells that underlie their protective effects. C6 rat glioma cells were seeded in 35-mm culture dishes or six-well plates, then were incubated with cinnamon polyphenols at doses of 10 and 20 μg/mL for 24 h. The targeting protein expression, secretion, and phosphorylation were evaluated by immunoprecitation/immunoblotting and immunofluorescence imaging. Cinnamon polyphenols significantly enhanced secretion of S100β, a Ca(2+)-binding protein, and increased intracellular S100β expression after 24 h of incubation, in rat C6 glioma cells. Cinnamon polyphenols also enhanced protein levels of sirtuin 1, 2, and 3, deacetylases important in cell survival, and the tumor suppressor protein, p53, and inhibited the inflammatory factors, tumor necrosis factor alpha, and phospho-p65, a subunit of nuclear factor-κβ. Cinnamon polyphenols also up-regulated levels of phospho-p38, extracellular signal-regulated protein and mitogen-activated protein and kinase-activated protein kinases that may be important for prosurvival functions. Our results indicate that the effects of cinnamon polyphenols on upregulating prosurvival proteins, activating mitogen-activated protein kinase pathways, and decreasing proinflammatory cytokines may contribute to their neuroprotective effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhancement effect of cytotoxicity response of silver nanoparticles combined with thermotherapy on C6 rat glioma cells.

    Science.gov (United States)

    Wang, Rui; Chen, Chunmei; Yang, Weizhong; Shi, Songsheng; Wang, Chunhua; Chen, Jing

    2013-06-01

    The present studies reveal that silver nanoparticles (AgNPs) can induce apoptosis and enhance radio-sensitivity on cancer cells. In this paper, we mainly investigated the effect of AgNPs on rat glioma C6 cells upon the combination treatment of hyperthermia treatment (HTT). AgNPs were synthesized by a polyol process and the mean size was 15 nm. The particles showed dose-dependent cytotoxicity on C6 cells from the experimental data. Besides, we found that heating cells could enhance the contents of cell uptake of AgNPs. From the survival curves, AgNPs showed the ability to enhance thermo-sensitivity on C6 cells. Our results revealed that AgNPs could have a potential application in enhancing effect on HTT induced killing of glioma cells.

  12. 27-Hydroxycholesterol regulates cholesterol synthesis and transport in C6 glioma cells.

    Science.gov (United States)

    An, Yu; Zhang, Dan-Di; Yu, Huan-Ling; Ma, Wei-Wei; Lu, Yan-Hui; Liu, Quan-Ri; Xiao, Rong

    2017-03-01

    The oxysterol 27-Hydroxycholesterol (27-OHC) is a major cholesterol metabolite that can cross the blood brain barrier (BBB) from peripheral circulation to the brain. Currently, the role of 27-OHC on cholesterol homeostasis in astrocytes and the underlying mechanisms are not defined. Since all brain cholesterol is essentially synthesized in brain itself and astrocytes as net producers of cholesterol are essential for normal brain function, here we investigated the effects of 27-OHC on cholesterol synthesis and transport in C6 glioma cells. C6 cells were treated with 5, 10 and 20μM 27-OHC for 24h and the cell viability and apoptosis, the cholesterol levels and metabolism-related mediators, genes and proteins were subsequently assessed using cell-counting kit (CCK)-8, Amplex red, ELISA, real-time PCR and Western blot, respectively. We found that 27-OHC decreased cholesterol levels by down-regulating the expression of sterol-regulated element binding protein-1 (SREBP-1a), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CR) and low density lipoprotein receptor (LDLR) and promoted cholesterol transport by up-regulating the expression of peroxisome proliferator-activated receptors-γ (PPAR-γ), liver X receptor-α (LXR-α), ATP-binding cassette transporter protein family member A1 (ABCA1) and apolipoprotein E (ApoE)genes. Our results suggested that 27-OHC may represent a sensitive modulator of cholesterol metabolism disorder by suppressing cholesterol synthesis and stimulating cholesterol transport in astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. C6 glioma cell invasion and migration of rat brain after neural homografting: ultrastructure.

    Science.gov (United States)

    Bernstein, J J; Goldberg, W J; Laws, E R; Conger, D; Morreale, V; Wood, L R

    1990-04-01

    C6 tumor cells (10(6] were grafted as suspensions into freshly made implantation pockets in rat host cerebral cortex. Specimens were prepared for transmission and scanning electron microscopy 1 to 7 days postimplantation (DPI). By 3 DPI vacuolated C6 cells had migrated on or invaded the host brain. C6 cells were observed on the glia limitans on the surface of the brain, in the corpus callosum, subependymal space, and perivascular space and had invaded the cortex under the implantation pocket. In addition to the tumor mass that was observed under the implantation pocket, by 7 DPI individual C6 cells had migrated into the corpus callosum and internal capsule. Migrated C6 cells were observed in a perineuronal position in the hippocampus and other gray matter structures inferior to the corpus callosum. Micropockets were found around each C6 cell and the processes of these cells had replaced host parenchyma. The preferred routes of migration were on basal lamina and parallel and intersecting nerve fiber bundles. Invasion occurred through gray and white matter. The movement of homografted C6 cells in the brain suggests that these cells actively migrate as individual cells in addition to invading as a mass.

  14. Paramagnetic Gd2O3 Nanoparticle-Based Targeting Theranostic Agent for C6 Rat Glioma Cell

    Directory of Open Access Journals (Sweden)

    Seong-Pyo Hong

    2016-01-01

    Full Text Available This study aimed to synthesize theranostic agent targeting C6 rat glioma cell, which was based on the dextran coated paramagnetic gadolinium oxide nanoparticles (D-PGONs conjugated with folic acid (FA or paclitaxel (PTX. The D-PGONs were synthesized by the in situ coprecipitation method, and the average value of the size distribution was 2.9 nm. FTIR spectroscopy was fulfilled to confirm the conjugations of FA or PTX with D-PGONs. The bioprotective effects of dextran coating and chemotherapeutic effect of PTX in the C6 glioma cell were evaluated by the MTT assay. The differences in uptakes between the synthesized theranostic agents into C6 cells were observed by confocal laser scanning microscopy. In addition, the magnetic contrast enhancement with different concentration of the synthesized agent was compared by the T1-weighted MRI imaging. It was experimentally shown that the synthesized theranostic agent targets C6 cells due to the ligand-receptor-mediated endocytosis and provides enhancement in MR contrast depending on the concentration due to the paramagnetic property of gadolinium nanoparticle. In addition, it was shown by the results of MTT assay that the synthesized nanocomposites were more effective in reducing cell viability than bare gadolinium nanoparticles. In conclusion, it was shown that FA and PTX conjugated D-PGONs could be used as the theranostic agent with paramagnetism and chemotherapeutic property.

  15. Cisplatin treatment of C6 rat glioma in vivo did not influence copy number alterations and growth pattern of tumor-derived resistant cells

    Directory of Open Access Journals (Sweden)

    Stepanenko A. A.

    2015-06-01

    Full Text Available Aim. To investigate whether the cisplatin treatment of C6 rat glioma in vivo impacts the copy number alterations (CNAs, proliferation and colony formation efficiency (CFE of tumor-derived cisplatin-resistant cells. Methods. The glioma modeling was performed by means of intracerebral stereotactic implantation of rat glioma C6 cells into the striatum region of rats. The rats received 20 % dimethyl sulfoxide DMSO (C6R1 or cisplatin (C6R4CIS and C6R5CIS injected intraperitoneally (5 mg/kg three times per week. After 10 injections, gliomas were resected and the cells were cultured for in vitro analysis. CNAs were analyzed by array comparative genome hybridization, proliferation by direct cell counting in hemocytometer, CFE by soft agar assay. Results. No significant changes in the CNAs and CFE of cisplatin-treated rat glioma C6R4CIS and C6R5CIS cell lines were observed compared to the vehicle-treated control C6R1 cells. However, C6R5CIS but not C6R4CIS had a reduced proliferation. Interestingly, both cisplatin- and vehicle-treated brain-grown cells had a reduced proliferation and CFE in comparison to the parental C6 cells. Conclusions. Despite numerous reports on the destabilizing effects of cisplatin on genome and phenotype, the cisplatin treatment of C6 cells in vivo did not affect genome stability, CFE, and had an inconsistent effect on the proliferation in vitro. The rat brain microenvironment may potentially impact the growth characteristics of rat glioma cells.

  16. Imbalance of Ca2+ and K+ fluxes in C6 glioma cells after PDT measured with scanning ion-selective electrode technique.

    Science.gov (United States)

    Hu, Sheng-Li; Du, Peng; Hu, Rong; Li, Fei; Feng, Hua

    2014-05-01

    Photodynamic therapy (PDT) possesses the capacity to lead to death of C6 glioma in vitro and in vivo. The purpose of this study was to investigate whether Ca(2+) and K(+) homeostasis of C6 glioma cells were affected by PDT. C6 glioma cells were randomly divided into five groups: control group, Hematoporphyrin derivative (HpD) group (10 mg/l, without irradiation), PDT group (HpD 10 mg/l + irradiation), PDT&6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) group (HpD 10 mg/l + CNQX 50 mol/l + irradiation), and HpD&CNQX group (HpD 10 mg/l + CNQX 50 mol/l, without irradiation). Glioma cells in PDT and PDT&CNQX group were subjected to PDT. Cells in PDT&CNQX group were administered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonist CNQX prior to PDT on C6 glioma cells. The changes of Ca(2+) and K(+) fluxes were studied by using a non-invasive scanning ion-selective electrode technique (SIET). Morphology of C6 cells was observed with optical microscopy. PDT induced Ca(2+) influx and K(+) efflux significantly, which resulted in death of C6 cells. When AMPA glutamate receptor antagonist CNQX was applied, Ca(2+) influx and K(+) efflux were partly blocked up and viability of C6 cells increased. These results indicate that Ca(2+) influx and K(+) efflux may correlate with the treatment effects of PDT on C6 glioma cells.

  17. Gene Therapy with HSV1-sr39TK/GCV Exhibits a Stronger Therapeutic Efficacy Than HSV1-TK/GCV in Rat C6 Glioma Cells

    Directory of Open Access Journals (Sweden)

    Lei-qing Li

    2013-01-01

    Full Text Available Although the combination of herpes simplex virus type 1 (HSV-1 thymidine kinase (TK with ganciclovir (GCV has been shown as a promising suicide gene treatment strategy for glioma, the almost immunodepressive dose of GCV required for its adequate in vivo efficacy has hampered its further clinical application. Therefore, In order to reduce the GCV dose required, we aim to compare the therapeutic efficacy of HSV1-sr39TK, an HSV1-TK mutant with increased GCV prodrug catalytic activity, with wildtype TK in C6 glioma cells. Accordingly, rat C6 glioma cells were first transfected with pCDNA-TK and pCDNA-sr39TK, respectively, and the gene transfection efficacy was verified by immunocytochemistry and western blot analysis. Then the in vivo sensitivity of these transfected C6-TK and C6-sr39TK cells to GCV was determined by 3-(4,5-dimethylthiahiazo-(-z-y1-3,5-di-phenytetrazoliumromide (MTT colorimetric assay and Hoechst-propidium iodide (PI staining. Finally, a subcutaneously C6 xenograft tumor model was established in the nude mice to test the in vitro efficacy of TK/GCV gene therapy. Our results showed that, as compared with wildtype TK, HSV1-sr39TK/GCV demonstrated a stronger therapeutic efficacy against C6 glioma both in vitro and in vivo, which, by reducing the required GCV dose, might warrant its future use in the treatment of glioma under clinical setting.

  18. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    Energy Technology Data Exchange (ETDEWEB)

    David Gara, Pedro M. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Garabano, Natalia I. [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina); Llansola Portoles, Manuel J. [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche (Argentina); Dodat, Diego; Casas, Oscar R. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Gonzalez, Monica C., E-mail: gonzalez@inifta.unlp.edu.ar [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Kotler, Monica L., E-mail: kotler@qb.fcen.uba.ar [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina)

    2012-03-15

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O{sub 2}{sup Bullet -}/HO{sub 2}{sup Bullet}, HO{sup Bullet}, and H{sub 2}O{sub 2} generated upon 4-MeV X-ray irradiation of 6.4 {mu}M silicon nanoparticle aqueous suspensions were on the order of 10 {mu}M per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic {sup 1}O{sub 2} was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO{sub 2} and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing {sup 1}O{sub 2} upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  19. Induction of cell cycle arrest at G1 and S phases and cAMP-dependent differentiation in C6 glioma by low concentration of cycloheximide

    Directory of Open Access Journals (Sweden)

    Zhang Samuel S

    2010-12-01

    Full Text Available Abstract Background Differentiation therapy has been shown effective in treatment of several types of cancer cells and may prove to be effective in treatment of glioblastoma multiforme, the most common and most aggressive primary brain tumor. Although extensively used as a reagent to inhibit protein synthesis in mammalian cells, whether cycloheximide treatment leads to glioma cell differentiation has not been reported. Methods C6 glioma cell was treated with or without cycloheximide at low concentrations (0.5-1 μg/ml for 1, 2 and 3 days. Cell proliferation rate was assessed by direct cell counting and colony formation assays. Apoptosis was assessed by Hoechst 33258 staining and FACS analysis. Changes in several cell cycle regulators such as Cyclins D1 and E, PCNA and Ki67, and several apoptosis-related regulators such as p53, p-JNK, p-AKT, and PARP were determined by Western blot analysis. C6 glioma differentiation was determined by morphological characterization, immunostaining and Western blot analysis on upregulation of GFAP and o p-STAT3 expression, and upregulation of intracellular cAMP. Results Treatment of C6 cell with low concentration of cycloheximide inhibited cell proliferation and depleted cells at both G2 and M phases, suggesting blockade at G1 and S phases. While no cell death was observed, cells underwent profound morphological transformation that indicated cell differentiation. Western blotting and immunostaining analyses further indicated that changes in expression of several cell cycle regulators and the differentiation marker GFAP were accompanied with cycloheximide-induced cell cycle arrest and cell differentiation. Increase in intracellular cAMP, a known promoter for C6 cell differentiation, was found to be elevated and required for cycloheximide-promoted C6 cell differentiation. Conclusion Our results suggest that partial inhibition of protein synthesis in C6 glioma by low concentration of cycloheximide induces cell cycle

  20. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells.

    Directory of Open Access Journals (Sweden)

    Haruka Minami

    Full Text Available The blood brain barrier (BBB is formed by brain microvascular endothelial cells (BMECs and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs were differentiated into endothelial cells (ECs, and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM, in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.

  1. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kai-Wei [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan (China); Wong, Zong-Ruei; Su, Peng-Han [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Bu-Miin [Department of Cell Biology and Anatomy, National Cheng-Kung University, Tainan 701, Taiwan (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei 106, Taiwan (China); Technology Commons, College of Life Science, National Taiwan University, Taipei 106, Taiwan (China); Yang, Hsi-Yuan, E-mail: hyhy@ntu.edu.tw [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China)

    2013-05-17

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.

  2. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  3. Functional Changes of Dendritic Cells in C6 Glioma-Bearing Rats That Underwent Combined Argon-Helium Cryotherapy and IL-12 Treatment.

    Science.gov (United States)

    Li, Ming; Cui, Yao; Li, Xiqing; Guo, Yanwu; Wang, Bin; Zhang, Jiadong; Xu, Jian; Han, Shuangyin; Shi, Xiwen

    2016-08-01

    The aim of this study was to explore changes in tumor tissues of glioma-bearing rats that underwent argon-helium cryoablation as well as changes in antitumor immunity before and after combined interleukin 12 treatment. Two hundred sixty Wistar rats were randomly divided into a blank control group, intravenous injection interleukin-12 group, cryotherapy group, and cryotherapy + intravenous injection group. C6 glioma cells proliferated in vitro were implanted subcutaneously on the backs of rats to establish C6 glioma-bearing animal models. Each group underwent the corresponding treatments, and morphological changes in tumor tissues were examined using hematoxylin-eosin staining. CD11c staining was examined using immunohistochemistry, and differences in dendritic cells and T-cell subsets before and after treatment were analyzed using flow cytometry. The control group showed no statistical changes in terms of tumor tissue morphology and cellular immunity, cryotherapy group, and cryotherapy + intravenous injection group, among which the count for the cryotherapy + intravenous injection group was significantly higher than those of all other groups. In the argon-helium cryotherapy group, tumor cells were damaged and dendritic cell markers were positive. The number of CD11c+ and CD86+ cells increased significantly after the operation as did the cytokine interferon-γ level (P < .01), suggesting a shift toward Th1-type immunity. Combined treatment of argon-helium cryoablation and interleukin 12 for gliomas not only effectively injured tumor tissues but also boosted immune function and increased antitumor ability. Therefore, this approach is a promising treatment measure for brain gliomas. © The Author(s) 2015.

  4. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell.

    Science.gov (United States)

    Iser, I C; de Campos, R P; Bertoni, A P S; Wink, M R

    2015-10-01

    There is growing evidence that mesenchymal stem cells (MSCs) can be important players in the tumor microenvironment. They can affect the glioma progression through the modulation of different genes. This modulation can be evaluated through a very useful model, treating the tumor cells with MSC-conditioned medium. However, for an accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is a prerequisite. We performed a systematic review in an attempt to find a reference gene to use when analyzing gene expression in C6 glioma cells lines. Considering that we were not able to find a reference gene originated by an appropriate validation, in this study we evaluated candidate genes to be used as reference gene in C6 cells under different treatments with adipose-derived stem cells conditioned medium (CM-ADSCs). β-actin (ACTB); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine-guanine phosphoribosyltransferase I (HPRT-1); TATA box binding protein (TBP) and beta-2-microglobulin (B2M) were evaluated by real-time reverse transcription PCR (RT-qPCR). The mean Cq, the maximum fold change (MFC) and NormFinder software were used for reference gene evaluation and selection. The GAPDH and ACTB genes have been the most widely used reference genes to normalize among the different investigated genes in our review, however, controversially these genes underwent a substantial variability among the genes evaluated in the present work. Individually, TBP gene was more stable when compared with other genes analyzed and the combination of TBP and HPRT-1 was even more stable. These results evidence the importance of appropriate validation of reference genes before performing qPCR experiments. Besides, our data will contribute with researchers that work analyzing the role of ADSCs in glioma microenvironment through gene expression. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Extract from mistletoe, Viscum album L., reduces Hsp27 and 14-3-3 protein expression and induces apoptosis in C6 rat glioma cells.

    Science.gov (United States)

    Uçar, E Ö; Arda, N; Aitken, A

    2012-08-24

    Extracts of mistletoe (Viscum album) are intensively used in complementary medicine, but their mechanisms are not fully understood in most cases, and the effects on metabolism have not been investigated in detail. However, some biologically active natural products are well known to provoke unexpected cellular responses. They reduce overexpression of heat shock proteins (Hsps) in cancer cells. The aim of the current study was to determine whether methanolic extract of V. album, which possesses antioxidant activity, has an effect on expression levels of Hsp27 and 14-3-3 proteins in a C6 glioma cell line. For the first time, the apoptosis-inducing effect of this extract was also determined via caspase-3 activation in the cells. Overexpression of Hsps was induced by heat shock at 42°C for 1 h. Expression levels of Hsp27 and 14-3-3 proteins were determined using Western blot analysis. The apoptosis-inducing effect was also evaluated via caspase-3 activation in C6 glioma cells. Pretreatment of the cells with a nontoxic dose (100 μg/mL) of V. album extract before heat shock significantly reduced expression levels of Hsp27 (73%) and 14-3-3β (124%), 14-3-3γ (23%), and 14-3-3ζ (84%) proteins. Pretreatment with the extract before heat shock increased apoptosis via caspase-3 activation (60%) in C6 glioma cells. This result suggested that the methanolic extract of V. album downregulates expression of Hsp27 and 14-3-3 chaperone proteins and induces apoptosis, which warrants further exploration as a potential bioactive compound for cancer therapy.

  6. Endogenous expression of histamine H1 receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP.

    OpenAIRE

    Peakman, M C; Hill, S. J.

    1994-01-01

    1. The effects of histamine receptor agonists and antagonists on phospholipid hydrolysis in rat-derived C6 glioma cells have been investigated. 2. Histamine H1 receptor-stimulation caused a concentration-dependent increase in the accumulation of total [3H]-inositol phosphates in cells prelabelled with [3H]-myo-inositol. The rank order of agonist potencies was histamine (EC50 = 24 microM) > N alpha-methylhistamine (EC50 = 31 microM) > 2-thiazolylethylamine (EC50 = 91 microM). 3. The response t...

  7. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line

    Directory of Open Access Journals (Sweden)

    Edson Amaro Junior

    2012-06-01

    Full Text Available Objective: To assess intracellular labeling and quantification by magnetic resonance imaging using iron oxide magnetic nanoparticles coated with biocompatible materials in rat C6 glioma cells in vitro. These methods will provide direction for future trials of tumor induction in vivo as well as possible magnetic hyperthermia applications. Methods: Aminosilane, dextran, polyvinyl alcohol, and starch-coated magnetic nanoparticles were used in the qualitative assessment of C6 cell labeling via light microscopy. The influence of the transfection agent poly-L-lysine on cellular uptake was examined. The quantification process was performed by relaxometry analysis in T1 and T2weighted phantom images. Results: Light microscopy revealed that the aminosilane-coated magnetic nanoparticles alone or complexed with poly-L-lysine showed higher cellular uptake than did the uncoated magnetic particles. The relaxivities of the aminosilane-coated magnetic nanoparticles with a hydrodynamic diameter of 50nm to a 3-T field were r1=(6.1±0.3×10-5 ms-1mL/μg, r2=(5.3±0.1× 10-4 ms-1mL/μg, with a ratio of r2 / r1 ≅ 9. The iron uptake in the cells was calculated by analyzing the relaxation rates (R1 and R2 using a mathematical relationship. Conclusions: C6 glioma cells have a high uptake efficiency for aminosilane-coated magnetic nanoparticles complexed with the transfection agent poly-L-lysine. The large ratio r2 / r1 ≅ 9 indicates that these magnetic nanoparticles are ideal for quantification by magnetic resonance imaging with T2-weighted imaging techniques.

  8. Endogenous expression of histamine H1 receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP.

    Science.gov (United States)

    Peakman, M C; Hill, S J

    1994-12-01

    1. The effects of histamine receptor agonists and antagonists on phospholipid hydrolysis in rat-derived C6 glioma cells have been investigated. 2. Histamine H1 receptor-stimulation caused a concentration-dependent increase in the accumulation of total [3H]-inositol phosphates in cells prelabelled with [3H]-myo-inositol. The rank order of agonist potencies was histamine (EC50 = 24 microM) > N alpha-methylhistamine (EC50 = 31 microM) > 2-thiazolylethylamine (EC50 = 91 microM). 3. The response to 0.1 mM histamine was antagonized in a concentration-dependent manner by the H1-antagonists, mepyramine (apparent Kd = 1 nM) and (+)-chlorpheniramine (apparent Kd = 4 nM). In addition, (-)-chlorpheniramine was more than two orders of magnitude less potent than its (+)-stereoisomer. 4. Elevation of intracellular cyclic AMP accumulation with forskolin (10 microM, EC50 = 0.3 microM), isoprenaline (1 microM, EC50 = 4 nM) or rolipram (0.5 mM), significantly reduced the histamine-mediated (0.1 mM) inositol phosphate response by 37%, 43% and 26% respectively. In contrast, 1,9-dideoxyforskolin did not increase cyclic AMP accumulation and had no effect on the phosphoinositide response to histamine. 5. These data indicate the presence of functionally coupled, endogenous histamine H1 receptors in C6 glioma cells. Furthermore, the results also indicate that H1 receptor-mediated phospholipid hydrolysis is inhibited by the elevation of cyclic AMP levels in these cells.

  9. Cinnamon polyphenols attenuate the hydrogen peroxide-induced down regulation of S100β secretion by regulating sirtuin 1 in C6 rat glioma cells.

    Science.gov (United States)

    Qin, Bolin; Panickar, Kiran S; Anderson, Richard A

    2014-04-25

    It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen. The objective of this study was to investigate the protective effects of a water soluble polyphenol-rich extract of cinnamon and the possible mechanisms, under conditions of oxidative stress-induced by hydrogen peroxide, in rat C6 glioma cells. After 24h of H2O2 incubation, the secretion and intracellular expression of S100β were determined by immunoprecitation/immunoblotting and immunofluorescence imaging. Cinnamon polyphenols (CP) counteracted the oxidative effects of H2O2 on S100β secretion and expression. CP also enhanced the impaired protein levels of sirtuins 1, 2, and 3, which are deacetylases important in cell survival. H2O2 also induced the overexpression of the proinflammatory factors, TNF-α, phospho-NF-κB p65, as well as of Bcl-xl, Bax and Caspase-3, which are all the members of the Bcl-2 family. CP not only suppressed the expression of these proteins but also attenuated the phosphorylation induced by H2O2. CP also upregulated the decreased Bcl-2 protein levels in H2O2 treated C6 cells. The effects of CP on H2O2-induced downregulation of S100β secretion were blocked by SIRT1 siRNA demonstrating that SIRT1 plays a regulatory role in CP-mediated prevention by H2O2. These data demonstrate that Cinnamon polyphenols may exert neuroprotective effects in glial cells by the regulation of Bcl-2 family members and enhancing SIRT1 expression during oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells.

    Science.gov (United States)

    Landeros, José M; Belmont-Bernal, Fernando; Pérez-González, Alma Teresa; Pérez-Padrón, Mario Israel; Guevara-Salazar, Patricia; González-Herrera, Irma Gabriela; Guadarrama, Patricia

    2017-02-01

    A novel water-soluble derivative of curcumin (Cur-[G-2]-OH) was designed and synthesized from accessible raw materials in only two steps with an overall yield of 80%. The modification of curcumin phenol groups with second-generation polyester dendrons (dendronization) as a strategy to achieve an optimal hydrophilic/hydrophobic balance allows the complete water solubilization of the new curcumin derivative (5mg/ml) at room temperature. The therapeutic potential of Cur-[G-2]-OH was investigated in terms of antioxidant capacity, intracellular uptake and cytotoxicity in both rat glioblastoma cells and normal human dermal fibroblasts. Although the phenolic groups of curcumin were locked by dendronization, Cur-[G-2]-OH exhibited antioxidant capacity in water that was even higher than curcumin in dimethylsulfoxide (DMSO). This compound showed a steady cellular uptake contrasted with curcumin, which has a saturation capture at high concentrations. Combined with improved stability, this property seems to allow the intracellular accumulation of Cur-[G-2]-OH. Furthermore, the new compound exhibited increased cytotoxicity in rat C6 glioma cells in a time- and concentration-dependent manner, whereas in normal human fibroblasts, its IC50 value was >600μM versus the IC50 of curcumin found between 100 and 200μM. Surprisingly, Cur-[G-2]-OH drives cell death of C6 cells by a different mechanism of apoptosis triggered by curcumin. Together, these results suggest that curcumin dendronization could promote molecular and cellular mechanisms that are different from those induced by curcumin, presumably due to structural factors and not only for improved water solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    Energy Technology Data Exchange (ETDEWEB)

    Capuani, S. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy)], E-mail: silvia.capuani@roma1.infn.it; Gili, T. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy); Bozzali, M. [Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Russo, S. [Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London (United Kingdom); Porcari, P. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Cametti, C. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Muolo, M. [Department of Biological Science, University ' Rome III' , Viale G. Marconi 446, Rome (Italy); D' Amore, E. [Serv. Qual./Sicurezza Sperim. Anim., Istituto Superiore di Sanita, Rome (Italy); Maraviglia, B. [Enrico Fermi Center, Compendio Viminale, Rome (Italy); Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Lazzarino, G. [Laboratory of Biochemistry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania (Italy); Pastore, F.S. [Department of Neuroscience, Institute of Neurosurgery, University ' Tor Vergata' , Via Montpellier 1, Rome (Italy)

    2009-07-15

    One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  12. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro.

    Science.gov (United States)

    Tagami, Tatsuaki; Imao, Yukino; Ito, Shunsuke; Nakada, Akiko; Ozeki, Tetsuya

    2014-07-01

    The pulverization of poorly water-soluble drugs and drug candidates into nanoscale particles is a simple and effective means of increasing their pharmacological effect. Consequently, efficient methods for pulverizing compounds are being developed. Femtosecond lasers, which emit ultrashort laser pulses, can be used to generate nanoscale particles without heating and are finding in various fields, including pharmaceutical science. Laser ablation holds promise as a novel top-down pulverization method for obtaining drug nanoparticles. We used a poorly water-soluble compound, curcumin (diferuloyl methane), to understand the characteristics of femtosecond laser pulverization. Various factors such as laser strength, laser scan speed, and the buffer solution affected the size of the curcumin particles. The minimum curcumin particle size was approximately 500 nm; the particle size was stable after 30 days. In vitro studies suggested that curcumin nanoparticles exhibited a cytotoxic effect on C6 rat glioma cells, and remarkable intracellular uptake of the curcumin nanoparticles was observed. The results suggest that femtosecond laser ablation is a useful approach for preparing curcumin nanoparticles that exhibit remarkable therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line; Marcacao intracelular e processo de quantificacao por imagem por ressonancia magnetica utilizando nanoparticulas magneticas de oxido de ferro em celulas da linhagem C6 de glioma de rato

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, Javier Bustamante; Pavon, Lorena Favaro; Sibov, Tatiana Tais; Rossan, Fabiana; Silveira, Paulo Henrique; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: javierbm@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Amaro Junior, Edson [Departamento de Diagnostico por Imagem e Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    Objective: To assess intracellular labeling and quantification by magnetic resonance imaging using iron oxide magnetic nanoparticles coated with biocompatible materials in rat C6 glioma cells in vitro. These methods will provide direction for future trials of tumor induction in vivo as well as possible magnetic hyperthermia applications. Methods: Aminosilane, dextran, polyvinyl alcohol, and starch-coated magnetic nanoparticles were used in the qualitative assessment of C6 cell labeling via light microscopy. The influence of the transfection agent poly-L-lysine on cellular uptake was examined. The quantification process was performed by relaxometry analysis in T{sub 1} and T{sub 2} weighted phantom images. Results: Light microscopy revealed that the aminosilane-coated magnetic nanoparticles alone or complexed with poly-L-lysine showed higher cellular uptake than did the uncoated magnetic particles. The relaxactivities of the aminosilane-coated magnetic nanoparticles with a hydrodynamic diameter of 50nm to a 3-T field were r{sub 1}=(6.1 +- 0.3) x10{sup -5} ms{sup -1}mL/{mu}g, r{sub 2}=(5.3 +- 0.1) x 10{sup -4} ms{sup -1}mL/{mu}g, with a ratio of r{sub 2} / r{sub 1}{approx_equal} 9. The iron uptake in the cells was calculated by analyzing the relaxation rates (R{sub 1}and R{sub 2}) using a mathematical relationship. Conclusions: C6 glioma cells have a high uptake efficiency for aminosilane-coated magnetic nanoparticles complexed with the transfection agent poly-L-lysine. The large ratio r{sub 2} / r{sub 1}{approx_equal} 9 indicates that these magnetic nanoparticles are ideal for quantification by magnetic resonance imaging with T{sub 2}-weighted imaging techniques. (author)

  14. Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1.

    Science.gov (United States)

    Cheng, Peng; Gao, Zhi-Qiang; Liu, Yun-Hui; Xue, Yi-Xue

    2009-02-13

    Recent studies have indicated that bone marrow-derived mesenchymal stem cells (BMSCs) have the capacity of migrating towards gliomas. However, few data are available about the molecular mechanism responsible for this migratory capacity. The aim of our study was to investigate the role of platelet-derived growth factor BB (PDGFBB) in the migration of BMSCs towards C6 glioma and evaluate the effect of PDGFBB on the migrating capacity and intercellular adhesion molecule-1 (ICAM-1) expression of BMSCs. The chemokinetic activity of BMSCs in response to C6 glioma-conditioned medium and recombinant rat PDGFBB was analyzed by in vitro migration assay. The effect of PDGFBB on the expression of ICAM-1 was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Our data showed that C6 glioma-conditioned medium significantly increased the migration of BMSCs, which could be partially blocked by a PDGFBB neutralizing antibody. Recombinant rat PDGFBB enhanced the migration of BMSCs in a concentration-dependent way from 5 to 50ng/ml. Moreover, RT-PCR and immunofluorescence showed that 12h of 20ng/ml PDGFBB incubation could up-regulate the ICAM-1 expression of BMSCs. Our data also revealed that SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), significantly decreased the PDGFBB-induced migration and ICAM-1 expression of BMSCs. These results demonstrate that PDGFBB contributes to the migration of BMSCs towards C6 glioma and up-regulates the expression of ICAM-1, and that p38MAPK is an important signaling molecule correlating with the signal transduction of PDGFBB-induced migration and ICAM-1 expression of BMSCs.

  15. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    Science.gov (United States)

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  16. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    Science.gov (United States)

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  17. Evaluation of rat C6 malignant glioma using spectral computed tomography.

    Science.gov (United States)

    Liu, Jianli; Zhou, Junlin; Li, Jie; Zhang, Lingyan; Zhang, Peili; Liu, Bin

    2017-08-01

    To investigate the use of multi-parameter spectral computed tomography (CT) for the evaluation of rat C6 glioma, 15 male Wistar rats were seeded with C6 glioma cells into the right basal ganglia and scanned 12 days later using spectral CT. Brain sections corresponding to scanned regions were immunostained for proliferation marker protein Ki67 (Ki67). Pearson's correlation coefficients between spectral CT parameters and Ki67 expression were determined. Thirteen rats survived 12 days and developed tumors. Optimal contrast-to-noise ratio achieved was 65 keV. Brain regions containing liquefactive necrosis, solid tumor, peripheral tumor and normal tissue differed significantly with regard to the spectral curve slope (0.24±0.46, 1.81±1.09, 0.8±0.43 and 0.11±0.27, respectively; Pspectral curve slope (r=0.821; PSpectral CT can detect microstructural changes within malignant gliomas and potentially provide important information regarding tumor proliferation and the extent of the invasion.

  18. Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38{sup MAPK} and JNK1/2 but not of ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Posser, Thais; Rossi, Francesco M.; Oliveira, Camila S.; Leal, Rodrigo B. [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Mendes de Aguiar, Claudia B.N.; Garcez, Ricardo C.; Trentin, Andrea G. [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Moura Neto, Vivaldo [Universidade Federal do Rio de Janeiro, Departamento de Anatomia, Centro de Ciencias da Saude, Rio de Janeiro, RJ (Brazil)

    2007-06-15

    Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 {mu}M for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38{sup MAPK} and JNK1/2 - were analyzed by western blotting. Results showed that 10 {mu}M Pb(II) treatment for 24 h caused a discrete stimulation of p38{sup MAPK} phosphorylation. However, 1 and 10 {mu}M Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38{sup MAPK} and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 {mu}M Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38{sup MAPK} and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability. (orig.)

  19. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  20. Differential inhibitory effects of 2-azafluorenones on PI-PLC activation but not on PC-PLC- or PC-PLD-activation induced by histamine, PAF, PMA or A23187 in C6 glioma cells.

    Science.gov (United States)

    Wang, Hai-Long; Wang, Li-Chuan; Wei, Jiann-Wu

    2013-02-28

    In this study, C6 glioma cells were used to test the effects of 2-azafluorenone and its related compounds on membrane phosphatidylinositol (PI) and phosphatidylcholine (PC) turnover. An increase of [³H]-labeled inositol phosphate (IP1) formation by histamine (100 μM) or A23187 (100 nM) via the activation of phosphatidylinositol-specific phospholipase C (PI-PLC) to breakdown labeled substrate was observed, and this effect could be partially blocked by about half at 100 μM of 2-azafluorenones. Histamine induced the increase of IP1 formation, but failed to cause an increase in extracellularly releasing of [3H]choline metabolites, or intracellular accumulation of [³H]phosphscholine. However, platelet activation factor (PAF) from 0.2 to 1 μM, and phorbol 12-myristate-13-acetate (PMA) at 1 μM caused an increase in extracellularly releasing of [³H]choline metabolites, and intracellular accumulation of [³H]phosphocholine via the activation on phosphatidylcholine (PC)-PLC. These responses of PAF and PMA were not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at high concentration (10⁻⁴ M). A23187 induced an increase of intracellular [³H]choline release via the activation of PCphospholipase D (PLD). This increasing effect of 100 nM A23187 was not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at a high concentration of 10⁻⁴ M. In summary, the inhibitory effect of 2-azafluorenone and its related compound 4-methyl-2-azafluorenone was observed selectively on PIPLC, but not on PC-PLC or PC-PLD based on changes of products after the activation of these enzymes.

  1. Combination hyperbaric oxygen and temozolomide therapy in c6 rat glioma model Terapia combinada de oxigênio hiperbárico e temozomida no modelo C6 de glioma em ratos

    Directory of Open Access Journals (Sweden)

    Yaşar Dagıstan

    2012-06-01

    Full Text Available PURPOSE: Temozolomide (TMZ has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS: After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS: Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (% was decreased significantly in tumor tissue of the group 3 rats compared to group1 and 2. CONCLUSION: The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.OBJETIVO: A temozolomida (TMZ tem atividade anti-tumoral em pacientes com glioma maligno. Oxigênio hiperbárico (HBO pode aumentar a eficácia de terapias que são limitadas devido a um microambiente do tumor hipóxico. Foram examinados os efeitos combinados de TMZ-HBO em um modelo de glioma em rato. MÉTODOS: Após a injeção estereotáxica de células de glioma de rato C6/LacZ no cérebro de ratos Wistar, os ratos foram distribuídos aleatoriamente em três grupos de tratamento: Grupo 1: tratamento de controle. Grupo 2: TMZ sozinho. Grupo 3: uma combinação de TMZ e HBO. Os ratos foram sacrificados 18 dias após o tratamento. Foram avaliados o número de vasos intra

  2. Thrombin has a bimodal effect on glioma cell growth.

    OpenAIRE

    Schafberg, H.; Nowak, G.; Kaufmann, R.

    1997-01-01

    Using rat glioma C6 cells as a model, we have found a bimodal effect of alpha-thrombin on cell growth. In C6 cells treated with alpha-thrombin at concentrations from 0.02 nM to 1.0 nM, inhibition of cell proliferation was noted. Because the thrombin receptor agonist peptide TRAP-6 also induced inhibition of cell proliferation and the thrombin receptor antagonist peptide T1 prevented the inhibitory effect of alpha-thrombin on C6 glioma cell growth, thrombin receptor involvement in antiprolifer...

  3. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  4. Visualization of experimental glioma C6 by MRI with magnetic nanoparticles conjugated with monoclonal antibodies to vascular endothelial growth factor.

    Science.gov (United States)

    Abakumov, M A; Shein, S A; Vishvasrao, H; Nukolova, N V; Sokol'ski-Papkov, M; Sandalova, T O; Gubskii, I L; Grinenko, N F; Kabanov, A V; Chekhonin, V P

    2012-12-01

    We developed a method for obtaining iron oxide nanoparticles and their conjugation with monoclonal antibodies to vascular endothelial growth factor. The resultant vector nanoparticles were low-toxic and the antibodies retained their immunochemical activity after conjugation. The study was carried out on rats with intracranial glioma C6 on day 14 after its implantation. The intravenously injected nanoparticles visualized the brain tumor in contrast to nanoparticles conjugated with nonspecific immunoglobulins that did not accumulate in the tumor.

  5. Antiproliferative activity of some novel platinum complexes on C6 ...

    African Journals Online (AJOL)

    MCF-7) and glioma cells (C6). IC50 values of the three compounds were lower in the cisplatin-resistant cell type C6 cell lines than in MCF-7 cells. Key words: Cisplatin, antiproliferative activity, breast cancer cells (MCF-7), glioma cells (C6), IC50.

  6. Modeling and quantifying biochemical changes in C6 tumor gliomas by Fourier transform infrared imaging.

    Science.gov (United States)

    Beljebbar, Abdelilah; Amharref, Nadia; Lévèques, Antoine; Dukic, Sylvain; Venteo, Lydie; Schneider, Laurence; Pluot, Michel; Manfait, Michel

    2008-11-15

    The purpose of the study was to investigate molecular changes associated with glioma tissues using FT-IR microspectroscopic imaging (FT-IRM). A multivariate statistical analysis allowed one to successfully discriminate between normal, tumoral, peri-tumoral, and necrotic tissue structures. Structural changes were mainly related to qualitative and quantitative changes in lipid content, proteins, and nucleic acids that can be used as spectroscopic markers for this pathology. We have developed a spectroscopic model of glioma to quantify these chemical changes. The model constructed includes individual FT-IR spectra of normal and glioma brain constituents such as lipids, DNA, and proteins (measured on delipidized tissue). Modeling of FT-IR spectra yielded fit coefficients reflecting the chemical changes associated with a tumor. Our results demonstrate the ability of FT-IRM to assess the importance and distribution of each individual constituent and its variation in normal brain structures as well as in the different pathological states of glioma. We demonstrated that (i) cholesterol and phosphatidylethanolamine contributions are highest in corpus callosum and anterior commissure but decrease gradually towards the cortex surface as well as in the tumor, (ii) phosphatidylcholine contribution is highest in the cortex and decreases in the tumor, (iii) galactocerebroside is localized only in white, but not in gray matter, and decreases in the vital tumor region while the necrosis area shows a higher concentration of this cerebroside, (iv) DNA and oleic acid increase in the tumor as compared to gray matter. This approach could, in the future, contribute to enhance diagnostic accuracy, improve the grading, prognosis, and play a vital role in therapeutic strategy and monitoring.

  7. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  8. Inhibitory effects of pharmacological doses of melatonin on aromatase activity and expression in rat glioma cells

    OpenAIRE

    Gonz?lez, A; Mart?nez-Campa, C; Mediavilla, M D; Alonso-Gonz?lez, C; S?nchez-Barcel?, E J; Cos, S

    2007-01-01

    Melatonin exerts oncostatic effects on different kinds of neoplasias, especially on oestrogen-dependent tumours. Recently, it has been described that melatonin, on the basis of its antioxidant properties, inhibits the growth of glioma cells. Glioma cells express oestrogen receptors and have the ability to synthesise oestrogens from androgens. In the present study, we demonstrate that pharmacological concentrations of melatonin decreases the growth of C6 glioma cells and reduces the local bios...

  9. CT perfusion imaging as an early biomarker of differential response to stereotactic radiosurgery in C6 rat gliomas.

    Science.gov (United States)

    Yeung, Timothy Pok Chi; Kurdi, Maher; Wang, Yong; Al-Khazraji, Baraa; Morrison, Laura; Hoffman, Lisa; Jackson, Dwayne; Crukley, Cathie; Lee, Ting-Yim; Bauman, Glenn; Yartsev, Slav

    2014-01-01

    The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT) perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model. Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8) or stereotactic radiosurgery (N = 25, 12 Gy in one fraction) delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline. Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank Pstereotactic radiosurgery showed lower relative blood volume (rBV), and permeability-surface area (PS) product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (Pstereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation.

  10. Nano Size Effects of TiO2 Nanotube Array on the Glioma Cells Behavior

    OpenAIRE

    Xiangxin Xue; Anhua Wu; Dongyong Zhang; Ang Tian; Xiaofei Qin; He Yang

    2012-01-01

    In order to investigate the interplay between the cells and TiO2 nanotube array, and to explore the ability of cells to sense the size change in nano-environment, we reported on the behavior of glioma C6 cells on nanotube array coatings in terms of proliferation and apoptosis. The behavior of glioma C6 cells was obviously size-dependent on the coatings; the caliber with 15 nm diameter provided effective spacing to improve the cells proliferation and enhanced the cellular activities. C6 cells&...

  11. CT perfusion imaging as an early biomarker of differential response to stereotactic radiosurgery in C6 rat gliomas.

    Directory of Open Access Journals (Sweden)

    Timothy Pok Chi Yeung

    Full Text Available The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model.Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8 or stereotactic radiosurgery (N = 25, 12 Gy in one fraction delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline.Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank P<0.04. Responders to stereotactic radiosurgery showed lower relative blood volume (rBV, and permeability-surface area (PS product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (P<0.05. rBV and PS on day 7 showed correlations with overall survival (P<0.05, and were predictive of survival with 92% accuracy.Response to stereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation.

  12. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis.

    Science.gov (United States)

    Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik

    2017-08-01

    Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.

  13. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals

    OpenAIRE

    Wang,Yahua; Ying,Xue; Xu,Haolun; Yan,Helu; Li,Xia; Tang,Hui

    2017-01-01

    Yahua Wang, Xue Ying, Haolun Xu, Helu Yan, Xia Li, Hui Tang Key Laboratory of Xinjiang Phytomedicine Resources and Modernization of TCM, School of Pharmaceutical Sciences, Shihezi University, Shihezi, Xinjiang, People’s Republic of China Abstract: Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposom...

  14. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway.

    Directory of Open Access Journals (Sweden)

    Kimberleve Rolón-Reyes

    Full Text Available Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2 protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683. siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.

  15. Inhibition of proliferation and induction of differentiation of glioma cells with Datura stramonium agglutinin.

    Science.gov (United States)

    Sasaki, T; Yamazaki, K; Yamori, T; Endo, T

    2002-10-07

    We found that a lectin, Datura stramonium agglutinin, induced irreversible differentiation in C6 glioma cells. The differentiated cells had long processes, a low rate of proliferation and a high content of glial fibrillary acidic protein. When the medium was replaced with Datura stramonium agglutinin-free medium after 1 h, cell proliferation continued to be inhibited. Experiments with several other lectins indicated that both recognition of linear N-acetyllactosamine repeats and recognition of multiantennary units of cell-surface glycans were required for the inhibition of C6 proliferation. Proliferation of four human glial tumour cells was also inhibited by Datura stramonium agglutinin. Further, these differentiated human glial tumour cells had long processes and a high content of glial fibrillary acidic protein similar to differentiated C6 glioma cells. Taken together, these observations suggest that Datura stramonium agglutinin may be useful as a new therapy for treating glioma without side effects. Copyright 2002 Cancer Research UK

  16. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Directory of Open Access Journals (Sweden)

    Monika Huhndorf

    Full Text Available Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization.We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections.In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology.Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  17. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  18. Bioactive triterpenoid saponins and phenolic compounds against glioma cells.

    Science.gov (United States)

    Ye, Xuewei; Yu, Siran; Liang, Ying; Huang, Haocai; Lian, Xiao-Yuan; Zhang, Zhizhen

    2014-11-15

    A total of 54 natural origin compounds were evaluated for their activity in inhibiting the proliferation of glioma cells. Results showed that four Aesculus polyhydroxylated triterpenoid saponins (3-6), six Gleditsia triterpenoid saponins (7-12), and five phenolic compounds (43-46, 51) had dose-dependent activity suppressing the proliferation of both C6 and U251 cells. Structure-activity relationship analysis suggested that the acetyl group at C-28 for the Aesculus saponins and the monoterpenic acid moiety for the Gleditsia saponins could be critical for the activity of these active compounds. Aesculioside H (4), gleditsioside A (7), and feuric acid 3,4-dihydroxyphenethyl ester (FADPE, 46) were the three most active compounds from the different types of the active compounds and induced apoptosis and necrosis in glioma cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model.

    Science.gov (United States)

    Hartimath, S V; van Waarde, A; Dierckx, R A J O; de Vries, E F J

    2014-11-03

    The chemokine receptor CXCR4 and its ligand CXCL12 play an important role in tumor progression and metastasis. CXCR4 receptors are expressed by many cancer types and provide a potential target for treatment. Noninvasive detection of CXCR4 may aid diagnosis and improve therapy selection. It has been demonstrated in preclinical studies that positron emission tomography (PET) with a radiolabeled small molecule could enable noninvasive monitoring of CXCR4 expression. Here, we prepared N-[(11)C]methyl-AMD3465 as a new PET tracer for CXCR4. N-[(11)C]Methyl-AMD3465 was readily prepared by N-methylation with [(11)C]CH3OTf. The tracer was obtained in a 60 ± 2% yield (decay corrected), the purity of the tracer was >99%, and specific activity was 47 ± 14 GBq/μmol. Tracer stability was tested in vitro using liver microsomes and rat plasma; excellent stability was observed. The tracer was evaluated in rat C6 glioma and human PC-3 cell lines. In vitro cellular uptake of N-[(11)C]methyl-AMD3465 was receptor mediated. The effect of transition metal ions (Cu(2+), Ni(2+), and Zn(2+)) on cellular binding was examined in C6 cells, and the presence of these ions increased the cellular binding of the tracer 9-, 7-, and 3-fold, respectively. Ex vivo biodistribution and PET imaging of N-[(11)C]methyl-AMD3465 were performed in rats with C6 tumor xenografts. Both PET and biodistribution studies demonstrated specific accumulation of the tracer in the tumor (SUV 0.6 ± 0.2) and other CXCR4 expressing organs, such as lymph node (1.5 ± 0.2), liver (8.9 ± 1.0), bone marrow (1.0 ± 0.3), and spleen (1.0 ± 0.1). Tumor uptake was significantly reduced (66%, p tracer injection. Our data demonstrated that N-[(11)C]methyl-AMD3465 is capable of detecting physiologic CXCR4 expression in tumors and other CXCR4 expressing tissues. These results warrant further evaluation of N-[(11)C]methyl-AMD3465 as a potential PET tracer for CXCR4 receptor imaging.

  20. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  1. Decreased MiR-17 in glioma cells increased cell viability and migration by increasing the expression of Cyclin D1, p-Akt and Akt.

    Directory of Open Access Journals (Sweden)

    Guangwei Sun

    Full Text Available The activating mutations of micro RNA (miR-17 have been revealed in tumors such as human non-Hodgkin's lymphoma and T cell leukemia. However, it is unclear about the role of miR-17 in glioma cells. The current study aimed to investigate effects of miR-17 mimics or inhibitor on the viability and migration of rat glioma C6 cells, and explore possible mechanisms.The expression of miR-17 in rat glioma C6 cells and normal brain tissue was detected by quantitative PCR. Protein expression of Cyclin D1 in rat glioma C6 cells and normal brain tissue was measured by Western Blot. Glioma C6 cells were transfected with MiR-17 mimics or inhibitor. Cells that were not transfected (Lipofectamine only and cells that were transfected with nonsense RNA negative control served as control. MTT assay was utilized to detect cell viability, and cell wound scratch assay was utilized to examine the migration index. In addition, protein expression of Cyclin D1, p-Akt and Akt in MiR-17 mimics or inhibitor-transfected glioma C6 cells was detected by Western Blot. This study had been approved by the Medical Ethics Committee of the First Affiliated Hospital of Soochow University. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.The expression of miR-17 was significantly lower, whereas the expression of Cyclin D1 was significantly higher in glioma C6 cells compared to normal brain tissue. MiR-17 mimics decreased the viability and migration of glioma C6 cells markedly at 48 h. In addition, MiR-17 inhibitor increased the viability and migration of glioma C6 cells at 24 and 48 h. The protein expression of Cyclin D1, p-Akt and Akt in glioma C6 cells decreased after transfection with miR-17 mimics for 72 h, and increased after transfection with miR-17 inhibitor for 72 h.The reduced miR-17 levels in glioma cells increased cell viability and migration, which correlates with increased expression of Cyclin D1, p

  2. Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, Roger E. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States)]. E-mail: mclen001@mc.duke.edu; Akabani, Gamal [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Friedman, Henry S. [Department of Pediatrics, Duke University Medical Center, Durham, NC 27710 (United States); Reardon, David A. [Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Cleveland, Linda [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Cokgor, Ilkcan [Department of Pediatrics, Duke University Medical Center, Durham, NC 27710 (United States); Herndon, James E. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 (United States); Wikstrand, Carol [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Boulton, Susan T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Friedman, Allan H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-05-15

    Introduction: The neurohistological findings in patients treated with targeted {beta} emitters such as {sup 131}I are poorly described. We report a histopathologic analysis from patients treated with combined external beam therapy and a brachytherapy consisting of a {sup 131}I-labeled monoclonal antibody (mAb) injected into surgically created resection cavities during brain tumor resections. Methods: Directed tissue samples of the cavity walls were obtained because of suspected tumor recurrence from 28 patients. Samples and clinical follow-up were evaluated on all patients (Group A) based on total radiation dose received and a subset of these (n=18; Group B, proximal therapy subset) who had received external beam therapy within {<=}3 months of mAb therapy and undergoing 26 biopsies over 37 months. Histologic outcomes were 'proliferative glioma,' 'quiescent glioma' and negative for neoplasm. Statistical analysis was used to assess the casual relation between total absorbed dose ({sup 131}I-mAb+external beam) and histologic diagnosis. Results: The lesions observed after {sup 131}I-mAb therapy were qualitatively similar to those reported for other types of radiation therapy; however, the high localized dose rate and absorbed doses produced by the short range of {sup 131}I {beta} particles seem to have resulted in an earlier necrotic reaction in the tumor bed. Among all 28 (Group A) patients, median survival from tissue analysis after mAb therapy depended on histopathology and total radiation absorbed dose. Median survival for patients with tissue classified as proliferative glioma, quiescent glioma and negative for neoplasm were 3.5, 15 and 27.5 months, respectively. Without categorization, total dose was a significant predictor of survival (P<.002) where patients with higher doses had better prognoses. For example, median survival in patients receiving a total radiation dose greater than 86 Gy was 19 months compared with 7 months for those

  3. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    OpenAIRE

    Tysnes, Berit B; Maurer, H Rainer; Porwol, Torsten; Probst, Beatrice; Bjerkvig, Rolf; Hoover, Frank

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell a...

  4. Endothelial Cell Implantation and Survival within Experimental Gliomas

    Science.gov (United States)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  5. Dihydroxy-2,5 benzenesulphonate (dobesilate) elicits growth arrest and apoptosis in glioma cells.

    Science.gov (United States)

    Cuevas, P; Díaz-González, D; Giménez-Gallego, G; Dujovny, M

    2005-12-01

    Dihydroxy-2,5 benzenesulphonate (dobesilate) is used as an oral agent for treatment of vascular complications of diabetic retinopathy. We previously showed that blockade of fibroblast growth factor (FGF) driving angiogenesis with dobesilate inhibited new blood vessel formation in a mouse gelatine plug assay. In the present study we assessed the effects of dobesilate in rat glioma cells. Rat C6 cells line were grown as adherent cells in Dulbecco modified Eagle medium supplemented with 1% (v/v) fetal bovine serum and antibiotics. Calcium dobesilate was added in independent experiments at the following concentrations: 10, 25, 50, 75 and 100 microM, and cells were incubated for 24 hours. Effects of dobesilate in glioma cell proliferation and survival were assessed using crystal violet staining and TUNEL assay, respectively. Incubation of glioma cells with dobesilate for 24 hours concentration-dependently decreased cell proliferation with an apparent IC50 of 25 microM, and this antiproliferative effect was related to a significant increase in glioma cell apoptosis. The results suggest that dobesilate is a promising candidate leading to the development of a new adjuvant therapeutic strategy for gliomas.

  6. Caffeine inhibits migration in glioma cells through the ROCK-FAK pathway.

    Science.gov (United States)

    Chen, Ying; Chou, Wei-Chung; Ding, You-Ming; Wu, Ya-Chieh

    2014-01-01

    Glioma is the most malignant brain tumor that has the ability to migrate and invade the CNS. In this study, we investigated the signaling mechanism of caffeine on the migration of glioma cells. The effect of caffeine on cell migration was evaluated using Transwell and wound healing assays. The expression of the focal adhesion complex as it related to cell migration was assayed using Western blotting and immunostaining. Caffeine decreased the migration of rat C6 and human U87MG glioma cells and down-regulated the expression of phosphorylated focal adhesion kinase (p-FAK) and p-paxillin. Caffeine also decreased p-FAK staining at the edge of glioma cells and disassembled actin stress fibers. Additionally, caffeine elevated expression of phosphorylated myosin light chain (p-MLC), an effect that could be blocked by Y27632, a rho-associated protein kinase (ROCK) inhibitor, but not myosin light chain kinase inhibitor, ML-7. Y27632 also inhibited the caffeine-reduced expression of p-FAK and p-paxillin as well as cell migration. Caffeine decreased the migration of glioma cell through the ROCK-focal adhesion complex pathway; this mechanism may be useful as part of clinical therapy in the future. © 2014 S. Karger AG, Basel

  7. Caffeine Inhibits Migration in Glioma Cells through the ROCK-FAK Pathway

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2014-06-01

    Full Text Available Aims: Glioma is the most malignant brain tumor that has the ability to migrate and invade the CNS. In this study, we investigated the signaling mechanism of caffeine on the migration of glioma cells. Methods: The effect of caffeine on cell migration was evaluated using Transwell and wound healing assays. The expression of the focal adhesion complex as it related to cell migration was assayed using Western blotting and immunostaining. Results: Caffeine decreased the migration of rat C6 and human U87MG glioma cells and down-regulated the expression of phosphorylated focal adhesion kinase (p-FAK and p-paxillin. Caffeine also decreased p-FAK staining at the edge of glioma cells and disassembled actin stress fibers. Additionally, caffeine elevated expression of phosphorylated myosin light chain (p-MLC, an effect that could be blocked by Y27632, a rho-associated protein kinase (ROCK inhibitor, but not myosin light chain kinase inhibitor, ML-7. Y27632 also inhibited the caffeine-reduced expression of p-FAK and p-paxillin as well as cell migration. Conclusion: Caffeine decreased the migration of glioma cell through the ROCK-focal adhesion complex pathway; this mechanism may be useful as part of clinical therapy in the future.

  8. Polyoxygenated 24,28-epoxyergosterols inhibiting the proliferation of glioma cells from sea anemone Anthopleura midori.

    Science.gov (United States)

    Yu, Siran; Ye, Xuewei; Chen, Lu; Lian, Xiao-Yuan; Zhang, Zhizhen

    2014-10-01

    Eleven sterols (1-11) and one carotenoid (12) were isolated and identified from sea anemone Anthopleura midori. Compounds 1-6 are rare polyoxygenated ergosterols with a 24,28-epoxy moiety. The structures of these epoxyergosterols were determined by NMR and HRESIMS analyses as well as their chemical-physical properties. Epoxyergosterols 1 and 2 were found to be new natural products and 3-6 are new compounds. Bioactive assay showed that compounds 1, 2, 3, 5, 7, 8, 11, and 12 inhibited the proliferation of rat glioma C6 and human glioma U251 cells with IC50 in a range of 2.41-80.45 μM. Further investigation suggested that 1 and 3 induced apoptosis in glioma cells and 1 blocked U251 cells at the G0/G1 phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Nano size effects of TiO2 nanotube array on the glioma cells behavior.

    Science.gov (United States)

    Yang, He; Qin, Xiaofei; Tian, Ang; Zhang, Dongyong; Xue, Xiangxin; Wu, Anhua

    2012-12-21

    In order to investigate the interplay between the cells and TiO(2) nanotube array, and to explore the ability of cells to sense the size change in nano-environment, we reported on the behavior of glioma C6 cells on nanotube array coatings in terms of proliferation and apoptosis. The behavior of glioma C6 cells was obviously size-dependent on the coatings; the caliber with 15 nm diameter provided effective spacing to improve the cells proliferation and enhanced the cellular activities. C6 cells' biological behaviors showed many similar tendencies to many phorocytes; the matching degree of geometry between nanotube and integrin defined that a spacing of 15 nm was optimal for inducing signals to nucleus, which results in achieving maximum activity of glioma cells. In addition, the immune behavior of cells was studied, a variety of inflammatory mediator's gene expression levels were controlled by the nanoscale dimension, the expressions of IL-6 and IL-10 were higher on 30 nm than on 15 nm nanotube.

  10. Nano Size Effects of TiO2 Nanotube Array on the Glioma Cells Behavior

    Directory of Open Access Journals (Sweden)

    Xiangxin Xue

    2012-12-01

    Full Text Available In order to investigate the interplay between the cells and TiO2 nanotube array, and to explore the ability of cells to sense the size change in nano-environment, we reported on the behavior of glioma C6 cells on nanotube array coatings in terms of proliferation and apoptosis. The behavior of glioma C6 cells was obviously size-dependent on the coatings; the caliber with 15 nm diameter provided effective spacing to improve the cells proliferation and enhanced the cellular activities. C6 cells’ biological behaviors showed many similar tendencies to many phorocytes; the matching degree of geometry between nanotube and integrin defined that a spacing of 15 nm was optimal for inducing signals to nucleus, which results in achieving maximum activity of glioma cells. In addition, the immune behavior of cells was studied, a variety of inflammatory mediator’s gene expression levels were controlled by the nanoscale dimension, the expressions of IL-6 and IL-10 were higher on 30 nm than on 15 nm nanotube.

  11. AMOG/beta2 and glioma invasion: does loss of AMOG make tumour cells run amok?

    Science.gov (United States)

    Senner, V; Schmidtpeter, S; Braune, S; Püttmann, S; Thanos, S; Bartsch, U; Schachner, M; Paulus, W

    2003-08-01

    The beta2 subunit of Na,K-ATPase, initially described as adhesion molecule on glia (AMOG), has been shown to mediate neurone-astrocyte adhesion as well as neural cell migration in vitro. We have investigated the expression of AMOG/beta2 in human gliomas and its effect on glioma cell adhesion and migration. Compared to normal astrocytes of human brain, AMOG/beta2 expression levels of neoplastic astrocytes were down-regulated in biopsy specimens and inversely related to the grade of malignancy. One rat and four human glioma cell lines showed complete loss of AMOG. To investigate the function of AMOG/beta2, its expression was re-established by transfecting an expression plasmid into AMOG/beta2-negative C6 rat glioma cells. In vitro assays revealed increased adhesion and decreased migration on matrigel of AMOG/beta2-positive cells as compared to their AMOG/beta2-negative counterparts. We conclude that increasing loss of AMOG/beta2 during malignant progression parallels and may underlie the extensive invasion pattern of malignant gliomas.

  12. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response.

    Directory of Open Access Journals (Sweden)

    Doug E Brackney

    2010-10-01

    Full Text Available Mosquitoes rely on RNA interference (RNAi as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV infection in C6/36 (Aedes albopictus cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses. Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae, Sindbis virus (SINV, Togaviridae and La Crosse virus (LACV, Bunyaviridae and total RNA recovered from cell lysates. Small RNA (sRNA libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand and distribution (position along viral genome of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.

  13. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells.

    Science.gov (United States)

    An, Yan-li; Nie, Fang; Wang, Zi-yu; Zhang, Dong-sheng

    2011-01-01

    Our objective was to prepare a new nano-sized realgar particle and characterize its anti-tumor effect on tumor cells. Nanoparticles were prepared by coprecipitation and were detected by transmission electron microscopy, scanning electron microscopy, energy dispersive spectrometry (EDS), and dynamic light scattering. An anti-proliferative effect of realgar nanoparticles on rat glioma (C6) cells was determined by the MTT assay. Cell cycle and apoptosis rates were observed by flow cytometry. Apoptosis-related gene expression was detected by immunofluorescence staining. Realgar nanoparticles were successfully prepared. The particles were spherical, with an average diameter of approximately 80 nm, and contained arsenic and sulfur elements. Realgar nanoparticles inhibited C6 cell proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment of C6 cells with realgar nanoparticles significantly increased the proportions of cells in S and G2/M phases, decreased the proportion of cells in G0/G1 phase, downregulated Bcl-2 expression, and substantially upregulated Bax expression. Realgar nanoparticles significantly inhibited C6 glioma cell proliferation and promoted cell apoptosis by inducing the upregulation of Bax and downregulation of Bcl-2 expression. Realgar nanoparticles are a promising in vitro anti-cancer strategy and may be applicable for human cancer therapy studies.

  14. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  15. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Science.gov (United States)

    Nevo, Ido; Woolard, Kevin; Cam, Maggie; Li, Aiguo; Webster, Joshua D; Kotliarov, Yuri; Kim, Hong Sug; Ahn, Susie; Walling, Jennifer; Kotliarova, Svetlana; Belova, Galina; Song, Hua; Bailey, Rolanda; Zhang, Wei; Fine, Howard A

    2014-01-01

    Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC) xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs) compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT) processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  16. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  17. Maintenance of Stemlike Glioma Cells and Microglia in an Organotypic Glioma Slice Model.

    Science.gov (United States)

    Raju, E N Sanjaya; Kuechler, Jan; Behling, Susanne; Sridhar, Susmita; Hirseland, Eileen; Tronnier, Volker; Zechel, Christina

    2015-10-01

    The therapeutic resistance of gliomas is, at least in part, due to stemlike glioma cells (SLGCs), which self-renew, generate the bulk of tumor cells, and sustain tumor growth. SLGCs from glioblastomas (GB) have been studied in cell cultures or mouse models, whereas little is known about SLGCs from lower grade gliomas. To compare cell and organotypic slice cultures from GBs and lower grade gliomas and study the maintenance of SLGCs. Cells and tissue slices from astrocytomas, oligodendrogliomas, oligoastrocytomas, and GBs were cultivated in (1) serum-free medium supplemented with the growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), (2) medium containing 10% serum plus EGF and bFGF (F+GF medium), or (3) medium containing 10% fetal calf serum (F medium). Maintenance of cells and cytoarchitecture was addressed, using several candidate SLGC markers (Nestin, Sox2, CD133, CD44, CD49f/integrin α6, and Notch) as well as CD31 (endothelial cells), ionized calcium-binding adapter molecule 1 (microglia), and vimentin. Cell vitality was determined. SLGCs were present in tissue slices from lower and higher grade gliomas. Preservation of the cytoarchitecture in slices was possible for >3 weeks. Maintenance of SLGCs required the presence of EGF/bFGF in cell and slice cultures, in which F+GF appeared superior to N medium. Constraints were observed regarding the preservation of the microglia but not of the endothelial cells. Maintenance of the microglia was improved by addition of the cytokine macrophage colony-stimulating factor. Medium supplemented with serum and growth factors EGF, bFGF, and macrophage colony-stimulating factor permits the preservation of SLGCs and non-SLGCs in the original glioma microenvironment.

  18. The proteomic landscape of glioma stem-like cells

    Directory of Open Access Journals (Sweden)

    Cheryl F. Lichti

    2015-09-01

    Full Text Available Glioma stem-like cells (GSCs are hypothesized to provide a repository of cells in tumors that can self-replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein level using label-free quantitative proteomics. Resulting relative fold changes were used to drive unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin, and IL-5 as molecules of interest in progression and/or treatment of glioma.

  19. A dual functional fluorescent probe for glioma imaging mediated by blood-brain barrier penetration and glioma cell targeting.

    Science.gov (United States)

    Ma, Hongwei; Gao, Zhiyong; Yu, Panfeng; Shen, Shun; Liu, Yongmei; Xu, Bainan

    2014-06-20

    Glioma is a huge threat for human being because it was hard to be completely removed owing to both the infiltrating growth of glioma cells and integrity of blood brain barrier. Thus effectively imaging the glioma cells may pave a way for surgical removing of glioma. In this study, a fluorescent probe, Cy3, was anchored onto the terminal of AS1411, a glioma cell targeting aptamer, and then TGN, a BBB targeting peptide, was conjugated with Cy3-AS1411 through a PEG linker. The production, named AsT, was characterized by gel electrophoresis, (1)H NMR and FTIR. In vitro cellular uptake and glioma spheroid uptake demonstrated the AsT could not only be uptaken by both glioma and endothelial cells, but also penetrate through endothelial cell monolayer and uptake by glioma spheroids. In vivo, AsT could effectively target to glioma with high intensity. In conclusion, AsT could be used as an effective glioma imaging probe. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Thromboxane synthase regulates the migratory phenotype of human glioma cells.

    OpenAIRE

    Giese, A.; Hagel, C; Kim, E L; Zapf, S.; Djawaheri, J.; Berens, M. E.; M. Westphal

    1999-01-01

    The capacity of glial tumor cells to migrate and diffusely infiltrate normal brain compromises surgical eradication of the disease. Identification of genes associated with invasion may offer novel strategies for anti-invasive therapies. The gene for TXsyn, an enzyme of the arachidonic acid pathway, has been identified by differential mRNA display as being overexpressed in a glioma cell line selected for migration. In this study TXsyn mRNA expression was found in a large panel of glioma cell l...

  1. Isolation of Rickettsia felis in the Mosquito Cell Line C6/36

    OpenAIRE

    Horta, Maurício C.; LABRUNA, Marcelo B; Durigon, Edison L.; Schumaker, Teresinha T. S.

    2006-01-01

    We report the isolation and establishment of Rickettsia felis in the C6/36 cell line. Rickettsial growth was intense, always with 90 to 100% of cells being infected after few weeks. The rickettsial isolate was confirmed by testing infected cells by PCR and sequencing fragments of three major Rickettsia genes (gltA, ompB, and the 17-kDa protein gene).

  2. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  3. Biocytin and biotin uptake into NB2a neuroblastoma and C6 astrocytoma cells.

    Science.gov (United States)

    Baur, Barbara; Suormala, Terttu; Baumgartner, E Regula

    2002-01-25

    Uptake of biocytin and biotin was investigated in cultured transformed variants of neuronal (NB2a neuroblastoma) and glial (C6 astrocytoma) CNS cells. NB2a cells took up both compounds but biocytin was transported more efficiently than biotin in the nanomolar concentration range. In NB2a cells a single transport mechanism was found for biocytin with different kinetic parameters in the presence of high extracellular Na+ (Km 0.4 microM, Vmax 20 pmol/min/mg), K+ (Km 1.7 microM, Vmax 32 pmol/min/mg), or choline+ (Km 0.1 microM, Vmax 5 pmol/min/mg). Two transport systems (Km1 17 microM, Vmax1 53 pmol/min/mg; Km2 314 microM, Vmax2 360 pmol/min/mg) were identified for biotin with only system 1 being Na+-dependent. Biocytin uptake was competitively inhibited by excess biotin but not vice versa. Inhibition studies with structural analogs indicated different specificities for biotin and biocytin uptake. Biocytin uptake into C6 cells was hardly detectable whereas biotin was taken up by diffusion (kD 0.6 microl/min/mg) and a single saturable mechanism (Km 70 microM, Vmax 119 pmol/min/mg) at high extracellular Na+. High extracellular K+ enhanced biotin diffusion into C6 cells. Inhibition studies with structural analogs revealed a less specific biotin uptake mechanism in C6 than in NB2a cells. Biocytin normalized deficient biotin-dependent propionyl-CoA carboxylase activity within 4 h in biotin-deficient NB2a cells whereas in C6 cells reactivation was biocytin is only poorly transported into C6 cells. Specific biocytin uptake into NB2a cells is to our knowledge the first demonstration of a carrier-mediated transport mechanism for this compound. Neuronal biocytin uptake might contribute to the pathogenesis of biotinidase deficiency where biocytin is present in elevated levels.

  4. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  5. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha, also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6 and human neuroblastoma (IMR-32 cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  6. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Science.gov (United States)

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C; Kaur, Gurcharan

    2012-01-01

    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  7. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  8. Selective induction of apoptosis in glioma tumour cells by a Gynostemma pentaphyllum extract.

    Science.gov (United States)

    Schild, L; Chen, B H; Makarov, P; Kattengell, K; Heinitz, K; Keilhoff, G

    2010-07-01

    At low concentration H(2)O(2) is an important signal molecule in proliferation of tumour cells. We report about a study investigating the effect of an ethanolic extract from Gynostemma pentaphyllum on proliferation of C6 glioma tumour cells and cellular H(2)O(2) concentration. The proliferation of these cells was maximal at about 1 muM extracellular H(2)O(2). HPLC-finger prints of the extract revealed a set of saponines as essential components. In C6 glioma cells the extract caused increase in super oxide dismutase (SOD) activity, in the amount of SOD protein, and in cellular H(2)O(2) concentration. It inhibited cell proliferation and induced activation of caspase 3 as indication of apoptosis. No effect of the extract was observed on the proliferation of astrocytes of a primary cell culture. From these findings we suggest that the ethanolic extract from Gynostemma pentaphyllum may selectively shift the H(2)O(2) concentration to toxic levels exclusively in tumour cells due to increased SOD activity. It may have a high potency in cancer therapy and cancer prophylaxis. (c) 2010 Elsevier GmbH. All rights reserved.

  9. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  10. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy.

    Science.gov (United States)

    Friedman, Gregory K; Raborn, Joel; Kelly, Virginia M; Cassady, Kevin A; Markert, James M; Gillespie, G Yancey

    2013-01-01

    While glioblastoma multiforme (GBM) is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs) remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed "glioma stem cells" (GSCs), "glioma progenitor cells," or "glioma-initiating cells," which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGG must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses (oHSV), genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oHSV.

  11. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  12. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    Science.gov (United States)

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  13. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  14. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  15. Mosquito cell line C6/36 shows resistence to Cyt1Aa6

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Huang, E.; Tang, B.; Guan, X.; Gelbič, Ivan

    2012-01-01

    Roč. 50, č. 4 (2012), s. 265-269 ISSN 0019-5189 R&D Projects: GA MŠk 2B08003 Grant - others:National Nature Science Foundation of China(CN) 31071745; Science Foundation of the Ministry of Education of China(CN) 20093515110010; Science Foundation of the Ministry of Education of China(CN) 20093515120010; Transformation Fund for Agricultural Science and Technology Achievements(CN) 2010GB2C400212; Fujian Colleges and Universities for the Development of the West Strait(CN) 0b08b005 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * C6/36 cells * indirect immunofluorescence assay Subject RIV: ED - Physiology Impact factor: 1.195, year: 2012 http://nopr.niscair.res.in/bitstream/123456789/13748/1/IJEB%2050(4)%20265-269.pdf

  16. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression.

    Science.gov (United States)

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia

    2017-04-11

    Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.

  17. Tumor infiltrating immune cells in gliomas and meningiomas.

    Science.gov (United States)

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology.

    Science.gov (United States)

    Rhee, Wootack; Ray, Sutapa; Yokoo, Hideaki; Hoane, Megan E; Lee, Chong C; Mikheev, Andrei M; Horner, Philip J; Rostomily, Robert C

    2009-04-01

    The capacity of adult human glial progenitor cells (AGPs), to proliferate and undergo multipotent differentiation, positions them as ideal candidate cells of origin for human gliomas. To investigate this potential role we identified AGPs as mitotically active Olig2 cells in nonneoplastic adult human brain and gliomas. We conservatively estimated that one in 5,000 human temporal lobe neocortical gray or subcortical white matter cells is mitotic. Extrapolating from a mean Olig2/Mib-1 labeling index (LI) of 52% and total cell number of 100 billion, we estimated the overall prevalence of mitotic Olig2 AGPs in nonneoplastic human brain parenchyma at 10 million. These data identify a large reservoir of Olig2 AGPs which could be potential targets for human gliomagenesis. The vast majority of mitotic cells in Grade II and Grade III gliomas of all histologic subtypes expressed Olig2 (mean LI 75%) but rarely S100B (LI 0.6%), identifying the Olig2 cell as a distinct contributor to the proliferating cell population of human gliomas of both oligodendroglial and astrocytic lineages. In the most malignant Grade IV glioma, or glioblastoma multiforme (GBM), the prevalence of Olig2/Mib-1 cells was significantly decreased (24.5%). The significantly lower Olig2/Mib-1 LI in GBMs suggests that a decrease in the prevalence of Olig2 cells to the total mitotic cell pool accompanies increasing malignancy. The novel framework provided by this quantitative and comparative analysis supports future studies to examine the histogenetic role of Olig2 AGPs in adult gliomas, their potential contribution to the tumor stroma and the molecular role of Olig2 in glioma pathogenesis. (c) 2008 Wiley-Liss, Inc.

  19. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.

    Science.gov (United States)

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-12-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.

  20. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    Directory of Open Access Journals (Sweden)

    Zanatta Daniela B

    2010-06-01

    Full Text Available Abstract Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma and C6 (rat glioma cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet

  1. Glioma

    Science.gov (United States)

    ... of Tumors Astrocytoma Atypical Teratoid Rhaboid Tumor (ATRT) Chondrosarcoma Choroid Plexus Craniopharyngioma Cysts Ependymoma Germ Cell Tumor ... of Tumors Astrocytoma Atypical Teratoid Rhaboid Tumor (ATRT) Chondrosarcoma Choroid Plexus Craniopharyngioma Cysts Ependymoma Germ Cell Tumor ...

  2. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  3. Dying endothelial cells stimulate proliferation of malignant glioma cells via a caspase 3-mediated pathway

    OpenAIRE

    Mao, Ping; Smith, Luke; XIE, WANFU; Wang, Maode

    2013-01-01

    Emerging evidence has indicated that apoptotic cells have a compensatory effect on the proliferation of neighboring cells. However, the potential role of dying vascular endothelial cells (ECs) in glioma tumor proliferation remains unclear. In the present study, three glioma cell lines were cocultured with dying ECs under various conditions to evaluate the effect of dying ECs on tumor proliferation using alamarBlue and trypan blue assays to assess cell proliferation and viability, respectively...

  4. Regulation and Function of Aquaporin-1 in Glioma Cells

    Directory of Open Access Journals (Sweden)

    Yasuhiko Hayashi

    2007-09-01

    Full Text Available Glioblastoma multiformes (GBMs express increased aquaporin (AQP 1 compared to normal brain. AQPs may contribute to edema, cell motility, shuttling of H2O and H+ from intracellular to extracellular space. We sought to gain insight into AQPs function in GBM. In cultured 9L gliosarcoma cells, AQPs expression was induced by dexamethasone, platelet-derived growth factor, NaCl, hypoxia, D-glucose (but not L-glucose, fructose. Induction of AQPs expression correlated with the level of glycolysis, maximized by increasing medium D-glucose or fructose and decreasing O2, was quantified by measuring lactate dehydrogenase (LDH activity and medium lactate concentration. Upregulation of the protease cathepsin B was also observed in 9L cells cultured under glycolytic conditions. Immunohistochemical staining of human GBM specimens revealed increased coincident expression of AQPs, LDH, cathepsin B in glioma cells associated with blood vessels at the tumor periphery. GBMs are known to exhibit aerobic glycolysis. Increased glucose metabolism at the tumor periphery may provide a scenario by which upregulation of AQPs, LDH, cathepsin B contributes to acidification of the extracellular milieu and to invasive potential of glioma cells in perivascular space. The specific upregulation and metabolic consequences of increased AQPs in gliomas may provide a therapeutic target, both as a cell surface marker and as a functional intervention.

  5. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  6. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  7. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  8. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  9. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianguo [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China); Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Sun, Jie; Yang, Liu; Yan, Yaohua; Shi, Wei; Shi, Jinlong; Huang, Qingfeng; Chen, Jian [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Lan, Qing, E-mail: lanqingsj@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China)

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the release of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.

  10. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Directory of Open Access Journals (Sweden)

    Berit B. Tysnes

    2001-01-01

    Full Text Available Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that a3 and α1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, translational attenuation.

  11. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Science.gov (United States)

    Tysnes, Berit B; Maurer, H Rainer; Porwol, Torsten; Probst, Beatrice; Bjerkvig, Rolf; Hoover, Frank

    2001-01-01

    Abstract Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, and invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that α3 and β1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a trans-activating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, and translational attenuation. PMID:11774029

  12. Growth suppression activity of bradykinin antagonists in glioma cells

    Directory of Open Access Journals (Sweden)

    Avdieiev S. S.

    2014-01-01

    Full Text Available The present study was Aimed at analyzing the effect of bradykinin (BK antagonists on proliferation of the human glioblastoma cells U373. Methods. MTT-based cell proliferation assay. Results. BKM-570 revealed a significant antiproliferative activity in the U373 cells with LC50 3,8 M. Conclusions. The antiproliferative properties of BK antagonists were shown in vitro using the glioma cells. Further investigations of the molecular mechanisms of their action and pre-clinical studies on animal models are needed for the evaluation of these compounds as new anti-cancer drugs.

  13. Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Jolois Olivier

    2005-04-01

    Full Text Available Abstract Background HSV-tk/ ganciclovir (GCV gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. Methods Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and BclXL. Results Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC, from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. Conclusion The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment.

  14. Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells

    Science.gov (United States)

    Robe, Pierre A; Nguyen-Khac, Minh; Jolois, Olivier; Rogister, Bernard; Merville, Marie-Paule; Bours, Vincent

    2005-01-01

    Background HSV-tk/ ganciclovir (GCV) gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. Methods Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and BclXL. Results Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC), from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. Conclusion The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment. PMID:15804364

  15. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    OpenAIRE

    Hong Ding; Jinglian Shen; Yang Yang; Yuqin Che

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL ass...

  16. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells.

    Science.gov (United States)

    Cuevas, P; Díaz-González, D; Sánchez, I; Lozano, R M; Giménez-Gallego, G; Dujovny, M

    2006-03-01

    Because fibroblast growth factor (FGF) causes the intracellular accumulation of activated signal transducer and activator of transcription 3 (STAT3), we assessed whether dobesilate, a synthetic FGF inhibitor that has been reported to show antiproliferative and proapoptotic activities in glioma cell cultures, down-regulates the STAT3 signaling pathway in growing cultures of those cells. Because STAT3 signaling pathway plays pleiotropic roles in tumor proliferation, maintenance of STAT3 in its inactive state may prevent glioma growth and spreading. Rat glioma C6 cells were treated with dobesilate and cultures were evaluated immunocytochemically for STAT3 activation and enhancement of the expression rate of cyclin D1 and bcl-XL. Dobesilate abrogates the accumulation of activated STAT3 in glioma cells. The decrease in the intracellular levels of activated STAT3 by the dobesilate treatment runs parallel with a significant attenuation of cyclin D1 and bcl-XL expression. Treatment with inhibitors of FGF down-regulates the STAT3 signaling pathway. These alterations could be correlated to the already observed inhibition of cell proliferation and promotion of apoptosis in glioma cell cultures by dobesilate. The reported results may open new avenues for developing new treatments against these tumors.

  17. Nrf2 suppresses the function of dendritic cells to facilitate the immune escape of glioma cells.

    Science.gov (United States)

    Wang, Jialiang; Liu, Peng; Xin, Shaoyan; Wang, Zongbao; Li, Jun

    2017-11-15

    Nrf2 is presented in dendritic cells (DCs) and contributes to the maintenance of redox homeostasis. However, the expression pattern and function of Nrf2 in the maturation of DCs in the glioma-infiltrated microenvironment remain unrevealed. Our study aims to investigate the roles of Nrf2 in glioma cell-tamed DCs and their impact on the downstream T cell proliferation and cytotoxicity to glioma cells. It was showed that the inducible maturation of DCs was significantly suppressed after stimulation with tumor-conditioned medium (TCM) prepared from glioma cells (LN-18 and U118MG), as suggested by the decreased CD80, CD86 and IL-12 p70 expression and higher levels of IL-10 than the normal astrocyte medium treated DCs. Moreover, the TCM-exposed DCs had significantly increased expression and transcriptional activity of Nrf2 compared to the negative control. Nrf2 inhibition in DC cells substantially antagonized the inhibitory effects of TCM on the maturation and activation of DC cells, reflected by the elevated maturation markers and IL-12 p70. We further confirmed that Nrf2 inhibition in TCM-exposed DC cells promoted the proliferation of T cells as evaluated by the CFSE-labeled assay and Th1 response shown by the elevated production of IFN-γ. The cytotoxic T lymphocyte assay revealed that Nrf2 genetic suppression in DC cells greatly enhanced the capacity of T cells in the cytotoxicity to glioma cells dependent on the E:T ratio. Collectively, our study demonstrated that Nrf2 inhibition in DCs in glioma-exposed microenvironment could enhance the maturation of DCs and the subsequent activation of T cells and their cytotoxicity on glioma cells. Copyright © 2017. Published by Elsevier Inc.

  18. Fluorine-18-deoxyglucose positron emission tomography/computed tomography with Ki67 and GLUT-1 immunohistochemistry for evaluation of the radiosensitization effect of oleanolic acid on C6 rat gliomas.

    Science.gov (United States)

    Zhang, Yu; Xu, Huiqin; Wang, Hui; Yu, Wenjing; Zhao, Xuefeng; Xue, Yangyang

    2015-01-01

    The aim of this study was to investigate the radiosensitization effect of oleanolic acid (OA) in an in-vivo C6 rat glioma model using fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) and Ki67 and glucose transporter-1 (GLUT-1) immunohistochemistry(IHC) and evaluate the utility of 18F-FDG PET/CT in assessing early changes after radiotherapy. Tumor-bearing rats were divided into four groups: the control group (group A), the OA group(group B), the radiotherapy group (group C), and the OA combined with radiotherapy group (group D). 18F-FDG PET/CT images were obtained to monitor the tumor/muscle (T/M) ratio of 18F-FDG uptake before treatment,1 day after treatment, and 7 days after treatment. Tumor volume changes were also assessed, and hematoxylin and eosin staining and Ki67 and GLUT-1 IHC staining were also carried out. Before treatment, there were no obvious differences between the T/M ratios (F=0.147, P=0.931)and tumor volumes (F=0.177, P=0.911) among the four groups. At day 1 after treatment, statistical differences were observed in the T/M ratios (F=2.891, P=0.05), with decreased values in groups C and D compared with group A(tCA=2.354, tDA=2.356, PGLUT-1 in the four groups (F=16.667, 22.082, and 39.555,PGLUT-1, and our study also found a significant relationship between the expression of Ki67 and the expression of GLUT-1. OA has a radiosensitization effect on C6 rat glioma tumors in vivo, detected using 18F-FDG PET/CT and Ki67 and GLUT-1 IHC staining. 18F-FDG PET/CT is a potentially sensitive tool for the evaluation of early changes after radiotherapy.

  19. Testosterone attenuates morpho-functional alterations by 2-methoxyestradiol exposure and induces differentiation in C6 cells.

    Science.gov (United States)

    Manca, Paolo; Chisu, Valentina

    2011-06-01

    2-Methoxyestradiol (2ME) is a cytotoxic drug that interacts with tubulin and alters microtubule dynamics. It has been reported that testosterone (T) has a neuroprotective effect against oxidative stress and induces differentiation in mouse C1300 neuroblastoma cells. Here, we investigated the ability of T to attenuate the cytotoxic effects of 2ME and to induce cell differentiation in an immortalized rat glial cell line, known as C6. C6 cells were exposed for 5 days to 5 µM 2ME, 50 nM T, or both. We evaluated the morphological changes, growth rate, vitality, catalase activity, and glial fibrillary acidic protein (GFAP) immunoreactivity in control and treated C6 cells. Western blot analyses were used to quantify expression of tyrosinated tubulin (Tyr-Tub), acetylated tubulin (Acet-Tub), total α-tubulin (TOT-Tub), and GFAP. After 2ME exposure, the cells displayed a globular, shrunken shape, and retraction or absence of cytoplasmic processes; moreover, 2ME treatment significantly decreased cell growth, cell viability, catalase activity, and expression of both Tyr-Tub and Acet-Tub. However, when T was added, the cells exhibited a glial-like shape, elongated cell processes, and enhanced cell growth, cell vitality, catalase activity, and GFAP immunoreactivity. Densitometric values of Tyr-Tub, Acet-Tub, and GFAP increased significantly when T was present, while Tot-Tub values were unaltered. These results indicate that, in C6 cells, T: (i) attenuated the morpho-functional changes caused by 2ME exposure; (ii) induced glial differentiation; and (iii) exerted a direct action on the microtubule system. Copyright © 2010 Wiley-Liss, Inc.

  20. MiR-218 inhibits the tumorgenesis and proliferation of glioma cells by targeting Robo1.

    Science.gov (United States)

    Gu, Jian-Jun; Gao, Guang-Zhong; Zhang, Shi-Ming

    2016-01-01

    Malignant glioma is the most common primary brain tumors directly correlated with the high mortality and poor prognosis in clinical practice. MicroRNAs (miRNAs or miRs) influence numerous cancer-relevant processes including cell proliferation, differentiation and metabolism. However, the role of microRNA in malignant glioma is largely unknown. This study aimed to study the role of miR-218, a tumor-suppressive microRNA, in glioma development both in vivo and in vitro. The expression level of miR-218, Slit2 and Robo1 was examined by either quantitative (polymerase chain reaction) or western-blotting from both human glioma tissue and glioma cell lines. U87 cells were transfected with miR-218 and then the expression levels of Slit2 and Robo1 were quantified. Cell proliferation was measured both by the in vitro proliferation assay and in vivo graft studies. The luciferase reporter assay was employed to validate the downstream target of miR-218. The expression of miR-218 was lower in glioma cell lines and glioma tissues from the patients with decreased Slit2 and increased Robo1 protein levels. The over-expression of miR-218 inhibited the tumorgenesis and proliferation of glioma cells remarkably. Furthermore, the over-expressing miR-218 in glioma cells results in the downregulation of Robo1 and upregulation of Slit2. Using luciferase reporter assays, we found that Robo1 was a direct downstream target of miR-218. Over-expression of miR-218 in glioma cells may inhibit the proliferation and tumorigenicity through targeting Robo1, suggesting that miR-218 could be a potential target for developing therapies in treating glioma.

  1. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina Garnier

    2013-01-01

    preserving the invasive features and stem cell features of glioma cells. Fluorescently labelled primary glioma spheroids and U87MG cell line-derived spheroids were implanted into organotypic rat corticostriatal slice cultures and the invasion was followed over time by confocal microscopy. The invasion...... that the primary glioma spheroid area was constant or decreasing after implantation, with a clear increase in the number of invading cells over time. In contrast, the U87MG spheroid area increased after implantation, with no convincing tumor cell invasion. High levels of Bmi-1 and nestin were found in all...... spheroids, whereas high levels of Sox2 and low to moderate levels of CD133 were only found in the primary spheroids. In conclusion, the invasion of gliomas is preserved using primary glioma spheroids. Some stem cell features are preserved as well, making this model useful in drug development elucidating...

  2. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen, E-mail: lizhen7111@163.com [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China); Liu, Yun-hui; Diao, Hong-yu [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China); Ma, Jun [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, 110001 (China); Yao, Yi-long [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China)

    2015-12-25

    In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation, migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.

  3. The role of Alix in the proliferation of human glioma cells.

    Science.gov (United States)

    Zhao, Chengjin; Ban, Na; Dai, Shirong; Zhang, Xiubing; Zhang, Li; Xu, Peng; Chen, Wenjuan; Sun, Jie; Bao, Zhen; Chang, Hao; Wang, Donglin; Ren, Jianbing

    2016-06-01

    Apoptosis-linked-gene-2-interacting protein 1 (Alix) is involved in the endosome-lysosome system in the cytoplasm. The normal function of Alix may be altered by ALG-2 toward a destructive role during active cell death. Alix also may play a role in regulation of cell proliferation. However, the role of Alix in human glioma has not been elucidated yet. This study intended to clarify the relationship between Alix and glioma pathologic grades and its role in the proliferation of glioma cells. Our findings showed that Alix protein concentrations were significantly elevated in high-grade glioma tissue compared with low-grade glioma (P Alix was overexpressed in 75 resected glioma tissues and may forecast poor survival. Alix expression was increased in resting serum-stimulated glioma cells. Additionally, we reduced Alix expression in U251MG cells and then found that cell viability was decreased significantly when p21 expression increased. Colony formation assay and flow cytometry analysis demonstrated that reduced Alix expression may lead to growth inhibition and cell cycle arrest. In summary, our findings suggest that Alix plays an important role in the proliferation of glioma cells and may be a novel therapeutic target. Copyright © 2016. Published by Elsevier Inc.

  4. The Role of Fascin in the Migration and Invasiveness of Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Jeong Hyun Hwang

    2008-02-01

    Full Text Available Malignant glioma is the most common primary brain tumor, and its ability to invade the surrounding brain parenchyma is a leading cause of tumor recurrence and treatment failure. Whereas the molecular mechanisms of glioma invasion are incompletely understood, there is growing evidence that cytoskeletal-matrix interactions contribute to this process. Fascin, an actin-bundling protein, induces parallel actin bundles in cell protrusions and increases cell motility in multiple human malignancies. The role of fascin in glioma invasion remains unclear. We demonstrate that fascin is expressed in a panel of human malignant glioma cell lines, and downregulation of fascin expression in glioma cell lines by small interfering RNA (siRNA is associated with decreased cellular attachment to extracellular matrix (ECM and reduced migration. Using immunofluorescence analysis, we show that fascin depletion results in a reduced number of filopodia as well as altered glioma cell shape. In vitro invasiveness of U251, U87, and SNB19 glioma cells was inhibited by fascin siRNA treatment by 52.2%, 40.3%, and 23.8% respectively. Finally, we show a decreased invasiveness of U251-GFP cells by fascin knockdown in an ex vivo rat brain slice model system. This is the first study to demonstrate a role for fascin in glioma cell morphology, motility, and invasiveness.

  5. Integration of genome-wide of Stat3 binding and epigenetic modification mapping with transcriptome reveals novel Stat3 target genes in glioma cells.

    Science.gov (United States)

    Kruczyk, Marcin; Przanowski, Piotr; Dabrowski, Michal; Swiatek-Machado, Karolina; Mieczkowski, Jakub; Wallerman, Ola; Ronowicz, Anna; Piotrowski, Arkadiusz; Wadelius, Claes; Kaminska, Bozena; Komorowski, Jan

    2014-11-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many human tumors, including gliomas, and regulates the expression of genes implicated in proliferation, survival, apoptosis, angiogenesis and immune regulation. Only a small fraction of those genes has been proven to be direct STAT3 targets. In gliomas, STAT3 can play tumor suppressive or oncogenic roles depending on the tumor genetic background with target genes being largely unknown. We used chromatin immunoprecipitation, promoter microarrays and deep sequencing to assess the genome-wide occupancy of phospho (p)-Stat3 and epigenetic modifications of H3K4me3 and H3ac in C6 glioma cells. This combined assessment identified a list of 1200 genes whose promoters have both Stat3 binding sites and epigenetic marks characteristic for actively transcribed genes. The Stat3 and histone markings data were also intersected with a set of microarray data from C6 glioma cells after inhibition of Jak2/Stat3 signaling. Subsequently, we found 284 genes characterized by p-Stat3 occupancy, activating histone marks and transcriptional changes. Novel genes were screened for their potential involvement in oncogenesis, and the most interesting hits were verified by ChIP-PCR and STAT3 knockdown in human glioma cells. Non-random association between silent genes, histone marks and p-Stat3 binding near transcription start sites was observed, consistent with its repressive role in transcriptional regulation of target genes in glioma cells with specific genetic background. Copyright © 2014. Published by Elsevier B.V.

  6. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a.

    Science.gov (United States)

    Jia, Peng; Cai, Heng; Liu, Xiaobai; Chen, Jiajia; Ma, Jun; Wang, Ping; Liu, Yunhui; Zheng, Jian; Xue, Yixue

    2016-10-28

    Long non-coding RNAs (lncRNAs) play crucial roles in the development and progression of glioma. Previous studies indicated that lncRNA H19 regulated tumor carcinogenesis, angiogenesis and metastasis. This study aimed to investigate its functional role in glioma-induced endothelial cell proliferation, migration and tube formation as well as its possible molecular mechanisms. H19 was up-regulated in microvessels from glioma tissues and glioma-associated endothelial cells (GEC) cultured in glioma conditioned medium. Knockdown of H19 suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro and meanwhile up-regulated the expression of miR-29a. Bioinformatics analysis and luciferase reporter assay defined that H19 mediated the above effects via directly binding to miR-29a. In addition, miR-29a targeted 3'-UTR region of vasohibin 2 (VASH2) and decreased its expression. VASH2 has been identified as an angiogenic factor. Knockdown of H19 also decreased the VASH2 expression by up-regulating miR-29a. In conclusion, the results indicated that knockdown of H19 suppressed glioma induced angiogenesis by inhibiting microRNA-29a, which may modulate the onset of glioma by regulating biological behaviors of glioma vascular endothelial cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Influence of rat progenitor neurogenic cells supernatant on glioma 101.8 cells in vitro

    Directory of Open Access Journals (Sweden)

    Liubich L. D.

    2015-06-01

    Full Text Available Aim. To evaluate the influence of the rat progenitor neurogenic cells supernatant (RPNS on the transplantable rat malignant brain glioma cells (strain 101.8 under conditions of cultivation. Methods. Primary cultures were obtained from glioma 101.8 fragments (n = 12 and intact brain of newborn rats (n = 9. RPNS was received from neurogenic cell suspensions of fetal rat brain on 8–11th (E8-11 and 12–16th (E12-16 days of gestation. Results: RPNS (E8-11 as well as RPNS (E12-16 showed a cytotoxic effect on the glioma 101.8 cells in short-term cultures, the level of which was dose-dependent and intensified with increasing duration of incubation. RPNS (E12-16 had a more pronounced cytotoxic action on the cells of glioma 101.8 compared with RPNS (E8-11. The cytotoxic index (CI of RPNS (E12-16 on the glioma 101.8 cells was significantly higher than CI determined in cell suspensions of normal rat brain (CI was (91.99 ± 2.37 % and (22.9 ± 4.97 % respectively over 48 h incubation with RPNS. After RPNS (E8-11 influence on the glioma 101.8 primary cultures the signs of dose-dependent cytotoxic effects were observed: the thinning of growth areas, appearance of dystrophic and necrobiotic changes in tumor cells and decreasing of a mitotic index. These features were strengthened under the RPNS (E12-16 influence. Conclusions. Fetal RPNS showed dose-dependent cytotoxic and antiproliferative effects on the cultivated glioma 101.8 cells, which were intensified with the increasing of rat brain gestational age and lengthening of the incubation duration. A prerequisite for such effects is likely the NPC ability to produce the substances with antitumor activity.

  8. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  9. Astrocyte activation and neurotoxicity: A study in different rat brain regions and in rat C6 astroglial cells.

    Science.gov (United States)

    Goswami, Poonam; Gupta, Sonam; Joshi, Neeraj; Sharma, Sharad; Singh, Sarika

    2015-07-01

    The present study was conducted to investigate the effect of rotenone on astrocytes activation, their viability and its effect on neuronal death in different brain regions. Rotenone was injected in rat brain by intracerebroventricularly (bilateral) route at dose of 6 μg and 12 μg. In vitro C6 cells were treated with rotenone at concentration of 0.1, 0.25, 0.5, 1 and 2 μM. Rotenone administration to rat brain caused significant astrocytes activation in frontal cortex, cerebellum, cerebellar nucleus, substantia nigra, hypothalamus and hippocampus regions of the rat brain. Rotenone administration also led to significant degeneration of cells in all the studied regions along with altered nuclear morphology assessed by hematoxylin-eosin and cresyl violet staining. Histological staining showed the significantly decreased number of cells in all the studied regions except cerebellar nucleus in dose and time dependant manner. Rotenone administration in the rat brain also caused significant decrease in glutathione levels and augmented nitrite levels. In vitro treatment of rotenone to astrocytic C6 cells caused significantly increased expression of glial fibrillar acidic protein (GFAP) and decreased viability in dose and time dependent manner. Rotenone treatment to C6 cells exhibited significant generation of reactive oxygen species, augmented nitrite level, impaired mitochondrial activity, apoptotic chromatin condensation and DNA damage in comparison to control cells. Findings showed that oxidative stress play a considerable role in rotenone induced astrocyte death that was attenuated with co-treatment of antioxidant melatonin. In conclusion, results showed that rotenone caused significant astrocytes activation, altered nuclear morphology, biochemical alteration and apoptotic cell death in different rat brain regions. In vitro observations in C6 cells showed that rotenone treatment exhibited oxidative stress mediated apoptotic cell death, which was attenuated with co

  10. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  11. Genetically Engineered Multilineage-Differentiating Stress-Enduring Cells as Cellular Vehicles against Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamasaki

    2017-09-01

    Full Text Available Malignant glioma, the most common malignant brain tumor in adults, is difficult to treat due to its aggressive invasive nature. Enzyme/prodrug suicide gene therapy based on the herpes simplex virus thymidine kinase (HSVtk/ganciclovir (GCV system is an efficient strategy for treating malignant gliomas. In the present study, we evaluated treatment with multilineage-differentiating stress-enduring (Muse cells, which are endogenous non-tumorigenic pluripotent-like stem cells that are easily collectable from the bone marrow as SSEA-3+ cells, as carriers of the HSVtk gene. Human Muse cells showed potent migratory activity toward glioma cells both in vitro and in vivo. HSVtk gene-transduced Muse cells (Muse-tk cells at a cell number of only 1/32 that of U87 human glioma cells completely eradicated U87 gliomas in nude mouse brains, showing a robust in vivo bystander effect. Pre-existing intracranial U87 gliomas in nude mouse brains injected intratumorally with Muse-tk cells followed by intraperitoneal GCV administration were significantly reduced in size within 2 weeks, and 4 of 10 treated mice survived over 200 days. These findings suggest that intratumoral Muse-tk cell injection followed by systemic GCV administration is safe and effective and that allogeneic Muse-tk cell-medicated suicide gene therapy for malignant glioma is clinically feasible.

  12. The role of stem cells in glioma progression and therapy

    Directory of Open Access Journals (Sweden)

    Mateja Obrez

    2013-02-01

    Full Text Available The concepts of tumour origin and stochastic nature of carcinogenesis are being challenged today by hierarchical models that predict the existence of cancer stem cells (CSCs, which are postulated as unique cell population capable of infinite self renewal, multilineage differentiation and having a higher resistance to conventional cancer therapy thus facilitating malignant growth and therapy resistance. Accordingly, successful treatment of adult brain tumour–glioma and its most malignant stage–glioblastoma multiforme (GBM, would require the elimination of CSCs to avoid tumour relapse. Yet, with available therapy (i.e. surgery in GBMs this cannot be achieved, due to infiltrative growth of a subpopluation of GBM cells with highly expressed migratory genes (migratome into the normal brain tissue.Besides CSCs – a proven prerequisite for tumour development and progression, tumour bulk mass also comprises haematopoietic stem cells, endothelial progenitor cells and mesenchymal stem cells (MSCs. The role of these other types of stem cell was shown to largely depend on the tumour microenvironment, where their contradictory anti-tumour action was evidenced. Yet, the exact mechanisms and MSC’s role in cell-mediated modulation of tumour behaviour via paracrine and direct interactions with GBM (stem cells still remain unknown. Nevertheless these stem cells, particularly MSCs, may represent novel therapeutic vectors for enhanced target-site delivery of chemotherapeutics, which are urgently needed to improve efficiency of current glioma treatment. So far, cell therapy using MSCs appears promising, due to MSC’s selective tumour tropism and their immuno-modulatory potential regarding treatment of GBM, which will be discussed in this review.

  13. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...

  14. Bystander killing effect of tymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells.

    Science.gov (United States)

    Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Osada, Hideo; Tange, Yuichi; Yamamoto, Takuji; Aiko, Yasuhisa; Tamura, Masaru; Shiroishi, Toshihiko

    2010-01-01

    Transduction of the suicide gene of Herpes simplex virus thymidine kinase (Hsv-tk) into glioma cells or neural stem cells combined with pro-drug ganciclovir (GCV) treatment has been effective to treat experimental glioma in the rat through the bystander effect. Bone marrow stromal cells (MSCs) in the adult bone marrow have tropism for brain tumors and act as tumor stromal cells. Whether adult MSCs expressing Hsv-tk can also act as effector cells of the bystander killing effect on murine glioma cells was investigated. In vitro study of co-culture between 9L/LacZ (9L) glioma cells and Hsv-tk-transduced MSCs (MSCs/tk(+)) followed by GCV administration in the culture medium resulted in apparent nuclear morphological changes in the 9L glioma cells surrounding the MSCs/tk(+). 9L glioma cell survival in the presence of MSCs/tk(+) and GCV treatment was quantitatively measured and showed significant decrease of 9L glioma cell proliferation with higher MSCs/tk(+) ratio and GCV concentration. Intracerebral co-inoculation experiments in Fisher rats used 9L glioma cells and either MSCs/tk(+) or Hsv-tk-non-transduced MSCs (MSCs/tk(-)) followed by intraperitoneal injection of GCV (100 mg/kg, daily for 7 days). The animals co-inoculated with 9L glioma cells and MSCs/tk(+) showed significant retardation of tumor growth and prolongation of survival time compared with the animals with 9L glioma cells and MSCs/tk(-). Quantitative findings were established of the novel effects of adult MSCs/tk(+) as effector cells of the bystander killing effect on glioma cells.

  15. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    Science.gov (United States)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  16. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.

  17. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Xin Hui Derryn Chan

    2012-09-01

    Full Text Available Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138 as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.

  18. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina

    2013-01-01

    preserving the invasive features and stem cell features of glioma cells. Fluorescently labelled primary glioma spheroids and U87MG cell line-derived spheroids were implanted into organotypic rat corticostriatal slice cultures and the invasion was followed over time by confocal microscopy. The invasion...... that the primary glioma spheroid area was constant or decreasing after implantation, with a clear increase in the number of invading cells over time. In contrast, the U87MG spheroid area increased after implantation, with no convincing tumor cell invasion. High levels of Bmi-1 and nestin were found in all...

  19. Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells.

    Science.gov (United States)

    Leng, Tian-Dong; Li, Ming-Hua; Shen, Jian-Feng; Liu, Ming-Li; Li, Xin-Bo; Sun, Hua-Wei; Branigan, Debbie; Zeng, Zhao; Si, Hong-Fang; Li, Jun; Chen, Jeff; Xiong, Zhi-Gang

    2015-03-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with a dismal prognosis. Despite intensive study on tumor biology, the underlying mechanisms of the unlimited proliferation and progressive local invasion are still poorly understood, and no effective treatment has been developed for GBM patients. We determine the role of TRPM7 channels in the growth, migration, and infiltration of malignant glioma cells. Using a combination of RT-PCR, Western blot, and patch-clamp techniques, we demonstrated the expression of functional TRPM7 channels of A172 cells, a human glioma cell line, as well as in human glioma tissues. Furthermore, we evaluated the role of TRPM7 in growth, migration, and infiltration of A172 cells with MTT and transwell migration and invasion assays. We showed the expression of functional TRPM7 channels in both A172 cells and human glioma tissues. Suppression of TRPM7 expression with TRPM7-siRNA dramatically reduced the proliferation, migration, and invasion of A172 cells. Pharmacological inhibition of TRPM7 channel with 2-aminoethoxydiphenyl borate (2-APB) showed a similar effect as TRPM7-siRNA. We demonstrate that human glioma cells express functional TRPM7 channel and that activation of this channel plays an important role in the proliferation, migration, and invasion of malignant glioma cells. TRPM7 channel may represent a novel and promising target for therapeutic intervention of malignant glioma. © 2014 John Wiley & Sons Ltd.

  20. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells.

    Science.gov (United States)

    Du, Chenghua; Pan, Pan; Jiang, Yan; Zhang, Qiuli; Bao, Jinsuo; Liu, Chang

    2016-10-06

    Glioma is one of the most common primary malignancies in the brain or spine. The transcription factor (TF) CCAAT/enhancer binding protein beta (CEBPB) is important for maintaining the tumor initiating capacity and invasion ability. To investigate the regulation mechanism of CEBPB in glioma, microarray data GSE47352 was analyzed. GSE47352 was downloaded from Gene Expression Omnibus, including three samples of SNB19 human glioma cells transduced with non-target control small hairpin RNA (shRNA) lentiviral vectors for 72 h (normal glioma cells) and three samples of SNB19 human glioma cells transduced with CEBPB shRNA lentiviral vectors for 72 h (CEBPB-silenced glioma cells). The differentially expressed genes (DEGs) were screened using limma package and then annotated. Afterwards, the Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was applied to perform enrichment analysis for the DEGs. Furthermore, the protein-protein interaction (PPI) network and transcriptional regulatory network were constructed using Cytoscape software. Total 529 DEGs were identified in the normal glioma cells compared with the CEBPB-silenced glioma cells, including 336 up-regulated and 193 down-regulated genes. The significantly enriched pathways included chemokine signaling pathway (which involved CCL2), focal adhesion (which involved THBS1 and THBS2), TGF-beta signaling pathway (which involved THBS1, THBS2, SMAD5, and SMAD6) and chronic myeloid leukemia (which involved TGFBR2 and CCND1). In the PPI network, CCND1 (degree = 29) and CCL2 (degree = 12) were hub nodes. Additionally, CEBPB and TCF12 might function in glioma through targeting others (CEBPB → TCF12, CEBPB → TGFBR2, and TCF12 → TGFBR2). CEBPB might act in glioma by regulating CCL2, CCND1, THBS1, THBS2, SMAD5, SMAD6, TGFBR2, and TCF12.

  1. PAF promotes stemness and radioresistance of glioma stem cells.

    Science.gov (United States)

    Ong, Derrick Sek Tong; Hu, Baoli; Ho, Yan Wing; Sauvé, Charles-Etienne Gabriel; Bristow, Christopher A; Wang, Qianghu; Multani, Asha S; Chen, Peiwen; Nezi, Luigi; Jiang, Shan; Gorman, Claire Elizabeth; Monasterio, Marta Moreno; Koul, Dimpy; Marchesini, Matteo; Colla, Simona; Jin, Eun-Jung; Sulman, Erik P; Spring, Denise J; Yung, Wai-Kwan Alfred; Verhaak, Roel G W; Chin, Lynda; Wang, Y Alan; DePinho, Ronald A

    2017-10-24

    An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor ( PAF ) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM). Published under the PNAS license.

  2. Serenoa Repens Induces Growth Arrest, Apoptosis and Inactivation of STAT3 Signaling in Human Glioma Cells.

    Science.gov (United States)

    Zhou, Tiezhu; Yang, Yang; Zhang, Hongyan; Che, Yuqin; Wang, Wei; Lv, Hui; Li, Jie; Wang, Yuanyuan; Hou, Shuai

    2015-12-01

    Serenoa repens, the extract of berry in Southeastern United States, is one of several phytotherapeutic agents available for the treatment of Benign prostatic hyperplasia (BPH). In this study, we found for the first time that Serenoa repens effectively inhibited the growth of human U87 and U251 glioma cells. Flow cytometry assay showed that Serenoa repens induced apoptosis of U87 and U251 glioma cells in a dose-dependent manner. Also, Serenoa repens increased the expression of cleaved-PARP, Caspase-3 or p27 protein in these two cell lines, respectively. In addition, we found that Serenoa repens down-regulated basal level of phosphorylated form of signal transducer and activator of transcription 3 (STAT 3) in both U87 and U251 glioma cells. Furthermore, it was discovered that a Janus family of tyrosine kinase (JAK) inhibitor AG490 inhibit the growth of human U87 and U251 glioma cells and AG490 enhanced the ability of Serenoa repens to inhibit the growth of U87 and U251 glioma cells as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. These results indicate that Serenoa repens reduces the growth, causes apoptosis of Glioma cells and inhibits STAT 3 signaling. In addition, it might also be useful for the treatment of individuals with glioma. © The Author(s) 2014.

  3. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  4. MicroRNA-184 promotes proliferation ability of glioma cells by regulating FOXO3.

    Science.gov (United States)

    Cui, Qing-Ke; Liu, Wei-Dong; Zhu, Jian-Xin; Wang, Yun-Hua; Wang, Zhi-Gang

    2014-10-01

    To investigate the effect of microRNA (miR-184) on regulating the genesis, development and proliferation of glioma cells. Lipidosome was used to transfect miR-184 mimic and inhibitor to glioma cell line, and the cell proliferation ability changes were determined by MTT and plate cloning experiment after the transfection. WB test was used to measure the levels of cyclinD1, p27 and FOXO3. Meanwhile, QPCR was used to detect miR-184 expression in glioma cell line, glioma tissues and adjacent tissues. Luciferase experiment was used to test 3'UTR gene targeting regulation of miR-184 and FOXO3. QPCR results showed a significant lower miR-184 expression level in glioma cell line and glioma tissues than that in juxtacancerous tissue. MTT and plate cloning experiments have shown that after over-expressing of miR-184, the cell proliferation capacity of glioma U87 and T98G was significantly increased, which was significantly inhibited after the inhibition of miR-184. WB results showed a lower expression level of p27 in U87 and T98G cells, and a higher expression level of cyclinD1 after over-expressing of miR-184 was observed. However, a lower expression level of cyclinD1 and a higher expression level of p27 after the inhibition of miR-184. The luciferase activity was inhibited after the over-expressing of miR-184. MiR-184 can affect the proliferation abilities of glioma cells and regulate the cell cycle related protein. It plays an important role in the occurrence and development of gliomas. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression

    Science.gov (United States)

    Fomchenko, Elena I.; Dougherty, Joseph D.; Helmy, Karim Y.; Katz, Amanda M.; Pietras, Alexander; Brennan, Cameron; Huse, Jason T.; Milosevic, Ana; Holland, Eric C.

    2011-01-01

    Background Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration. Methodology/Principal Findings We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling. Conclusions/Significance These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis. PMID:21754979

  6. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression.

    Directory of Open Access Journals (Sweden)

    Elena I Fomchenko

    Full Text Available Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis.

  7. CHO cell production and sequence improvement in the 13C6FR1 anti-Ebola antibody.

    Science.gov (United States)

    Pettit, Dean K; Rogers, Richard S; Arthur, Kelly; Brodsky, Yan; Clark, Rutilio H; Crowell, Chris; Ennis, Jane; Gillespie, Alison; Gillespie, Ron; Livingston, Brittney; Nalbandian, Edith; Pace, Danielle; Smidt, Pauline; Pauly, Michael; Timmons, Ken; Trentalange, Michael; Whaley, Kevin J; Zeitlin, Larry; Thomas, James N

    2016-01-01

    From March 2014 through February 2015, the Ebola virus spread rapidly in West Africa, resulting in almost 30,000 infections and approximately 10,000 deaths. With no approved therapeutic options available, an experimental antibody cocktail known as ZMapp™ was administered to patients on a limited compassionate-use basis. The supply of ZMapp™ was highly constrained at the time because it was in preclinical development and a novel production system (tobacco plants) was being used for manufacturing. To increase the production of ZMapp™ for an uncertain future demand, a consortium was formed in the fall of 2014 to quickly manufacture these anti-Ebola antibodies in Chinese hamster ovary (CHO) cells using bioreactors for production at a scale appropriate for thousands of doses. As a result of the efforts of this consortium, valuable lessons were learned about the processing of the antibodies in a CHO-based system. One of the ZMapp™ cocktail antibodies, known as c13C6FR1, had been sequence-optimized in the framework region for production in tobacco and engineered as a chimeric antibody. When transfected into CHO cells with the unaltered sequence, 13C6FR1 was difficult to process. This report describes efforts to produce 13C6FR1 and the parental murine hybridoma sequence, 13C6mu, in CHO cells, and provides evidence for the insertion of a highly conserved framework amino acid that improved the physical properties necessary for high-level expression and purification. Furthermore, it describes the technical and logistical lessons learned that may be beneficial in the event of a future Ebola virus or other pandemic viral outbreaks where mAbs are considered potential therapeutics.

  8. Structural investigation of C6/36 and Vero cell cultures infected with a Brazilian Zika virus.

    Directory of Open Access Journals (Sweden)

    Debora Ferreira Barreto-Vieira

    Full Text Available Zika virus (ZIKV is a member of the flavivirus genus, and its genome is approximately 10.8 kilobases of positive-strand RNA enclosed in a capsid and surrounded by a membrane. Studies on the replication dynamics of ZIKV are scarce, which limits the development of antiviral agents and vaccines directed against ZIKV. In this study, Aedes albopictus mosquito lineage cells (C6/36 cells and African green monkey kidney epithelial cells (Vero cells were inoculated with a ZIKV sample isolated from a Brazilian patient, and the infection was characterized by immunofluorescence staining, phase contrast light microscopy, transmission electron microscopy and real-time RT-PCR. The infection was observed in both cell lineages, and ZIKV particles were observed inside lysosomes, the rough endoplasmic reticulum and viroplasm-like structures. The susceptibility of C6/36 and Vero cells to ZIKV infection was demonstrated. Moreover, this study showed that part of the replicative cycle may occur within viroplasm-like structures, which has not been previously demonstrated in other flaviviruses.

  9. Structural investigation of C6/36 and Vero cell cultures infected with a Brazilian Zika virus.

    Science.gov (United States)

    Barreto-Vieira, Debora Ferreira; Jácome, Fernanda Cunha; da Silva, Marcos Alexandre Nunes; Caldas, Gabriela Cardoso; de Filippis, Ana Maria Bispo; de Sequeira, Patrícia Carvalho; de Souza, Elen Mello; Andrade, Audrien Alves; Manso, Pedro Paulo de Abreu; Trindade, Gisela Freitas; Lima, Sheila Maria Barbosa; Barth, Ortrud Monika

    2017-01-01

    Zika virus (ZIKV) is a member of the flavivirus genus, and its genome is approximately 10.8 kilobases of positive-strand RNA enclosed in a capsid and surrounded by a membrane. Studies on the replication dynamics of ZIKV are scarce, which limits the development of antiviral agents and vaccines directed against ZIKV. In this study, Aedes albopictus mosquito lineage cells (C6/36 cells) and African green monkey kidney epithelial cells (Vero cells) were inoculated with a ZIKV sample isolated from a Brazilian patient, and the infection was characterized by immunofluorescence staining, phase contrast light microscopy, transmission electron microscopy and real-time RT-PCR. The infection was observed in both cell lineages, and ZIKV particles were observed inside lysosomes, the rough endoplasmic reticulum and viroplasm-like structures. The susceptibility of C6/36 and Vero cells to ZIKV infection was demonstrated. Moreover, this study showed that part of the replicative cycle may occur within viroplasm-like structures, which has not been previously demonstrated in other flaviviruses.

  10. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    , proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1). A double immunofluorescence approach identifying mIDH1 positive tumor cells...... and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area...

  11. Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1.

    Directory of Open Access Journals (Sweden)

    André Quincozes-Santos

    Full Text Available Resveratrol, a polyphenol presents in grapes and wine, displays antioxidant and anti-inflammatory properties and cytoprotective effect in brain pathologies associated to oxidative stress and neurodegeneration. In previous work, we demonstrated that resveratrol exerts neuroglial modulation, improving glial functions, mainly related to glutamate metabolism. Astrocytes are a major class of glial cells and regulate neurotransmitter systems, synaptic processing, energy metabolism and defense against oxidative stress. This study sought to determine the protective effect of resveratrol against hydrogen peroxide (H2O2-induced cytotoxicity in C6 astrocyte cell line, an astrocytic lineage, on neurochemical parameters and their cellular and biochemical mechanisms. H2O2 exposure increased oxidative-nitrosative stress, iNOS expression, cytokine proinflammatory release (TNFα levels and mitochondrial membrane potential dysfunction and decreased antioxidant defenses, such as SOD, CAT and creatine kinase activity. Resveratrol strongly prevented C6 cells from H2O2-induced toxicity by modulating glial, oxidative and inflammatory responses. Resveratrol per se increased heme oxygenase 1 (HO1 expression and extracellular GSH content. In addition, HO1 signaling pathway is involved in the protective effect of resveratrol against H2O2-induced oxidative damage in astroglial cells. Taken together, these results show that resveratrol represents an important mechanism for protection of glial cells against oxidative stress.

  12. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  13. Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells.

    Science.gov (United States)

    Li, Chenlong; Jing, Hanguang; Ma, Guangtao; Liang, Peng

    2018-02-02

    Allicin is an extract purified from Allium sativum (garlic), and previous research has indicated that Allicin has an inhibitory effect on many kinds of tumor cells. The aim of the present study was to explore the anticancer activity of Allicin on human glioma cells and investigate the underlying mechanism. MTT and colony-formation assays were performed to detect glioma cell proliferation, and explore the effect of Allicin at various doses and time-points. The apoptosis of glioma cells was measured by fluorescence microscopy with Hoechst 33258 staining, and then flow cytometry was used to analyzed changes in glioma cell apoptosis. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to detect the effect of Allicin on the expression levels of Fas/Fas ligand (FasL), caspase‑3, B‑cell lymphoma 2 and Bcl‑2‑associated X protein. Allicin suppressed the proliferation and colony formation ability of U251 cells in a dose‑ and time‑dependent manner. A cytotoxic effect of Allicin was observed in glioma cells in a dose‑dependent manner. Changes in nuclear morphology were observed in U251 cells with Hoechst 33258 staining. The activity of caspases were significantly elevated and Fas/FasL expression levels were increased following treatment with Allicin, at both the mRNA and protein level. These results demonstrated that Allicin suppresses proliferation and induces glioma cell apoptosis in vitro. Both intrinsic mitochondrial and extrinsic Fas/FasL‑mediated pathways react in glioma cell after treating with Allicin, which then activate major apoptotic cascades. These results implicate Allicin as a novel antitumor agent in treating glioma.

  14. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  15. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  16. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  17. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    Science.gov (United States)

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  18. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  19. Low Expression of CAPON in Glioma Contributes to Cell Proliferation via the Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shangfeng Gao

    2016-11-01

    Full Text Available CAPON is an adapter protein for nitric oxide synthase 1 (NOS1. CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON and CAPON-S (short form of CAPON. Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation.

  20. The classical photoactivated drug 8-methoxypsoralen and related compounds are effective without UV light irradiation against glioma cells.

    Science.gov (United States)

    de Oliveira, Diêgo Madureira; Ferreira Lima, Rute Maria; Clarencio, Jorge; Velozo, Eudes da Silva; de Amorim, Ilza Alves; Andrade da Mota, Tales Henrique; Costa, Silvia Lima; Silva, Fábio Pittella; El-Bachá, Ramon Dos Santos

    2016-10-01

    Currently, there is no effective therapy for high grade gliomas. 8-Methoxypsoralen (8-MOP) is a compound used in the treatment of skin diseases combined with UV light irradiation. In this work, rat glioma C6 cells, normal astrocytes and human glioblastoma GL-15 cells comprised an in vitro model to evaluate the antitumor activity of 8-MOP. We found that 8-MOP promoted a time- and concentration-dependent reduction of cell viability in tumor, but not in normal cells. This effect was more evident in log-phase growing culture, indicating antiproliferative activity, which was confirmed by colony formation assay. Long-term effect of 8-MOP at low concentration was also attested. The concentrations used in the tests (0.02-0.4 mM) were lower than plasmatic concentration found in patients. Despite the treatment leads to considerable morphological changes and apoptosis when used at high concentrations, 8-MOP did not promote cell cycle arrest, change in migration pattern neither necrosis. In addition, we evaluated the effect of 8-MOP in MDA-MB-231, CT-26 and SCC-3 cell lines, derived from other kind of primary tumors, and found that CT-26 cells did not respond to 8-MOP treatment, indicating that this compound does not act through a generic mechanism. Coumarin derivatives structurally related to 8-MOP were screened for its antitumor potential and presented different patterns of biological activity, and then it was possible to suggest the relevance of 8-MOP molecular structure for antiproliferative action. Therefore, 8-MOP, a drug with an outstanding record of safety, and related coumarins are good prototypes for development of a new class of anti-glioma drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Current update of adoptive immunotherapy using cytokine-induced killer cells to eliminate malignant gliomas.

    Science.gov (United States)

    Ryu, Je Il; Han, Myung Hoon; Cheong, Jin Hwan; Kim, Jae Min; Kim, Choong Hyun

    2017-03-01

    The therapeutic outcome for those with malignant glioma is poor, even though diverse therapeutic modalities have been developed. Immunotherapy has emerged as a therapeutic approach for malignant gliomas, making it possible to selectively treat tumors while sparing normal tissue. Here, we review clinical trials of adoptive immunotherapy approaches for malignant gliomas. We also describe a clinical trial that examined the efficacy and safety of autologous cytokine-induced killer (CIK) cells along with concomitant chemoradiotherapy for newly diagnosed glioblastoma. These CIK cells identify and kill autologous tumor cells. This review focuses on the use of adoptive immunotherapy for malignant gliomas and reviews the current literature on the concept of antitumor activity mediated by CIK cells.

  2. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice.

    Science.gov (United States)

    Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah

    2017-07-17

    Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a

  3. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  4. Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma.

    Science.gov (United States)

    Gritsenko, Pavlo; Leenders, William; Friedl, Peter

    2017-10-01

    Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.

  5. Bioactivatable, membrane-permeant analogs of cyclic nucleotides as biological tools for growth control of C6 glioma cells

    NARCIS (Netherlands)

    Bartsch, M; Zorn-Kruppa, M; Kuhl, N; Genieser, HG; Schwede, F; Jastorff, B

    In the present study, the cAMP analogs 8-bromocAMP (8-BrcAMP), N6-2OdibutyrylcAMP (DBcAMP) and 8-parachlorophenylthiocAMP (8-CPTcAMP), as well as the corresponding cAMPacetoxymethyl (AM)esterprodrugs were tested in a HPLC study for their membrane permeability, intracellular accumulation and

  6. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression.

    Science.gov (United States)

    Zhang, Xiaoran; Rao, Aparana; Sette, Paola; Deibert, Christopher; Pomerantz, Alexander; Kim, Wi Jin; Kohanbash, Gary; Chang, Yigang; Park, Yongseok; Engh, Johnathan; Choi, Jaehyuk; Chan, Timothy; Okada, Hideho; Lotze, Michael; Grandi, Paola; Amankulor, Nduka

    2016-10-01

    Diffuse gliomas are poorly immunogenic, fatal brain tumors. The basis for insufficient antitumor immunity in diffuse gliomas is unknown. Gain-of-function mutations in isocitrate dehydrogenases (IDH1 and IDH2) promote diffuse glioma formation through epigenetic reprogramming of a number of genes, including immune-related genes. Here, we identify epigenetic dysregulation of natural killer (NK) cell ligand genes as significant contributors to immune escape in glioma. We analyzed the database of The Cancer Genome Atlas for immune gene expression patterns in IDH mutant or wild-type gliomas and identified differentially expressed immune genes. NKG2D ligand expression levels and NK cell-mediated lysis were measured in IDH mutant and wild-type patient-derived glioma stem cells and genetically engineered astrocytes. Finally, we assessed the impact of hypomethylating agent 5-aza-2'deoxycytodine (decitabine) as a potential NK cell sensitizing agent in IDH mutant cells. IDH mutant glioma stemlike cell lines exhibited significantly lower expression of NKG2D ligands compared with IDH wild-type cells. Consistent with these findings, IDH mutant glioma cells and astrocytes are resistant to NK cell-mediated lysis. Decitabine increases NKG2D ligand expression and restores NK-mediated lysis of IDH mutant cells in an NKG2D-dependent manner. IDH mutant glioma cells acquire resistance to NK cells through epigenetic silencing of NKG2D ligands ULBP1 and ULBP3. Decitabine-mediated hypomethylation restores ULBP1 and ULBP3 expression in IDH mutant glioma cells and may provide a clinically useful method to sensitize IDH mutant gliomas to NK cell-mediated immune surveillance in patients with IDH mutated diffuse gliomas. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Differential proteomics of Aedes albopictus salivary gland, midgut and C6/36 cell induced by dengue virus infection.

    Science.gov (United States)

    Zhang, Meichun; Zheng, Xiaoying; Wu, Yu; Gan, Ming; He, Ai; Li, Zhuoya; Zhang, Dongjing; Wu, Xiansheng; Zhan, Ximei

    2013-09-01

    The interaction between dengue virus (DENV) and vector mosquitoes are still poorly understood at present. In this study, 2-D DIGE combined with MS was used to analyze the differential proteomes of Aedes albopictus salivary gland, midgut and C6/36 cells induced by DENV-2. Our results indicated that the virus infection regulated several functional classes of proteins. Among them, 26 were successfully analyzed by real-time RT-PCR. The mRNA levels of 15 were the highest in salivary gland, 2 in midgut and none in C6/36 cells, however, 18 were the least in fat body compared to other organs. Interestingly, the changes of differential proteins mRNA were the most obvious in fat body post-infection. Chaperone, cytoskeleton and energy metabolism enzyme were the most down- or up- regulated proteins after DENV-2 infection. The abundant expression of these proteins in salivary gland may relate to its high susceptibility. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    Science.gov (United States)

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy.

  10. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  11. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma.

    Science.gov (United States)

    Cheng, Zhe; Wang, Hang Zhou; Li, Xuetao; Wu, Zhiwu; Han, Yong; Li, Yanyan; Chen, Guilin; Xie, Xueshun; Huang, Yulun; Du, Ziwei; Zhou, Youxin

    2015-03-26

    miRNA-184 is an oncogene in human hepatocellular carcinoma but acts as a tumor suppressor in tongue squamous cell carcinoma. Studies have shown that miR-184 was down-regulated in glioma and TNFα-induced protein 2 (TNFAIP2) was closely related to tumorigenesis. This study aimed to determine the functions of miR-184 in glioma and the mechanisms of miRNA-184-TNFAIP2 mediated glioma progression. Real-time reverse-transcription PCR detected expression of miR-184 and TNFAIP2. U87 and U251 cells were transfected with miR-184 mimic, inhibitor, or negative control miRNA, and their invasion abilities were assayed. Cellular proliferation was measured by the cell counting kit-8 assay. miR-184 effects on glioma cell apoptosis and cell cycle were assessed by flow cytometer. Biological information software have predicted that miR-184 could target TNFα-induced protein 2 (TNFAIP2), Which was further validated by Western blot and qRT-PCR in glioma cells. In vivo, U87 cells transduced with either lentiviral over-expressed miR-184 or control lentivirus were injected into nude mice subcutaneously and intracranial respectively. Expression of miR-184 was significantly lower in glioma tissues and cell-lines compared to normal brain tissues. Protein and mRNA expression of TNFAIP2 were inversely correlated with miR-184 in glioma. In vitro, proliferation and invasion abilities were also decreased in U87 and U251 cells after transfection with miR-184 mimic. In vivo, the xenografted tumor size in the miR-184 overexpressing group were smaller than the miR-NC group. Concordantly, U87 and U251 cells transfected with miR-184 mimic had a higher apoptosis rate, triggering an accumulation of cells at the G0/G1 phase and decreased cells in S-phase. miR-184 could regulate TNFAIP2 expression and affected its translation in glioma. miR-184 could also inhibit glioma progression and might serve as a novel therapeutic target in glioma.

  12. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma

    Directory of Open Access Journals (Sweden)

    Joshua J. Breunig

    2015-07-01

    Full Text Available As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  13. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  14. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  15. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially...... the importance of PAR1 to the self-renewal and tumorigenicity of A2B5-defined glioma TPCs; as such, the abrogation of PAR1-dependent signaling pathways may prove a promising strategy for gliomas.[on SciFinder (R)]...... overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological...

  16. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; CHENG, XIAOJIANG; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  17. Targeting A20 decreases glioma stem cell survival and tumor growth.

    Directory of Open Access Journals (Sweden)

    Anita B Hjelmeland

    2010-02-01

    Full Text Available Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs. GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3, a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA. Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.

  18. Fasting enhances the response of glioma to chemo- and radiotherapy.

    Science.gov (United States)

    Safdie, Fernando; Brandhorst, Sebastian; Wei, Min; Wang, Weijun; Lee, Changhan; Hwang, Saewon; Conti, Peter S; Chen, Thomas C; Longo, Valter D

    2012-01-01

    Glioma, including anaplastic astrocytoma and glioblastoma multiforme (GBM) are among the most commonly diagnosed malignant adult brain tumors. GBM is a highly invasive and angiogenic tumor, resulting in a 12 to 15 months median survival. The treatment of GBM is multimodal and includes surgical resection, followed by adjuvant radio-and chemotherapy. We have previously reported that short-term starvation (STS) enhances the therapeutic index of chemo-treatments by differentially protecting normal cells against and/or sensitizing tumor cells to chemotoxicity. To test the effect of starvation on glioma cells in vitro, we treated primary mouse glia, murine GL26, rat C6 and human U251, LN229 and A172 glioma cells with Temozolomide in ad lib and STS mimicking conditions. In vivo, mice with subcutaneous or intracranial models of GL26 glioma were starved for 48 hours prior to radio- or chemotherapy and the effects on tumor progression and survival were measured. Starvation-mimicking conditions sensitized murine, rat and human glioma cells, but not primary mixed glia, to chemotherapy. In vivo, starvation for 48 hours, which causes a significant reduction in blood glucose and circulating insulin-like growth factor 1 (IGF-1) levels, sensitized both subcutaneous and intracranial glioma models to radio-and chemotherapy. Starvation-induced cancer sensitization to radio- or chemotherapy leads to extended survival in the in vivo glioma models tested. These results indicate that fasting and fasting-mimicking interventions could enhance the efficacy of existing cancer treatments against aggressive glioma in patients.

  19. TWIST is Expressed in Human Gliomas, Promotes Invasion

    Directory of Open Access Journals (Sweden)

    Maria C. Elias

    2005-09-01

    Full Text Available TWIST is a basic helix-loop-helix (bHLH transcription factor that regulates mesodermal development, promotes tumor cell metastasis, and, in response to cytotoxic stress, enhances cell survival. Our screen for bHLH gene expression in rat C6 glioma revealed TWIST. To delineate a possible oncogenic role for TWIST in the human central nervous system (CNS, we analyzed TWIST message, protein expression in gliomas, normal brain. TWIST was detected in the large majority of human glioma-derived cell lines, human gliomas examined. Increased TWIST mRNA levels were associated with the highest grade gliomas, increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis, subsequent malignant progression. TWIST was also expressed in embryonic, fetal human brain, in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.

  20. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Sánchez, Miguel E. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Loqué, Dominique [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Lao, Jeemeng [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Catena, Michela [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Verhertbruggen, Yves [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Herter, Thomas [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Yang, Fan [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Harholt, Jesper [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Ebert, Berit [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Baidoo, Edward E. K. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Keasling, Jay D. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley CA USA; Scheller, Henrik V. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Microbial Biology, University of California, Berkeley CA USA; Heazlewood, Joshua L. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Ronald, Pamela C. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant Pathology and the Genome Center, University of California, Davis CA USA

    2015-01-14

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.

  1. Viruses, gene therapy and stem cells for the treatment of human glioma.

    Science.gov (United States)

    Kyritsis, A P; Sioka, C; Rao, J S

    2009-10-01

    Cancer gene therapy is based on the transfer of genetic material to cancer cells to modify a normal or abnormal cellular function, or to induce cell death. Modified viruses or stem cells have been used as carriers to transfer the genetic material to cancer cells avoiding trafficking through normal cells. However, although the current vectors have been successful in delivering genes in vitro and in vivo, little has been achieved with human cerebral gliomas. Poor transduction efficiency of viruses in human glioma cells and limited spread and distribution to the tumor limits our current expectations for successful gene therapy of central nervous system cancer until and if effective transfer vehicles are available. Nevertheless, continuing research in better vector development may overcome these limitations and offer a therapeutic advantage over the standard therapies for glioma.

  2. Therapeutic concentration of morphine reduces oxidative stress in glioma cell line

    Directory of Open Access Journals (Sweden)

    M.B. Almeida

    2014-05-01

    Full Text Available Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2 and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell. Morphine did not prevent the decrease in cell viability provoked by H2O2 but partially prevented lipid peroxidation caused by 0.0025% H2O2 (a concentration allowing more than 90% cell viability. Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2, opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.

  3. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  4. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  5. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Radek, J.; Stepien, H.; Lyson, K.; Pawlikowski, M.; Radek, A.

    1989-01-01

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The (/sup 3/H)-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (10/sup 4/-10/sup 5/M) and nimodipine (10/sup 4/-10/sup 6/M) significantly inhibited the (/sup 3/H)-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x10/sup 3/M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels.

  6. Effects of liposome-adriamycin (L-ADM) and thermotherapy on glioma cells: an experimental study

    OpenAIRE

    Zheng-hua SHI; Jian-ning ZHANG

    2013-01-01

    Objective  To observe the effects of liposome-adriamycin (L-ADM) and thermotherapy on proliferation and apoptosis of SWO-38 glioma cells. Methods  The SWO-38 glioma cells were cultivated in vitro. The effects of thermotherapy (43℃), ADM chemotherapy, L-ADM chemotherapy, thermotherapy + ADM chemotherapy, and thermotherapy + L-ADM chemotherapy on the cell proliferation and apoptosis were observed. The working concentration of ADM and L-ADM, and the cell proliferation rate were determined by MTT...

  7. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  8. Bystander effect in glioma suicide gene therapy using bone marrow stromal cells.

    Science.gov (United States)

    Li, Shaoyi; Gu, Chunyu; Gao, Yun; Amano, Shinji; Koizumi, Shinichiro; Tokuyama, Tsutomu; Namba, Hiroki

    2012-11-01

    An established rat intracranial glioma was successfully treated through the tumoricidal bystander effect generated by intratumoral injection of rat bone marrow stromal cells (BMSCs) transduced with the herpes simplex virus-thymidine kinase gene (BMSCtk cells) followed by systemic ganciclovir administration. In the present study, we tested the bystander effect of this treatment strategy when using human BMSCs as the vector cells. Human BMSCtk cells were mixed with various kinds of brain tumor cell lines (human and rat glioma cells) and examined in vitro and in vivo tumoricidal bystander effects, by co-culture study and co-implantation study in the nude mouse, respectively. A significant in vitro bystander effect was observed between human BMSCtk cells and any of the tumor cells examined in the ganciclovir-containing medium. A potent in vivo bystander effect against human and rat glioma cells was also demonstrated when ganciclovir was administered. Migratory activity of the human BMSCs toward the tumor cells was enhanced by the conditioned media obtained from both human and rat glioma cells compared to the fresh media. The results of this study have demonstrated that the bystander effect generated by BMSCtk cells and ganciclovir is not cell type-specific, suggesting that the strategy would be quite feasible for clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells.

    Science.gov (United States)

    Ledur, Pítia F; Liu, Chong; He, Hua; Harris, Alexandra R; Minussi, Darlan C; Zhou, Hai-Yan; Shaffrey, Mark E; Asthagiri, Ashok; Lopes, Maria Beatriz S; Schiff, David; Lu, Yi-Cheng; Mandell, James W; Lenz, Guido; Zong, Hui

    2016-10-01

    Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

    Directory of Open Access Journals (Sweden)

    Dorine A Bax

    Full Text Available Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines.All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression profiling identified 93 differentially expressed genes which were able to distinguish between the adult and paediatric high grade cell lines, including a number of kinases and co-ordinated sets of genes associated with DNA integrity and the immune response.These data demonstrate that glioma cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell lines for preclinical and mechanistic studies.

  11. Stathmin expression in glioma-derived microvascular endothelial cells: a novel therapeutic target.

    Science.gov (United States)

    Dong, Baijing; Mu, Luyan; Qin, Xiangying; Qiao, Wanchen; Liu, Xiaodong; Yang, Liming; Xue, Li; Rainov, Nikolai G; Liu, Xiaoqian

    2012-03-01

    The purpose of this study was to investigate stathmin expression and its mechanisms of action in GDMEC. Microvascular endothelial cells were isolated from human gliomas (n=68) and normal brain specimans (n=20), and purified by magnetic beads coated with anti-CD105 antibody. The expression of stathmin mRNA and protein were detected by RT-PCR and western blotting, respectively. Stathmin expression was silenced by application of specific siRNA in high grade GDMEC. The proliferation, apoptosis and invasion behavior of GDMEC were investigated. The stathmin positive rate of endothelial cells in normal brain, grade I-II glioma and grade III-IV glioma was 20, 66 and 95.5%, respectively (P<0.05). When cells were treated with siRNA to silence stathmin, cell viability was reduced, the apoptosis rate increased and the migration of vascular endothelial cells was suppressed significantly (P<0.05). Down-regulation of stathmin suppressed neoangiogenesis of glioma and provides a potential target for glioma treatment.

  12. Punicalagin induces apoptotic and autophagic cell death in human U87MG glioma cells.

    Science.gov (United States)

    Wang, Shyang-guang; Huang, Ming-hung; Li, Jui-hsiang; Lai, Fu-i; Lee, Horng-mo; Hsu, Yuan-nian

    2013-11-01

    To investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human U87MG glioma cells in vitro. The viability of human U87MG glioma cells was evaluated using MTT assay. Cell cycle was detected with flow cytometry analysis. The levels of Bcl-2, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase (PARP), phosphor-AMPK and phosphor-p27 at Thr198 were measured using immunoblot analyses. Caspase-3 activity was determined with spectrophotometer. To determine autophagy, LC3 cleavage and punctate patterns were examined. Punicalagin (1-30 μg/mL) dose-dependently inhibited the cell viability in association with increased cyclin E level and decreased cyclin B and cyclin A levels. The treatment also induced apoptosis as shown by the cleavage of PARP, activation of caspase-9, and increase of caspase-3 activity in the cells. However, pretreatment of the cells with the pan-caspase inhibitor z-DEVD-fmk (50 μmol/L) did not completely prevent the cell death. On the other hand, punicalagin treatment increased LC3-II cleavage and caused GFP-LC3-II-stained punctate pattern in the cells. Suppressing autophagy of cells with chloroquine (1-10 μmol/L) dose-dependently alleviated the cell death caused by punicalagin. Punicalagin (1-30 μg/mL) also increased the levels phosphor-AMPK and phosphor-p27 at Thr198 in the cells, which were correlated with the induction of autophagic cell death. Punicalagin induces human U87MG glioma cell death through both apoptotic and autophagic pathways.

  13. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  14. Identification of host range mutants of myxoma virus with altered oncolytic potential in human glioma cells.

    Science.gov (United States)

    Barrett, John W; Alston, Lindsay R; Wang, Fuan; Stanford, Marianne M; Gilbert, Philippe-Alexandre; Gao, Xiujuan; Jimenez, June; Villeneuve, Danielle; Forsyth, Peter; McFadden, Grant

    2007-12-01

    The authors have recently demonstrated that wild-type myxoma virus (MV) tagged with gfp (vMyxgfp) can generate a tumor-specific infection that productively infects and clears human tumor-derived xenografts when injected intratumorally into human gliomas transplanted into immunodeficient mice (Lun et al, 2005). To expand the understanding of MV tropism in cancer cells from a specific tissue lineage, the authors have screened a series of human glioma cells (U87, U118, U251, U343, U373) for myxoma virus replication and oncolysis. To assess the viral tropism determinants for these infections, the authors have screened myxoma virus knockout constructs that have been deleted for specific host range genes (M-T2, M-T4, M-T5, M11L, and M063), as well as a control MV gene knockout construct with no known host range function (vMyx135KO) but is highly attenuated in rabbits. The authors report wide variation in the ability of various vMyx-hrKOs to replicate and spread in the human glioma cells as measured by early and late viral gene expression. This differential ability to support vMyx-hrKO productive viral replication is consistent with levels of endogenous activated Akt in the various gliomas. The authors have identified one vMyx-hrKO virus (vMyx63KO) and one nonhost range knockout construct (vMyx135KO) that appear to replicate in the gliomas even more efficiently than the wild-type virus and that reduce the viability of the infected gliomas. These knockout viruses also inhibit the proliferation of gliomas in a manner similar to the wild-type virus. Together these data, as well as the fact that these knockout viruses are attenuated in their natural hosts, may represent environmentally safer candidate oncolytic viruses for usage in human trials.

  15. RAD18 mediates resistance to ionizing radiation in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi, E-mail: drzwang@gmail.com; Yue, Wu, E-mail: drwuyue@gmail.com

    2014-02-28

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.

  16. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  17. The top cited articles on glioma stem cells in Web of Science.

    Science.gov (United States)

    Yi, Fuxin; Ma, Jun; Ni, Weimin; Chang, Rui; Liu, Wenda; Han, Xiubin; Pan, Dongxiao; Liu, Xingbo; Qiu, Jianwu

    2013-05-25

    Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Our bibliometric analysis provides a historical perspective

  18. A New Hope in Immunotherapy for Malignant Gliomas: Adoptive T Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Dong-Sup Chung

    2014-01-01

    Full Text Available Immunotherapy emerged as a promising therapeutic approach to highly incurable malignant gliomas due to tumor-specific cytotoxicity, minimal side effect, and a durable antitumor effect by memory T cells. But, antitumor activities of endogenously activated T cells induced by immunotherapy such as vaccination are not sufficient to control tumors because tumor-specific antigens may be self-antigens and tumors have immune evasion mechanisms to avoid immune surveillance system of host. Although recent clinical results from vaccine strategy for malignant gliomas are encouraging, these trials have some limitations, particularly their failure to expand tumor antigen-specific T cells reproducibly and effectively. An alternative strategy to overcome these limitations is adoptive T cell transfer therapy, in which tumor-specific T cells are expanded ex vivo rapidly and then transferred to patients. Moreover, enhanced biologic functions of T cells generated by genetic engineering and modified immunosuppressive microenvironment of host by homeostatic T cell expansion and/or elimination of immunosuppressive cells and molecules can induce more potent antitumor T cell responses and make this strategy hold promise in promoting a patient response for malignant glioma treatment. Here we will review the past and current progresses and discuss a new hope in adoptive T cell therapy for malignant gliomas.

  19. Anticancer and Cytotoxic Activities of [Cu(C6H16N2O2)2][Ni(CN)4] and [Cu(C6H16N2O2)Pd(CN)4] Cyanidometallate Compounds on HT29, HeLa, C6 and Vero Cell Lines.

    Science.gov (United States)

    Aydın, Ali; Korkmaz, Sengul Aslan; Demir, Veysel; Tekin, Saban

    2017-01-01

    In cancer, apoptosis relevant proteins-such as CaM kinase, Bcl-2 or P53, topoisomerase I, cell migration feature and DNA/BSA-macromolecules represent significant targets for current chemotherapeutics. We recently reported two coordination compounds-[Cu(C6H16N2O2)2][Ni(CN)4] (1) and [Cu(C6H16 N2O2)Pd(CN)4] (2)-together with their IR spectra, magnetic properties, thermal analyses and crystal structures. Herein, we describe the ability of these complexes to induce apoptosis in relevant proteins and stimulate topoisomerase I activity, cell migration velocity and DNA/BSA binding properties. The in vitro antiproliferative effects and cell toxicity of both compounds were investigated through pharmacological measurement techniques, and interactions between both compounds and CT-DNA/BSA were studied with UV-Vis spectroscopy and fluorescence spectroscopy. Results & Conclusion: Studies on cells revealed that 2 (i) demonstrated a high antiproliferative effect, which was higher toward HeLa and C6 cancer cells than toward healthy Vero cells; (ii) impaired the migration of HeLa cells; (iii) altered the P53-Bcl-2 ratio in favor of apoptosis; (iv) strongly bound to DNA/BSA macromolecules; and (v) inhibited human topoisomerase I and KpnI or BamHI restriction endonucleases. In conclusion, this preliminary information demonstrates that 2 may represent a promising antiproliferative agent and a potential candidate for a therapeutic approach against HeLa. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Directory of Open Access Journals (Sweden)

    Patterson Paul H

    2008-11-01

    Full Text Available Abstract Background Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA. Results We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion While ETRB antagonists reduce the viability of glioma cells

  1. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Cardama GA

    2014-10-01

    Full Text Available Georgina A Cardama,1 Nazareno Gonzalez,1 Matias Ciarlantini,2 Lucia Gandolfi Donadío,2 María Julieta Comin,2 Daniel F Alonso,1 Pablo Lorenzano Menna,1,* Daniel E Gomez1,*1Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; 2Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, San Martín, Argentina, *These authors contributed equally to this workAbstract: Malignant gliomas are characterized by an intrinsic ability to invade diffusely throughout the normal brain tissue. This feature contributes mainly to the failure of existing therapies. Deregulation of small GTPases signaling, in particular Rac1 activity, plays a key role in the invasive phenotype of gliomas. Here we report the effect of ZINC69391, a specific Rac1 inhibitor developed by our group, on human glioma cell lines LN229 and U-87 MG. ZINC69391 is able to interfere with the interaction of Rac1 with Dock180, a relevant Rac1 activator in glioma invasion, and to reduce Rac1-GTP levels. The kinase Pak1, a downstream effector of Dock180–Rac1 signaling, was also downregulated upon ZINC69391 treatment. ZINC69391 reduced cell proliferation, arrested cells in G1 phase, and triggered apoptosis in glioma cells. Importantly, ZINC69391 dramatically affected cell migration and invasion in vitro, interfering with actin cytoskeleton dynamics. We also evaluated the effect of analog 1A-116, a compound derived from ZINC69391 structure. 1A-116 showed an improved antiproliferative and antiinvasive activity on glioma cells. These findings encourage further preclinical testing in clinically relevant animal models.Keywords: GTPases. invasion, Dock180, small molecule

  2. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhenni Zhang

    Full Text Available Baicalein, one of the major flavonids in Scutellaria baicalensis, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and related mechanism(s in glioma are still unclear. In this study, we thus utilized glioma cell lines U87MG and U251MG to explore the effect of baicalein. We found that administration of baicalein significantly inhibited migration and invasion of glioma cells. In addition, after treating with baicalein for 24 h, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2 and MMP-9 expression as well as proteinase activity in glioma cells. Conversely, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2 was increased in a dose-dependent manner. Moreover, baicalein treatment significantly decreased the phosphorylated level of p38, but not ERK1/2, JNK1/2 and PI3K/Akt. Combined treatment with a p38 inhibitor (SB203580 and baicalein resulted in the synergistic reduction of MMP-2 and MMP-9 expression and then increase of TIMP-1 and TIMP-2 expression; and the invasive capabilities of U87MG cells were also inhibited. However, p38 chemical activator (anisomycin could block these effects produced by baicalein, suggesting baicalein directly downregulate the p38 signaling pathway. In conclusion, baicalein inhibits glioma cells invasion and metastasis by reducing cell motility and migration via suppression of p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for glioma.

  3. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  4. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Del Valle Luis

    2010-06-01

    Full Text Available Abstract Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR signaling, PPARα activity, reactive oxygen species (ROS metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC, restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.

  5. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Su-zhi [Department of Neurology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang (China); Lin, Yan; Cao, Xiao-pan [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Jia-ming, E-mail: wzljm@126.com [School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou 325035, Zhejiang (China)

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  6. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity.

    Science.gov (United States)

    Sharma, Vivek; Koul, Nitin; Joseph, Christy; Dixit, Deobrat; Ghosh, Sadashib; Sen, Ellora

    2010-08-01

    The present study identified a novel mechanism of induction of apoptosis in glioblastoma cells by scriptaid - a histone deacetylase (HDAC) inhibitor. Scriptaid reduced glioma cell viability by increasing Jun N-terminal kinase (JNK) activation. Although scriptaid induced activation of both p38MAPK and JNK, it was the inhibition of JNK that attenuated scriptaid-induced apoptosis significantly. Scriptaid also increased the expression of (i) p21 and p27 involved in cell-cycle regulation and (ii) γH2AX associated with DNA damage response in a JNK-dependent manner. Treatment with scriptaid increased Ras activity in glioma cells, and transfection of cells with constitutively active RasV12 further sensitized glioma cells to scriptaid-induced apoptosis. Scriptaid also inhibited telomerase activity independent of JNK. Taken together, our findings indicate that scriptaid (i) induces apoptosis and reduces glioma cell proliferation by elevating JNK activation and (ii) also decreases telomerase activity in a JNK-independent manner. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  8. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity

    OpenAIRE

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J.; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y.; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-01-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we ch...

  9. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    Science.gov (United States)

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells.

    Science.gov (United States)

    Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang

    2014-08-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells.

  11. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  12. PLC-dependent intracellular Ca2+ release was associated with C6-ceramide-induced inhibition of Na+ current in rat granule cells.

    Science.gov (United States)

    Liu, Zheng; Fei, Xiao-Wei; Fang, Yan-Jia; Shi, Wen-Jie; Zhang, Yu-Qiu; Mei, Yan-Ai

    2008-09-01

    In this report, the effects of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)), two types of main K(+) current [outward rectifier delayed K(+) current (I(K)) and outward transient K(+) current (I(A))], and cell death in cultured rat cerebellar granule cells were investigated. At concentrations of 0.01-100 microM, ceramide produced a dose-dependent and reversible inhibition of I(Na) without alteration of the steady-state activation and inactivation properties. Treatment with C(2)-ceramide caused a similar inhibitory effect on I(Na). However, dihydro-C(6)-ceramide failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent, 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic acid, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with ryanodine receptor blocker induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, the blocker of the inositol 1,4,5-trisphosphate-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide. Intracellular application of GTPgammaS also induced a gradual decrease in I(Na) amplitude, while GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Furthermore, the C(6)-ceramide effect on I(Na) was abolished after application of the phospholipase C (PLC) blockers and was greatly reduced by the calmodulin inhibitors. Fluorescence staining showed that C(6)-ceramide decreased cell viability and blocking I(Na) by tetrodotoxin did not mimic the effect of C(6)-ceramide, and inhibiting intracellular Ca(2+) release by dantrolene could not decrease the C(6)-ceramide-induced cell death. We therefore suggest that increased PLC-dependent Ca(2+) release through the ryanodine-sensitive Ca(2+) receptor may be responsible for the C(6)-ceramide-induced inhibition of I(Na), which does not seem to be associated with C(6)-ceramide-induced granule

  13. Directed evolution of adeno-associated virus for glioma cell transduction.

    Science.gov (United States)

    Maguire, Casey A; Gianni, Davide; Meijer, Dimphna H; Shaket, Lev A; Wakimoto, Hiroaki; Rabkin, Samuel D; Gao, Guangping; Sena-Esteves, Miguel

    2010-02-01

    Glioblastoma multiforme (GBM) is a serious form of brain cancer for which there is currently no effective treatment. Alternative strategies such as adeno-associated virus (AAV) vector mediated-genetic modification of brain tumor cells with genes encoding anti-tumor proteins have shown promising results in preclinical models of GBM, although the transduction efficiency of these tumors is often low. As higher transduction efficiency of tumor cells should lead to enhanced therapeutic efficacy, a means to rapidly engineer AAV vectors with improved transduction efficiency for individual tumors is an attractive strategy. Here we tested the possibility of identifying high-efficiency AAV vectors for human U87 glioma cells by selection in culture of a newly constructed chimeric AAV capsid library generated by DNA shuffling of six different AAV cap genes (AAV1, AAV2, AAV5, AAVrh.8, AAV9, AAVrh.10). After seven rounds of selection, we obtained a chimeric AAV capsid that transduces U87 cells at high efficiency (97% at a dose of 10(4) genome copies/cell), and at low doses it was 1.45-1.6-fold better than AAV2, which proved to be the most efficient parental capsid. Interestingly, the new AAV capsid displayed robust gene delivery properties to all glioma cells tested (including primary glioma cells) with relative fluorescence indices ranging from 1- to 14-fold higher than AAV2. The selected vector should be useful for in vitro glioma research when efficient transduction of several cell lines is required, and provides proof-of-concept that an AAV library can be used to generate AAV vectors with enhanced transduction efficiency of glioma cells.

  14. Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway.

    Science.gov (United States)

    Cheng, Bor-Chin; Chen, Jui-Tai; Yang, Shun-Tai; Chio, Chung-Ching; Liu, Shing-Hwa; Chen, Ruei-Ming

    2017-03-01

    Malignant glioma is the most aggressive brain tumor. Hypoxic condition has been explored for killing cancer stem cells or drug-resistant tumor cells. This study investigated the effects of hypoxia on autophagic death and the possible mechanisms. Exposure of human malignant glioma U87-MG cells to cobalt chloride (CoCl2) increased cellular hypoxia-inducible factor-1α levels and concurrently decreased cell viability concentration- and time-dependently. In parallel, treatment with CoCl2 suppressed proliferation of human U87-MG cells. Autophagic cells and levels of LC3-II were concentration- and time-dependently induced in human U87-MG cells after exposure to CoCl2. However, pretreatment with 3-mehyladenine (3-MA) and chloroquine, inhibitors of cell autophagy, caused significant alleviations in CoCl2-induced cell autophagy. In contrast, exposure to rapamycin, an inducer of cell autophagy, synergistically induced hypoxia-induced autophagy of U87-MG cells. Administration of human U87-MG cells with CoCl2 triggered caspase-3 activation and cell apoptosis. Interestingly, pretreatment with 3-MA and chloroquine remarkably suppressed CoCl2-induced caspase-3 activation and cell apoptosis. Application of p53 small interference (si)RNA into human U87-MG cells downregulated levels of this protein and simultaneously lowered hypoxia- and 3-MA-induced alterations in cell autophagy, apoptosis, and death. The hypoxia-induced autophagy and apoptosis of DBTRG-05MG cells were significantly lowered by 3-MA pretreatment and p53 knockdown. Therefore, the present study shows that CoCl2 treatment can induce autophagy of human glioma cells and subsequent autophagic apoptosis via a p53-dependent pathway. Hypoxia-induced autophagic apoptosis may be applied as a therapeutic strategy for treatment of glioma patients.

  15. [Effects of myxoma virus on gliomas of rats models in vivo].

    Science.gov (United States)

    Zhang, Qiu-Sheng; Zhang, Meng; Liang, Shi-Jie; Lin, Heng-Zhou; Ji, Tao; Li, Wei-Ping

    2012-04-01

    To explore the in vivo effects of myxoma virus (MV) on gliomas of rat model. Methods C6 glioma cells were implanted into the frontal lobe of SD rats using stereotactic methods to establish animal models of glioma. C6 glioma cells were implanted into the frontal lobe of SD rats using stereotactic methods to establish animal models of glioma. Models were divided into 4 groups randomly after tumor growth was affirmed, and MV, 5-FU, MV + 5-FU, and denatured myxoma virus (DV) were implanted into the tumors using stereotactic methods, bodyweight, tumor size, expression of glial fibrillary acidic protein (GFAP), Akt of each model were observed. The gliomas in all SD rats were established successfully. And tumor growth in MV, 5-FU, MV + 5-FU were significantly decreased as compared with DV group after injection, sizes of some tumors were lessened, and GFAP expression decreased in MV, 5-FU and MV +5-FU groups. The expression of PI3k, Akt and mTOR were decreased in MV and MV +5-FU groups. C6 glioma SD rat models could be established successfully using stereotactic methods. MV may enhance biological activity of chemotherapeutic drugs on tumor cells of animal models in vivo by regulating some genes of PI3K-Akt-mTOR signal pathway.

  16. PPAR Gamma Activators: Off-Target Against Glioma Cell Migration and Brain Invasion

    Directory of Open Access Journals (Sweden)

    Sebastian Seufert

    2008-01-01

    Full Text Available Today, there is increasing evidence that PPARγ agonists, including thiazolidinediones (TDZs and nonthiazolidinediones, block the motility and invasiveness of glioma cells and other highly migratory tumor entities. However, the mechanism(s by which PPARγ activators mediate their antimigratory and anti-invasive properties remains elusive. This letter gives a short review on the debate and adds to the current knowledge by applying a PPARγ inactive derivative of the TDZ troglitazone (Rezulin which potently counteracts experimental glioma progression in a PPARγ independent manner.

  17. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  18. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  19. [Three-dimensional morphology of C6/36 cells infected by dengue virus: a study based on digital holographic microscopy].

    Science.gov (United States)

    Yu, Jian-Hai; Liu, Xu-Ling; Liu, Yu-Jing; He, Xiao-En; Hui, Yuan; Zhang, Bao; Zhu, Li; Zhao, Wei

    2017-03-20

    To monitor the 3-dimensional (3D) morphological changes of C6/36 cells during dengue virus (DENV) infection using a live-cell imaging technique based on digital holographic microscopy and provide clues for better understanding the mechanisms of DENV infection. C6/36 cells were seeded in 6-well plates to determine the optimal imaging density under a holographic cell imager, and the morphological changes of the cells were recorded in response to a culture temperature change from 28 degrees celsius; to 37 degrees celsius; C6/36 cells were infected with 4 DENV strains with different serotypes at 28 degrees celsius; and incubated at 37 degrees celsius; for 24 h, and the 3D holograms and relevant morphological parameters were recorded at different time points using HoloMonitor M4 holographic cell imaging and analysis system. The holograms of C6/36 cells inoculated at the optimal density for imaging (4×105 per well) showed unified 3D morphologies of the single cells with minimal dispersions in the cell area, thickness and volume (P0.05). The cell area and volume of the cells infected with the 4 DENV strains all increased and the cell thickness was reduced during incubation. Among the 4 strains, DENV-1 and DENV-2 caused reduced cell thickness while DENV-3 and DENV-4 increased the cell thickness, and the pattern and degree of such changes differ among the 4 strains. Digital holographic microscopy allows monitoring of the complex morphological changes of cells during DENV infection. The 4 DENV strains with different serotypes causes characteristic cell damages during infection.

  20. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells

    DEFF Research Database (Denmark)

    Johansson, Elinn; Grassi, Elisa S.; Pantazopoulou, Vasiliki

    2017-01-01

    correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo......-hypoxic phenotype of stem-like glioma cells is achieved by stabilization of HIF-2α through interaction with CD44, independently of oxygen....

  1. Raf kinase inhibitor protein (RKIP) inhibits the cell migration and invasion in human glioma cell lines in vitro.

    Science.gov (United States)

    Lei, Xuhui; Chang, Liang; Ye, Wei; Jiang, Chuanlu; Zhang, Zhiren

    2015-01-01

    To investigate the effects and the potential mechanisms of RKIP on cell migration, invasion and proliferation in human glioma cell lines in vitro. The RKIP over-expressing and RKIP knockdown human U87 glioma cells were used to reveal the effects of RKIP on human glioma cells migration, invasion and proliferation. After the recombinant plasmid pcDNA3.0-RKIP or RKIP-shRNA was transfected into the cell lines U87 by the means of liposome assay, the cells migration, invasion and proliferation were detected by wound healing, Transwell and MTT assay. Then, the levels of RKIP, MMP-3, MMP-9 and HMGA2 mRNA transcription were measured by means of RT-qPCR and levels of proteins expressions were determined using Western blot. The results of MTT assay suggested that the PKIP have little inhibitive effects on glioma cells proliferation (P>0.05). The present paper showed that the migration distances in the group of RKIP-shRNA were markedly increased compared to the pcDNA3.0-RKIP and control. Similarly, the results showed that the numbers of invasion cells in RKIP-shRNA were remarkably increased than the pcDNA3.0-RKIP group and control group. Western blot and RT-qPCR suggested that over-expressions of RKIP lessened the MMP-2, MMP-9 and HMGA2 expression, however, turning down the RKIP expression showed the inverse effects. RKIP inhibits the cells migrations and invasions. Meanwhile, RKIP might inhibit the glioma cells through inhibiting MMPs and HMAG2 expression. Therefore, we demonstrated that RKIP is an underlying target for the treatment of glioma.

  2. Glioma morphology and tumor-induced vascular alterations revealed in 7 rodent glioma models by in vivo magnetic resonance imaging and angiography

    Science.gov (United States)

    Doblas, Sabrina; He, Ting; Saunders, Debbie; Pearson, Jamie; Hoyle, Jessica; Smith, Nataliya; Lerner, Megan; Towner, Rheal A.

    2010-01-01

    Purpose To evaluate the added value of non-contrast-enhanced magnetic resonance angiography (MRA) to conventional MR imaging for a detailed characterization of different rodent glioma models. Materials and Methods Intracerebral tumor cell implantation and chemical induction methods were implemented to obtain rat C6, 9L/LacZ, F98, RG2 and ENU-induced glioma models, a human U87 MG tumor model as well as a mouse GL261 glioma model. MR assessments were regularly conducted on a 7 Tesla Bruker BioSpin system. The tumor border sharpness and growth characteristics of each glioma model were assessed from T2-weighted images. Neovascularization and vascular alterations inherent to each model were characterized by assessing absolute blood volumes, vessel density, length and diameter using Mathematica and Amira software. Results 9L/LacZ and ENU gliomas both presented flaws that hinder their use as reliable brain tumor models. C6 gliomas were slightly invasive and induced moderate vascular alterations, whereas GL261 tumors dramatically altered the brain vessels in the glioma region. F98, RG2 and U87 are infiltrative models which produced dramatic vascular alterations. Conclusion MRI and MRA provided crucial in vivo information to identify a distinctive “fingerprint” for each of our 7 rodent glioma models. PMID:20677250

  3. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    Science.gov (United States)

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  4. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Krzysztof Bilmin

    2016-10-01

    Full Text Available Sonodynamic therapy (SDT is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro . This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  5. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells.

    Science.gov (United States)

    Acosta, Eliana G; Piccini, Luana E; Talarico, Laura B; Castilla, Viviana; Damonte, Elsa B

    2014-05-12

    The aim of the present study was to analyze the influence of virus origin, mammalian or mosquito cell-derived, on antiviral susceptibility of DENV-2 to entry inhibitors and the association of this effect with any alteration in the mode of entry into the cell. To this end, ten serial passages of DENV-2 were performed in mosquito C6/36 cells or monkey Vero cells and the antiviral susceptibility of each virus passage to sulfated polysaccharides (SPs), like heparin and carrageenans, was evaluated by a virus plaque reduction assay. After serial passaging in Vero cells, DENV-2 became increasingly resistant to SP inhibition whereas the antiviral susceptibility was not altered in virus propagated in C6/36 cells. The change in antiviral susceptibility was associated to a differential mode of entry into the host cell. The route of endocytic entry for productive Vero cell infection was altered from a non-classical clathrin independent pathway for C6/36-grown virus to a clathrin-mediated endocytosis when the virus was serially propagated in Vero cells. Our results show the impact of the cellular system used for successive propagation of DENV on the initial interaction between the host cell and the virion in the next round of infection and the relevant consequences it might have during the in vitro evaluation of entry inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  7. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Science.gov (United States)

    2010-01-01

    Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P BNCT compared with cells

  8. Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression

    Science.gov (United States)

    Roy, Ananya; Attarha, Sanaz; Weishaupt, Holger; Edqvist, Per-Henrik; Swartling, Fredrik J.; Bergqvist, Michael; Siebzehnrubl, Florian A.; Smits, Anja; Pontén, Fredrik; Tchougounova, Elena

    2017-01-01

    Serglycin is an intracellular proteoglycan with a unique ability to adopt highly divergent structures by glycosylation with variable types of glycosaminoglycans (GAGs) when expressed by different cell types. Serglycin is overexpressed in aggressive cancers suggesting its protumorigenic role. In this study, we explored the expression of serglycin in human glioma and its correlation with survival and immune cell infiltration. We demonstrate that serglycin is expressed in glioma and that increased expression predicts poor survival of patients. Analysis of serglycin expression in a large cohort of low- and high-grade human glioma samples reveals that its expression is grade dependent and is positively correlated with mast cell (MC) infiltration. Moreover, serglycin expression in patient-derived glioma cells is significantly increased upon MC co-culture. This is also accompanied by increased expression of CXCL12, CXCL10, as well as markers of cancer progression, including CD44, ZEB1 and vimentin. In conclusion, these findings indicate the importance of infiltrating MCs in glioma by modulating signaling cascades involving serglycin, CD44 and ZEB1. The present investigation reveals serglycin as a potential prognostic marker for glioma and demonstrates an association with the extent of MC recruitment and glioma progression, uncovering potential future therapeutic opportunities for patients. PMID:28445977

  9. Thermotherapy-induced reduction in glioma invasiveness is mediated by tumor necrosis factor-alpha.

    Science.gov (United States)

    Qin, L J; Zhang, T; Jia, Y S; Zhang, Y B; Zhang, Y X; Wang, H T

    2015-10-02

    Thermotherapy has been proven to be effective for the treatment of various tumors, including glioma. We determined whether tumor necrosis factor-alpha (TNF-α) is involved in the regulation of the biological processes of glioma development. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry were used to investigate the levels of TNF-α mRNA and heat shock factor-1 (HSF1) protein, respectively, in glioma cells. Radioimmunoassay was used to dynamically monitor the contents of TNF-α in the nutrient fluid of C6 cells after thermotherapy treatment. Crystal violet staining was used to determine glioma invasiveness. The most obvious increases in HSF1 protein and TNF-α mRNA in C6 cells were observed at 30 and 60 min after thermotherapy, respectively. In addition, the radioactivity of TNF-α in the culture fluid of the C6 cells reached a peak after 120 min of thermotherapy. In addition, glioma invasiveness decreased and the concentration of TNF-α reached a maximum after 120 min of thermotherapy. Our results show that the decrease in thermotherapy-mediated glioma invasiveness is due to the accelerated release of TNF-α, which could promote the release of HSF1 from neurospongioma cells.

  10. Dobesilate diminishes activation of the mitogen-activated protein kinase ERK1/2 in glioma cells.

    Science.gov (United States)

    Cuevas, P; Díaz-González, Diana; García-Martín-Córdova, C; Sánchez, I; Lozano, Rosa María; Giménez-Gallego, G; Dujovny, M

    2006-01-01

    Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.

  11. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Paschke Reinhard

    2011-09-01

    Full Text Available Abstract Background Betulinic acid (BA is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas, the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. Methods In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays and protein expression was examined with Western blot analyses. Results Under normoxic conditions, a half maximal inhibitory concentration (IC50 of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively and U343MG cells (p Conclusion Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.

  12. Antitumor efficacy of argon-helium cryoablation-generated dendritic cell vaccine in glioma.

    Science.gov (United States)

    Yin, Zhilin; Lu, Guohui; Xiao, Zhenyong; Liu, Tianzhu; He, Xiaozheng; Wang, Qifu; Lin, Chunnan; Zhang, Shizhong

    2014-03-05

    Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming tumor immune responses. We investigated the mechanisms of antitumor efficacy of DCs pulsed with argon-helium-cryotreated glioma cells. There was significant upregulation of maturation markers (CD80, CD86, MHC-I, and MHC-II) in argon-helium freeze-thawed lysate-pulsed DCs. The concentration of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and IL-12 secreted by lysate-pulsed DCs was increased. The concentration of interferon-γ secreted by T cells stimulated by lysate-pulsed DCs was increased. The cytotoxicity assay showed that T cells stimulated by lysate-pulsed DCs could kill glioma cells significantly more effectively. Our results suggest that argon-helium freeze-thawed lysate-pulsed DCs in vitro can promote DC maturation and enhance DC antigen-presenting function, and induce cytotoxic T lymphocytes to kill tumor cells. Therefore, the combination of argon-helium cryoablation and DC vaccine may represent a novel treatment method for glioma.

  13. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics

    OpenAIRE

    Gao, Xuefeng; McDonald, J. Tyson; Hlatky, Lynn; Enderling, Heiko

    2012-01-01

    Glioblastoma multiforme (GBM) is one of the most aggressive human malignancies with a poor patient prognosis. Ionizing radiation (IR) either alone or adjuvant after surgery is part of standard treatment for GBM but remains primarily non-curative. The mechanisms underlying tumor radioresistance are manifold and, in part, accredited to a special subpopulation of tumorigenic cells. The so-called glioma stem cells (GSCs) are bestowed with the exclusive ability to self-renew and repopulate the tum...

  14. The potentials of human adipose tissue derived mesenchymal stem cells in targeted therapy of experimental glioma

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2012-12-01

    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults. With current standard therapy which includes extensive microsurgical resection along with concurrent chemoradiotherapy and adjuvant temozolomide (TMZ, the median survival of glioblastoma patients is only 14.60 months nowadays. Recent studies demonstrated that human adipose tissue derived mesenchymal stem cells (hAT-MSCs possessed the glioma-trophic migratory capacity. The engineered hAT-MSCs expressing herpes simplex virus-thymidine kinase (HSV-tk, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy:: UPRT, and rabbit carboxylesterase (rCE could exert inhibitory effects on glioma when combined with prodrugs, such as ganciclovir (GCV, 5-fluorocytosine (5-FC and irinotecan (CPT-11, respectively. hAT-MSCs carrying the oncolytic virus or expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL also could inhibit the growth of glioma. This paper summarizes the recent progress in this field to pave the way for hAT-MSCs based targeted therapy of glioma in future.

  15. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuejun, E-mail: yjfu@sxu.edu.cn [Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006 (China); Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua [Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006 (China)

    2011-07-01

    Highlights: {yields} IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. {yields} IDH2 mutations are not required for the tumorigenesis of glioma. {yields} IDH2{sup R172G} can sensitize glioma sensitivity to chemotherapy through NADPH levels. {yields} IDH2{sup R172G} can give a benefit to traditional chemotherapy of glioma. {yields} This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2{sup R172G} on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of {alpha}-ketoglutarate ({alpha}-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2{sup R172G} mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  16. Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles.

    Science.gov (United States)

    Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R

    2017-08-01

    Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in

  17. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication.

    Directory of Open Access Journals (Sweden)

    Regina Ching Hua Lee

    2015-03-01

    Full Text Available Chikungunya virus (CHIKV is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.

  18. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  19. Mis-trafficking of endosomal urokinase proteins triggers drug-induced glioma nonapoptotic cell death.

    Science.gov (United States)

    Pasupuleti, Nagarekha; Grodzki, Ana Cristina; Gorin, Fredric

    2015-04-01

    5-Benzylglycinyl-amiloride (UCD38B) is the parent molecule of a class of anticancer small molecules that kill proliferative and nonproliferative high-grade glioma cells by programmed necrosis. UCD38B intracellularly triggers endocytosis, causing 40-50% of endosomes containing proteins of the urokinase plasminogen activator system (uPAS) to relocate to perinuclear mitochondrial regions. Endosomal "mis-trafficking" caused by UCD38B in human glioma cells corresponds to mitochondrial depolarization with the release and nuclear translocation of apoptotis-inducing factor (AIF) followed by irreversible caspase-independent cell demise. High-content quantification of immunocytochemical colocalization studies identified that UCD38B treatment increased endocytosis of the urokinase plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 (PAI-1) into the early and late endosomes by 4- to 5-fold prior to AIF nuclear translocation and subsequent glioma demise. PAI-1 was found to comparably relocate with a subset of early and late endosomes in four different human glioma cell lines after UCD38B treatment, followed by caspase-independent, nonapoptotic cell death. Following UCD38B treatment, the receptor guidance protein LRP-1, which is required for endosomal recycling of the uPA receptor to the plasmalemma, remained abnormally associated with PAI-1 in early and late endosomes. The resultant aberrant endosomal recycling increased the total cellular content of the uPA-PAI-1 protein complex. Reversible inhibition of cellular endocytosis demonstrated that UCD38B bypasses the plasmalemmal uPAS complex and directly acts intracellularly to alter uPAS endocytotic trafficking. UCD38B represents a class of small molecules whose anticancer cytotoxicity is a consequence of causing the mis-trafficking of early and late endosomes containing uPAS cargo and leading to AIF-mediated necrotic cell death. Copyright © 2015 by The American Society for Pharmacology and

  20. Bicyclic triterpenoid Iripallidal induces apoptosis and inhibits Akt/mTOR pathway in glioma cells

    Directory of Open Access Journals (Sweden)

    Ghosh Sadashib

    2010-06-01

    Full Text Available Abstract Background The highly resistant nature of glioblastoma multiforme (GBM to chemotherapy prompted us to evaluate the efficacy of bicyclic triterpenoid Iripallidal against GBM in vitro. Methods The effect of Iripallidal on proliferation and apoptosis in glioma cell lines was evaluated by MTS, colony formation and caspase-3 activity. The effect of iripallidal to regulate (i Akt/mTOR and STAT3 signaling (ii molecules associated with cell cycle and DNA damage was evaluated by Western blot analysis. The effect of Iripallidal on telomerase activity was also determined. Results Iripallidal (i induced apoptosis, (ii inhibited Akt/mTOR and STAT3 signaling, (iii altered molecules associated with cell cycle and DNA damage, (iv inhibited telomerase activity and colony forming efficiency of glioma cells. In addition, Iripallidal displayed anti-proliferative activity against non-glioma cancer cell lines of diverse origin. Conclusion The ability of Iripallidal to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further investigation into its role as a therapeutic strategy against GBM.

  1. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Science.gov (United States)

    Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang

    2012-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). PMID:22888225

  2. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells.

    Directory of Open Access Journals (Sweden)

    Aruna Venkata Badiga

    Full Text Available BACKGROUND: Our previous work and that of others strongly suggests a relationship between the infiltrative phenotype of gliomas and the expression of MMP-2. Radiation therapy, which represents one of the mainstays of glioma treatment, is known to increase cell invasion by inducing MMP-2. Thus, inhibition of MMP-2 provides a potential means for improving the efficacy of radiotherapy for malignant glioma. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of a plasmid vector-mediated MMP-2 siRNA (p-MMP-2 to modulate ionizing radiation-induced invasive phenotype in the human glioma cell lines U251 and U87. Cells that were transfected with p-MMP-2 with and without radiation showed a marked reduction of MMP-2 compared to controls and pSV-transfected cells. A significant reduction of proliferation, migration, invasion and angiogenesis of cells transfected with p-MMP-2 and in combination with radiation was observed compared to controls. Western blot analysis revealed that radiation-enhanced levels of VEGF, VEGFR-2, pVEGFR-2, p-FAK, and p-p38 were inhibited with p-MMP-2-transfected cells. TUNEL staining showed that radiation did not induce apoptosis in U87 and U251 cells while a significant increase in TUNEL-positive cells was observed when irradiated cells were simultaneously transfected with p-MMP-2 as compared to controls. Intracranial tumor growth was predominantly inhibited in the animals treated with p-MMP-2 alone or in combination with radiation compared to controls. CONCLUSION/SIGNIFICANCE: MMP-2 inhibition, mediated by p-MMP-2 and in combination with radiation, significantly reduced tumor cell migration, invasion, angiogenesis and tumor growth by modulating several important downstream signaling molecules and directing cells towards apoptosis. Taken together, our results demonstrate the efficacy of p-MMP-2 in inhibiting radiation-enhanced tumor invasion and progression and suggest that it may act as a potent adjuvant for radiotherapy in

  3. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    Science.gov (United States)

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Differentiation of Glioma Stem Cells and Progenitor Cells into Local Host Cell-Like Cells: A Study Based on Choroidcarcinoma Differentiation of Choroid Plexus of GFP Transgenic Nude Mouse

    Science.gov (United States)

    Wang, Zhimin; Fei, Xifeng; Dai, Xinliang; Chen, Hanchun; Tian, Haiyan; Wang, Aidong; Huang, Qiang

    2015-01-01

    Abstract The idea of multiple differentiation capacity of glioma stem cells and progentior cells (GSCPs) has been accepted by most of the researchers, but the effect of local environment on the differentiation of GSCPs is unclear. GSCPs SU2 and CM-Dil-stained C6 cells (C6-Dil) were injected into the brain of GFP transgenic nude mice. The xenografts were sectioned. Morphological changes of tumor cells that resided in the choroid plexus, molecular markers expression, and the relationship between the original tumor cells and host cells were studied carefully. The tumorigenicity rate was 40/40 (100%) in all of the inoculated nude mice. Cell morphology and molecular expression of neoplasm settled in the choroid plexus showed that choroidcarcinoma derived from GSCPs was developed. These results showed that GSCPs may have the multiple differentiation capacity, which can be induced by the local environment of host brain as NSCs, and cell fusion may play an important role in the transformation. PMID:26083952

  5. The Neuro-Protective Effect of the Methanolic Extract of Perilla frutescens var. japonicaand Rosmarinic Acid against H₂O₂-Induced Oxidative Stress in C6 Glial Cells.

    Science.gov (United States)

    Lee, Ah Young; Wu, Ting Ting; Hwang, Bo Ra; Lee, Jaemin; Lee, Myoung-Hee; Lee, Sanghyun; Cho, Eun Ju

    2016-05-01

    Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide (H₂O₂) in C6 glial cells. Exposure of C6 glial cells to H₂O₂ enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced H₂O₂-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in H₂O₂-indcued C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress.

  6. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cabral–Prieto, A., E-mail: agustin.cabral@inin.gob.mx; López-Callejas, R., E-mail: regulo.lopez@inin.gob.mx; Rodríguez-Méndez, B. G., E-mail: benjamin.rodriguez@inin.gob.mx; Santos-Cuevas, C. L., E-mail: clara.cuevas@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); Celis-Almazán, J., E-mail: jony-jac-5@hotmail.com; Olea-Mejía, O., E-mail: oleaoscar@yahoo.com.mx [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable (Mexico); Gómez-Morales, J. L. [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico); Peña-Eguiluz, R., E-mail: rosendo.eguiluz@inin.gob.mx; Valencia-Alvarado, R., E-mail: raul.valencia@inin.gob.mx; Mercado-Cabrera, A., E-mail: antonio.mercado@inin.gob.mx; Muñoz-Castro, A. E., E-mail: arturo.munoz@inin.gob.mx [Carretera México-Toluca s/n, La Marquesa, Instituto Nacional de Investigaciones Nucleares (Mexico); García-Santibañez, F., E-mail: fegasa2@yahoo.com.mx [Universidad Autónoma del Estado de México, Campus El Cerrillo, Facultad de Ciencias (Mexico)

    2017-11-15

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50{sup ∘}C, the mouse glioma cells did not survive at temperatures ≥48{sup ∘}C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  7. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    Science.gov (United States)

    Cabral-Prieto, A.; López-Callejas, R.; Rodríguez-Méndez, B. G.; Santos-Cuevas, C. L.; Celis-Almazán, J.; Olea-Mejía, O.; Gómez-Morales, J. L.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Muñoz-Castro, A. E.; García-Santibañez, F.

    2017-11-01

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50∘C, the mouse glioma cells did not survive at temperatures ≥48∘C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  8. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Hongxing Ye

    Full Text Available Heat shock proteins belong to a conserved protein family and are involved in multiple cellular processes. Heat shock protein 27 (Hsp27, also known as heat HSPB1, participates in cellular responses to not only heat shock, but also oxidative or chemical stresses. However, the contribution of HSPB1 to anti-oxidative response remains unclear. Here, we show that HSPB1 activates G6PD in response to oxidative stress or DNA damage. HSPB1 enhances the binding between G6PD and SIRT2, leading to deacetylation and activation of G6PD. Besides, HSPB1 activates G6PD to sustain cellular NADPH and pentose production in glioma cells. High expression of HSPB1 correlates with poor survivalrate of glioma patients. Together, our study uncovers the molecular mechanism by which HSPB1 activates G6PD to protect cells from oxidative and DNA damage stress.

  9. Induction of anti-glioma NK cell response following multiple low-dose intracerebral CpG therapy

    Science.gov (United States)

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E.; Farrukh, Omar; Jensen, Michael C.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN which can induce toxicity in a clinical setting. The goal of this study was to evaluate the anti-tumor efficacy of multiple low-dose intratumoral CpG- ODN in a glioma model. Experimental Design Mice bearing four-day old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 μg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Results Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor free remission (> 3 months), and were protected from intracranial rechallenge with GL21 gliomas, demonstrating the capacity for long-term anti-tumor immunity. Although most inflammatory cells appeared to increase, activated NK cells (i.e. NK+CD107a+) were more frequent than CD8+CD107a+ in the brains of rechallenged CpG-ODN-treated animals and demonstrated a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN anti-tumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. Conclusions These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK mediated effector function. PMID:20570924

  10. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy.

    Science.gov (United States)

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E; Farrukh, Omar; Jensen, Michael C; Badie, Behnam

    2010-07-01

    Stimulation of toll-like receptor-9 by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN, which can induce toxicity in a clinical setting. The goal of this study was to evaluate the antitumor efficacy of multiple low-dose intratumoral CpG-ODN in a glioma model. Mice bearing 4-day-old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 microg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months) and were protected from intracranial rechallenge with GL261 gliomas, showing the capacity for long-term antitumor immunity. Although most inflammatory cells seemed to increase, activated natural killer (NK) cells (i.e., NK(+)CD107a(+)) were more frequent than CD8(+)CD107a(+) in the brains of rechallenged CpG-ODN-treated animals and showed a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN antitumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK-mediated effector function.

  11. Malignant Transformation in Glioma Steered by an Angiogenic Switch: Defining a Role for Bone Marrow-Derived Cells.

    Science.gov (United States)

    Xu, Raymond; Pisapia, David; Greenfield, Jeffrey P

    2016-01-27

    Low-grade gliomas, such as pilocytic astrocytoma and subependymoma, are often characterized as benign tumors due to their relative circumscription radiologically and typically non-aggressive biologic behavior. In contrast, low-grades that are by their nature diffusely infiltrative, such as diffuse astrocytomas and oligodendrogliomas, have the potential to transform into malignant high-grade counterparts and, given sufficient time, invariably do so. These high-grade gliomas carry very poor prognoses and are largely incurable, warranting a closer look at what causes this adverse transition. A key characteristic that distinguishes low- and high-grade gliomas is neovascularization: it is absent in low-grade gliomas, but prolific in high-grade gliomas, providing the tumor with ample blood supply for exponential growth. It has been well described in the literature that bone marrow-derived cells (BMDCs) may contribute to the angiogenic switch that is responsible for malignant transformation of low-grade gliomas. In this review, we will summarize the current literature on BMDCs and their known contribution to angiogenesis-associated tumor growth in gliomas.

  12. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, B. [Dept. of Radiation Oncology, VU Univ. Medical Center, Amsterdam (Netherlands); Dept. of Radiation Oncology, Univ. of Duesseldorf (Germany); Harder, A.H.; Slotman, B.J.; Sminia, P. [Dept. of Radiation Oncology, VU Univ. Medical Center, Amsterdam (Netherlands); Hulsebos, T.J.M. [Dept. of Human Genetics, Academic Medical Center, Amsterdam (Netherlands); Leenstra, S. [Dept. of Neurosurgery, Academic Medical Center, Amsterdam (Netherlands); Peter Vandertop, W. [Dept. of Neurosurgery, VU Univ. Medical Center, Amsterdam (Netherlands); Hartmann, K.A. [Dept. of Radiation Oncology, Univ. of Duesseldorf (Germany)

    2002-09-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell lines D 384 and Gli 6 were used. Cell cultures were irradiated with doses from 2 to 10 Gy. Following irradiation, cell survival was determined by clonogenic assay and survival curves were generated. The surviving fractions after 2 Gy (SF2) and 4 Gy (SF4) were used as radiosensitivity parameters. Genetic analysis included determination of the mutational and loss of heterozygosity (LOH) status of TP 53 (exons 5-8), the LOH 10- and epidermal growth factor receptor gene (EGFR) amplification status. Results: The SF2 and SF4 values ranged from 0.54 to 0.88 (mean: 0.70) and from 0.13 to 0.52 (mean: 0.32), respectively. Genetic alterations were found in the Gli 6 cell line and in two primary cell cultures. The genetic profile of Gli 6 showed LOH but no TP 53 mutation, complete LOH 10 and no EGFR amplification. The VU 15 cell culture showed TP 53 mutation but no LOH 10 or EGFR amplification, while VU 24 showed incomplete LOH 10, EGFR amplification and no TP 53 mutation. In the other four cell cultures and D 384 cell line no genetic alterations were diagnosed. Histopathological classification of glioblastoma multiforme and/or genetic alterations resulted in lower radiosensitivity. Conclusion: In this small series of early passage glioma cell cultures low radiosensitivity and alterations in cell regulatory genes were seen. Further testing of biological behavior in larger series of patient-derived material is ongoing. (orig.)

  13. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  14. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Science.gov (United States)

    Cheng, Ye; Zhao, Gang; Zhang, Siwen; Nigim, Fares; Zhou, Guangtong; Yu, Zhiyun; Song, Yang; Chen, Yong; Li, Yunqian

    2016-01-01

    AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  15. What is the clinical value of cancer stem cell markers in gliomas?

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hansen, Steinbjørn

    2013-01-01

    Recent data indicate that cancer stem cells (CSCs) are responsible for resistance of glioblastomas to radiotherapy and chemotherapy, thereby contributing to the poor survival of these patients. In order to identify novel prognostic markers in gliomas, several CSC markers have been investigated. T...... cohorts with known clinical data and known status of important biomarkers like MGMT and IDH1 is necessary to reveal their full clinical potential....

  16. Withania somnifera Suppresses Tumor Growth of Intracranial Allograft of Glioma Cells.

    Science.gov (United States)

    Kataria, Hardeep; Kumar, Sushil; Chaudhary, Harshita; Kaur, Gurcharan

    2016-08-01

    Gliomas are the most frequent type of primary brain tumor in adults. Their highly proliferative nature, complex cellular composition, and ability to escape therapies have confronted investigators for years, hindering the advancement toward an effective treatment. Agents that are safe and can be administered as dietary supplements have always remained priority to be most feasible for cancer therapy. Withania somnifera (ashwagandha) is an essential ingredient of Ayurvedic preparations and is known to eliminate cancer cells derived from a variety of peripheral tissues. Although our previous studies have addressed the in vitro anti-proliferative and differentiation-inducing properties of ashwagandha on neuronal cell lines, in vivo studies validating the same are lacking. While exploring the mechanism of its action in vitro, we observed that the ashwagandha water extract (ASH-WEX) induced the G2/M phase blockade and caused the activation of multiple pro-apoptotic pathways, leading to suppression of cyclin D1, bcl-xl, and p-Akt, and reduced the expression of polysialylated form of neural cell adhesion molecule (PSA-NCAM) as well as the activity of matrix metalloproteinases. ASH-WEX reduced the intracranial tumor volumes in vivo and suppressed the tumor-promoting proteins p-nuclear factor kappa B (NF-κB), p-Akt, vascular endothelial growth factor (VEGF), heat shock protein 70 (HSP70), PSA-NCAM, and cyclin D1 in the rat model of orthotopic glioma allograft. Reduction in glial fibrillary acidic protein (GFAP) and upregulation of mortalin and neural cell adhesion molecule (NCAM) expression specifically in tumor-bearing tissue further indicated the anti-glioma efficacy of ASH-WEX in vivo. Combining this enhanced understanding of the molecular mechanisms of ASH-WEX in glioma with in vivo model system offers new opportunities to develop therapeutic strategy for safe, specific, and effective formulations for treating brain tumors.

  17. Comparison of dengue infection in human mononuclear leukocytes with mosquito C6/36 and mammalian Vero cells using flow cytometry to detect virus antigen

    Directory of Open Access Journals (Sweden)

    Sydow Farid FO von

    2000-01-01

    Full Text Available Fluorescent activated cell sorter (FACS analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus and Vero cells (green monkey kidney. Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML. FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+ are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.

  18. Comparison of dengue infection in human mononuclear leukocytes with mosquito C6/36 and mammalian Vero cells using flow cytometry to detect virus antigen.

    Science.gov (United States)

    Sydow, F F; Santiago, M A; Neves-Souza, P C; Cerqueira, D I; Gouvea, A S; Lavatori, M F; Bertho, A L; Kubelka, C F

    2000-01-01

    Fluorescent activated cell sorter (FACS) analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus) and Vero cells (green monkey kidney). Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML). FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+) are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.

  19. Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression.

    Directory of Open Access Journals (Sweden)

    Henry Qazi

    Full Text Available Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate.A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs.Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression.

  20. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  1. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  2. Aspirin inhibits the SHH/GLI1 signaling pathway and sensitizes malignant glioma cells to temozolomide therapy.

    Science.gov (United States)

    Ming, Jianguang; Sun, Bo; Li, Ziwei; Lin, Lin; Meng, Xiangqi; Han, Bo; Wang, Ruijia; Wu, Pengfei; Li, Jianlong; Cai, Jinquan; Jiang, Chuanlu

    2017-04-01

    Aberrant activation of sonic hedgehog (SHH)/glioma-associated oncogene homolog 1 (GLI1) pathway plays an important role in the tumorigenicity of malignant glioma cells and resistance to temozolomide (TMZ). Here we investigated the aspirin's antineoplastic molecular route by targeting SHH/GLI1 pathway and examined the feasibility of aspirin combined with TMZ therapy. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the activity of the SHH/GLI1 pathway was strongly inhibited by aspirin. Aspirin acted as the glioma growth-inhibitory and pro-apoptosis roles by inhibiting the SHH/GLI1 pathway and reprogramming the epithelial to mesenchymal transition (EMT). The immunofluorescence assay showed aspirin could prevent the nuclear translocation of GLI1 to inhibit its transcriptional regulation. The stable lentiviral overexpression of GLI1 reversed the DNA double strand breaks (DSBs) caused by the GANT61 and TMZ. Furthermore, aspirin combined with TMZ enhanced chemosensitivity and GLI1-induced chemoprotection was partly blocked by aspirin in vitro and in vivo . Collectively, aspirin has a therapeutic potential for SHH/GLI1 targeted therapy against glioma cells. Acquired activation of GLI1 protects glioma cells against TMZ therapy. Impairment of DNA DSBs repair activity might be involved in the route of aspirin-induced chemosensitivity. Combined aspirin with TMZ may be a promising strategy against malignant glioma.

  3. MicroRNA 203 Modulates Glioma Cell Migration via Robo1/ERK/MMP-9 Signaling.

    Science.gov (United States)

    Dontula, Ranadheer; Dinasarapu, Ashok; Chetty, Chandramu; Pannuru, Padmavathi; Herbert, Engelhard; Ozer, Howard; Lakka, Sajani S

    2013-07-01

    Glioblastoma (GBM) is the most common and malignant primary adult brain cancer. Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM, and this site was thought to harbor multiple tumor suppressor genes associated with GBM, a region that also encodes microRNA-203 (miR-203). In this study, we sought to identify the role of miR-203 as a tumor suppressor in the pathogenesis of GBM. We analyzed the miR-203 expression data of GBM patients in 10 normal and 495 tumor tissue samples derived from The Cancer Genome Atlas data set. Quantitative real-time PCR and in situ hybridization in 10 high-grade GBM and 10 low-grade anaplastic astrocytoma tumor samples showed decreased levels of miR-203 expression in anaplastic astrocytoma and GBM tissues and cell lines. Exogenous expression of miR-203 using a plasmid expressing miR-203 precursor (pmiR-203) suppressed glioma cell proliferation, migration, and invasion. We determined that one relevant target of miR-203 was Robo1, given that miR-203 expression decreased mRNA and protein levels as determined by RT-PCR and Western blot analysis. Moreover, cotransfection experiments using a luciferase-based transcription reporter assay have shown direct regulation of Robo1 by miR-203. We also show that Robo1 mediates miR-203 mediated antimigratory functions as up-regulation of Robo1 abrogates miR-203 mediated antimigratory effects. We also show that miR-203 expression suppressed ERK phosphorylation and MMP-9 expression in glioma cells. Furthermore, we demonstrate that miR-203 inhibits migration of the glioma cells by disrupting the Robo1/ERK/MMP-9 signaling axis. Taken together, these studies demonstrate that up-regulation of Robo1 in response to the decrease in miR-203 in glioma cells is responsible for glioma tumor cell migration and invasion.

  4. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    Full Text Available BackgroundAngiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL and tumor blood-vasculatures in the context of glioma progression.MethodsPaired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA recurred as DA, DA recurred as glioblastomas (GBM, and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared.ResultsUpon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors. Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS (HR = 4.199, 95% CI 1.522–11.584, p = 0.006.ConclusionThe minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3

  5. Targeting effect of microRNA on CD133 and its impact analysis on proliferation and invasion of glioma cells.

    Science.gov (United States)

    Zhao, C; Ma, Z G; Mou, S L; Yang, Y X; Zhang, Y H; Yao, W C

    2017-03-30

    MiR-200b, a member of the microRNA-200 family, has been identified to be capable of suppressing glioma cell growth through targeting CREB1 or CD133. However, whether miR-200b affects the biological behavior (proliferation, invasion, and migration) of glioma cells is poorly understood. The aim of this study was to evaluate the effect of miR-200b on the biological behavior of glioma cells in vitro. MiRNA-200b mimics, miRNA-200b inhibitor, and mimic control were transfected into conventionally cultured glioma U251 cells, followed by measuring the expression of miR-200b and CD133 in transfected cells by RT-PCR; effect of miR-200b on CD133 mRNA 3'-UTR luciferase activity by luciferase reporter assay; proliferation activity of transfected U251 cells by MTT method; and changes in U251 cell invasion and migration by Transwell method after transfection. Compared to that in the miRNA-200b inhibitor, mimic control, and blank control groups, miRNA-200b expression was significantly increased and CD133 mRNA expression was significantly decreased in the mimic miRNA-200b group in a time-dependent manner (P glioma cells possibly through targeting CD133.

  6. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Alonso Barrantes-Freer

    Full Text Available A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.

  7. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

    Science.gov (United States)

    Barrantes-Freer, Alonso; Renovanz, Mirjam; Eich, Marcus; Braukmann, Alina; Sprang, Bettina; Spirin, Pavel; Pardo, Luis A; Giese, Alf; Kim, Ella L

    2015-01-01

    A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.

  8. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection

    OpenAIRE

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-01-01

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae. During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effectiv...

  9. Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line

    Directory of Open Access Journals (Sweden)

    Patricia Oliveira Carminati

    2010-01-01

    Full Text Available Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 μM were effective in reducing the survival rates to ~1%. However, the maximum apoptosis frequency was 20.4% for 25 μM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05 modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2 was confirmed by the real time PCR method.

  10. miR-218 inhibits the migration and invasion of glioma U87 cells through the Slit2-Robo1 pathway.

    Science.gov (United States)

    Gu, Jian-Jun; Gao, Guang-Zhong; Zhang, Shi-Ming

    2015-04-01

    Malignant gliomas are the most common primary brain tumors in adults and are associated with the highest mortality rate. Glioma invasion is one of the most notable causes of the poor prognosis of this cancer. Preventing the invasive behavior of malignant glioma cells by altering effector molecules can significantly improve the prognosis of a patient. microRNAs (miRNAs) are small noncoding RNAs, ~22 nucleotides in length, that are able to function as oncogenes or tumor suppressors in human cancer. In the present study, the expression level of miRNA 218 (miR-218) was found to be markedly downregulated in glioma cell lines and human primary glioma tissues. miR-218 upregulation was found to dramatically reduce the migratory speed and invasive ability of glioma cells. Furthermore, it was demonstrated that ectopic expression of miR-218 in glioma cells resulted in the downregulation of roundabout, axon guidance receptor, homolog 1 (Robo1), upregulation of Slit homolog 2 (Slit2) and the expression of associated proteins following Robo1 knockdown by small interfering RNA. In addition, it was demonstrated that miR-218 inactivated the Slit2-Robo1 pathway through downregulating Robo1 expression by directly targeting the 3'-untranslated region (3'-UTR) of Robo1. The present results indicate that miR-218 plays important roles in preventing the invasiveness of glioma cells, and reveals a novel mechanism of miRNA-mediated direct suppression of the Slit2-Robo1 pathway in glioma.

  11. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma.

    Science.gov (United States)

    Wicks, Robert T; Azadi, Javad; Mangraviti, Antonella; Zhang, Irma; Hwang, Lee; Joshi, Avadhut; Bow, Hansen; Hutt-Cabezas, Marianne; Martin, Kristin L; Rudek, Michelle A; Zhao, Ming; Brem, Henry; Tyler, Betty M

    2015-01-01

    3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPA's inability to cross the blood-brain-barrier and DCA's dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed. Cytotoxicity of 3-BrPA and DCA were analyzed in U87, 9L, and F98 glioma cell lines. 3-BrPA and DCA were incorporated into biodegradable pCPP:SA wafers, and the maximally tolerated dose was determined in F344 rats. Efficacies of the intracranial 3-BrPA wafer and DCA wafer were assessed in a rodent allograft model of high-grade glioma, both as a monotherapy and in combination with temozolomide (TMZ) and radiation therapy (XRT). 3-BrPA and DCA were found to have similar IC50 values across the 3 glioma cell lines. 5% 3-BrPA wafer-treated animals had significantly increased survival compared with controls (P = .0027). The median survival of rats with the 50% DCA wafer increased significantly compared with both the oral DCA group (P = .050) and the controls (P = .02). Rats implanted on day 0 with a 5% 3-BrPA wafer in combination with TMZ had significantly increased survival over either therapy alone. No statistical difference in survival was noted when the wafers were added to the combination therapy of TMZ and XRT, but the 5% 3-BrPA wafer given on day 0 in combination with TMZ and XRT resulted in long-term survivorship of 30%. Intracranial delivery of 3-BrPA and DCA polymer was safe and significantly increased survival in an animal model of glioma, a potential novel therapeutic approach. The combination of intracranial 3-BrPA and TMZ provided a synergistic effect. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  13. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane.

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    Full Text Available Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF. Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.

  14. Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells

    Science.gov (United States)

    Pogoda, Katarzyna

    The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.

  15. Stem cells and the origin of gliomas: A historical reappraisal with molecular advancements

    Directory of Open Access Journals (Sweden)

    Michael L Levy

    2009-01-01

    Full Text Available Michael L Levy1, Allen L Ho1,2, Samuel Hughes3, Jayant Menon1, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. Neural stem cells are increasingly being investigated as the cell type that originally undergoes malignant transformation – the cell of origin – and the evidence for this is discussed.Keywords: stem cells, gliomas, neural stem cells, brain tumors, cancer stem cells

  16. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 104 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  17. ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioma cells.

    Science.gov (United States)

    Recio Despaigne, Angel A; Da Silva, Jeferson G; da Costa, Pryscila R; Dos Santos, Raquel G; Beraldo, Heloisa

    2014-10-27

    2-Acetylpyridine acetylhydrazone (H2AcMe), 2-benzoylpyridine acetylhydrazone (H2BzMe) and complexes [Cu(H2AcMe)Cl2] (1) and [Cu(H2BzMe)Cl2] (2) were assayed for their cytotoxicity against wild type p53 U87 and mutant p53 T98 glioma cells, and against MRC-5 fibroblast cells. Compounds 1 and 2 proved to be more active than the corresponding hydrazones against U87, but not against T98 cells. Compound 1 induced higher levels of ROS than H2AcMe in both glioma cell lines. H2AcMe and 1 induced lower levels of ROS in MRC5 than in U87 cells. Compound 2 induced lower levels of ROS in MRC5 than in T98 cells. The cytotoxic effect of 1 in U87 cells could be related to its ability to provoke the release of ROS, suggesting that the cytotoxicity of 1 might be somehow p53 dependent.

  18. ROS-Mediated Cytotoxic Effect of Copper(II Hydrazone Complexes against Human Glioma Cells

    Directory of Open Access Journals (Sweden)

    Angel A. Recio Despaigne

    2014-10-01

    Full Text Available 2-Acetylpyridine acetylhydrazone (H2AcMe, 2-benzoylpyridine acetylhydrazone (H2BzMe and complexes [Cu(H2AcMeCl2] (1 and [Cu(H2BzMeCl2] (2 were assayed for their cytotoxicity against wild type p53 U87 and mutant p53 T98 glioma cells, and against MRC-5 fibroblast cells. Compounds 1 and 2 proved to be more active than the corresponding hydrazones against U87, but not against T98 cells. Compound 1 induced higher levels of ROS than H2AcMe in both glioma cell lines. H2AcMe and 1 induced lower levels of ROS in MRC5 than in U87 cells. Compound 2 induced lower levels of ROS in MRC5 than in T98 cells. The cytotoxic effect of 1 in U87 cells could be related to its ability to provoke the release of ROS, suggesting that the cytotoxicity of 1 might be somehow p53 dependent.

  19. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  20. Effects of liposome-adriamycin (L-ADM and thermotherapy on glioma cells: an experimental study

    Directory of Open Access Journals (Sweden)

    Zheng-hua SHI

    2013-03-01

    Full Text Available Objective  To observe the effects of liposome-adriamycin (L-ADM and thermotherapy on proliferation and apoptosis of SWO-38 glioma cells. Methods  The SWO-38 glioma cells were cultivated in vitro. The effects of thermotherapy (43℃, ADM chemotherapy, L-ADM chemotherapy, thermotherapy + ADM chemotherapy, and thermotherapy + L-ADM chemotherapy on the cell proliferation and apoptosis were observed. The working concentration of ADM and L-ADM, and the cell proliferation rate were determined by MTT method. The apoptotic rate was determined by flow cytometry. Results  The proliferation inhibition rate of thermotherapy + L-ADM chemotherapy and thermotherapy + ADM chemotherapy was 80.16%±3.78% and 62.09%±3.05%, respectively, and it was significantly higher than that of L-ADM chemotherapy (40.27%±2.32%, ADM chemotherapy (30.56%±2.03% or thermotherapy (16.51%±1.26%, P<0.05, and the proliferation inhibition rate of thermotherapy + L-ADM chemotherapy was higher than that of thermotherapy + ADM chemotherapy (P<0.05. The apoptotic rate of thermotherapy + L-ADM chemotherapy and thermotherapy + ADM chemotherapy was 84.19%±2.69% and 60.29%±1.47%, respectively, and it was significantly higher than that of L-ADM chemotherapy (46.72%±2.09%, ADM chemotherapy (35.09%±1.46% and thermotherapy (17.85%±0.78%, P<0.05, and the apoptotic rate of thermotherapy + L-ADM chemotherapy was higher than that of thermotherapy + ADM chemotherapy (P<0.05. Conclusion  Thermotherapy can enhance proliferation inhibition and apoptosis induction effect of ADM and L-ADM on SWO-38 glioma cells, and this effect is even stronger with L-ADM.

  1. miR-218 inhibits the migration and invasion of glioma U87 cells through the Slit2-Robo1 pathway

    OpenAIRE

    GU, JIAN-JUN; GAO, GUANG-ZHONG; ZHANG, SHI-MING

    2015-01-01

    Malignant gliomas are the most common primary brain tumors in adults and are associated with the highest mortality rate. Glioma invasion is one of the most notable causes of the poor prognosis of this cancer. Preventing the invasive behavior of malignant glioma cells by altering effector molecules can significantly improve the prognosis of a patient. microRNAs (miRNAs) are small noncoding RNAs, ~22 nucleotides in length, that are able to function as oncogenes or tumor suppressors in human can...

  2. ET-45KNOCKDOWN OF TNFSF13B INDUCES GLIOMA STEM CELL APOPTOSIS

    Science.gov (United States)

    Piao, Yuji; Thomas, Craig; Holmes, Lindsay; Henry, Verlene; de Groot, John

    2014-01-01

    Tumor Necrosis Factor (Ligand) Super Family member 13B (TNFSF13B; BAFF) is primarily produced by myeloid lineage cells, activated T cells and dendritic cells, and up-regulates anti-apoptotic Bcl-2 family proteins. Approximately 20% of glioblastoma overexpress TNFSF13B, which may account for treatment resistance. A Kaplan-Meier curve from a query of The Cancer Genome Atlas (TCGA) showed that glioblastoma patients with increased expression (EXP > 2) of TNFSF13B have a significantly shorter overall survival (P = 0.025). By immunoblotting, TNFSF13B expression was differentially expressed in a panel of glioma stem cells (GSCs). GFP-tagged TNFSF13B shRNA lentivirus was used to knock down TNFSF13B in multiple cell lines. Erlotinib or lapatinib inhibited cell viability to a greater extent in shTNFSF13B cells compared to scramble control. After 1 µM erlotinib treatment for 3 days, cell viability was suppressed by 34% in shTNFSF13B GSC11 cells compared to scramble control cells. Lapatinib (0.1 µM for 3 days) reduced cell viability by 40% in shTNFSF13B GSC11 cells compared to controls. Apoptosis, assessed by Annexin V-based flow cytometry, revealed a 30% increase in Annexin V staining after erlotinib treatment (1 µM for 3 days) in shTNFSF13B GSC11 cells compared with controls. The level of anti-apopototic proteins BCL-XL and Bid markedly decreased which was concomitant with an increase in cleaved caspase 9 in shTNFSF13B cells treated with EGFR inhibitors. Using an apoptosis protein array, we observed that anti-apoptotic proteins Bcl-2, survivin, claspin and HIF-1α significantly decreased in shTNFSF13B cells compared with scramble cells after treatment of 1 µM erlotinib. Ongoing in vivo studies are validating the impact of targeting TNFSF13B in a glioma xenograft model. Our studies identified TNFSF13B as a potentially important mediator of glioma stem cell survival in vitro and suggest that TNFSF13B may be a potential therapeutic target to enhance the efficacy of anti

  3. The Effect of Temozolomide/Poly(lactide-co-glycolide (PLGA/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior

    Directory of Open Access Journals (Sweden)

    Anhua Wu

    2012-01-01

    Full Text Available In this study, we investigated the effects of temozolomide (TMZ/Poly (lactide-co-glycolide(PLGA/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVβ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVβ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma.

  4. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Directory of Open Access Journals (Sweden)

    Dorothee Gramatzki

    Full Text Available Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells.Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations.Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation.Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not enhance the anti-glioma activity of

  5. T11TS immunotherapy repairs PI3K-AKT signaling in T-cells: Clues toward enhanced T-cell survival in rat glioma model.

    Science.gov (United States)

    Chaudhuri, Suhnrita; Singh, Manoj K; Bhattacharya, Debanjan; Datta, Ankur; Hazra, Iman; Mondal, Somnath; Faruk Sk Md, Omar; Ronsard, Larance; Ghosh, Tushar K; Chaudhuri, Swapna

    2018-02-01

    Malignant glioma is the most fatal of astrocytic lineage tumors despite therapeutic advances. Onset and progression of gliomas is accompanied by severe debilitation of T-cell defense and T-cell survival. One of the chief contributors to T-cell survival downstream of activation is the PI3K-AKT pathway. Our prior studies showed that the novel immunotherapeutic molecule T11-target structure (T11TS) blocks T-cell apoptosis in glioma. We also showed activation of immunological synapse components and calcineurin-NFAT pathway following T11TS immunotherapy of glioma-bearing rats. This lead to investigations whether such T-cell activation upon T11TS therapy translates into activation of downstream PI3K/AKT signals which may be related to observed blockade of T-cell apoptosis. For the purpose, we assessed by flowcytometry and immunoblotting, expressions of PI3K, PDK1, AKT, p-AKT, and PTEN in splenic T-cells of normal, experimentally-induced glioma-bearing rats and glioma-bearing rats receiving first, second and third doses of T11TS. We also determined comparative nuclear translocation of NF-κB across groups. We found significant increases in T-cell expressions of PDK1, PI3K, and p-AKT in T11TS-treated animal groups compared to sharp downregulations in glioma. AKT levels remained unchanged across groups. PTEN levels declined sharply after T11TS immunotherapy. T11TS also caused enhanced NF-κB translocation to the T-cell nucleus compared to glioma group. Results showed heightened activation of the PI3K-AKT pathway in glioma-bearing rats following T11TS immunotherapy. These results illustrate the novel role of T11TS immunotherapy in ameliorating the PI3K pathway in T-cells in glioma-bearing animals to enhance T-cell survival, according greater defense against glioma. The study thus has far-reaching clinical outcomes. © 2017 Wiley Periodicals, Inc.

  6. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  7. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang; Saeki, Munenori; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-01-08

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.

  8. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    Science.gov (United States)

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Post-radiation increase in VEGF enhances glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Kil Whoon

    2012-02-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is among the most lethal of all human tumors, with frequent local recurrences after radiation therapy (RT. The mechanism accounting for such a recurrence pattern is unclear. It has classically been attributed to local recurrence of treatment-resistant cells. However, accumulating evidence suggests that additional mechanisms exist that involve the migration of tumor or tumor stem cells from other brain regions to tumor bed. VEGFs are well-known mitogens and can be up-regulated after RT. Here, we examine the effect of irradiation-induced VEGF on glioma cell motility. Materials and methods U251 and LN18 cell lines were used to generate irradiated-conditioned medium (IR-CM. At 72 h after irradiation, the supernatants were harvested. VEGF level in IR-CM was quantified by ELISA, and expression levels for VEGF mRNA were detected by RT-PCR. In vitro cancer cell motility was measured in chambers coated with/without Matrigel and IR-CM as a cell motility enhancer and a VEGF antibody as a neutralizer of VEGF bioactivity. Immunoblots were performed to evaluate the activity of cell motility-related kinases. Proliferation of GBM cells after treatment was measured by flow cytometry. Results Irradiation increased the level of VEGF mRNA that was mitigated by pre-RT exposure to Actinomycin D. U251 glioma cell motility (migration and invasion was enhanced by adding IR-CM to un-irradiated cells (174.9 ± 11.4% and 334.2 ± 46% of control, respectively. When we added VEGF antibody to IR-CM, this enhanced cell motility was negated (110.3 ± 12.0% and 105.7 ± 14.0% of control, respectively. Immunoblot analysis revealed that IR-CM increased phosphorylation of VEGF receptor-2 (VEGFR2 secondary to an increase in VEGF, with a concomitant increase of phosphorylation of the downstream targets (Src and FAK. Increased phosphorylation was mitigated by adding VEGF antibody to IR-CM. There was no difference in the mitotic index of

  10. Reciprocal activation of transcription factors underlies the dichotomy between proliferation and invasion of glioma cells.

    Directory of Open Access Journals (Sweden)

    Harshil D Dhruv

    Full Text Available Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the "Go or Grow" hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the "Go or Grow" hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44 revealed higher proliferation (Ki67 labeling index in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These

  11. Tracking Functional Tumor Cell Subpopulations of Malignant Glioma by Phasor Fluorescence Lifetime Imaging Microscopy of NADH

    Directory of Open Access Journals (Sweden)

    Andrew L. Trinh

    2017-12-01

    Full Text Available Intra-tumoral heterogeneity is associated with therapeutic resistance of cancer and there exists a need to non-invasively identify functional tumor subpopulations responsible for tumor recurrence. Reduced nicotinamide adenine dinucleotide (NADH is a metabolic coenzyme essential in cellular respiration. Fluorescence lifetime imaging microscopy (FLIM of NADH has been demonstrated to be a powerful label-free indicator for inferring metabolic states of living cells. Using FLIM, we identified a significant shift towards longer NADH fluorescence lifetimes, suggesting an increase in the fraction of protein-bound NADH, in the invasive stem-like tumor-initiating cell (STIC subpopulation relative to the tumor mass-forming cell (TMC subpopulation of malignant gliomas. By applying our previously studied model to transition glioma from a majority of STIC to a majority of TMC in serum-adherent culture conditions following serial passages, we compared changes in NADH states, cellular respirations (oxidative phosphorylation and glycolysis, EGFR expression, and cell-growth speed over passages. We identified a significant positive correlation between free-NADH fraction and cell growth, which was related to an increase of TMC fraction. In comparison, the increase of EGFR and cellular respirations preceded all these changes. In conclusion, FLIM of NADH provides a non-invasive method to monitor the dynamics of tumor heterogeneity before and after treatment.

  12. Response-predictive gene expression profiling of glioma progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvia Moeckel

    Full Text Available High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist.In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a to enrich specimens for brain tumor initiating cells and (b to confront cells with a therapeutic agent before expression profiling.As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro.For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.

  13. NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Poiret, Thomas; Persson, Oscar

    2018-01-01

    The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO-1......-γ production was tested by ELISA. Twenty-eight out of 38 cancer specimens exhibited NY-ESO-1 protein expression, 2/38 showed a strong universal (4+) NY-ESO-1 staining, and 9/40 cancer lesions exhibited a strong (4+) staining for survivin. We could detect antigen-specific IFN-γ responses in 25% blood samples...... for NY-ESO-1 and 30% for survivin. NY-ESO-1-expanded T-cells recognized naturally processed and presented epitopes. NY-ESO-1 or survivin expression in glioma represents viable targets for anticancer-directed T-cells for the biological therapy of patients with glioma....

  14. Biodisposition and metabolism of [{sup 18}F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher rats

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Aditya; Harris, Robert A. [Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN (United States); Shuyan, Wang; Hara, Toshiko [Indiana University School of Medicine, Department of Radiology, Indianapolis, IN (United States); DeGrado, Timothy R. [Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN (United States); Indiana University School of Medicine, Department of Radiology, Indianapolis, IN (United States)

    2008-06-15

    [{sup 18}F]Fluorocholine ([{sup 18}F]FCH) was developed as an analog of [{sup 11}C]choline for tumor imaging; however, its metabolic handling remains ill defined. In this study, the metabolism of [{sup 18}F]FCH is evaluated in cultured 9L glioma cells and Fisher 344 rats bearing 9L glioma tumors. 9L glioma cells were incubated with [{sup 18}F]FCH and [{sup 14}C]choline under normoxic and hypoxic (1% O{sub 2}) conditions and analyzed for metabolic fate. [{sup 18}F]FCH and [{sup 14}C]choline kinetics and metabolism were studied in Fisher 344 rats bearing subcutaneous 9L tumors. [{sup 18}F]FCH and [{sup 14}C]choline were similarly metabolized in 9L cells in both normoxic and hypoxic conditions over a 2-h incubation period. In normoxia, radioactivity was predominantly in phosphorylated form for both tracers after 5-min incubation. In hypoxia, the tracers remained mainly in nonmetabolized form at early timepoints (<20 min). Slow dephosphorylation of intracellular [{sup 18}F]phosphofluorocholine (0.043-0.060 min{sup -1}) and [{sup 14}C]phosphocholine (0.072-0.088 min{sup -1}) was evidenced via efflux measurements. In rat, both [{sup 18}F]FCH and [{sup 14}C]choline showed high renal and hepatic uptake. Blood clearance of both tracers was rapid with oxidative metabolites, [{sup 18}F]fluorobetaine and [{sup 14}C]betaine, representing the majority of radiolabel in plasma after 5 min postinjection. Oxidation (in liver) and lipid incorporation (in lung) were somewhat slower for [{sup 18}F]FCH relative to [{sup 14}C]choline. The majority of radiolabel in hypoxic subcutaneous tumor, as in hypoxic cultured 9L cells, was found as nonmetabolized [{sup 18}F]FCH and [{sup 14}C]choline. [{sup 18}F]FCH mimics choline uptake and metabolism by 9L glioma cells and tumors. However, subtle changes in biodistribution, oxidative metabolism, dephosphorylation, lipid incorporation, and renal excretion show moderate effects of the presence of the radiofluorine atom in [{sup 18}F]FCH. The

  15. Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing Fisher rats

    Science.gov (United States)

    Bansal, Aditya; Shuyan, Wang; Hara, Toshiko; Harris, Robert A.; DeGrado, Timothy R.

    2008-01-01

    Purpose [18F]Fluorocholine [18F]FCH) was developed as an analog of [11C]choline for tumor imaging, however, its metabolic handling remains ill-defined. In this study, the metabolism of [18F]FCH is evaluated in cultured 9L glioma cells and Fisher 344 rats bearing 9L glioma tumors. Methods 9L glioma cells were incubated with [18F]FCH and [14C]choline under normoxic and hypoxic (1% O2) conditions and analyzed for metabolic fate. [18F]FCH and [14C]choline kinetics and metabolism were studied in Fisher 344 rats bearing subcutaneous 9L tumors. Results [18F]FCH and [14C]choline were similarly metabolized in 9L cells in both normoxic and hypoxic conditions over a 2 hr incubation period. In normoxia, radioactivity was predominantly in phosphorylated form for both tracers after 5 min incubation. In hypoxia, the tracers remained mainly in nonmetabolized form at early timepoints (< 20 min). Slow dephosphorylation of intracellular [18F]phosphofluorocholine (0.043–0.060 min−1) and [14C]phosphocholine (0.072–0.088 min−1) was evidenced via efflux measurements. In rat, both [18F]FCH and [14C]choline showed high renal and hepatic uptake. Blood clearance of both tracers was rapid with oxidative metabolites, [18F]fluorobetaine and [14C]betaine, representing the majority of radiolabel in plasma after 5 min post-injection. Oxidation (in liver) and lipid incorporation (in lung) were somewhat slower for [18F]FCH relative to [14C]choline. The majority of radiolabel in hypoxic subcutaneous tumor, as in hypoxic cultured 9L cells, was found as nonmetabolized [18F]FCH and [14C]choline. Conclusions [18F]FCH mimics choline uptake and metabolism by 9L glioma cells and tumors. However, subtle changes in biodistribution, oxidative metabolism, dephosphorylation, lipid incorporation and renal excretion show moderate effects of the presence of the radiofluorine atom in [18F]FCH. The decrease in phosphorylation of exogenous choline by cancer cells should be considered in interpretation of PET

  16. Testosterone up-regulates seladin-1 expression by iAR and PI3-K/Akt signaling pathway in C6 cells.

    Science.gov (United States)

    Zu, Hengbing; Wu, Junfeng; Zhang, Jianfeng; Yu, Min; Hong, Zhen

    2012-04-11

    The previous study indicated that DHCR24/seladin-1 was an important neuroprotective effector. However, the molecular mechanisms that androgen modulates the expression of seladin-1 remain incompletely defined. In this paper, we showed that the expression of seladin-1 was significantly increased by testosterone at all concentrations tested at the protein and mRNA levels in C6 cells, the selective AR antagonist flutamide obviously inhibited the effect in a concentration-dependent manner. Furthermore, we found that testosterone significantly increased the phosphorylation level of V-akt murine thymoma viral oncogene (Akt), a key effector of the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway, while a specific PI3-K inhibitor LY294002 obviously prevented the activation of Akt phosphorylation. In addition, the PI3-K inhibitor LY294002 also markedly blocked the up-regulation expression of seladin-1 gene induced by testosterone at the protein and mRNA levels. Collectively, the above results suggested that testosterone regulated the expression of seladin-1 by the intracellular androgen receptor (iAR)-mediated genomic signaling pathway and the non-genomic PI3-K/Akt signaling pathway in C6 glial cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  18. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens.

    Science.gov (United States)

    Pollard, Steven M; Yoshikawa, Koichi; Clarke, Ian D; Danovi, Davide; Stricker, Stefan; Russell, Roslin; Bayani, Jane; Head, Renee; Lee, Marco; Bernstein, Mark; Squire, Jeremy A; Smith, Austin; Dirks, Peter

    2009-06-05

    Human brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from different tumors exhibit divergent gene expression signatures and differentiation behavior that correlate with specific neural progenitor subtypes. The diversity of gliomas may, therefore, reflect distinct cancer stem cell phenotypes. The purity and stability of adherent GNS cell lines offer significant advantages compared to "sphere" cultures, enabling refined studies of cancer stem cell behavior. A proof-of-principle live cell imaging-based chemical screen (450 FDA-approved drugs) identifies both differential sensitivities of GNS cells and a common susceptibility to perturbation of serotonin signaling.

  19. ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target.

    Science.gov (United States)

    Bikeye, Sandra-Nadia Ngwabyt; Colin, Carole; Marie, Yannick; Vampouille, Raphaël; Ravassard, Philippe; Rousseau, Audrey; Boisselier, Blandine; Idbaih, Ahmed; Calvo, Charles Félix; Leuraud, Pascal; Lassalle, Myriam; El Hallani, Soufiane; Delattre, Jean-Yves; Sanson, Marc

    2010-01-11

    ASPM (Abnormal Spindle-like Microcephaly associated) over-expression was recently implicated in the development of malignant gliomas. To better characterize the involvement of ASPM in gliomas, we investigated the mRNA expression in 175 samples, including 8 WHO Grade II, 75 WHO Grade III and 92 WHO Grade IV tumors. Aspm expression was strongly correlated with tumor grade and increased at recurrence when compared to the initial lesion, whatever the initial grade of the primary tumor. ASPM expression also increased over serial passages in gliomaspheres in vitro and in mouse xenografts in vivo. Lentivirus-mediated shRNA silencing of ASPM resulted in dramatic proliferation arrest and cell death in two different gliomasphere models. These data suggest that ASPM is involved in the malignant progression of gliomas, possibly through expansion of a cancer stem cell compartment, and is an attractive therapeutic target in glioblastoma multiforme.

  20. ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target

    Directory of Open Access Journals (Sweden)

    Calvo Charles

    2010-01-01

    Full Text Available Abstract Background ASPM (Abnormal Spindle-like Microcephaly associated over-expression was recently implicated in the development of malignant gliomas. Results To better characterize the involvement of ASPM in gliomas, we investigated the mRNA expression in 175 samples, including 8 WHO Grade II, 75 WHO Grade III and 92 WHO Grade IV tumors. Aspm expression was strongly correlated with tumor grade and increased at recurrence when compared to the initial lesion, whatever the initial grade of the primary tumor. ASPM expression also increased over serial passages in gliomaspheres in vitro and in mouse xenografts in vivo. Lentivirus-mediated shRNA silencing of ASPM resulted in dramatic proliferation arrest and cell death in two different gliomasphere models. Conclusion These data suggest that ASPM is involved in the malignant progression of gliomas, possibly through expansion of a cancer stem cell compartment, and is an attractive therapeutic target in glioblastoma multiforme.

  1. Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma.

    Science.gov (United States)

    Sakai, Keiichi; Shimodaira, Shigetaka; Maejima, Shinya; Udagawa, Nobuyuki; Sano, Kenji; Higuchi, Yumiko; Koya, Terutsugu; Ochiai, Takanaga; Koide, Masanori; Uehara, Shunsuke; Nakamura, Midori; Sugiyama, Haruo; Yonemitsu, Yoshikazu; Okamoto, Masato; Hongo, Kazuhiro

    2015-10-01

    Dendritic cell (DC)-based vaccination is considered a potentially effective therapy against advanced cancer. The authors conducted a Phase I study to investigate the safety and immunomonitoring of Wilms' tumor 1 (WT1)-pulsed DC vaccination therapy for patients with relapsed malignant glioma. WT1-pulsed and/or autologous tumor lysate-pulsed DC vaccination therapy was performed in patients with relapsed malignant gliomas. Approximately 1 × 10(7) to 2 × 10(7) pulsed DCs loaded with WT1 peptide antigen and/or tumor lysate were intradermally injected into the axillary areas with OK-432, a streptococcal preparation, at 2-week intervals for at least 5-7 sessions (1 course) during an individual chemotherapy regimen. Ten patients (3 men, 7 women; age range 24-64 years [median 39 years]) with the following tumors were enrolled: glioblastoma (6), anaplastic astrocytoma (2), anaplastic oligoastrocytoma (1), and anaplastic oligodendroglioma (1). Modified WT1 peptide-pulsed DC vaccine was administered to 7 patients, tumor lysate-pulsed DC vaccine to 2 patients, and both tumor lysate-pulsed and WT1-pulsed DC vaccine to 1 patient. The clinical response was stable disease in 5 patients with WT1-pulsed DC vaccination. In 2 of 5 patients with stable disease, neurological findings improved, and MR images showed tumor shrinkage. No serious adverse events occurred except Grade 1-2 erythema at the injection sites. WT1 tetramer analysis detected WT1-reactive cytotoxic T cells after vaccination in patients treated with WT1-pulsed therapy. Positivity for skin reaction at the injection sites was 80% (8 of 10 patients) after the first session, and positivity remained for these 8 patients after the final session. This study of WT1-pulsed DC vaccination therapy demonstrated safety, immunogenicity, and feasibility in the management of relapsed malignant gliomas.

  2. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    Directory of Open Access Journals (Sweden)

    Nie XH

    2015-10-01

    Full Text Available Xiao-hu Nie,1,* Jia Ou-yang,2,* Ying Xing,3 Dan-yan Li,4 Xing-yu Dong,1 Ru-en Liu,5 Ru-xiang Xu6 1Affiliated Bayi Brain Hospital, Southern Medical University, Beijing, People’s Republic of China; 2Nanchang University Medical College, Jiangxi, People’s Republic of China; 3Department of Gastroenterology, The 98th Hospital of Nanjing Military Command, Huzhou, Zhejiang, People’s Republic of China; 4Spleen & Stomach Institution, Guangzhou University of Traditional Chinese Medicine, Guangdong, People’s Republic of China; 5Department of Neurosurgery, China–Japan Friendship Hospital, Beijing, People’s Republic of China; 6Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3 signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3, and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. Keywords: paeoniflorin, glioma, apoptosis

  3. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  4. Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    2011-01-01

    Full Text Available Root extracts of Withania somnifera (Ashwagandha are commonly used as a remedy for a variety of ailments and a general tonic for overall health and longevity in the Indian traditional medicine system, Ayurveda. We undertook a study to investigate the anti-proliferative and differentiation-inducing activities in the water extract of Ashwagandha leaves (ASH-WEX by examining in glioma cells. Preliminary detection for phytochemicals was performed by thin-layer chromatography. Cytotoxicity was determined using trypan blue and MTT assays. Expression level of an hsp70 family protein (mortalin, glial cell differentiation marker [glial fibrillary acidic protein (GFAP] and neural cell adhesion molecule (NCAM were analyzed by immunocytochemistry and immunoblotting. Anti-migratory assay was also done using wound-scratch assay. Expression levels of mortalin, GFAP and NCAM showed changes, subsequent to the treatment with ASH-WEX. The data support the existence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastasis activities in ASH-WEX that could be used as potentially safe and complimentary therapy for glioma.

  5. Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells

    Science.gov (United States)

    Kataria, Hardeep; Shah, Navjot; Kaul, Sunil C.; Wadhwa, Renu; Kaur, Gurcharan

    2011-01-01

    Root extracts of Withania somnifera (Ashwagandha) are commonly used as a remedy for a variety of ailments and a general tonic for overall health and longevity in the Indian traditional medicine system, Ayurveda. We undertook a study to investigate the anti-proliferative and differentiation-inducing activities in the water extract of Ashwagandha leaves (ASH-WEX) by examining in glioma cells. Preliminary detection for phytochemicals was performed by thin-layer chromatography. Cytotoxicity was determined using trypan blue and MTT assays. Expression level of an hsp70 family protein (mortalin), glial cell differentiation marker [glial fibrillary acidic protein (GFAP)] and neural cell adhesion molecule (NCAM) were analyzed by immunocytochemistry and immunoblotting. Anti-migratory assay was also done using wound-scratch assay. Expression levels of mortalin, GFAP and NCAM showed changes, subsequent to the treatment with ASH-WEX. The data support the existence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastasis activities in ASH-WEX that could be used as potentially safe and complimentary therapy for glioma. PMID:20007262

  6. Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation

    Science.gov (United States)

    Kim, In Young; Kang, You Jung; Yoon, Mi Jin; Kim, Eun Hee; Kim, Seung U; Kwon, Taeg Kyu; Kim, In Ah; Choi, Kyeong Sook

    2011-01-01

    Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na+/Ca2+ exchanger (NCX), L-type Ca2+ channels, and Na+ channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca2+ levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca2+ from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca2+ plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas. PMID:21292685

  7. Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation.

    Science.gov (United States)

    Kim, In Young; Kang, You Jung; Yoon, Mi Jin; Kim, Eun Hee; Kim, Seung U; Kwon, Taeg Kyu; Kim, In Ah; Choi, Kyeong Sook

    2011-03-01

    Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na(+)/Ca(2+) exchanger (NCX), L-type Ca(2+) channels, and Na(+) channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca(2+) levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca(2+) from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca(2+) plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas.

  8. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  9. NF-κB inhibitor reverses temozolomide resistance in human glioma TR/U251 cells.

    Science.gov (United States)

    Wang, Xuan; Jia, Lili; Jin, Xiaohua; Liu, Qian; Cao, Wei; Gao, Xiangdong; Yang, Mingfeng; Sun, Baoliang

    2015-06-01

    Glioblastoma multiforme (GBM) demonstrates an unsatisfactory clinical prognosis due to the intrinsic or acquired resistance to temozolomide (TMZ) exhibited by the tumors. One possible cause of TMZ resistance in GBM is the overexpression of O6-methylguanine-DNA methyltransferase (MGMT), which can repair the TMZ-induced guanine damage in DNA. Additionally, excessive activated NF-κB is reported to be a component of the major inflammatory transcription pathway that is associated with TMZ resistance in GBM. However, the association between the NF-κB pathway and MGMT expression in GBM cells is unknown. Therefore, in the present study, the TMZ resistant (TR) U251 cell line (TR/U251) was successfully constructed to detect how the TR/U251 cell line and the parental U251 cell line each interact with TMZ in vitro. The TR/U251 cells were approximately five times more resistant to TMZ compared with the parental cells. Furthermore, it was found that the NF-κB inhibitor BAY 11-7082 suppressed the expression of MGMT in TR/U251 cells and enhanced TMZ-induced cytotoxicity and apoptosis, thereby indicating that the NF-κB pathway and MGMT interact to promote TMZ resistance. The inhibition of NF-κB may be a promising strategy to reverse drug resistance in TR glioma cells. The present results propose a potential mechanism for using the NF-κB inhibitor BAY 11-7082 as a potential therapy for the treatment of TR glioma. Although BAY 11-7082 is a well-known NF-κB inhibitor, the present study further investigated its underlying mechanisms through a series of new experiments.

  10. Inhibiting Heat Shock Proteins Can Potentiate the Cytotoxic Effect of Cannabidiol in Human Glioma Cells.

    Science.gov (United States)

    Scott, Katherine A; Dennis, Jayne L; Dalgleish, Angus G; Liu, Wai M

    2015-11-01

    Cannabinoids possess a number of characteristics that make them putative anticancer drugs, and their value as such is currently being explored in a number of clinical studies. To further understand the roles that cannabinoids may have, we performed gene expression profiling in glioma cell lines cultured with cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC), and pursued targets identified by this screening. Results showed that a large number of genes belonging to the heat shock protein (HSP) super-family were up-regulated following treatment, specifically with CBD. Increases were observed both at the gene and protein levels and arose as a consequence of increased generation of ROS by CBD, and correlated with an increase in a number of HSP client proteins. Furthermore, increases impeded the cytotoxic effect of CBD; an effect that was improved by co-culture with pharmacalogical inhibitors of HSPs. Similarly, culturing glioma cells with CBD and HSP inhibitors increased radiosensitivity when compared to CBD-alone. Taken together, these data indicate that the cytotoxic effects of CBD can be diminished by HSPs that indirectly rise as a result of CBD use, and that the inclusion of HSP inhibitors in CBD treatment regimens can enhance the overall effect. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma.

    Science.gov (United States)

    Dey, Mahua; Yu, Dou; Kanojia, Deepak; Li, Gina; Sukhanova, Madina; Spencer, Drew A; Pituch, Katatzyna C; Zhang, Lingjiao; Han, Yu; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S; Balyasnikova, Irina V

    2016-09-13

    The challenges to effective drug delivery to brain tumors are twofold: (1) there is a lack of non-invasive methods of local delivery and (2) the blood-brain barrier limits systemic delivery. Intranasal delivery of therapeutics to the brain overcomes both challenges. In mouse model of malignant glioma, we observed that a small fraction of intranasally delivered neural stem cells (NSCs) can migrate to the brain tumor site. Here, we demonstrate that hypoxic preconditioning or overexpression of CXCR4 significantly enhances the tumor-targeting ability of NSCs, but without altering their phenotype only in genetically modified NSCs. Modified NSCs deliver oncolytic virus to glioma more efficiently and extend survival of experimental animals in the context of radiotherapy. Our findings indicate that intranasal delivery of stem cell-based therapeutics could be optimized for future clinical applications, and allow for safe and repeated administration of biological therapies to brain tumors and other CNS disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Oncoprotein Bmi-1 Renders Apoptotic Resistance to Glioma Cells through Activation of the IKK-Nuclear Factor-κB Pathway

    Science.gov (United States)

    Li, Jun; Gong, Li-Yun; Song, Li-Bing; Jiang, Li-Li; Liu, Li-Ping; Wu, Jueheng; Yuan, Jie; Cai, Jun-Chao; He, Mian; Wang, Lan; Zeng, Musheng; Cheng, Shi-Yuan; Li, Mengfeng

    2010-01-01

    One of the features of malignant gliomas is their deviant resistance to cellular apoptosis induced by cytotoxic reagents. Bmi-1, an oncoprotein, has been linked to oncogenesis and cancer progression in various types of human cancers including gliomas. However, the mechanisms underlying Bmi-1 antiapoptotic function remain largely unknown. In this study, we report that Bmi-1 renders apoptotic resistance to glioma cells through nuclear factor-κB (NF-κB). In glioma cells, ectopic expression of Bmi-1 significantly inhibits doxorubicin-, BCNU-, or UV irradiation- induced apoptosis through reduction of activated caspase-3 and PARP, and induction of Bcl-XL. Cellular depletion of Bmi-1 enhances the sensitivity of glioma cells to apoptosis induced by doxorubicin, BCNU, or UV irradiation. Bmi-1 activates NF-κB through stimulation of IκB phosphorylation, nuclear translocation, and transcriptional activity of NF-κB and expression of downstream genes of NF-κB including caspase-3, PARP, Bcl-XL, and c-Myc. Inhibition of the IKK-NF-κB pathway abrogates the antiapoptotic effect of Bmi-1 on glioma cells. In high-grade gliomas, Bmi-1 and NF-κB are co-expressed in the cell nucleus. Up-regulation of Bmi-1 also correlates with tumor progression and poor survival of patients with gliomas. Together, our data demonstrate that Bmi-1 bestows apoptotic resistance to glioma cells through the IKK-NF-κB pathway and suggest Bmi-1 as a useful indicator for glioma prognosis. PMID:20035051

  13. Trans-4-lodo,4'-boranyl-chalcone induces antitumor activity against malignant glioma cell lines in vitro and in vivo.

    Science.gov (United States)

    Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Kawamura, Atsufumi; Kondoh, Takeshi; Hosoda, Kohkichi; Kohmura, Eiji

    2007-11-01

    Chalcones are considered the precursors of flavonoids and have been identified as interesting compounds with antitumor properties. Boronic-chalcone derivatives are more toxic to breast cancer cells compared to normal breast cells. Here, we studied the antitumor activities of trans-4-lodo,4'-boranyl-chalcone (TLBC), which is a boronic-chalcone derivative, in several glioma cell lines. TLBC showed a dose-dependent inhibition with inhibitory concentration 50% value in the muM range (5.5-25.5 microM) in various glioma cell lines. Flow cytometric and western blot assay demonstrated that TLBC induced apoptosis independent of changes to the tumor suppressor p53. This cytotoxic effect was the caspase-dependent manner. Also, TLBC lowered levels of anti-apoptotic Bcl-2 and/or Bcl-X(L) protein in several of the cell lines. To examine the antitumor effect of TLBC in vivo, we used a malignant glioma xenograft model. This result showed that in the mice treated with TLBC at 20 mg/kg, mean tumor volume was reduced by 43.9% (P < 0.01) in comparison with the control group. Immunohistochemical and western blot analysis showed that Bcl-2 protein levels were decreased and Bax protein levels were slightly increased in the tumors injected with 20 mg/kg TLBC compared with the control tumors. Therefore, we conclude that TLBC may be a potential chemotherapeutic agent for human glioma.

  14. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, Nguyen Thanh, E-mail: ngtthuy02@yahoo.com [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Nga, Phan Thi [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Morita, Kouichi [Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki (Japan); Dunia, Irene; Benedetti, Lucio [Institut Jacques Monod, UMR7592 Université Paris Diderot/CNRS, Paris (France)

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  15. Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism

    OpenAIRE

    Yuan, Shuqiang; Lu, Yunxin; Yang, Jing; Chen, Gang; Kim, Sangbae; Feng, Li; Ogasawara, Marcia; Hammoudi, Naima; Lu, Weiqin; Zhang, Hui; Liu, Jinyun; Colman, Howard; Lee, Ju-Seog; Li, Xiao-Nan; Xu, Rui-hua

    2015-01-01

    Introduction Cancer stem cells (CSCs) possess characteristics associated with normal stem cells, specifically the abilities to renew themselves and to give rise to all cell types (differentiation). It is assumed that induction of differentiation in CSCs would reduce their ability to form tumors. What triggers CSC differentiation and the role of “differentiation” in tumorigenesis remain elusive. Methods Glioma stem cell (GSC) lines and subcutaneous as well as orthotopic xenografts established ...

  16. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    1991-01-01

    -substratum binding assay in which the binding of BT4C and BT4Cn cells to NCAM immobilized to glass was assessed. We found that BT4C cells adhere specifically to NCAM, and that adhesion is inhibited by anti-NCAM Fab'-fragments, while no specific binding of BT4Cn cells to NCAM was observed. The BT4C and BT4Cn cell......The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity...... for producing experimental metastases, that of BT4Cn cells is high. In BT4C cells NCAM is synthesized as 4 polypeptides with Mr's of 190,000, 140,000, 115,000 and 97,000. The 140,000, 115,000 and 97,000 polypeptides are glycosylated and for the 140,000 and 115,000 polypeptides sulfatation is observed...

  17. PD-1 marks dysfunctional regulatory T cells in malignant gliomas.

    Science.gov (United States)

    Lowther, Daniel E; Goods, Brittany A; Lucca, Liliana E; Lerner, Benjamin A; Raddassi, Khadir; van Dijk, David; Hernandez, Amanda L; Duan, Xiangguo; Gunel, Murat; Coric, Vlad; Krishnaswamy, Smita; Love, J Christopher; Hafler, David A

    2016-04-21

    Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing, and cytometry by time of flight (CyTOF). In both patients with GBM and healthy subjects, circulating PD-1hi Tregs displayed reduced suppression of CD4+ effector T cells, production of IFN-γ, and molecular signatures of exhaustion. Transcriptional profiling of tumor-resident Tregs revealed that several genes coexpressed with PD-1 and associated with IFN-γ production and exhaustion as well as enrichment in exhaustion signatures compared with circulating PD-1hi Tregs. CyTOF analysis of circulating and tumor-infiltrating Tregs from patients with GBM treated with PD-1-blocking antibodies revealed that treatment shifts the profile of circulating Tregs toward a more exhausted phenotype reminiscent of that of tumor-infiltrating Tregs, further increasing IFN-γ production. Thus, high PD-1 expression on human Tregs identifies dysfunctional, exhausted Tregs secreting IFN-γ that exist in healthy individuals and are enriched in tumor infiltrates, possibly losing function as they attempt to modulate the antitumoral immune responses.

  18. Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells

    Directory of Open Access Journals (Sweden)

    Norelle C. Wildburger

    2015-09-01

    Full Text Available Bone marrow-derived human mesenchymal stem cells (BM-hMSCs show promise as cell-based delivery vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors” with those to do not (“non-attractors” to identify pathways that may modulate BM-hMSC homing, followed by targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in the stromal cells suggests microenvironmental cross-talk.

  19. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells.

    Science.gov (United States)

    Motta, Carla; D'Angeli, Floriana; Scalia, Marina; Satriano, Cristina; Barbagallo, Davide; Naletova, Irina; Anfuso, Carmelina Daniela; Lupo, Gabriella; Spina-Purrello, Vittoria

    2015-08-15

    Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway. Copyright © 2015 Elsevier B.V. All rights

  20. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide.

    Science.gov (United States)

    Tang, Jiang-bo; Svilar, David; Trivedi, Ram N; Wang, Xiao-hong; Goellner, Eva M; Moore, Briana; Hamilton, Ronald L; Banze, Lauren A; Brown, Ashley R; Sobol, Robert W

    2011-05-01

    Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity. N-methylpurine DNA glycosylase (MPG) initiates BER by removing TMZ-induced N3-methyladenine and N7-methylguanine base lesions, leaving abasic sites (AP sites) in DNA for further processing by BER. Using the human glioma cell lines LN428 and T98G, we report here that potentiation of TMZ via BER inhibition [methoxyamine (MX), the PARP inhibitors PJ34 and ABT-888 or depletion (knockdown) of PARG] is greatly enhanced by over-expression of the BER initiating enzyme MPG. We also show that methoxyamine-induced potentiation of TMZ in MPG expressing glioma cells is abrogated by elevated-expression of the rate-limiting BER enzyme DNA polymerase β (Polβ), suggesting that cells proficient for BER readily repair AP sites in the presence of MX. Further, depletion of Polβ increases PARP inhibitor-induced potentiation in the MPG over-expressing glioma cells, suggesting that expression of Polβ modulates the cytotoxic effect of combining increased repair initiation and BER inhibition. This study demonstrates that MPG overexpression, together with inhibition of BER, sensitizes glioma cells to the alkylating agent TMZ in a Polβ-dependent manner, suggesting that the expression level of both MPG and Polβ might be used to predict the effectiveness of MX and PARP-mediated potentiation of TMZ in cancer treatment.

  1. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  2. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3.

    Science.gov (United States)

    Lang, H-L; Hu, G-W; Chen, Y; Liu, Y; Tu, W; Lu, Y-M; Wu, L; Xu, G-H

    2017-03-01

    Angiogenesis is a key event in the progression of gliomas, and emerging evidence suggests that exosomes are signaling extracellular organelles that modulate the tumor microenvironment and promote angiogenesis and tumor progression. This study aimed to explore the mechanism by which glioma-derived exosomes affect angiogenesis. qRT-PCR was used to determine the expression level of linc-POU3F3 in glioma tissue as well as glioma cell lines. Ultrafiltration combined with a purification method was used to isolate exosomes derived from A172 cells (A172-Exo) and linc-POU3F3 shRNA-treated A172 cells (shA172-Exo). Transmission electron microscopy, Western blot and tunable resistive pulse sensing (TRPS) were used to identify exosomes. In vitro migration, proliferation, and tube formation experiments, as well as in vivo CAM assays, were used to analyze the pro-angiogenesis ability of exosomes. qRT-PCR and Western blot were used to identify expression levels of angiogenesis-related genes and proteins in human brain microvascular endothelial cells (HBMECs) after being cultured with exosomes. The levels of linc-POU3F3 were upregulated in glioma tissue and significantly correlated with the advanced tumor stage. A172 cells exhibited the highest expression level. A172-Exo was similar to shA172-Exo (50-100 nm in diameter) and expressed Alix, Tsg101 and CD9, while the expression level of linc-POU3F3 in A172-Exo was significantly higher than that in shA172-Exo. HBMECs rapidly internalized A172-Exo and shA172-Exo, and the linc-POU3F3 expression level in HBMECs treated with A172-Exo was significantly higher than the level in HBMECs treated with shA172-Exo. A172-Exo exhibited better function in promoting HBMECs migration, proliferation, tubular-like structure formation in vitro and arteriole formation in vivo. The gene and protein expression level of bFGF, bFGFR, VEGFA, and Angio in HBMECs treated with A172-Exo was much higher than that of HBMECs treated with shA172-Exo. These results

  3. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells.

    Science.gov (United States)

    Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo

    2015-01-01

    Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications.

  5. The prognostic value of clinical factors and cancer stem cell-related markers in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard

    2014-01-01

    fluorescence-based automated quantitative image acquisition. The prognostic significance was subsequently investigated in relation to the observed clinical prognostic variables. We found that Musashi-1 was not prognostic in WHO grade II tumours, but in WHO grade III high levels of Musashi-1 were associated...... on experiences from clinical trials, with the risk that the results obtained are restricted to highly selected patients only. Moreover, these studies provided only little knowledge of the clinical behaviour of the tumours. For some time, it has been believed that somatic stem cells are responsible for self...... tumours. Moreover, CSCs have been suggested as the cause of resistance towards radiotherapy and chemotherapy. In gliomas, CSCs were originally identified by means of the expression of CD133, but other proteins have subsequently been suggested as CSC related. To improve patients' survival, further...

  6. Glioma-associated protein CHI3L2 suppresses cells viability and induces G1/S transition arrest

    Directory of Open Access Journals (Sweden)

    Avdieiev S. S.

    2015-08-01

    Full Text Available Aim. To analyze the effect of the CHI3L2 protein on malignant and non-malignant cell viability, and determined the CHI3L2 impact on the cell cycle and signaling pathways involved in the cell cycle regulation. Methods. MTT-based cell proliferation assay, FACS, western blot analysis. Results. The CHI3L2 protein inhibits the glioma cells viability and potentiates the effect of anti-cancer cytotoxic agents. The CHI3L2 treatment results in the G1/S transition arrest. CHI3L2 provoked a dramatic reduction of pRB phosphorylation and a significant decrease in the cyclin D1 expression, whereas the p53 and p21 expression levels were substantially increased. Conclusions. The CHI3L2 protein, which is overexpressed in human gliomas, is a negative regulator of the glioma cells viability. The reduced cell viability after the CHI3L2 treatment could be due to the activation of pRB and p53 and the downregulation of cyclin D.

  7. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis.

    Science.gov (United States)

    Erson-Omay, E Zeynep; Çağlayan, Ahmet Okay; Schultz, Nikolaus; Weinhold, Nils; Omay, S Bülent; Özduman, Koray; Köksal, Yavuz; Li, Jie; Serin Harmancı, Akdes; Clark, Victoria; Carrión-Grant, Geneive; Baranoski, Jacob; Çağlar, Caner; Barak, Tanyeri; Coşkun, Süleyman; Baran, Burçin; Köse, Doğan; Sun, Jia; Bakırcıoğlu, Mehmet; Moliterno Günel, Jennifer; Pamir, M Necmettin; Mishra-Gorur, Ketu; Bilguvar, Kaya; Yasuno, Katsuhito; Vortmeyer, Alexander; Huttner, Anita J; Sander, Chris; Günel, Murat

    2015-10-01

    Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis. We analyzed and compared 720 exome-sequenced gliomas (136 from Yale, 584 from The Cancer Genome Atlas) based on their genomic, histological, and clinical features. We identified a subgroup of HGGs (6 total, 4 adults and 2 children) that harbored a statistically significantly increased number of somatic mutations (mean = 9257.3 vs 76.2, P = .002). All of these "ultramutated" tumors harbored somatic mutations in the exonuclease domain of the polymerase epsilon gene (POLE), displaying a distinctive genetic profile, characterized by genomic stability and increased C-to-A transversions. Histologically, they all harbored multinucleated giant or bizarre cells, some with predominant infiltrating immune cells. One adult and both pediatric patients carried homozygous germline mutations in the mutS homolog 6 (MSH6) gene. In adults, POLE mutations were observed in patients younger than 40 years and were associated with a longer progression-free survival. We identified a genomically, histologically, and clinically distinct subgroup of HGGs that harbored somatic POLE mutations and carried an improved prognosis. Identification of distinctive molecular and pathological HGG phenotypes has implications not only for improved classification but also for potential targeted treatments. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Use of EF5 to Measure the Oxygen Level in Tumor Cells of Patients Undergoing Surgery or Biopsy for Newly Diagnosed Supratentorial Malignant Glioma

    Science.gov (United States)

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymoma

  9. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Weber Klaus

    2011-10-01

    Full Text Available Abstract Background Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Methods Eight μm pore size membranes were coated with vitronectin (VN, collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT, serum stimulation and addition of monoclonal antibodies directed to human integrins ανβ3 and ανβ5. Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Results Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either ανβ3 or ανβ5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Conclusions Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB. Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation.

  10. Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Tsymbal, D O; Ratushna, O O; Minchenko, O H

    2016-07-01

    The aim of the present investigation was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoding glucocorticoid receptor (NR3C1) and some related proteins (SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, NNT) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of the glioma growth. The expression of NR3C1,SGK1,SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by quantitative polymerase chain reaction. Inhibition of IRE1 signaling enzyme function up-regulates the expression of NR3C1, SGK1, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells in comparison with the control glioma cells, with more significant changes for NR3C1, SGK1, and NNT genes. At the same time, the expression of SGK3 gene is strongly down-regulated in glioma cells upon inhibition of IRE1. We have also shown that hypoxia increases the expression of NR3C1, SGK1, NCOA2, ARHGAP35, and NNT genes but decreases SGK3 and NCOA1 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in U87 glioma cells enhances the eff ect of hypoxia on the expression of SGK1, SGK3, and NNT genes, but decreases the sensitivity of NR3C1 gene to hypoxic condition. Furthermore, the expression of NCOA1 gene is resistant to hypoxia in control glioma cells, but NCOA2 and ARHGAP35 genes are resistant to this condition in glioma cells without functional activity of IRE1 signaling enzyme. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NR3C1, SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells

  11. Uptake of HgCl{sub 2} and MeHgCl in an insect cell line (Aedes albopictus C6/36)

    Energy Technology Data Exchange (ETDEWEB)

    Braeckman, B.; Cornelis, R.; Rzeznik, U.; Raes, H. [Univ. of Ghent (Belgium)

    1998-10-01

    The authors studied the uptake mechanism of mercuric chloride (Hg) and methylmercuric chloride (MeHg) in Aedes albopictus C6/36 cells. The uptake kinetics, together with the effect of temperature and a metabolic inhibitor (2,4-dinitrophenol) on the mercury accumulation, were examined. Both amounts of internalized Hg and MeHg increased linearly with the extracellular concentration. Initially, the influx rate was high for both metal species but MeHg was found to accumulate seven times faster than Hg. At longer exposure times it leveled off for Hg, while for MeHg, the intracellular concentration decreased. Hg toxicity was not significantly influenced by elevated temperatures; in contrast there was a marked decrease of the LC{sub 50/24 h} value for MeHg. On the other hand, Hg accumulation was temperature dependent but MeHg was not. The different toxicity and uptake rate of both mercury compounds can be explained in terms of membrane permeability and target site. For Hg the main target seems to be the plasma membrane, while MeHg readily crosses this barrier and reacts with intracellular targets. 2,4-Dinitrophenol had no effect on the accumulation of Hg but that of MeHg was doubled.

  12. Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin αV.

    Directory of Open Access Journals (Sweden)

    Akiko Niibori-Nambu

    Full Text Available Glioma initiating cells (GICs are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanism of GIC maintenance/differentiation, we established GIC clones having the potential to differentiate into malignant gliomas, and subjected to DNA microarray/iTRAQ based integrated proteomics. 21,857 mRNAs and 8,471 proteins were identified and integrated into a gene/protein expression analysis chart. Gene Ontology analysis revealed that the expression of cell adhesion molecules, including integrin subfamilies, such as α2 and αV, and extracellular matrices (ECMs, such as collagen IV (COL4, laminin α2 (LAMA2, and fibronectin 1 (FN, was significantly upregulated during serum-induced GIC differentiation. This differentiation process, accompanied by the upregulation of MAPK as well as glioma specific proteins in GICs, was dramatically accelerated in these ECM (especially FN-coated dishes. Integrin αV blocking antibody and RGD peptide significantly suppressed early events in GIC differentiation, suggesting that the coupling of ECMs to integrin αV is necessary for GIC differentiation. In addition, the expression of integrin αV and its strong ligand FN was prominently increased in glioblastomas developed from mouse intracranial GIC xenografts. Interestingly, during the initial phase of GIC differentiation, the RGD treatment significantly inhibited GIC proliferation and raised their sensitivity against anti-cancer drug temozolomide (TMZ. We also found that combination treatments of TMZ and RGD inhibit glioma progression and lead the longer survival of mouse intracranial GIC xenograft model. These results indicate that GICs induce/secrete ECMs to develop microenvironments with serum factors, namely differentiation niches that further stimulate GIC differentiation and proliferation via the integrin recognition motif RGD. A combination of RGD treatment with TMZ could have the higher inhibitory

  13. Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    NARCIS (Netherlands)

    Bijnsdorp, Irene; Kuipers, Gitta; Lafleur, M.; Slotman, Ben; Sminia, Peter; Berg, van de Jaap; Rijn, van Johannes; Wedekind, Laurine

    2007-01-01

    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2

  14. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery.

    Science.gov (United States)

    Hu, Quanyin; Gu, Guangzhi; Liu, Zhongyang; Jiang, Mengyin; Kang, Ting; Miao, Deyu; Tu, Yifan; Pang, Zhiqing; Song, Qingxiang; Yao, Lei; Xia, Huimin; Chen, Hongzhan; Jiang, Xinguo; Gao, Xiaoling; Chen, Jun

    2013-01-01

    The development of a drug delivery strategy which can mediate efficient tumor targeting together with high cellular internalization and extensive vascular extravasation is essential and important for glioma treatment. To achieve this goal, F3 peptide that specifically bind to nucleolin, which is highly expressed on the surface of both glioma cells and endothelial cells of glioma angiogenic blood vessels, is utilized to decorate a nanoparticulate drug delivery system to realize glioma cell and neovasculature dual-targeting and efficient cellular internalization. Tumor homing and penetrating peptide, tLyp-1 peptide, which contains the motif of (R/K)XX(R/K) and specially binds to neuropilin is co-administrated to improve the penetration of the nanoparticles across angiogenic vasculature into glioma parenchyma. The F3 conjugation via a maleimide-thiol coupling reaction was confirmed by XPS analysis with 1.03% nitrogen detected on the surface of the functionalized nanoparticles. Enhanced cellular interaction with C6 cells, improved penetration in 3D multicell tumor spheroids, and increased cytotoxicity of the loaded paclitaxel were achieved by the F3-functionalized nanoparticles (F3-NP). Following co-administration with tLyp-1 peptide, F3-NP displayed enhanced accumulation at the tumor site and deep penetration into the glioma parenchyma and achieved the longest survival in mice bearing intracranial C6 glioma. The findings here clearly indicated that the strategy by co-administrating a tumor homing and penetrating peptide with functionalized nanoparticles dual-targeting both glioma cells and neovasculature could significantly improve the anti-glioma drug delivery, which also hold a great promise for chemotherapy of other hard-to-cure cancers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Zottola, Antonio Christian Pagano; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-01-01

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction. SIGNIFICANCE CB1 is implicated in the regulation of cellular processes linked to survival, proliferation, invasion and angiogenesis in several physio-pathological conditions. We shed light on previously unrecognized molecular mechanism of CB1-mediated modulation of human glioma progression and provide the first and original demonstration of CB1-STAT3 axis as a new target and predictor biomarkers of the benefit from specific therapies. Indeed CB1 antagonism capable of tumoral cell division' control while making the glioma immunovisible and engaging the immune system to fight it may represent a hopeful alternative to other established

  16. [Apoptosis of glioma cell line U251 induced by small interfering RNA targeting survivin].

    Science.gov (United States)

    Xu, Ru-xiang; Tu, Yan-yang; Jiang, Xiao-dan; Feng, Jiang-nan; Huang, Jun

    2006-04-01

    To construct recombinant expression vectors of small interfering RNA (siRNA) targeting survivin and investigate apoptosis of glioma cell line U251 mediated by the survivin-targeting siRNA. According to the sequence of the coding region of survivin gene, two strings of 19 nucleotides of inverted sequence flanking the loop sequence of two complementary 9-base oligonucleotides were designed and synthesized to form hairpin construct as the DNA templates for the target siRNA. The siRNA templates were cloned into siRNA expression vector pGenesil-1, and the resulted vector pGenesil-1/survivin was transfected into U251 cells using Metafectene following the standard protocols. Real-time PCR and Western blotting were performed to evaluate survivin gene silencing induced by siRNA transfection at the RNA and protein levels, respectively. Flow cytometry analysis with Annexin-V/PI double staining was used to determine the cell apoptosis. Real-time RT-PCR and Western blotting revealed significantly lowered survivin expression at both RNA and protein levels in transfected U251 cells, which exhibited a significantly higher apoptosis rate after transfection as shown by flow cytometry analysis. RNA interference mediated by the siRNA expression vector pGenesi-l/survivin can significantly reduce survivin expression and induce remarkable apoptosis in U251 cells.

  17. Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death.

    Science.gov (United States)

    Thiepold, Anna-Luisa; Lorenz, Nadja I; Foltyn, Martha; Engel, Anna L; Divé, Iris; Urban, Hans; Heller, Sonja; Bruns, Ines; Hofmann, Ute; Dröse, Stefan; Harter, Patrick N; Mittelbronn, Michel; Steinbach, Joachim P; Ronellenfitsch, Michael W

    2017-10-01

    Glioblastomas are characterized by fast uncontrolled growth leading to hypoxic areas and necrosis. Signalling from EGFR via mammalian target of rapamycin complex 1 (mTORC1) is a major driver of cell growth and proliferation and one of the most commonly altered signalling pathways in glioblastomas. Therefore, epidermal growth factor receptor and mTORC1 signalling are plausible therapeutic targets and clinical trials with inhibitors are in progress. However, we have previously shown that epidermal growth factor receptor and mTORC1 inhibition triggers metabolic changes leading to adverse effects under the conditions of the tumour microenvironment by protecting from hypoxia-induced cell death. We hypothesized that conversely mTORC1 activation sensitizes glioma cells to hypoxia-induced cell death. As a model for mTORC1 activation we used gene suppression of its physiological inhibitor TSC2 (TSC2sh). TSC2sh glioma cells showed increased sensitivity to hypoxia-induced cell death that was accompanied by an earlier ATP depletion and an increase in reactive oxygen species. There was no difference in extracellular glucose consumption but an altered intracellular metabolic profile with an increase of intermediates of the pentose phosphate pathway. Mechanistically, mTORC1 upregulated the first and rate limiting enzyme of the pentose phosphate pathway, G6PD. Furthermore, an increase in oxygen consumption in TSC2sh cells was detected. This appeared to be due to higher transcription rates of genes involved in mitochondrial respiratory function including PPARGC1A and PPARGC1B (also known as PGC-1α and -β). The finding that mTORC1 activation causes an increase in oxygen consumption and renders malignant glioma cells susceptible to hypoxia and nutrient deprivation could help identify glioblastoma patient cohorts more likely to benefit from hypoxia-inducing therapies such as the VEGFA-targeting antibody bevacizumab in future clinical evaluations. © The Author (2017). Published by

  18. Effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells

    Directory of Open Access Journals (Sweden)

    O. H. Minchenko

    2016-06-01

    Full Text Available We have studied the effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells under the inhibition of IRE1 (inositol requiring enzyme-1, which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress. It was shown that hypoxia down-regulated gene expression of malate dehydrogenase 2 (MDH2, malic enzyme 2 (ME2, mitochondrial aspartate aminotransferase (GOT2, and subunit B of succinate dehydrogenase (SDHB in control (transfected by empty vector glioma cells in a gene specific manner. At the same time, the expression level of mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2 and subunit D of succinate dehydrogenase (SDHD genes in these cells does not significantly change in hypoxic conditions. It was also shown that the inhibition of ІRE1 signaling enzyme function in U87 glioma cells decreases the effect of hypoxia on the expression of ME2, GOT2, and SDHB genes and introduces the sensitivity of IDH2 gene to hypoxia. Furthermore, the expression of all studied genes depends on IRE1-mediated endoplasmic reticulum stress signaling in gene specific manner, because ІRE1 knockdown significantly decreases their expression in normoxic conditions, except for IDH2 gene, which expression level is strongly up-regulated. Therefore, changes in the expression level of nuclear genes encoding ME2, MDH2, IDH2, SDHB, SDHD, and GOT2 proteins possibly reflect metabolic reprogramming of mitochondria by hypoxia and IRE1-mediated endoplasmic reticulum stress signaling and correlate with suppression of glioma cell proliferation under inhibition of the IRE1 enzyme function.

  19. NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma.

    Science.gov (United States)

    Liu, Zhenjiang; Poiret, Thomas; Persson, Oscar; Meng, Qingda; Rane, Lalit; Bartek, Jiri; Karbach, Julia; Altmannsberger, Hans-Michael; Illies, Christopher; Luo, Xiaohua; Harvey-Peredo, Inti; Jäger, Elke; Dodoo, Ernest; Maeurer, Markus

    2018-02-01

    The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO-1 (n = 38 samples) protein expression in tumor specimens. T-cells from peripheral blood were stimulated with TAAs (synthetic peptides) in IL-2 and IL-7, or using a combination of IL-2, IL-15 and IL-21. CD4 + and CD8 + T-cells were tested for antigen-specific proliferation by flow cytometry, and IFN-γ production was tested by ELISA. Twenty-eight out of 38 cancer specimens exhibited NY-ESO-1 protein expression, 2/38 showed a strong universal (4+) NY-ESO-1 staining, and 9/40 cancer lesions exhibited a strong (4+) staining for survivin. We could detect antigen-specific IFN-γ responses in 25% blood samples for NY-ESO-1 and 30% for survivin. NY-ESO-1-expanded T-cells recognized naturally processed and presented epitopes. NY-ESO-1 or survivin expression in glioma represents viable targets for anticancer-directed T-cells for the biological therapy of patients with glioma.

  20. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  1. In vitro anticancer drug test: A new method emerges from the model of glioma stem cells

    Directory of Open Access Journals (Sweden)

    Gabriele Riva

    2014-01-01

    Full Text Available Glioblastoma multiforme (GBM is a grade IV astrocytoma and the most common malignant brain tumor. Current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. The failure of current therapies may be due to the presence, within the tumor, of cells characterized by enhanced self-renewal capacity, multilineage differentiation potential and elevated invasive behavior, called glioma stem cells (GSCs. To evaluate the pharmacological efficacy of selected drugs on six GSC lines, we set up a multiple drug responsivity assay based on the combined evaluation of cytomorphological and functional parameters, including the analysis of polymorphic nuclei, mitotic index and cell viability. In order to understand the real pharmacological efficacy of the tested drugs, we assigned a specific drug responsivity score to each GSC line, integrating the data produced by multiple assays. In this work we explored the antineoplastic effects of paclitaxel (PTX, an inhibitor of microtubule depolymerization, utilized as standard treatment in several cancers, and of valproic acid (VPA, an inhibitor of histone deacetylases (HDACs with multiple anticancer properties. We classified the six GSC lines as responsive or resistant to these drugs, on the basis of their responsivity scores. This method can also be useful to identify the best way to combine two or more drugs. In particular, we utilized the pro-differentiating effect of VPA to improve the PTX effectiveness and we observed a significant reduction of cell viability compared to single treatments.

  2. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  3. GLUCOSE DEPRIVATION AFFECTS THE EXPRESSION OF LONP1 AND CATHEPSINS IN IRE1 KNOCKDOWN U87 GLIOMA CELLS

    Directory of Open Access Journals (Sweden)

    O. H. Minchenko

    2016-12-01

    Full Text Available To study the effect of glucose deprivation on the expression of genes encoding for LONP1/PRSS15 and cathepsins in U87 glioma cells in relation to inhibition of inositol requiring enzyme-1 (IRE1 was the aim of the research. It was shown that glucose deprivation up-regulated the expression of CTSA, CTSB, CTSD, CTSK, CTSL, CTSO, and LONP1 genes and did not change the expression of CTSC, CTSF, and CTSS genes in control glioma cells (transfected by empty vector. Inhibition of ІRE1 signaling enzyme function in U87 glioma cells modified effect of glucose deprivation on the expression of most studied genes: removed the effect of glucose deprivation on CTSA and CTSO genes, introduces on CTSC and CTSS genes, reduced – on CTSK gene, and enhanced – on CTSL gene. Therefore, glucose deprivation affect the expression level of most studied genes in relation to the functional activity of IRE1 enzyme, a central mediator of endoplasmic reticulum stress, which control cell proliferation and tumor growth.

  4. Action of tetanus toxin on cholinergic neuroblastoma X glioma hybrid cells: selective blockade of Ca spikes.

    Science.gov (United States)

    Sugimoto, N; Ozutsumi, K; Matsuda, M; Higashida, H; Miki, N

    1983-12-01

    We examined the effect of tetanus toxin on clonal neuroblastoma X glioma hybrid cells, NG108-15, by intracellular microelectrode studies of passive membrane electrical properties and action potentials generated under various conditions. Binding of tetanus toxin to the surface of the cells was demonstrated by indirect immunofluorescent staining but no morphological alteration was observed in tetanus toxin-treated cells under a phase contrast microscope. These is no significant difference between the tetanus toxin-treated and untreated cells in their passive electrical membrane properties, i.e. resting membrane potentials, input resistances, time constants and input capacities. Cells in 120 mM Na+, 2 mM Ca2+ salt solution showed Na spikes, and cells in high Ca2+ (30 mM), Na+-free salt solution showed Ca spikes in response to depolarizing current pulses. While the Na spike was not affected by tetanus toxin, the Ca spike was blocked by the toxin. The minimum dose of tetanus toxin for maximum suppression of the peak potential level of the Ca spike was 250 ng/ml. Addition of tetraethyl ammonium (TEA) to extracellular fluid enhanced the Ca spike in untreated cells. In toxin-treated cells, TEA did not alter the effect of tetanus toxin on the Ca spike. Blockade of the Ca spike by tetanus toxin could be detected even at low extracellular Ca2+ concentration (10 mM) by adding TEA to the extracellular fluid and adjusting the membrane potential to a steady hyperpolarized level (-80 mV) to ensure optimal and uniform electrical responses. The usefulness of NG108-15 hybrid cells for in vitro investigations on the mechanism of action of tetanus toxin was discussed.

  5. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogeno...... of the solutions used in the study nor was it present as a residual material in blank HPLC runs. CONCLUSIONS: Morphine is present in human gliomas, suggesting that it may exert an action that effects tumour physiology/pathology.......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  6. Upregulation of miR-184 enhances the malignant biological behavior of human glioma cell line A172 by targeting FIH-1.

    Science.gov (United States)

    Yuan, Qinghua; Gao, Weida; Liu, Bo; Ye, Wei

    2014-01-01

    In recent years, miRNAs have been suggested to play key roles in the formation and development of human glioma. The aim of this study is to investigate the effect and mechanism of miR-184 expression on the malignant behavior of human glioma cells. The relative quantity of miR-184 was determined in human glioma cell lines, and the expression of hypoxia-inducible factor-1 alpha (HIF-1α) was explored using western blotting. The effects of miR-184 inhibition on cell viability and apoptosis were explored, and the miR-184 target gene was determined using a luciferase assay and western blotting. Flow cytometry and Hoechst staining were used to evaluate cell growth and apoptosis. Matrigel invasion and scratch assays were performed to measure the ability of cell invasion and migration. miR-184 and HIF-1α protein levels were significantly upregulated in human glioma cells. Downregulation of miR-184 inhibited cell viability and increased the HEB cell apoptotic rate. Luciferase and western blot assays verified that FIH-1 was the target gene of miR-184 and negatively controlled the protein level of HIF-1α. Inhibition of HIF-1α by siRNA facilitated the apoptosis of HEB cells and suppressed A172 cell invasion and migration. miR-184 upregulation enhanced the malignant phenotype of human glioma cancer cells by reducing FIH-1 protein expression. © 2014 S. Karger AG, Basel.

  7. G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells

    OpenAIRE

    Hasegawa, Daiki; Okabe, Sachiko; Okamoto, Keiji; Nakano, Ichiro; Shin-ya, Kazuo; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is an invariably fatal brain tumor in which a small subpopulation of self-renewable glioma stem cells (GSCs) contributes to tumor propagation and relapse. Targeting GSCs could therefore have a significant clinical impact for GBM. Telomestatin is a naturally-occurring compound that preferentially impairs GSC growth by perturbing transcription and inducing a DNA damage response. Telomestatin stabilizes G-quadruplexes (G4s), which are guanine-rich four-strand nucleic acid stru...

  8. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  9. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF-beta2 and migration of glioma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Corinna Seliger

    Full Text Available BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1, a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

  10. Activation of CD40 by soluble recombinant human CD40 ligand inhibits human glioma cells proliferation via nuclear factor-κB signaling pathway.

    Science.gov (United States)

    Zhang, Yong; Huang, Tao; Hu, Yi; Wang, Yu

    2012-10-01

    As CD40 transduces activation signals involved in inflammatory and immune disorders, we explored the expression and response to CD40 engagement in human glioma cell lines in this study. The CD40 expression in BT-325 and U251 cells was flow cytometrically detected. The cells were incubated with srhCD40L for 72 h to assess its effects on cell growth in vitro. TNF-α expression was quantified by real-time PCR, and protein expression was analyzed by ELISA. The I-κb mRNA was detected by RT-PCR. I-κB expression decreased after stimulation with 1 μg/mL srhCD40L, but it was upregulated after the cells were pretreated with CD40 antibody. srhCD40L significantly inhibited the proliferation of the CD40+ human glioma cells. The stimulation of CD40+ glioma cells with soluble CD40L (CD154) up-regulated the expression of TNF-α at both mRNA and protein levels. We are led to conclude that CD40L/CD40 could inhibit human glioma cells through I-κb signaling pathway. Interferon-γ can augment CD40 expression and the inhibitory effect of CD40 ligand on cell growth in vitro. These results suggest that srhCD40L may benefit the therapy strategy of glioma.

  11. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  12. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion.

    Directory of Open Access Journals (Sweden)

    Deborah Huveldt

    Full Text Available Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM. Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1 activation of Src family kinases (SFKs is common in GBM, 2 the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3 SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.

  13. Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 genes in U87 glioma cells in glutamine deprivation condition

    Directory of Open Access Journals (Sweden)

    O. H. Minchenko

    2016-06-01

    Full Text Available We have studied gene expression of insulin-like growth factor binding proteins in U87 glioma cells upon glutamine deprivation depending on the inhibition of IRE1 (inositol requiring enzyme-1, a central mediator of endoplasmic reticulum stress. We have shown that exposure of control glioma cells upon glutamine deprivation leads to down-regulation of NOV/IGFBP9, WISP1 and WISP2 gene expressions and up-regulation of CYR61/IGFBP10 gene expression at the mRNA level. At the same time, the expression of IGFBP6 and IGFBP7 genes in control glioma cells was resistant to glutamine deprivation. It was also shown that the inhibition of IRE1 modifies the effect of glutamine deprivation on the expression of all studied genes. Thus, the inhibition of IRE1 signaling enzyme enhances the effect of glutamine deprivation on the expression of CYR61 and WISP1 genes and suppresses effect of the deprivation on WISP2 gene expression in glioma cells. Moreover, the inhibition of IRE1 introduces sensitivity of the expression of IGFBP6 and IGFBP7 genes to glutamine deprivation and removes this sensitivity to NOV gene. We have also demonstrated that the expression of all studied genes in glioma cells growing with glutamine is regulated by IRE1 signaling enzyme, because the inhibition of IRE1 significantly down-regulates IGFBP6 and NOV genes and up-regulates IGFBP7, CYR61, WISP1, and WISP2 genes as compared to control glioma cells. The present study demonstrates that glutamine deprivation condition affects most studied IGFBP and WISP gene expressions in relation to IRE1 signaling enzyme function and possibly contributes to slower glioma cell proliferation upon inhibition of IRE1.

  14. Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling

    Directory of Open Access Journals (Sweden)

    O. H. Minchenko

    2015-12-01

    Full Text Available We have studied hypoxic regulation of the expression of different insulin-like growth factor binding­ protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1, a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have de­monstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation – of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more significant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.

  15. FK506 Binding Protein Mediates Glioma Cell Growth and Sensitivity to Rapamycin Treatment by Regulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-03-01

    Full Text Available FK506 binding protein 5 (FKBP5 belongs to a family of immunophilins named for their ability to bind immunosuppressive drugs, also known as peptidyl-prolyl cis-trans isomerases, and also with chaperones to help protein folding. Using glioma cDNA microarray analysis, we found that FKBP5 was overexpressed in glioma tumors. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. The roles of FKBP5 in glioma cells were then examined. We found that cell growth was suppressed after FKBP5 expression was inhibited by short interfering RNA transfection and enhanced by FKBP5 overexpression. Electrophoretic mobility shift assay showed that nuclear factor-kappa B (NF-κB and DNA binding was enhanced by FKBP5 overexpression. The expression level of I-kappa B alpha and phosphorylated NF-κB was regulated by the expression of FKBP5. These data suggest that FKBP5 is involved in NF-κB pathway activation in glioma cells. In addition, FKBP5 overexpression in rapamycin-sensitive U87 cells blocked the cells' response to rapamycin treatment, whereas rapamycin-resistant glioma cells, both PTEN-positive and -negative, were synergistically sensitive to rapamycin after FKBP5 was knocked down, suggesting that the FKBP5 regulates glioma cell response to rapamycin treatment. In conclusion, our study demonstrates that FKBP5 plays an important role in glioma growth and chemoresistance through regulating signal transduction of the NF-κB pathway.

  16. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    Directory of Open Access Journals (Sweden)

    Vaibhavi Umesh

    Full Text Available The aggressive and rapidly lethal brain tumor glioblastoma (GBM is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.

  17. Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling

    Science.gov (United States)

    Umesh, Vaibhavi; Rape, Andrew D.; Ulrich, Theresa A.; Kumar, Sanjay

    2014-01-01

    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling. PMID:25000176

  18. Aurora-B dysfunction of multinucleated giant cells in glioma detected by site-specific phosphorylated antibodies.

    Science.gov (United States)

    Fujita, Mitsugu; Mizuno, Masaaki; Nagasaka, Tetsuro; Wakabayashi, Toshihiko; Maeda, Kenkou; Ishii, Dai; Arima, Toru; Kawajiri, Aie; Inagaki, Masaki; Yoshida, Jun

    2004-12-01

    The origin of multinucleated giant cells in glioma has not been made clear. In a previous paper the authors studied multinucleated giant tumor cells by using mitosis-specific phosphorylated antibodies to determine the phosphorylation of intermediate filaments and demonstrated that these cells stay in the early mitotic stage, undergoing neither fusion nor degeneration. In the current study the authors investigated the possible genetic causes of multinucleated giant tumor cells. Cultured mono- or multinucleated human glioma cells were immunostained with monoclonal antibodies (mAbs) 4A4, YT33, TM71, HTA28, YG72, and alphaAIM-1. The three former antibodies revealed a particular mitotic cell cycle through site-specific phosphorylation of vimentin; that is, the early phase, mid phase, and late phase, respectively. The three later antibodies demonstrated phosphorylation of H3 at Ser28, phosphorylation of vimentin at Ser72, and aurora-B, respectively, making it possible to identify aurora-B distribution and function during mitosis. In addition, paraffin-embedded tissue sections obtained in three patients with giant cell glioblastoma were also examined. Multinucleated giant tumor cells immunoreacted with the mAb 4A4 and alphaAIM-1 but not with YT33, TM71, HTA28, and YG72 in vitro and in vivo. Findings in this study indicated that multinucleated giant tumor cells remain in the early mitotic phase because of aurora-B dysfunction, effecting aberrations in cytoplasmic cleavage without affecting nuclear division.

  19. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Hyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-02-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  20. Tocotrienol-Rich Fraction, [6]-Gingerol and Epigallocatechin Gallate Inhibit Proliferation and Induce Apoptosis of Glioma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2014-09-01

    Full Text Available Plant bioactives [6]-gingerol (GING, epigallocatechin gallate (EGCG and asiaticoside (AS and vitamin E, such as tocotrienol-rich fraction (TRF, have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II, SW1783 (Grade III and LN18 (Grade IV in culture by the (3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxy-phenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt (MTS assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.

  1. Morphological assessment of the development of multinucleated giant cells in glioma by using mitosis-specific phosphorylated antibodies.

    Science.gov (United States)

    Maeda, Kenkou; Mizuno, Masaaki; Wakabayashi, Toshihiko; Takasu, Syuntarou; Nagasaka, Tetsurou; Inagaki, Masaki; Yoshida, Jun

    2003-04-01

    The nature and origin of multinucleated giant cells in glioma have not been made clear. To investigate the phosphorylation of intermediate filaments, the authors studied multinucleated giant cells in vitro and in vivo by using mitosis-specific phosphorylated antibodies. Cultured human glioma cells were immunostained with monoclonal antibodies (mAbs) 4A4, KT13, and TM71, which recognized the phosphorylation of vimentin at Ser55, glial fibrillary acidic protein at Serl3, and vimentin at Ser71, respectively. Subsequently, the nature of multinucleated giant cells was investigated using laser scanning confocal microscopy. In addition, paraffin-embedded tissue sections obtained in three patients with giant cell glioblastoma were also investigated. Multinucleated giant cells were immunoreacted with the mAb 4A4 and not with KT13 and TM71 in vitro and in vivo. In addition, the authors obtained these results in multinucleated giant cells under natural conditions, without drug treatments. Findings in this investigation indicated that multinucleated giant cells are those remaining in mitosis between metaphase and telophase, undergoing neither fusion nor degeneration.

  2. Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells—Characterization of a New in Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Stojković

    2016-06-01

    Full Text Available Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl-1-nitrosourea (BCNU and temozolomide (TMZ. Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells’ invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats’ behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.

  3. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin

    OpenAIRE

    Cheng, Ye; Zhao, Gang; Zhang, Siwen; Nigim, Fares; Zhou, Guangtong; YU, ZHIYUN; Song, Yang; Chen, Yong; Li, Yunqian

    2016-01-01

    AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human gli...

  4. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  5. Interleukin-1β and transforming growth factor-β cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells.

    Science.gov (United States)

    Wang, Lei; Liu, Ziyan; Balivada, Sivasai; Shrestha, Tej; Bossmann, Stefan; Pyle, Marla; Pappan, Loretta; Shi, Jishu; Troyer, Deryl

    2012-02-10

    Glioma stem cells (GSCs) have the property of self-renewal and appear to be a driving force for the initiation and recurrence of gliomas. We recently found that the human tumorigenic LN-229 glioma cell line failed to form neurospheres in serum-free conditions and generated mostly small tumors in vivo, suggesting that either LN-229 GSCs are not active in these conditions or GSCs are absent in the LN-229 cell line. Using self-renewal assay, soft-agar colony assay, cell proliferation assay, invasion assay, real time PCR analysis, ELISA and in vivo tumorigenic assay, we investigated the effects of interleukin (IL)-1β and transforming growth factor (TGF)-β on the development of GSCs from LN-229 cells. Here, we demonstrate that the combination of IL-1β and TGF-β can induce LN-229 cells to form neurospheres in serum-free medium. IL-1β/TGF-β-induced neurospheres display up-regulated expression of stemness factor genes (nestin, Bmi-1, Notch-2 and LIF), and increased invasiveness, drug resistance and tumor growth in vivo: hallmarks of GSCs. These results indicate that IL-1β and TGF-β cooperate to induce a GSC phenotype in the LN-229 cell line. Induction of nestin, LIF and Notch-2 by IL-1β/TGF-β can be reverted after cytokine withdrawal. Remarkably, however, up-regulated Bmi-1 levels remained unchanged after cytokine withdrawal; and the cytokine-withdrawn cells maintained strong clonogenicity, suggesting that Bmi-1 may play a crucial role in tumorigenesis. Our finding indicates that glioma cells without self-renewal capability in standard conditions could also contribute to glioma malignancy when cytokines, such as IL-1β and TGF-β, are present in the tumor environment. Targeting GSC-promoting cytokines that are highly expressed in glioblastomas may contribute to the development of more effective glioma therapies.

  6. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells

    Directory of Open Access Journals (Sweden)

    Oppel Felix

    2011-11-01

    Full Text Available Abstract Background SOX2, a high mobility group (HMG-box containing transcription factor, is a key regulator during development of the nervous system and a persistent marker of neural stem cells. Recent studies suggested a role of SOX2 in tumor progression. In our previous work we detected SOX2 in glioma cells and glioblastoma specimens. Herein, we aim to explore the role of SOX2 for glioma malignancy in particular its role in cell proliferation and migration. Methods Retroviral shRNA-vectors were utilized to stably knockdown SOX2 in U343-MG and U373-MG cells. The resulting phenotype was investigated by Western blot, migration/invasion assays, RhoA G-LISA, time lapse video imaging, and orthotopic xenograft experiments. Results SOX2 depletion results in pleiotropic effects including attenuated cell proliferation caused by decreased levels of cyclinD1. Also an increased TCF/LEF-signaling and concomitant decrease in Oct4 and Nestin expression was noted. Furthermore, down-regulation of focal adhesion kinase (FAK signaling and of downstream proteins such as HEF1/NEDD9, matrix metalloproteinases pro-MMP-1 and -2 impaired invasive proteolysis-dependent migration. Yet, cells with knockdown of SOX2 switched to a RhoA-dependent amoeboid-like migration mode which could be blocked by the ROCK inhibitor Y27632 downstream of RhoA-signaling. Orthotopic xenograft experiments revealed a higher tumorigenicity of U343-MG glioma cells transduced with shRNA targeting SOX2 which was characterized by increased dissemination of glioma cells. Conclusion Our findings suggest that SOX2 plays a role in the maintenance of a less differentiated glioma cell phenotype. In addition, the results indicate a critical role of SOX2 in adhesion and migration of malignant gliomas.

  7. Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells.

    Science.gov (United States)

    Li, Zhong-Jun; Li, Chao; Zheng, Mei-Guang; Pan, Jia-Dong; Zhang, Li-Ming; Deng, Yue-Fei

    2015-01-01

    This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.

  8. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  9. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-02-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1.000: 34-36

  10. Metabolic Reprogramming in Glioma

    Science.gov (United States)

    Strickland, Marie; Stoll, Elizabeth A.

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid

  11. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  12. AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation.

    Science.gov (United States)

    Jane, Esther P; Premkumar, Daniel R; Pollack, Ian F

    2007-11-08

    We determined the cytotoxicity of AG490 as a single agent and in combination with 7-hydroxystaurosporine (UCN-01) in a panel of malignant human glioma cell lines. Because p53 has important roles in cell cycle checkpoints, it has been anticipated that modulation of checkpoint pathways should sensitize p53 defective cells while sparing the normal cells. Cell proliferation was determined from dose-response curves. AG490 was effective as a cytotoxic agent alone regardless of p53 status. Combining the Chk1 inhibitor UCN-01 dramatically enhanced the response to AG490 in p53-mutated or deleted glioma cells. An opposite effect was noted in p53-wild type cells, in which UCN-01 and AG490 had antagonistic effects on cell proliferation and viability. We found that AG490 enhanced BAD phosphorylation in p53 wild type glioma cells, which appeared to protect against UCN-01-induced cytotoxicity, whereas AG490 enhanced UCN-01-induced cytotoxicity in p53 defective cell lines by suppression of BAD phosphorylation and induction of BAX and PARP cleavage. These observations highlight the potential for genotype-dependent factors to strongly influence response to signaling-targeted therapies in malignant gliomas and the importance of considering such factors in correlative response analyses for these agents.

  13. Natural product HTP screening for attenuation of cytokine-induced neutrophil chemo attractants (CINCs) and NO2- in LPS/IFNγ activated glioma cells.

    Science.gov (United States)

    Mazzio, Elizabeth A; Bauer, David; Mendonca, Patricia; Taka, Equar; Soliman, Karam F A

    2017-01-15

    Chronic and acute central nervous system (CNS) inflammation are contributors toward neurological injury associated with head trauma, stroke, infection, Parkinsons or Alzheimers disease. CNS inflammatory illnesses can also contribute toward risk of developing glioblastoma multiforme (GBM). With growing public interest in complementary and alternative medicines (CAMs), we conduct a high throughput (HTP) screening of >1400 natural herbs, plants and over the counter (OTC) products for anti-inflammatory effects on lipopolysaccharide (LPS)/interferon gamma (IFNγ) activated C6 glioma cells. Validation studies were performed showing a pro-inflammatory profile of [LPS 3 µg/ml/ IFNγ 3 ng/ml] consistent with greater release [>8.5 fold] of MCP-1, NO2-, cytokine-induced neutrophil chemo-attractants (CINC) 1, CINC 2a and CINC3. The data show no changes to the following, IL-13, TNF-a, fracktaline, leptin, LIX, GM-CSF, ICAM1, L-Selectin, activin A, agrin, IL-1α, MIP-3a, B72/CD86, NGF, IL-1b, MMP-8, IL-1 R6, PDGF-AA, IL-2, IL-4, prolactin R, RAGE, IL-6, Thymus Chemokine-1, CNTF,IL-10 or TIMP-1. A HTP screening was conducted, where we employ an in vitro efficacy index (iEI) defined as the ratio of toxicity (LC50)/anti-inflammatory potency (IC50). The iEI was precautionary to ensure biological effects were occurring in fully viable cells (ratio > 3.8) independent of toxicity. Using NO2- as a guideline molecule, the data show that 1.77% (25 of 1410 tested) had anti-inflammatory effects with iEI ratios >3.8 and IC50s Pterocarpus santalinus), Bay Leaf (Laurus nobilis, Lauraceae), quercetin, cardamonin, fisetin, EGCG, biochanin A, galangin, apigenin and curcumin. The herb with the largest iEI was Ashwaganda where the IC50/LC50 was 11.1/>1750.0μg/ml, and the compound with the greatest iEI was quercetin where the IC50/LC50 was 10.0/>363.6μg/ml. These substances also downregulate the production of iNOS expression and attenuate CINC-3 release. In summary, this HTP screening provides

  14. Handheld confocal laser endomicroscopic imaging utilizing tumor-specific fluorescent labeling to identify experimental glioma cells in vivo.

    Science.gov (United States)

    Martirosyan, Nikolay L; Georges, Joseph; Kalani, M Yashar S; Nakaji, Peter; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C

    2016-01-01

    We have reported that handheld confocal laser endomicroscopy (CLE) can be used with various nonspecific fluorescent dyes to improve the microscopic identification of brain tumor and its boundaries. Here, we show that CLE can be used experimentally with tumor-specific fluorescent labeling to define glioma margins in vivo. Thirteen rats underwent craniectomy and in vivo imaging 21 days after implantation with green fluorescent protein (GFP)-labeled U251 (n = 7) cells or epidermal growth factor receptor (EGFR) overexpressing F98 cells (n = 6). Fluorescein isothiocyanate (FITC) conjugated EGFR fluorescent antibody (FITC-EGFR) was applied for contrast in F98 tumors. Confocal images of normal brain, obvious tumor, and peritumoral zones were collected using the CLE system. Bench-top confocal microscopy and hematoxylin and eosin-stained sections were correlated with CLE images. GFP and FITC-EGFR fluorescence of glioma cells were detected by in vivo visible-wavelength fluorescence CLE. CLE of GFP-labeled tumors revealed bright individual satellite tumor cells within peritumoral tissue, a definitive tumor border, and subcellular structures. Imaging with FITC-EGFR labeling provided weaker contrast in F98-EGFR tumors but was able to delineate tumor cells. Imaging with both methods in various tumor regions correlated with standard confocal imaging and clinical histology. These data suggest that in vivo CLE of selectively tagged neoplasms could allow specific interactive identification of tumoral areas. Imaging of GFP and FITC-EGFR provides real-time histologic information precisely related to the site of microscopic imaging of tumor.

  15. Global quantitative proteomic analysis of human glioma cells profiled host protein expression in response to enterovirus type 71 infection.

    Science.gov (United States)

    Zhang, Lei-Ke; Lin, Tao; Zhu, Sheng-Lin; Xianyu, Ling-Zhi; Lu, Song-Ya

    2015-11-01

    Enterovirus 71 (EV71) is one of the leading causes of hand, foot and mouth disease with neurological complications in some cases. To study the pathogenesis of EV71 infection, large-scale analyses of EV71 infected cells have been performed. However, most of these studies employed rhabdomyosarcoma (RD) cells or used transcriptomic strategy. Here, we performed SILAC-based quantitative proteomic analysis of EV71-infected U251 cells, a human glioma cell line. A total of 3125 host proteins were quantified, in which 451 were differentially regulated as a result of EV71 infection at 8 or 20 hpi or both. Gene Ontology analysis indicates the regulated proteins were enriched in "metabolic process", "biological regulation" and "cellular process", implying that these biological processes were affected by EV71 infection. Furthermore, functional study indicated that TRAF2 and TRAF6 among the up-regulated proteins could inhibit the replication of EV71 at the early phase post infection, and the anti-EV71 function of both proteins was independent of interferon β. Our study not only provided an overview of cellular response to EV71 infection in a human glioma cell line, but also found that TRAF2 and TRAF6 might be potential targets to inhibit the replication of EV71. All MS data have been deposited in the ProteomeXchange with identifier PXD002454 (http://proteomecentral.proteomexchange.org/dataset/PXD002454). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Drug-Loaded Nanoparticle Systems And Adult Stem Cells: A Potential Marriage For The Treatment Of Malignant Glioma?

    Science.gov (United States)

    Auffinger, Brenda; Morshed, Ramin; Tobias, Alex; Cheng, Yu; Ahmed, Atique U; Lesniak, Maciej S

    2013-01-01

    Despite all recent advances in malignant glioma research, only modest progress has been achieved in improving patient prognosis and quality of life. Such a clinical scenario underscores the importance of investing in new therapeutic approaches that, when combined with conventional therapies, are able to effectively eradicate glioma infiltration and target distant tumor foci. Nanoparticle-loaded delivery systems have recently arisen as an exciting alternative to improve targeted anti-glioma drug delivery. As drug carriers, they are able to efficiently protect the therapeutic agent and allow for sustained drug release. In addition, their surface can be easily manipulated with the addition of special ligands, which are responsible for enhancing tumor-specific nanoparticle permeability. However, their inefficient intratumoral distribution and failure to target disseminated tumor burden still pose a big challenge for their implementation as a therapeutic option in the clinical setting. Stem cell-based delivery of drug-loaded nanoparticles offers an interesting option to overcome such issues. Their ability to incorporate nanoparticles and migrate throughout interstitial barriers, together with their inherent tumor-tropic properties and synergistic anti-tumor effects make these stem cell carriers a good fit for such combined therapy. In this review, we will describe the main nanoparticle delivery systems that are presently available in preclinical and clinical studies. We will discuss their mechanisms of targeting, current delivery methods, attractive features and pitfalls. We will also debate the potential applications of stem cell carriers loaded with therapeutic nanoparticles in anticancer therapy and why such an attractive combined approach has not yet reached clinical trials. PMID:23594406

  17. Production of high titer attenuated poliovirus strains on the serum-free PER.C6(®) cell culture platform for the generation of safe and affordable next generation IPV.

    Science.gov (United States)

    Sanders, Barbara P; Oakes, Isabel de los Rios; van Hoek, Vladimir; Liu, Ying; Marissen, Wilfred; Minor, Philip D; Wimmer, Eckard; Schuitemaker, Hanneke; Custers, Jerome H H V; Macadam, Andrew; Cello, Jeronimo; Edo-Matas, Diana

    2015-11-27

    As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (pIPV vaccines needed for achieving and maintaining poliovirus eradication. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas

    Directory of Open Access Journals (Sweden)

    He T

    2017-01-01

    Full Text Available Tao He,1–3,* Tianming Qiu,4,* Xiaodong Wang,5 Hongxing Gui,6 Xilong Wang,2 Qikuan Hu,3,7 Hechun Xia,2 Gaoyang Qi,1,2 Jinsong Wu,4 Hui Ma2 1Clinical Medicine College, Ningxia Medical University, 2Department of Neurosurgery, General Hospital of Ningxia Medical University, 3Ningxia Key Laboratory of Cerebrocranial Diseases, The National Key Laboratory Incubation Base, Yinchuan, 4Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 5Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 6Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, NJ, USA; 7Department of Physiology, Ningxia Medical University, Yinchuan, People’s Republic of China *These authors contributed equally to this work Objective: This study investigated the correlation between choline/creatine (Cho/Cr ratios determined by multivoxel proton magnetic resonance spectroscopy (1H-MRS and the distribution of cancer stem-like cells (CSLCs in high-grade gliomas. Patients and methods: Sixteen patients with high-grade gliomas were recruited and underwent 1H-MRS examination before surgery to identify distinct tumor regions with variable Cho/Cr ratios. Using intraoperative neuronavigation, tumor tissues were accurately sampled from regions with high and low Cho/Cr ratios within each tumor. The distribution of CSLCs in samples from glioma tissue regions with different Cho/Cr ratios was quantified by neurosphere culture, immunohistochemistry, and Western blot. Results: The mean neurosphere formation rate in tissues with high Cho/Cr ratios was significantly increased compared with that in low Cho/Cr ratio tissues (13.94±5.94 per 100 cells vs 8.04±3.99 per 100 cells, P<0.001. Immunohistochemistry indicated that tissues with high Cho/Cr ratios had elevated expression of CD133, nestin, and CD15, relative to low Cho/Cr ratio tissue

  19. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  20. Histone deacetylase inhibitor AR42 regulates telomerase activity in human glioma cells via an Akt-dependent mechanism.

    Science.gov (United States)

    Yang, Ya-Luen; Huang, Po-Hsien; Chiu, Hao-Chieh; Kulp, Samuel K; Chen, Ching-Shih; Kuo, Cheng-Ju; Chen, Huan-Da; Chen, Chang-Shi

    2013-05-24

    Epigenetic regulation via abnormal activation of histone deacetylases (HDACs) is a mechanism that leads to cancer initiation and promotion. Activation of HDACs results in transcriptional upregulation of human telomerase reverse transcriptase (hTERT) and increases telomerase activity during cellular immortalization and tumorigenesis. However, the effects of HDAC inhibitors on the transcription of hTERT vary in different cancer cells. Here, we studied the effects of a novel HDAC inhibitor, AR42, on telomerase activity in a PTEN-null U87MG glioma cell line. AR42 increased hTERT mRNA in U87MG glioma cells, but suppressed total telomerase activity in a dose-dependent manner. Further analyses suggested that AR42 decreases the phosphorylation of hTERT via an Akt-dependent mechanism. Suppression of Akt phosphorylation and telomerase activity was also observed with PI3K inhibitor LY294002 further supporting the hypothesis that Akt signaling is involved in suppression of AR42-induced inhibition of telomerase activity. Finally, ectopic expression of a constitutive active form of Akt restored telomerase activity in AR42-treated cells. Taken together, our results demonstrate that the novel HDAC inhibitor AR42 can suppress telomerase activity by inhibiting Akt-mediated hTERT phosphorylation, indicating that the PI3K/Akt pathway plays an important role in the regulation of telomerase activity in response to this HDAC inhibitor. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Solid Lipid Nanoparticles of Albendazole for Enhancing Cellular Uptake and Cytotoxicity against U-87 MG Glioma Cell Lines

    Directory of Open Access Journals (Sweden)

    Gregory Marslin

    2017-11-01

    Full Text Available Albendazole (ABZ is an antihelminthic drug used for the treatment of several parasitic infestations. In addition to this, there are reports on the anticancer activity of ABZ against a wide range of cancer types. However, its effect on glioma has not yet been reported. In the present study, cytotoxicity of ABZ and ABZ loaded solid lipid nanoparticles (ASLNs was tested in human glioma/astrocytoma cell line (U-87 MG. Using glyceryl trimyristate as lipid carrier and tween 80 as surfactant spherical ASLNs with an average size of 218.4 ± 5.1 nm were prepared by a combination of high shear homogenization and probe sonication methods. A biphasic in vitro release pattern of ABZ from ASLNs was observed, where 82% of ABZ was released in 24 h. In vitro cell line studies have shown that ABZ in the form of ASLNs was more cytotoxic (IC50 = 4.90 µg/mL to U-87 MG cells compared to ABZ in the free form (IC50 = 13.30 µg/mL due to the efficient uptake of the former by these cells.

  2. Estimation of PKCδ autophosphorylation in U87 MG glioma cells: combination of experimental, conceptual and numerical approaches.

    Science.gov (United States)

    Misuth, Matus; Joniova, Jaroslava; Belej, Dominik; Hrivnak, Stanislav; Horvath, Denis; Huntosova, Veronika

    2017-03-01

    Golgi apparatus (GA) is a center for lipid metabolism and the final target of ceramide pathway, which may result in apoptosis. In this work localization of highly hydrophobic hypericin is followed by time-resolved imaging of NBDC6 (fluorescent ceramide) in U87 MG glioma cells. Decrease of NBDC6 fluorescence lifetimes in cells indicates that hypericin can also follow this pathway. It is known that both, ceramide and hypericin can significantly influence protein kinase C (PKC) activity. Western blotting analysis shows increase of PKCδ autophosphorylation at Ser645 (p(S645)PKCδ) in glioma cells incubated with 500 nM hypericin and confocal-fluorescence microscopy distinguishes p(S645)PKCδ localization between GA related compartments and nucleus. Experimental and numerical methods are combined to study p(S645)PKCδ in U87 MG cell line. Image processing based on conceptual qualitative description is combined with numerical treatment via simple exponential saturation model which describes redistribution of p(S645)PKCδ between nucleus and GA related compartments after hypericin administration. These results suggest, that numerical methods can significantly improve quantification of biomacromolecules (p(S645)PKCδ) directly from the fluorescence images and such obtained outputs are complementary if not equal to typical used methods in biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Early response of sigma-receptor ligands and metabolic PET tracers to 3 forms of chemotherapy : An in vitro study in glioma cells

    NARCIS (Netherlands)

    van Waarde, Aren; Been, Lukas B.; Ishiwata, Kiichi; Dierckx, Rudi A.; Elsinga, Philip H.

    The significant presence of nontumor cell populations within tumors can complicate the assessment of in vivo tumor metabolism during therapy. To more clearly define the impact of cytotoxic agents, we compared early changes in the uptake of 6 PET tracers in cultured glioma cells. Doxorubicin (1 mu

  4. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins

    NARCIS (Netherlands)

    Aronica, Eleonora; Gorter, Jan A.; Ijlst-Keizers, Helen; Rozemuller, Annemieke J.; Yankaya, Bulent; Leenstra, Sieger; Troost, Dirk

    2003-01-01

    We examined the regulation of glutamate transporter protein expression after stimulation with selective metabotropic glutamate receptor (mGluR) agonists in cultured human glial cells. mGluR3 and mGluR5 are expressed in human astrocytes and in human glioma cells in vivo as well as in vitro, as shown

  5. Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Prezado Yolanda

    2011-04-01

    Full Text Available Abstract Background In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF, a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Methods Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. Results The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. Conclusions When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with

  6. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  7. Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, An Allogeneic CD8+ Cytolitic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination With Interleukin-2

    Science.gov (United States)

    2015-06-03

    Anaplastic Astrocytoma; Anaplastic Ependymoma; Anaplastic Meningioma; Anaplastic Oligodendroglioma; Brain Stem Glioma; Ependymoblastoma; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Grade III Meningioma; Meningeal Hemangiopericytoma; Mixed Glioma; Pineal Gland Astrocytoma; Brain Tumor

  8. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  9. Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4.

    Science.gov (United States)

    Kawanishi, Yu; Tominaga, Akira; Okuyama, Hiromi; Fukuoka, Satoshi; Taguchi, Takahiro; Kusumoto, Yutaka; Yawata, Toshio; Fujimoto, Yasunori; Ono, Shiro; Shimizu, Keiji

    2013-01-01

    This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down-regulating angiogenesis via a Toll-like receptor 4 signal. Murine RSV-M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV-M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)-17 in both C3H/HeN and C3H/HeJ tumor-bearing mice. Treatment with E. coli LPS induced much greater IL-17 production in tumor-bearing C3H/HeN mice than in tumor-bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re-transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti-cluster of differentiation (CD)8, anti-CD4, anti-CD8 antibodies, and anti-asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti-interferon-γ antibodies had no effect on glioma cell growth, anti-IL-17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS-treated mice than in those from saline- or E. coli LPS-treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down-regulating angiogenesis, and that this down-regulation is mediated in part by regulating IL-17 production. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  10. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy.

    Science.gov (United States)

    Chheda, Zinal S; Kohanbash, Gary; Okada, Kaori; Jahan, Naznin; Sidney, John; Pecoraro, Matteo; Yang, Xinbo; Carrera, Diego A; Downey, Kira M; Shrivastav, Shruti; Liu, Shuming; Lin, Yi; Lagisetti, Chetana; Chuntova, Pavlina; Watchmaker, Payal B; Mueller, Sabine; Pollack, Ian F; Rajalingam, Raja; Carcaboso, Angel M; Mann, Matthias; Sette, Alessandro; Garcia, K Christopher; Hou, Yafei; Okada, Hideho

    2017-12-04

    The median overall survival for children with diffuse intrinsic pontine glioma (DIPG) is less than one year. The majority of diffuse midline gliomas, including more than 70% of DIPGs, harbor an amino acid substitution from lysine (K) to methionine (M) at position 27 of histone 3 variant 3 (H3.3). From a CD8+ T cell clone established by stimulation of HLA-A2+ CD8+ T cells with synthetic peptide encompassing the H3.3K27M mutation, complementary DNA for T cell receptor (TCR) α- and β-chains were cloned into a retroviral vector. TCR-transduced HLA-A2+ T cells efficiently killed HLA-A2+H3.3K27M+ glioma cells in an antigen- and HLA-specific manner. Adoptive transfer of TCR-transduced T cells significantly suppressed the progression of glioma xenografts in mice. Alanine-scanning assays suggested the absence of known human proteins sharing the key amino acid residues required for recognition by the TCR, suggesting that the TCR could be safely used in patients. These data provide us with a strong basis for developing T cell-based therapy targeting this shared neoepitope. © 2018 Chheda et al.

  11. Shift of microRNA profile upon glioma cell migration using patient-derived spheroids and serum-free conditions.

    Science.gov (United States)

    Munthe, Sune; Halle, Bo; Boldt, Henning B; Christiansen, Helle; Schmidt, Steffen; Kaimal, Vivek; Xu, Jessica; Zabludoff, Sonya; Mollenhauer, Jan; Poulsen, Frantz R; Kristensen, Bjarne W

    2017-03-01

    Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The miRNA profiling revealed 30 miRNAs to be differentially expressed. In total 13 miRNAs were upregulated and 17 downregulated in migrating cells compared to corresponding spheroids. The three most deregulated miRNAs, miR-1227 (up-regulated), miR-32 (down-regulated) and miR-222 (down-regulated), were experimentally overexpressed. A non-significantly increased migration rate was observed after miR-1227 overexpression. A significantly reduced migration rate was observed after miR-32 and miR-222 overexpression. In conclusion a shift in microRNA profile upon glioma cell migration was identified using an assay avoiding serum-induced migration. Both the miRNA profiling and the functional validation suggested that miR-1227 may be associated with increased migration and miR-32 and miR-222 with decreased migration. These miRNAs may represent potential novel targets in migrating glioma cells.

  12. Proinflammatory-Activated Glioma Cells Induce a Switch in Microglial Polarization and Activation Status, From a Predominant M2b Phenotype to a Mixture of M1 and M2a/B Polarized Cells

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2014-04-01

    Full Text Available Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b, with up-regulation of iNOS (inducible nitric oxide synthase, ARG (arginase and IL (interleukine-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide—IFNγ (interferon γ conditioned media] and C-CM (control-conditioned media induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.

  13. Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Directory of Open Access Journals (Sweden)

    Marianela Candolfi

    2012-08-01

    Full Text Available Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM] models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α, their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  14. Plasmacytoid dendritic cells in the tumor microenvironment: immune targets for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; King, Gwendalyn D; Yagiz, Kader; Curtin, James F; Mineharu, Yohei; Muhammad, A K M Ghulam; Foulad, David; Kroeger, Kurt M; Barnett, Nick; Josien, Regis; Lowenstein, Pedro R; Castro, Maria G

    2012-08-01

    Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  15. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling.

    Science.gov (United States)

    Barrett, Angela; Evans, Ian M; Frolov, Antonina; Britton, Gary; Pellet-Many, Caroline; Yamaji, Maiko; Mehta, Vedanta; Bandopadhyay, Rina; Li, Ningning; Brandner, Sebastian; Zachary, Ian C; Frankel, Paul

    2014-06-15

    DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells. Knockdown of DOK1 or expression of a DOK1 mutant (DOK1FF) containing Phe in place of Tyr at residues 362 and 398, resulted in inhibition of both the PDGF-BB-induced tyrosine phosphorylation of p130Cas (also known as BCAR1) and the activation of Rap1. DOK1 colocalises with tyrosine phosphorylated p130Cas at the cell membrane of PDGF-BB-treated cells. Expression of a non-tyrosine-phosphorylatable substrate domain mutant of p130Cas (p130Cas15F) inhibited PDGF-BB-mediated Rap1 activation. Knockdown of DOK1 and Rap1 inhibited PDGF-BB-induced chemotactic cell migration, and knockdown of DOK1 and Rap1 and expression of DOK1FF inhibited PDGF-mediated three-dimensional (3D) spheroid invasion. These data show a crucial role for DOK1 in the regulation of PDGF-BB-mediated tumour cell motility through a p130Cas-Rap1 signalling pathway. [Corrected] © 2014. Published by The Company of Biologists Ltd.

  16. Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells

    Directory of Open Access Journals (Sweden)

    Minchenko D.O.

    2016-07-01

    Full Text Available Objective. The aim of the present investigation was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1, which is a central media