WorldWideScience

Sample records for c6 glioma cells

  1. Baicalin interferes with iron accumulation in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Xin Chen

    2011-01-01

    Baicalin reacts with ferric ammonium citrate and acts as an-iron chelator. The maximal reaction time for baicalin to interact with irons was approximately 3 hours. C6 glioma cell survival decreased following iron-loading, with a large number of cells accumulating iron. In addition, lipid peroxidation increased. Iron accumulation and lipid peroxidation were the major cause of cellular death. Baicalin and ferric ammonium citrate alleviated iron accumulation in C6 cells and lowered the mortality of nerve cells. In addition, malondialdehyde and lactate dehydrogenase levels reduced. These results indicate that baicalin strongly inhibits lipid peroxidation via chelation, reduces the content of iron in C6 cells, lowers lipid peroxidation, and thus plays a protective role against iron-induced nerve cell death.

  2. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  3. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  4. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Wen-hai FAN; Yi HOU; Fan-kai MENG; Xiao-fei WANG; Yi-nan LUO; Peng-fei GE

    2011-01-01

    Aim: Proteasome inhibitors have been found to suppress gtioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells.Methods: C6 glioma cells were used. MTF assay was used to analyze cell proliferation. Proteasome activity was assayed using Succi-nyI-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluores-cence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis.Results: MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapop-totic proteins Bcl-2 and XlAP0 up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 pmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins.Conclusion: MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.

  5. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    Science.gov (United States)

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G. Steven

    2014-05-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

  6. Effects of lead on viability and intracellular metal content of C6 rat glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiffany-Castiglioni, E.; Garcia, D.M.; Wu, J.N.; Zmudzki, J.; Bratton, G.R.

    1988-01-01

    Cultured C6 rat glioma cells were exposed to lead (Pb) acetate (0, 1, 10, or 100 ..mu..M) for 3-4 d. Cells were analyzed for changes in viability and intracellular lead, iron, and copper concentrations after Pb treatment was discontinued. The results were compared with previous findings on astroglia and oligodendroglia in culture in order to evaluate C6 cultures as a model for Pb toxicity in glia. Viability was measured by three methods on the day Pb was removed from the cells (designated d 0), and 2 and 9 d after Pb treatment was discontinued (designated d 2 and 9). The methods used were trypan blue dye exclusion, total cell counts, and incorporation of (/sup 3/H)-L-leucine into proteins. With respect to Pb and Fe uptake, C6 cells closely resembled immature astroglia in culture. Unlike C6 cells, however, astroglia showed elevations of intracellular Fe and Cu after treatment. Thus, Pb effects on C6 cells resembled those on cultured oligodendroglia and astroglia in some respects but not in others. C6 cells appear to be an adequate model for selected events in glial toxicosis, such as PB-stimulated protein synthesis in oligodendroglia and Pb uptake in astroglia, but not Pb-induced alterations of intracellular Cu and Fe in astroglia. Their use as a model for glial progenitor cells in Pb toxicity studies remains to be determined.

  7. Wuweizisu C from Schisandra chinensis decreases membrane potential in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Young-whan CHOI; Kyeok KIM; Ji-yeong JO; Hyo-lim KIM; You-jin LEE; Woo-jung SHIN; Santosh J SACKET; Mijin HAN; Dong-soon IM

    2008-01-01

    Aim:To study the effects of dibenzocyclooctadiene lignans isolated from Schi-sandra chinensis, such as wuweizisu C, gomisin N, gomisin A, and schisandrin, on the membrane potential in C6 glioma cells. Methods: The membrane po-tential was estimated by measuring the fluorescence change in DiBAC-loaded glioma cells. Results: Wuweizisu C decreased the membrane potential in a concentration-dependent manner. Gomisin N and gomisin A, however, showed differential modulation and no change was induced by schisandrin or dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate, a syn-thetic drug derived from dibenzocyclooctadiene lignans. We found no involve-ment of Gi/o proteins, phospholipase C, and extracellular Na+ on the wuweizisu C-indueed decrease of the membrane potential. Wuweizisu C by itself did not change the intracellular Ca2+ [Ca2+]I concentration, but decreased the ATP-indu-ted Ca2+ increase in C6 glioma cells. The 4 lignans at all concentrations used in this study did not induce any effect on cell viability. Furthermore, we found a similar decrease of the membrane potential by wuweizisu C in PC12 neuronal cells. Conclusion: Our results suggest that the decrease in the membrane poten-tial and the modulation of [Ca2+]I concentration by wuweizisu C could be impor-tant action mechanisms ofwuweizisu C.

  8. The Effects of Venlafaxine and Dexamethasone on the Expression of HSP70 in Rat C6 Glioma Cells

    OpenAIRE

    Yu, Jaehak; Roh, Sungwon; Lee, Jun-Seok; Yang, Byung-Hwan; Choi, Mi Ran; Chai, Young Gyu; Kim, Seok Hyeon

    2010-01-01

    Objective The present study aimed to determine the intracellular action of the antidepressant, venlafaxine, in C6 glioma cells using heat shock protein 70 (HSP70) immunocytochemistry and HSP70 Western blots; HSP70 is known to be associated with stress and depression. Methods The extent of HSP70 expression was measured after rat C6 glioma cells were treated with 1) dexamethasone only, 2) venlafaxine only, 3) simultaneous venlafaxine and dexamethasone, or 4) dexamethasone after venlafaxine pret...

  9. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apopto...

  10. In vitro effects of ellagic acid in C6 rat glioma cell cultures in terms of cytotoxicity and proliferation

    Directory of Open Access Journals (Sweden)

    Cenap Ekinci

    2012-09-01

    Full Text Available Objectives: Ellagic acid is a plant-derived polyphenoliccompound. The aim of this study is to investigate in vitroeffects of ellagic acid on the proliferation and viability ofrat C6 glioma cell lineage depending on dose and timeand also is to evaluate ultrastructural changes in C6 gliomaspheroids.Materials and methods: Effects of ellagic acid on rat C6glioma cell line were investigated by using two-dimensionalmodels of tumor cell culture depending on doseand time. The effects of Ellagic acid was evaluated ascell proliferation, cell viability, and synthesis phase of cellcycle, and cell structure at 24th, 48th, 72nd hours. Cell structurewas evaluated at 24th and 72nd hours in three dimensionalcell culture spheroid models.Results: Reducing effect of ellagic acid on cell proliferationand cell viability was seen in two dimensional cultures(p0. 05. Electronmicrographs in which three dimensional cell culturespheroid models was investigated, structural changeswas found to be different from the control group.Conclusions: In the evaluation of effects of ellagic acidon rat C6 glioma cells using two-dimensional culture models,it was observed that ellagic acid caused reduced cellviability, deterioration in cell structure and prevented cellproliferation. J Clin Exp Invest 2012; 3 (3: 350-356Key words: Ellagic acid, C6 glioma cells, cell culture,brain tumor, glioma

  11. Stable EGFP Gene Expression in C6 Glioma Cell Line after Transduction with HIV-1-based Lentiviral Vector

    Institute of Scientific and Technical Information of China (English)

    JIN Gui-shan; LIU Fu-sheng; CHAI Qi; WANG Jian-jao; LI Jun-hua

    2008-01-01

    Objective:To establish a stable C6/EGFP glioma cell line for studies on glioma. Methods:The C6 glioma cell line was transfected with the human immunodeficiency virus type Ⅰ(HIV-1)based lentivirus vector containing two enhancer-promoters CMV and EF1α.Enhanced green fluorescent protein(EGFP)-positive C6 cells were sorted out by fluorescence-activated cell sort.Expression of EGFP was observed by fluorescent microscopy.EGFP gene in C6 genome was assessed by Polymerase chain reaction(PCR)and DNA sequencing.Original and transfected cells were compared biologically and cytomorphologically. Results:Lentivirus vector transfection produced up to 40% EGFP-positive cells.After fluorescence-activated cell sort selection,a pure cell line C6/EGFP was established.PCR and DNA sequencing revealed integration of EGFP gene in C6 cell genome.Analysis of cell characteristics revealed no difference between transfected and original cells. Conclusion:A C6/EGFP cell line expressing EGFP as a marker is established,in which the EGFP gene is integrated into the genome.This cell line can be served as a promising tool for further basic research and gene therapy studies.

  12. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  13. 蒿甲醚对C6胶质瘤细胞的抑制作用%Inhibitory effect of artemether on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    邓兴力; 颜小荣; 李宣鹏; 王波; 魏小兵; 李杨; 李玉

    2011-01-01

    目的 研究蒿甲醚对大鼠C6胶质瘤细胞的抑制作用.方法 C6胶质瘤细胞经培养后,按是否加入蒿甲醚分为实验组和对照组,均采用四甲基偶氮唑盐(MTT)法、流式细胞技术(FCM)及Hoechst33258荧光染色法检测细胞凋亡情况.结果 MTT法检测显示:24、48、72h3个时间组蒿甲醚对C6胶质瘤细胞的半数抑制浓度(IC50)分别为(195.08±3.27) μmol/L、(119.64±4.06) μmol/L、(87.84±0.93) μmol/L.FCM法检测显示:24、48、72 h3个时间组C6胶质瘤细胞凋亡率分别为:7.95%、22.01%、31.22%;且G0-G1期细胞比例增加,S期和G2-M期细胞比例降低.荧光染色显示:实验组细胞内出现凋亡小体;而对照组细胞呈弥散均匀荧光.结论 蒿甲醚能抑制C6胶质瘤细胞生长,且其抑制作用呈现时间依赖性和浓度依赖性;蒿甲醚能干扰C6胶质瘤细胞的细胞周期,可将其阻滞在G0-G1期并诱导其凋亡.%Objective To research inhibitory effect of artemether on C6 glioma cells in rats. Methods According to whether adding the artemether, C6 glioma cells were divided into the experimental group and control group after cultivation. Cell apoptosis was detected by MTT method, flow cytometry (FCM) and Hoechst33258 fluorescence staining. Results 50% inhibit concentrations (IC50) of artemether to C6 glioma cells in the time group of 24,48, 72h were 195.08±3.27 μmol/L, 119.64±4.06 μmol/L, 87.84±0.93 μmol/L respectively by MTT method. Cell apoptosis rates of C6 glioma cells in the time group of 24, 48, 72h were 7.95%, 22.01%, 31.22% respectively, and the cells percentage at Go-G, phase increased and the cells percentage at S phase and GrM phase decreased by FCM. Apoptotic body was seen in the cells of the experimental group, while diffuse and uniform fluorescence was observed in the control group by fluorescence staining. Conclusions Artemether can inhibit the growth of C6 glioma cells, and the inhibitory effect shows time dependence and

  14. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  15. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma

    OpenAIRE

    Varadharajan Thiyagarajan; May-Jywan Tsai; Ching-Feng Weng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma ce...

  16. Construction of rat glioma cell line C6-Luc for reproducing an animal model with stable expression of luciferase

    Directory of Open Access Journals (Sweden)

    Wei HUANG

    2011-01-01

    Full Text Available Objective To construct the rat glioma cell line C6-Luc to stably express the firefly luciferase.Methods The optimal concentration of hygromycin for screening C6 rat glioma cells was determined by concentration gradient method.The eukaryotic plasmid pGL4.50 expressing luciferase was transfected into C6 cells by using FuGENE HD transfection reagent,followed by screening the polyclonal cell lines with hygromycin,subsequently screening the monoclonal cell line by limited dilution.The positive monoclonal cell lines were identified with reporter gene assay,thereafter the expression stability of luciferase was investigated in the positive cell lines.The bioluminescence detection in vitro in the positive monoclonal cell line was performed to determine the minimum detection amount of cells,and the correlation between bioluminescence intensity and cell amount was analyzed by linear regression analysis.The positive monoclonal cells were implanted into the brain of Wistar rats,and the tumor growth in rats’ brain was detected in vivo using the bioluminescence imaging detection system.Results The optimal concentration of hygromycin used in screening C6 cells was 250 μg/ml.The eukaryotic plasmids pGL4.50 was successfully transfected into C6 cells,and 12 monoclonal cell lines were obtained by anti-hygromycin screening.A positive clone with the highest activity of luciferase,designated as C6-Luc,was successfully identified by using luciferase reporter gene assay,which showed a stable activity of expressing luciferase after 3 continuous passages of cultivation.The bioluminescence detection in vitro showed that the minimum detection amount of C6-Luc cells was 78.A good linear correlation existed between bioluminescence intensity and the amount of C6-Luc cells,with an equation of y=81.348x-2143.1 and correlation coefficient(r of 0.997.The in vivo bioluminescence imaging detection showed tumorigenesis could be detected after implantation of C6-Luc cells into

  17. Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells.

    Science.gov (United States)

    Wang, Ting-Chung; Luo, Sheng-Jie; Lin, Chun-Liang; Chang, Pey-Jium; Chen, Miao-Fen

    2015-01-01

    p75 neurotrophin receptor (p75NTR) has been reported to play important roles in various cancer types. However, the exact mechanism of tumorigenesis involving p75NTR is unknown. In this study, we investigated the relationship between the expression of p75NTR in malignant glioma and the impact on tumor cell migration and invasion. p75NTR and hypoxia-inducible factor-1α (HIF-1α) expression was down-regulated by short-hairpin RNA and up-regulated with expression vectors. By immunohistochemical staining and Western blot analysis, we found that p75NTR was expressed in both human and rat malignant gliomas. Knockdown of p75NTR increased the expression of vimentin, vascular endothelial growth factor, Matrix metalloproteinase 9, and TWIST, and enhanced the invasion and migration abilities assessed by transwell assay in the C6 tumor cells. Inverse expressions of p75NTR and HIF-1α were detected in glioma cell lines under hypoxic conditions, while increased HIF-1α significantly downregulated the expression of p75NTR, suggesting a HIF-1α-p75NTR-EMT pathway that may regulate glioma cells invasion and migration. Downregulation of p75NTR increased phosphorylation of Src, focal adhesion kinase (FAK) and paxillin. Knockdown of p75NTR also dysregulated β-catenin-mediated cell junctions, and up-regulated the expressions of fibronectin and L1CAM in the cell-cell junctions, thus suggesting that p75NTR knockdown contributed to a more aggressive migration phenotype via FAK signaling pathway. Our studies suggested that modulation of p75NTR under hypoxic condition could enhance C6 cells migration and invasion by induction of EMT, and activation of the FAK pathway. The HIF-1α-p75NTR-EMT axis may play a central role in glioma tumorigenesis. PMID:25527128

  18. Paramagnetic Gd2O3 Nanoparticle-Based Targeting Theranostic Agent for C6 Rat Glioma Cell

    Directory of Open Access Journals (Sweden)

    Seong-Pyo Hong

    2016-01-01

    Full Text Available This study aimed to synthesize theranostic agent targeting C6 rat glioma cell, which was based on the dextran coated paramagnetic gadolinium oxide nanoparticles (D-PGONs conjugated with folic acid (FA or paclitaxel (PTX. The D-PGONs were synthesized by the in situ coprecipitation method, and the average value of the size distribution was 2.9 nm. FTIR spectroscopy was fulfilled to confirm the conjugations of FA or PTX with D-PGONs. The bioprotective effects of dextran coating and chemotherapeutic effect of PTX in the C6 glioma cell were evaluated by the MTT assay. The differences in uptakes between the synthesized theranostic agents into C6 cells were observed by confocal laser scanning microscopy. In addition, the magnetic contrast enhancement with different concentration of the synthesized agent was compared by the T1-weighted MRI imaging. It was experimentally shown that the synthesized theranostic agent targets C6 cells due to the ligand-receptor-mediated endocytosis and provides enhancement in MR contrast depending on the concentration due to the paramagnetic property of gadolinium nanoparticle. In addition, it was shown by the results of MTT assay that the synthesized nanocomposites were more effective in reducing cell viability than bare gadolinium nanoparticles. In conclusion, it was shown that FA and PTX conjugated D-PGONs could be used as the theranostic agent with paramagnetism and chemotherapeutic property.

  19. Orphan nuclear receptor Nur77 is required for the differentiation of C6 glioma cells induced by cholera toxin

    Institute of Scientific and Technical Information of China (English)

    Dong XU; Yi-jun HUANG; Yan LI; Wei YIN; Guang-mei YAN

    2009-01-01

    Aim: To investigate a possible regulator gene involved in the cholera toxin-induced differentiation of rat C6 glioma cells. Methods: The global changes in the mRNA expression pattern induced by cholera toxin were analyzed using gene chip microarray. The selected gene was then silenced by RNA interference or overexpressed with an ORF plasmid to determine its necessity in this process. Results: Nur77, a member of the orphan nuclear receptor family (NR4A), was markedly up-regulated during the process of differentiation. Furthermore, RNAi of nur77 attenuated the induction effect of cholera toxin on C6 cells, whereas overexpression of nur77 led to similarly differentiated behavior, including morphologic and biomarker changes, as well as cell cycle arrest. Conclusion: Nur77 participated actively and essentially as an important regulator in the cholera toxin-induced differentiation of C6 cells.

  20. Anticancer and antiangiogenic effects of methanol extracts of Lonicera caprifolium L. on C6 rat glioma cells

    Directory of Open Access Journals (Sweden)

    Nergiz Hacer Turgut

    2016-03-01

    Full Text Available Objective: Gliomas are brain tumors with high morbidity and mortality. For the treatment of gliomas, it is important to develop new and powerful treatments that could complement existing clinical treatment. Lonicera caprifolium L. (L. caprifolium has various uses in herbal traditional medicine. This study was conducted to determine the phenolic acid levels and DNA damage protection potential of L. caprifolium extract, and to explore the antitumor effect of the extract by investigating its toxicity on C6 rat glioma cell lines and normal L929 mouse fibroblast cell lines. We also aimed to investigate the antiangiogenic potential of the extract. Method: Phenolic acid content was determined by HPLC analysis. DNA damage protection potential was evaluated on pBR322 plasmid DNA. The effect of extracts on the proliferation of cancer cells was evaluated by XTT assay. Antiangiogenic effect was determined with Chorioallantoic membrane model. Results: The extract was found rich in vanillic acid (273.003 µg/g; while the amount of chlorogenic acid was almost at negligible level (0.028 µg/g. 0.005-0.05 mg / ml extract protected against the hazardous effects of UV and H2O2 in all DNA bands. The presence of the extract significantly reduced C6 cell proliferation compared to control (p<0.05. The extract had antiproliferative effect with a half maximum inhibition of concentration (IC50 value of 0.45 mg/ml. L. caprifolium extract in 10-6, 10-5 and 10-4 M concentrations caused antiangiogenic effect. Antiangiogenic scores of L. caprifolium were 0.6, 0.73 and 1.6, respectively. Conclusions: These results show that L. caprifolium has potential cytotoxic and antiangiogenic effect on C6 rat glioma cells and that the phenolic acid content of the plant may partially influence these activities.

  1. Effects of endostatin on C6 glioma-induced edema

    Institute of Scientific and Technical Information of China (English)

    YANG Li-juan; LIN Zhi-xiong; KANG De-zhi; WENG Shen-mei; LIN Jian-hua; HUANG Qiang; ZHANG Peng-fei

    2011-01-01

    Background Glioma-induced edema is considered as one of the most pathological characteristics of glioma and a significant source of morbidity and mortality.New strategies are needed for the treatment of peritumoral edema in glioma.Endostatin has been proven to be beneficial as an anti-angiogenic agent in experimental gliomas,but the effects are unclear.This study aimed to investigate the effects of endostatin on C6 glioma-induced edema.Methods Tumorigenic mice were established by subcutaneous injection of three glioma cell lines,C6-null cells and stable transfected-C6 cells overexpressing mock vector (C6-mock cells) and endostatin (C6-endo cells).Endostatin expression in xenograft C6 glioma was determined by immunostaining and Western blotting.Glioma-induced edema and tumor vessel permeability were assayed.The effect of endostatin on vascular enodothelial growth factor (VEGF) expression in vivo was analyzed by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA).The number of vesiculo-vascuolar organelles (VVOs) formed in tumor endothelia was calculated using electron microscopy.Data were analyzed by using one-way analysis of variance (ANOVA) followed by Dunnett's post hoc test for multiple comparisons to the control groups.Results Overexpression of endostatin (C6-endo cells) significantly suppressed tumor growth and reduced tumor edema and vessel permeability.ELISA analysis showed that the level of VEGF protein was markedly decreased in tumor from C6-endo cells compared with tumor from C6-null cells and C6-mock cells.Similar results were obtained by Q-PCR.Furthermore,the number of VVOs observed in tumor from C6-endo mice was significantly reduced compared with tumor from C6-null cells or C6-mock cells.Conclusions Our data provide primary evidence that endostatin reduces glioma-induced edema and vascular permeability.Using endostatin may be an effective strategy for treating glioma edema.

  2. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Science.gov (United States)

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  3. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Directory of Open Access Journals (Sweden)

    Varadharajan Thiyagarajan

    Full Text Available Focal adhesion kinase (FAK is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK.

  4. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

    OpenAIRE

    Lee, Kang Pa; Choi, Nan Hee; Kim, Jin Teak; Park, In-Sik

    2015-01-01

    BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine...

  5. Curcumin delivery by methoxy polyethylene glycol-poly(caprolactone) nanoparticles inhibits the growth of C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Junfei Shao; Donghui Zheng; Zhifeng Jiang; Huae Xu; Yong Hu; Xiaolin Li; Xiaowei Lu

    2011-01-01

    As a potential anticancer agent, curcumin (Cum) has been reported for its chemopreventive and chemotherapeutic activity in a series of cancers through influencing cell cycle arrest, differentiation, apoptosis, etc. Therefore, the potential activity against various cancers of Cure raises the possibility of its application as a novel model drug in nanopartiele-based delivery systems. The current study reported a spherical core-shell structure curcumin-loaded nanoparticle (Cum-np) formed by amphllic methoxy polyethylene glycolpoly(caprolactone) (mPEG-PCL) block copolymers. Characterization tests indicated that Cum was incorporated into mPEG-PCL-based nanoparticles with high encapsulation efficiency due to its lipophilicity. The incorporated Cum could be released from Cum-np in a sustained manner. Cum was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Cum-np would be pro-apoptosis effect against rat C6 glioma cell line in a dose-dependent manner. The present results suggest that Cum-np could be a potential useful chemotherapeutic formulation for malignant glioma therapy. Moreover, the development of traditional Chinese medicine with nanoscale drug formation warrants more intensive research for its clinical applications.

  6. Induction of cell cycle arrest at G1 and S phases and cAMP-dependent differentiation in C6 glioma by low concentration of cycloheximide

    Directory of Open Access Journals (Sweden)

    Zhang Samuel S

    2010-12-01

    Full Text Available Abstract Background Differentiation therapy has been shown effective in treatment of several types of cancer cells and may prove to be effective in treatment of glioblastoma multiforme, the most common and most aggressive primary brain tumor. Although extensively used as a reagent to inhibit protein synthesis in mammalian cells, whether cycloheximide treatment leads to glioma cell differentiation has not been reported. Methods C6 glioma cell was treated with or without cycloheximide at low concentrations (0.5-1 μg/ml for 1, 2 and 3 days. Cell proliferation rate was assessed by direct cell counting and colony formation assays. Apoptosis was assessed by Hoechst 33258 staining and FACS analysis. Changes in several cell cycle regulators such as Cyclins D1 and E, PCNA and Ki67, and several apoptosis-related regulators such as p53, p-JNK, p-AKT, and PARP were determined by Western blot analysis. C6 glioma differentiation was determined by morphological characterization, immunostaining and Western blot analysis on upregulation of GFAP and o p-STAT3 expression, and upregulation of intracellular cAMP. Results Treatment of C6 cell with low concentration of cycloheximide inhibited cell proliferation and depleted cells at both G2 and M phases, suggesting blockade at G1 and S phases. While no cell death was observed, cells underwent profound morphological transformation that indicated cell differentiation. Western blotting and immunostaining analyses further indicated that changes in expression of several cell cycle regulators and the differentiation marker GFAP were accompanied with cycloheximide-induced cell cycle arrest and cell differentiation. Increase in intracellular cAMP, a known promoter for C6 cell differentiation, was found to be elevated and required for cycloheximide-promoted C6 cell differentiation. Conclusion Our results suggest that partial inhibition of protein synthesis in C6 glioma by low concentration of cycloheximide induces cell cycle

  7. Cas Ilgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2005-06-01

    Full Text Available In this work, we investigated the effects of Casiopeina Il-gly (Cas ILgly—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas Ilgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas Ilgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas Ilgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas Ilgly. ROS formation induced by Cas Ilgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas Ilgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas Ilgly for the treatment of malignant gliomas.

  8. Heat shock induction of a 65 kDa ATP—binding proteinase in rat C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    XUCUNSHUAN; MARCOMEYER; 等

    1999-01-01

    The 45,55,65 and 100kDa ATP-binding proteinases(ATP-BPases) of the heat-shocked (44℃ for 30 min,recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography.Their molecular masses,isoelectric points (pI),pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9amino acid sequence was determined by Edman degradation,but no homologies to other proteins in the protein data bases were found.30 and 31kDa proteinases can be cleaved from the 45,55 and 65 kDa proteinases to which they are linked.A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.

  9. Cinnamon polyphenols regulate S100ß, sirtuins, and neuroactive proteins in rat C6 glioma cells

    Science.gov (United States)

    Dietary polyphenols exert neuroprotective effects in a variety of brain disorders, including Alzheimer’s disease, ischemia/stroke, and Parkinson’s disease. The protective effects of polyphenols in the brain and in neural cell cultures have been established. The role of glial cells in providing prote...

  10. 槲皮素血浆代谢物抗大鼠C6脑胶质瘤细胞的作用%Effects of the plasma metabolites of quercetin on rat C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    王刚; 杜士明; 杨光义; 常明泉; 曾南; 叶方

    2012-01-01

    OBJECTIVE To investigate the effects of the plasma metabolites of quercetin on rat C6 glioma cells. METHODS C6 glioma cells were incubated with the serum metabolic product of QUE-NL containing quercetin, quercitin and isorhamnetin separately for 24 h,then the cytotoxicity of the serum metabolic product of QUE-NL was assessed by assay for the activity of lactate dehydrogenase(LDH) ,the apoptosis and mitochondrial membrane potential was detected by flow cytometry. RESULTS Quercetin and isorhamnetin had cyto-toxici effect on cultured rat C6 glioma cells in vitro , and could inhibit proliferation and induce apoptosis(P<0. 05). Quercetin decreased the mitochondrial membrane potential obviously(P<0. 05). CONCLUSION The methylation of quercetin existence forms of QUE-NL in rats' plasma were the major anti-tumor activity constituents. The antitumor activities of metabolic products of quercetin glycosides were weak. The results provide experimental foundation for application and its target preparation in the therapy of glioma cell.%目的:考察槲皮素大鼠血浆中的代谢物对大鼠C6脑胶质瘤细胞增殖与凋亡的作用.方法:将槲皮素血浆代谢产物槲皮素、槲皮苷和异鼠李素分别与C6胶质瘤细胞共培养24 h后,LDH活性法检测代谢产物对C6脑胶质瘤细胞的毒性作用,流式细胞仪检测C6胶质瘤细胞凋亡与线粒体膜电位变化.结果:槲皮素和异鼠李素对大鼠C6胶质瘤细胞有显著的细胞毒性作用,均能显著诱导C6胶质瘤凋亡(P<0.05),槲皮素显著降低线粒体膜电位(P<0.05).结论:槲皮素血浆中的槲皮素甲基化代谢产物是主要的抗肿瘤活性成分,而槲皮素苷类代谢产物抗肿瘤活性较弱,为槲皮素及其靶向制剂进一步应用于脑胶质瘤的治疗提供参考依据.

  11. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kai-Wei [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan (China); Wong, Zong-Ruei; Su, Peng-Han [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Bu-Miin [Department of Cell Biology and Anatomy, National Cheng-Kung University, Tainan 701, Taiwan (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei 106, Taiwan (China); Technology Commons, College of Life Science, National Taiwan University, Taipei 106, Taiwan (China); Yang, Hsi-Yuan, E-mail: hyhy@ntu.edu.tw [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China)

    2013-05-17

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.

  12. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    International Nuclear Information System (INIS)

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  13. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  14. Characterization of Ca(2+)-activated 86Rb+ fluxes in rat C6 glioma cells: a system for identifying novel IKCa-channel toxins.

    OpenAIRE

    de-Allie, F. A.; Bolsover, S. R.; Nowicky, A. V.; Strong, P N

    1996-01-01

    1. The pharmacological characteristics of a putative Ca2+ activated K+ channel (IKCa channel) in rat glioma C6 cells were studied in the presence of the Ca2+ ionophore, ionomycin and various K+ channel blockers, 86Rb+ being used as a radioisotopic tracer for K+. 2. The resting 86Rb+ influx into C6 cells was 318 +/- 20 pmol s-1. The threshold for ionomycin activation of 86Rb+ influx was approx. 100 nM. At ionomycin concentrations above the activation threshold, the initial rate of 86Rb+ influx...

  15. Andrographolide Induces Apoptosis of C6 Glioma Cells via the ERK-p53-Caspase 7-PARP Pathway

    OpenAIRE

    Shih-Hung Yang; Seu-Mei Wang; Jhih-Pu Syu; Ying Chen; Sheng-De Wang; Yu-Sen Peng; Meng-Fai Kuo; Hsiu-Ni Kung

    2014-01-01

    Background. Glioma is the most malignant tumor of the central nervous system. Efforts on the development of new chemotherapy are mandatory. Andrographolide (AND), a diterpenoid lactone isolated from the Andrographis paniculata, has been shown to have antitumor activities in several types of cancer cells. Whether AND can exert its antitumor activity in glioblastoma cells remains unknown. This study examined the anticancer effects of AND, both in vitro and in vivo. Methods. Cell apoptosis was a...

  16. 西兰花多肽对大鼠C6胶质瘤细胞生长的影响%The effect of broccoli polypeptide on C6 glioma cells of rat

    Institute of Scientific and Technical Information of China (English)

    徐俊杰; 于洪泉; 国巍; 赵伟; 金宏; 温娜; 齐玲

    2012-01-01

    目的 研究西兰花多肽对大鼠C6胶质瘤细胞生长的影响.方法 培养C6胶质瘤细胞,用西兰花多肽(0、0.01、0.1、1、10μ/ml)作用细胞72h,MTT法检测胶质瘤细胞的生长情况.结果 西兰花多肽作用C6胶质瘤细胞72h时,各药物浓度组都表现为对细胞的抑制作用,1μl/ml组(0.58 ±0.08 vs 0.75 ±0.02)和10μl/ml组(0.07 ±0.01 vs 0.75 ±0.02)表现出显著的抑制生长作用(P<0.01).结论 西兰花多肽可抑制C6胶质瘤细胞的生长,并且随着药物浓度升高药物作用增强,说明西兰花多肽具有抑制肿瘤细胞生长的作用.%Objective To study the effects of broccoli polypeptide on the proliferation of C6 glioma cells. Method Cultured C6 glioma cells were treated with different dose of broccoli polypeptide(0,0. 01 ,0. 1 ,1 , 10μl/ml)for 72h. The level of cell growth was detected by MTT assay. Results After 72h,all dosed of polypeptide inhibited the growth of cells, especially in 1(0,1/μml group(0. 58 ±0.08 vs 0.75 ±0.02) and 10(1,1/μml group(0.07 ±0.01 vs 0.75 ±0.02) when compared with respective control group(P <0. 01). Conclusion Broccoli polypeptide may inhibit the proliferation of C6 glioma cells, and the effect is increased with dose, which suggests that broccoli polypeptide can inhibit the growth of tumor cells.

  17. DAW22, a natural sesquiterpene coumarin isolated from Ferula ferulaeoides (Steud.) Korov. that induces C6 glioma cell apoptosis and endoplasmic reticulum (ER) stress.

    Science.gov (United States)

    Zhang, Lan; Tong, Xupeng; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-06-01

    2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin (named DAW22), a sesquiterpene coumarin isolated from the roots of Ferula ferulaeoides (Steud.) Korov., has been reported to bear anti-proliferative activities toward different types of cancer cells. In this study, we demonstrated that DAW22 induced apoptosis in C6 glioma cells. Subsequently, we found that DAW22-induced apoptosis in C6 glioma cells occurred via the mitochondria-mediated and death-receptor pathways. Moreover, we found a massive cytoplasmic vacuolization, a dramatic change of endoplasmic reticulum (ER), up-regulation of CHOP and cleavage of caspase-12, suggesting that DAW22-induced apoptosis is involved in ER stress. In addition, we revealed that DAW22 treatment induced the activation of PERK, ATF6α and IRE1α. We further found that knockdown of CHOP affected DAW22-induced apoptosis, and DAW22-stimulated down-regulation of Bcl-2, caspase-8 activation and PARP cleavage were inhibited. Taken together, these results demonstrate that DAW22 induces apoptosis by ER stress and mitochondrial/death-receptor pathways, which may provide a new clue for exploiting this compound as a potential anti-neoplastic drug in future glioma cancer therapy. PMID:25776007

  18. Andrographolide Induces Apoptosis of C6 Glioma Cells via the ERK-p53-Caspase 7-PARP Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Hung Yang

    2014-01-01

    Full Text Available Background. Glioma is the most malignant tumor of the central nervous system. Efforts on the development of new chemotherapy are mandatory. Andrographolide (AND, a diterpenoid lactone isolated from the Andrographis paniculata, has been shown to have antitumor activities in several types of cancer cells. Whether AND can exert its antitumor activity in glioblastoma cells remains unknown. This study examined the anticancer effects of AND, both in vitro and in vivo. Methods. Cell apoptosis was assayed by flow cytometry and nuclear staining. The signaling pathway for AND was determined by western blotting. The effects of AND on tumor growth was evaluated in a mouse model. Results and Conclusion. In vitro, with application of specific inhibitors and siRNA, AND-induced apoptosis was proven through ROS-ERK-P53-caspase 7-PARP signaling pathway. In vivo, AND significantly retarded tumor growth and caused regression of well-formed tumors in vivo. Furthermore, AND did not induce apoptosis or activate ERK and p53 in primary cultured astrocyte cells, and it may serve as a potential therapeutic candidate for the treatment of glioma.

  19. Synthesis of dihydropyrimidin-2-one/thione library and cytotoxic activity against the human U138-MG and Rat C6 glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Canto, Romulo F.S.; Eifler-Lima, Vera Lucia [Universidade Federal do Rio Grande do Sul (LaSOM/PPGCF/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Ciencias Farmaceuticas. Lab. de Sintese Organica; Bernardi, Andressa; Battastini, Ana Maria O. [Universidade Federal do Rio Grande do Sul (ICBS/UFRGS), Porto Alegre, RS (Brazil). Inst. de Ciencias Basicas da Saude; Russowsky, Dennis [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2011-07-01

    Two series of 4-aryl-3,4-dihydropyrimidin-2(1H)-(thio)ones including monastrol (1a), have been synthesized by an environment-friendly methodology based on the combined use of citric acid or oxalic acid and TEOF (triethylorthoformate). The library was evaluated as inhibitor of cell proliferation on two glioma cell lines (human-U138-MG and Rat-C6). The compounds derived from thiourea 1f and 1d were more cytotoxic than monastrol. The compound derived from urea 2d showed the highest cytotoxic activity among the analyzed compounds. (author)

  20. Pimonidazole binding in C6 rat brain glioma: relation with lipid droplet detection.

    NARCIS (Netherlands)

    Zoula, S.; Rijken, P.F.J.W.; Peters, J.P.W.; Farion, R.; Sanden, B.P.J. van den; Kogel, A.J. van der; Decorps, M.; Remy, C.

    2003-01-01

    In C6 rat brain glioma, we have investigated the relation between hypoxia and the presence of lipid droplets in the cytoplasm of viable cells adjacent to necrosis. For this purpose, rats were stereotaxically implanted with C6 cells. Experiments were carried out by the end of the tumour development.

  1. Wild Type p53 gene sensitizes rat C6 glioma cells to HSV-TK/ACV treatment in vitro and in vivo.

    Science.gov (United States)

    Huang, Qiang; Xia, Zhibo; You, Yongping; Pu, Peiyu

    2010-12-01

    Suicide gene therapy using herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV), has been extensively tested for the treatment of glioma. Our previous study showed that exogenous wild type p53 (wt-p53) enhanced the anti-tumor effect of HSV-TK/GCV therapy. However, the use of GCV is hindered by its low penetration to the brain and its toxicity when used at higher dose. In the present study, we used another pro-drug, acyclovir (ACV), and examined the therapeutic efficacy of HSV-TK/ACV combining with wt-p53 in C6 glioma cells. We observed that wt-p53 combined with HSV-TK/ACV resulted in the super-additive anti-tumor effect in vitro. Exogenous wt-p53 significantly enhanced the sensitivity of TK positive C6 cells to ACV in vitro. Our in vivo experiment demonstrated that the effect of wt-p53 and HSV-TK/ACV combination therapy was better than that of HSV-TK/ACV alone. The survival time of tumor-bearing rats treated with wt-p53 in combination with HSV-TK/ACV was also significantly prolonged than those treated with HSV-TK/ACV alone. These results suggest that wt-p53 can enhance the therapeutic efficacy of HSV-TK/ACV both in vitro and in vivo. These findings are considerably valuable with the respect of using less toxic ACV as prodrug. This novel strategy could provide benefit to HSV-TK/prodrug gene therapy.

  2. Particulate Matter Facilitates C6 Glioma Cells Activation and the Release of Inflammatory Factors Through MAPK and JAK2/STAT3 Pathways.

    Science.gov (United States)

    Li, Ting; Zhao, Jianya; Ge, Jianbin; Yang, Jianbin; Song, Xinjian; Wang, Cheng; Mao, Jiamin; Zhang, Yan; Zou, Ye; Liu, Yanmei; Chen, Gang

    2016-08-01

    It has been widely accepted that astrocytes, play a role in regulating almost every physiological system. In the present study, we investigated the role of particulate matter (PM) in regulating activation of astrocytes. The glial cell strain C6 was cloned from a rat glioma which was induced by N-nitrosomethylurea. The C6 cells were plated at a density of 5 × 10(6) cells/10 cm diameter dish and incubated with different concentrations (0, 12, 25, 50, 100, 200, and 400 μg/mL) of PM for 24 h and different time (0, 1, 3, 6, 8,12, and 24 h) with 100 μg/mL at 37 °C. The study revealed that PM stimulated the expression of inducible nitric oxide synthase (iNOS) as well as the production of IL-1β in a dose- and time-dependent manner. Furthermore, activation of JAK2/STAT3 and p38/JNK/ERK MAPKs was found in astrocytes following PM treatment. Blockage of JAK and p38/JNK/ERK MAPKs with their specific inhibitors, AG490, SB202190, SP600125 and U0126 significantly reduced PM-induced iNOS expression and IL-1β production. In addition, it was demonstrated that inhibition of p38, JNK and JAK prevented STAT3 tyrosine phosphorylation induced by PM, while blocking ERK did not. MAPKs (p38 and JNK) could regulate tyrosine STAT3 phosphorylation, which suggested that the JAK2/STAT3 pathway might be the downstream of p38/JNK MAPK pathways. PMID:27068033

  3. Nitric oxide inhibits uptake of dopamine and N-methyl-4-phenylpyridinium (MPP+) but not release of MPP+ in rat C6 glioma cells expressing human dopamine transporter

    Science.gov (United States)

    Cao, Bo-Jin; Reith, Maarten E A

    2002-01-01

    Conflicting results have been reported regarding the influence of nitric oxide (NO) and peroxynitrite on dopamine (DA) uptake and release. In the present study, effects of NO donors were studied in rat C6 glioma cells expressing human DA transporter. [3H]-DA uptake was inhibited by S-nitroso-thiol S-nitroso-N-acetylpenicillamine, spermine/NO, diethylamine/NO (DEA/NO), (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)-amino]/NO (PAPA/NO), and 3-morphosynodiomine (SIN-1) in a rank order correlating with their half lives as NO donors, whereas no effect was observed for diethylenetriamine/NO and dipropylenetriamine/NO, which release NO very slowly. Hydroxycobalamin, a NO scavenger, but not superoxide dismutase and catalase, enzymes that metabolize superoxide and hydrogen peroxide, respectively, abolished the inhibitory effect of DEA/NO and SIN-1, indicating that they inhibit DA uptake through a mechanism related to the production of NO but unrelated to the formation of peroxynitrite. In consonance, peroxynitrite did not alter DA uptake in the present system. DEA/NO and PAPA/NO reduced [3H]-MPP+ uptake, whereas the release of [3H]-MPP+ was not modified, demonstrating that NO can inhibit uptake of DA transporter substrate without accelerating DA transporter-mediated reverse transport of substrate under the same conditions. PMID:12466224

  4. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line; Marcacao intracelular e processo de quantificacao por imagem por ressonancia magnetica utilizando nanoparticulas magneticas de oxido de ferro em celulas da linhagem C6 de glioma de rato

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, Javier Bustamante; Pavon, Lorena Favaro; Sibov, Tatiana Tais; Rossan, Fabiana; Silveira, Paulo Henrique; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: javierbm@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Amaro Junior, Edson [Departamento de Diagnostico por Imagem e Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    Objective: To assess intracellular labeling and quantification by magnetic resonance imaging using iron oxide magnetic nanoparticles coated with biocompatible materials in rat C6 glioma cells in vitro. These methods will provide direction for future trials of tumor induction in vivo as well as possible magnetic hyperthermia applications. Methods: Aminosilane, dextran, polyvinyl alcohol, and starch-coated magnetic nanoparticles were used in the qualitative assessment of C6 cell labeling via light microscopy. The influence of the transfection agent poly-L-lysine on cellular uptake was examined. The quantification process was performed by relaxometry analysis in T{sub 1} and T{sub 2} weighted phantom images. Results: Light microscopy revealed that the aminosilane-coated magnetic nanoparticles alone or complexed with poly-L-lysine showed higher cellular uptake than did the uncoated magnetic particles. The relaxactivities of the aminosilane-coated magnetic nanoparticles with a hydrodynamic diameter of 50nm to a 3-T field were r{sub 1}=(6.1 +- 0.3) x10{sup -5} ms{sup -1}mL/{mu}g, r{sub 2}=(5.3 +- 0.1) x 10{sup -4} ms{sup -1}mL/{mu}g, with a ratio of r{sub 2} / r{sub 1}{approx_equal} 9. The iron uptake in the cells was calculated by analyzing the relaxation rates (R{sub 1}and R{sub 2}) using a mathematical relationship. Conclusions: C6 glioma cells have a high uptake efficiency for aminosilane-coated magnetic nanoparticles complexed with the transfection agent poly-L-lysine. The large ratio r{sub 2} / r{sub 1}{approx_equal} 9 indicates that these magnetic nanoparticles are ideal for quantification by magnetic resonance imaging with T{sub 2}-weighted imaging techniques. (author)

  5. Involvement of MEK-ERK1-2 pathway in the anti-oxidant response in C6 glioma cells after diesel exhaust particles exposure.

    Science.gov (United States)

    Farina, Francesca; Milani, Chiara; Botto, Laura; Lonati, Elena; Bulbarelli, Alessandra; Palestini, Paola

    2016-05-27

    Ultrafine particles translocate to the central nervous system and activate oxidative stress-related pathways. The transcription factor Nrf2 activation by ERK1-2 has been suggested as a key regulator of cellular response to oxidative stress. C6 glioma cells have been treated with different doses of diesel exhaust particles (25μg/ml, DEP25, and 50μg/ml, DEP50), for different times. Cells have been screened for oxidative stress and inflammatory markers, and for the activation of the MEK-ERK1-2 pathway. The same markers have been examined after inhibition of MEK, the kinase upstream to ERK1-2. 3h and 24h of DEP25 and DEP50 induced a significant increase in HO-1 levels. After 24h, DEP25 and DEP50 induced an increase in HO-1 and Cyp1b1 levels, while increase in OGG1 level was observed only with DEP25. After 5h of treatment with DEP25, ERK1-2 resulted phosphorylated, concomitantly with a significant increase in HO-1 levels, no changes in iNOS levels, and decreased levels of anti-oxidant enzymes. After treatment with MEK inhibitor U0126, ERK1-2 showed no activation, with a consequent decrease in Nrf2, no increase in HO-1 and a significant increase of iNOS. MEK inhibitor is able to deplete anti-oxidant enzymes. In conclusion, the MEK-ERK1-2 pathway is involved in regulating the anti-oxidant strategies to compensate the oxidative status induced by DEP treatment. PMID:27091075

  6. MRI and morphological observation in C6 glioma model rats and significance

    International Nuclear Information System (INIS)

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×106 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  7. 混合脐血间充质干细胞体外抑制C6胶质瘤细胞增殖%Study on the mechanisms of the mixed umbilical cord blood-derived mesenchymal stem cells in inhibiting proliferation of C6 glioma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    焦红亮; 王晓宁; 孙剑瑞; 李建斌; 关方霞; 杨波

    2014-01-01

    Objective Study on the mechanisms of the mixed umbilical cord blood-derived mesenchymal stem cells in inhibiting proliferation of C6 glioma cells.It provided experimental and theoretical basis for the mixed umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) treatment of C6 glioma in vivo.Methods B cell lymphoma/leukemia-2 (bcl-2) and Cysteinyl aspartate-specific protease-3 (Caspase-3) protein expression of C6 cells were analyzed by immunohistochemistry.Results The mixed UCB-MSCs inhibited the proliferation of enhanced green fluorescent protein (EGFP)-C6 glioma cells in vitro.When the E/T ratio is same,Expression of Caspase-3 in the mixed group [E/T =(5 + 5)∶1,(56 ± 5)%],but the single group is [E/T =10∶ 1,(33 ± 6) %] ; Expression of bcl-2 in mixed group is [E/T =(5 + 5) ∶ 1,(27 ± 3) %],but a single group is [E/T =10∶ 1,(46 ± 7) %].Caspase-3 protein expression tended to increase,however,bcl-2 protein expression decreased.Conclusion Compared with the single group,the mixed UCB-MSCs could inhibit proliferation of C6 cells in vitro.%目的 探讨混合脐血间充质干细胞(UCB-MSCs)体外抑制C6胶质瘤细胞增殖机制.方法 采用免疫组织化学检测C6细胞B细胞淋巴瘤/白血病-2(bcl-2)和半胱氨酰天冬氨酸特异性蛋白酶(Caspase)-3蛋白的表达,E/T(E:效应细胞即UCB-MSCs,T:靶细胞即C6细胞)=0∶1、10∶1、(5+5)∶1时,采用免疫组织化学检测C6细胞的bcl-2和Caspase-3蛋白的表达.结果 混合UCB-MSCs对C6细胞在蛋白表达上有使凋亡蛋白Caspase-3表达增高的趋势,抑凋亡蛋白bcl-2表达降低的趋势;促凋亡蛋白表达量和凋亡细胞数随E/T的比例增高而增高,呈现比例依赖关系;当E/T比例相同时,混合组[E/T=(5+5)∶1,(56±5)%]UCB-MSCs促凋亡蛋白表达量比单份组[E/T=10∶1,(33±6)%]高;抑凋亡蛋白表达量混合组[E/T=(5+5)∶1,(27±3)%],单份组[E/T=10∶1,(46±7)%].结论 与单份组比较,混合UCB-MSCs对体外C6细胞更具有抑制增殖作用.

  8. 三苯氧胺对胶质瘤C6细胞垂体瘤转化基因表达及肿瘤生长影响的体内研究%Effect of tamoxifen on pituitary tumor transforming gene expression in C6 cell and tumor growth of glioma in vivo

    Institute of Scientific and Technical Information of China (English)

    滕达; 王婷; 戴如飞

    2008-01-01

    目的 探讨体内三苯氧胺对胶质瘤C6细胞垂体瘤转化基因(PTTG)表达及细胞生长的影响.方法 建立SD大鼠C6胶质瘤移植动物模型,将32只荷瘤裸鼠随机分为4组:空白对照组、高(2 mg·kg-1·d-1)、中(0.2 mg·kg-1·d-1)、低(0.02 mg·kg-1·d-1)剂量三苯氧胺作用组,共给药20 d.空白对照组给等量的生理盐水.定期观察肿瘤生长情况,测量肿瘤体积,计算抑瘤率.处死全部动物模型,剔出肿瘤,逆转录-聚合酶链反应(RT-PCR)检测FITG mRNA表达.结果 与空白对照组相比,各组三苯氧胺均能抑制肿瘤生长,其体积抑瘤率分别为47.6%、35.5%、21.2%,各组间差异均有统计学意义(P<0.05);FITG mRNA的表达在低、中、高剂量组均降低,各组间差异均有统计学意义(P<0.05).结论 三苯氧胺能以量效的方式抑制胶质瘤PTTG的表达和肿瘤生长,本研究为临床应用三苯氧胺治疗胶质瘤提供了理论基础.%Objective To investigate the effect of tamoxifen on pituitary tumor transforming gene ex-pression in C6 cell and tumor growth of glioma in vivo. Methods Animal models were established on 32 SD rats with C6 cells of glioma. The rats bearing with C6 glioma were divided into 4 groups randomly, which were treated without tamoxifen or with different doses of tamoxifen(0. 02 mg · kg-1 · d-1, 0. 2 mg · kg-1 · d-1, 2mg · kg-1 · d-1) once a day for 20 days. The dimension of tumors were measured, the tumor inhibition rates were caculated, and living state of the rats were observed. The expression of PTTG mRNA was detected by RTPCR. Results All kinds of doses of tamoxifen could inhibit the tumors growth in rats with C6 glioma, and the tumor volume were reduced by 47.6%, 35.5% and 21.2% in the high-, middle-and low-dose groups respec-tively, there were significantly differences among the 4 groups ( P < 0. 05 ). Low-, middle- and high- dose of tamoxifen all could inhibit the expression of PTTG mRNA, and there were significantly

  9. Construction of rat glioma cell line C6-Luc for reproducing an animal model with stable expression of luciferase%大鼠脑胶质瘤荧光素酶动物模型建模细胞株C6-Luc的构建

    Institute of Scientific and Technical Information of China (English)

    黄伟; 吕明; 李保卫; 王玉丽; 邵荣光; 高钟镐

    2011-01-01

    Objective To construct the rat glioma cell line C6-Luc to stably express the firefly luciferase.Methods The optimal concentration of hygromycin for screening C6 rat glioma cells was determined by concentration gradient method.The eukaryotic plasmid pGL4.50 expressing luciferase was transfected into C6 cells by using FuGENE* HD transfection reagent, followed by screening the polyclonal cell lines with hygromycin, subsequently screening the monoclonal cell line by limited dilution.The positive monoclonal cell lines were identified with reporter gene assay, thereafter the expression stability of luciferase was investigated in the positive cell lines.The bioluminescence detection in vitro in the positive monoclonal cell line was performed to determine the minimum detection amount of cells,and the correlation between bioluminescence intensity and ce11 amount was analyzed by linear regression analysis.The positive monoclonal cells were implanted into the brain of Wistar rats, and the tumor growth in rats brain was detected in vivo using the bioluminescence imaging detection system.Results The optimal concentration of hygromycin used in screening C6 cells was 250 μg/mL The eukaryotic plasmids pGL4.50 was successfully transfected into C6 cells, and 12 monoclonal cell lines were obtained by anti-hygromycin screening.A positive clone with the highest activity of luciferase, designated as C6-Luc, was successfully identified by using luciferase reporter gene assay, which showed a stable activity of expressing luciferase after 3 continuous passages of cultivation.The bioluminescence detection in vitro showed that the minimum detection amount of C6-Luc cells was 78.A good linear correlation existed between bioluminescence intensity and the amount of C6-Luc cells, with an equation of y=81.348x-2143.1 and correlation coefficient(r) of 0.997.The in vivo bioluminescence imaging detection showed tumorigenesis could be detected after implantation of C6-Luc cells into the brain of

  10. Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38{sup MAPK} and JNK1/2 but not of ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Posser, Thais; Rossi, Francesco M.; Oliveira, Camila S.; Leal, Rodrigo B. [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Mendes de Aguiar, Claudia B.N.; Garcez, Ricardo C.; Trentin, Andrea G. [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Moura Neto, Vivaldo [Universidade Federal do Rio de Janeiro, Departamento de Anatomia, Centro de Ciencias da Saude, Rio de Janeiro, RJ (Brazil)

    2007-06-15

    Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 {mu}M for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38{sup MAPK} and JNK1/2 - were analyzed by western blotting. Results showed that 10 {mu}M Pb(II) treatment for 24 h caused a discrete stimulation of p38{sup MAPK} phosphorylation. However, 1 and 10 {mu}M Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38{sup MAPK} and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 {mu}M Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38{sup MAPK} and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability. (orig.)

  11. 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure influence the expression of glutamate transporter GLT-1 in C6 glioma cells via the Ca(2+) /protein kinase C pathway.

    Science.gov (United States)

    Zhao, Jianya; Zhang, Yan; Zhao, Jianmei; Wang, Cheng; Mao, Jiamin; Li, Ting; Wang, Xiaoke; Nie, Xiaoke; Jiang, Shengyang; Wu, Qiyun

    2016-11-01

    The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases. In this study, we investigated the role of TCDD in regulating the expression of glutamate transporter GLT-1 in astrocytes. TCDD, at concentrations of 0.1-100 nm, had no significantly harmful effect on the viability of C6 glioma cells. However, the expression of GLT-1 in C6 glioma cells was downregulated in a dose- and time-dependent manner. TCDD also caused activation of protein kinase C (PKC), as TCDD induced translocation of the PKC from the cytoplasm or perinuclear to the membrane. The translocation of PKC was inhibited by one Ca(2+) blocker, nifedipine, suggesting that the effects are triggered by the initial elevated intracellular concentration of free Ca(2+) . Finally, we showed that inhibition of the PKC activity reverses the TCDD-triggered reduction of GLT-1. In summary, our results suggested that TCDD exposure could downregulate the expression of GLT-1 in C6 via Ca(2+) /PKC pathway. The downregulation of GLT-1 might participate in TCDD-mediated neurotoxicity. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Establishment of C6 brain glioma models through stereotactic technique for laser interstitial thermotherapy research

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2015-01-01

    Conclusion: The rat C6 brain glioma model established in the study was a perfect model to study LITT of glioma. Infrared thermograph technique measured temperature conveniently and effectively. The technique is noninvasive, and the obtained data could be further processed using software used in LITT research. To measure deep-tissue temperature, combining thermocouple with infrared thermograph technique would present better results.

  13. THE EXPERIMENTAL ON EFFECT OF BRUCEA JAVANICA OIL EMULSION COMBINED WITH CON-VENTIONAL RADIOTHERAPY ON C6 GLIOMA CELLS%鸦胆子油乳注射液联合普通放疗对C6胶质瘤细胞作用实验研究

    Institute of Scientific and Technical Information of China (English)

    尹绍成; 董德宏; 王艳军; 王建宁; 冯娜; 石文建

    2014-01-01

    目的:探讨鸦胆子油乳注射液联合常规放疗对C6胶质瘤细胞增殖的影响。方法体外培养大鼠C6胶质瘤细胞,用MTT比色法检测抑制作用。实验分成对照组,单纯放疗组,单纯用药组,用药联合放疗组。药物与放疗联合组分先放疗后给药和先用药后放疗二种。单纯用药组及药物与放疗联合组设药物浓度设为1.25、2.5、5、10g/L四个亚组。结果MTT比色法显示常规放疗联合鸦胆子油乳注射液与单纯常规放疗相比,早期(24h)药物浓度≥2.5g/L时药物联合放疗抑制率高于单纯放疗;随作用时间延长(48h)药物联合放疗抑制率均大于普通放疗。常规放疗联合鸦胆子油乳注射液与单纯应用鸦胆子油乳注射液相比,早期(24h)药物浓度≥2.5g/L时联合放疗对C6胶质瘤细胞抑制率高于单纯用药,但随作用时间延长(48h)抑制率差异不明显。结论体外鸦胆子油乳注射液能抑制C6胶质瘤细胞增殖,并呈时间-剂量依赖性。随时间延长(48h)放疗联合鸦胆子油乳抑制作用高于常规放疗;放疗联合药物与单独用药对C6胶质瘤细胞作用无明显差异。放疗后用药好于放疗前用药。%Objective To explore the effect of brucea javanica oil emulsion combined with conventional ra-diotherapy on proliferation of C6 glioma cells .Methods Rat C6 glioma cells were cultured in vitro .MTT colorimetric assay was used to measure the inhibitory effect .All cells were divided into control group ,sin-gle radiotherapy group ,single drug group and combination group ,while combination group classified drugs before radiotherapy subgroup and drugs after radiotherapy subgroup .Drugs concentration was set at 1 .25 g/L ,2 .5g/L ,5g/L and 10g/L respectively .Results MTT demonstrated that the inhibition rates of com-bination group on C6 glioma cells were higher than them of once radiotherapy alone when drug concentra-tion was equal or

  14. FLIP inhibits induction of apoptosis by cisplatin in rat C6 glioma cells%FLIP蛋白抑制顺铂诱导大鼠C6胶质瘤细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    贺亚龙; 贺晓生; 章翔; 屈朔瑶; 王江

    2009-01-01

    目的 探讨自杀相关因子(Fas)相关死亡结构域样白介素1(IL-1)β转化酶抑制蛋白(FLIP) 对于顺铂(CDDP)诱导大鼠脑胶质瘤细胞(C6细胞株)凋亡的抑制作用,为进一步研究胶质瘤的耐药性奠定分子生物学基础.方法 利用由Ad-Max腺病毒包装系统成功构建的携载大鼠FLIP基因的腺病毒表达载体Ad-FLIP感染大鼠C6胶质瘤细胞,24 h后经逆转录酶-多聚酶链反应(RT-PCR)及Western blot检测感染组及对照组细胞中FLIP基因的mRNA及蛋白表达水平;分别给予Ad-FLIP感染组及对照组细胞不同浓度的CDDP(0,1,2,4,8 mg/ml),药物处理48 h后,经流式细胞仪(FCM)分析细胞凋亡状况;四唑蓝显色法(MTT)测定并比较两组细胞活力.结果 Ad-FLIP感染组细胞与对照组细胞相比,FLIP mRNA和蛋白表达水平明显增高;流式细胞仪检测结果显示Ad-FLIP感染组细胞凋亡率明显低于对照组.MTT法结果提示经CDDP处理后,Ad-FLIP感染组与对照组细胞活力均有下降,但FLIP蛋白具有明显的抑制作用.结论 FLIP蛋白在大鼠C6胶质瘤细胞中具有抵抗化疗药物的作用.

  15. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suo-jun; YE Fei; XIE Rui-fan; HU Feng; WANG Bao-feng; WAN Feng; GUO Dong-sheng; LEI Ting

    2011-01-01

    Background Glioma stem cell (GSC) hypothesis posits that a subpopulation of cells within gliomas have true clonogenic and tumorigenic potential. Significantly, a more controversial correlate to GSC is that cells in different culture conditions might display distinct stem cell properties. Considering these possibilities, we applied an approach comparing stem cell characteristics of C6 glioma cells under different culture conditions.Methods C6 cells were cultured under three different growth conditions, i.e., adherent growth in conventional 10% serum medium, non-adherent spheres growth in serum-free medium, as well as adherent growth on laminin-coated flask in serum-free medium. Growth characteristics were detected contrastively through neurosphere formation assay and cell cycle analysis. Markers were determined by immunofluorescence, relative-quantitative reverse transcription (RT)-PCR,Western blotting and flow cytometry. Side population cells were analyzed via flow cytometry. Tumor models were detected by magnetic resonance imaging and hematoxylin & eosin staining. Data analyses were performed with SPSS software (17.0).Results C6 cells (C6-Adh, C6-SC-Sph and C6-SC-Adh) showed distinctive growth patterns and proliferation capacity.Compared to suspending C6-SC-Sph, adherent C6-Adh and C6-SC-Adh displayed higher growth ratio. C6-SC-Sph and C6-SC-Adh showed enhanced capability of neurosphere formation and self-renewal. High side population ratio was detected in C6-SC-Sph and C6-SC-Adh. CD133 was not detected in all three kinds of cells. Conversely, Nestin and β-Ⅲ-tubulin were demonstrated positive, nonetheless with no statistical significance (P >0.05). Interestingly, lower expression of glial fibrillary acidic protein was demonstrated in C6-SC-Sph and C6-SC-Adh. C6-Adh, C6-SC-Sph and C6-SC-Adh were all displayed in situ oncogenicity, while statistical difference of survival time was not confirmed.Conclusions C6 glioma cell line is endowed with some GSC

  16. Real-time detection of L-glutamate released from C6 glioma cells using a modified enzyme-luminescence method.

    Science.gov (United States)

    Zakir Hossain, S M; Shinohara, Hiroaki; Wang, Feifei; Kitano, Hiromi

    2007-11-01

    There is an increasing interest in new strategies to detect neurotransmitters released from nerve cells in real time for brain science, drug assessment, and so on. Previously we reported real-time monitoring of dopamine release from nerve model cells by enzyme-catalyzed luminescence measurement with tyramine oxidase and peroxidase. In the present study, the system was modified with glutamate oxidase instead of tyramine oxidase to detect L-glutamate sensitively ( approximately 10 nM) and rapidly with high temporal resolution (10 mM) or 5-hydroxytryptamine (>1 microM). The measurement solution was not toxic and therefore the L-glutamate release from the cell was measured by the second stimulation after exchanging the measurement solution. We conclude that the developed monitoring system is suitable for real-time detection of dynamic L-glutamate release from nerve cells in vitro and will be suitable for application in assessment of drugs acting on the nervous system. PMID:17849100

  17. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  18. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  19. Differential inhibitory effects of 2-azafluorenones on PI-PLC activation but not on PC-PLC- or PC-PLD-activation induced by histamine, PAF, PMA or A23187 in C6 glioma cells.

    Science.gov (United States)

    Wang, Hai-Long; Wang, Li-Chuan; Wei, Jiann-Wu

    2013-02-28

    In this study, C6 glioma cells were used to test the effects of 2-azafluorenone and its related compounds on membrane phosphatidylinositol (PI) and phosphatidylcholine (PC) turnover. An increase of [³H]-labeled inositol phosphate (IP1) formation by histamine (100 μM) or A23187 (100 nM) via the activation of phosphatidylinositol-specific phospholipase C (PI-PLC) to breakdown labeled substrate was observed, and this effect could be partially blocked by about half at 100 μM of 2-azafluorenones. Histamine induced the increase of IP1 formation, but failed to cause an increase in extracellularly releasing of [3H]choline metabolites, or intracellular accumulation of [³H]phosphscholine. However, platelet activation factor (PAF) from 0.2 to 1 μM, and phorbol 12-myristate-13-acetate (PMA) at 1 μM caused an increase in extracellularly releasing of [³H]choline metabolites, and intracellular accumulation of [³H]phosphocholine via the activation on phosphatidylcholine (PC)-PLC. These responses of PAF and PMA were not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at high concentration (10⁻⁴ M). A23187 induced an increase of intracellular [³H]choline release via the activation of PCphospholipase D (PLD). This increasing effect of 100 nM A23187 was not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at a high concentration of 10⁻⁴ M. In summary, the inhibitory effect of 2-azafluorenone and its related compound 4-methyl-2-azafluorenone was observed selectively on PIPLC, but not on PC-PLC or PC-PLD based on changes of products after the activation of these enzymes.

  20. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  1. Combination hyperbaric oxygen and temozolomide therapy in c6 rat glioma model Terapia combinada de oxigênio hiperbárico e temozomida no modelo C6 de glioma em ratos

    Directory of Open Access Journals (Sweden)

    Yaşar Dagıstan

    2012-06-01

    Full Text Available PURPOSE: Temozolomide (TMZ has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS: After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS: Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (% was decreased significantly in tumor tissue of the group 3 rats compared to group1 and 2. CONCLUSION: The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.OBJETIVO: A temozolomida (TMZ tem atividade anti-tumoral em pacientes com glioma maligno. Oxigênio hiperbárico (HBO pode aumentar a eficácia de terapias que são limitadas devido a um microambiente do tumor hipóxico. Foram examinados os efeitos combinados de TMZ-HBO em um modelo de glioma em rato. MÉTODOS: Após a injeção estereotáxica de células de glioma de rato C6/LacZ no cérebro de ratos Wistar, os ratos foram distribuídos aleatoriamente em três grupos de tratamento: Grupo 1: tratamento de controle. Grupo 2: TMZ sozinho. Grupo 3: uma combinação de TMZ e HBO. Os ratos foram sacrificados 18 dias após o tratamento. Foram avaliados o número de vasos intra

  2. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  3. The effects of triplex forming oligonucleotide (TFO) on the proliferation and cell cycle with C6 glioma cells%PDGF-B链基因三链形成寡核苷酸对C6胶质瘤细胞增殖和细胞周期的影响

    Institute of Scientific and Technical Information of China (English)

    李维方; 周定标; 余新光; 金由辛

    2004-01-01

    目的观察PDGF-B链基因三链形成寡核苷酸(triplex-forming oligonucleotide,TFO)对C6胶质瘤细胞增殖和细胞周期的影响.方法应用免疫荧光流式细胞技术观察PDGF-B链基因TFO对C6胶质瘤细胞PDGF-B、PCNA表达的影响.应用流式细胞技术观察PDGF-B链基因TFO对C6胶质瘤细胞细胞周期的影响.结果 PDGF-B链基因TFO对C6胶质瘤细胞PDGF-B链基因、PCNA的表达有明显抑制作用,而且抑制作用存在浓度依赖性.PDGF-B链基因TFO能使C6胶质瘤细胞S期的百分率明显降低,阻止细胞由静止期(G0-G1期)进入(S期).结论 PDGF-B链基因TFO能够抑制C6胶质瘤细胞PDGF-B链基因的表达,阻碍细胞进入S期,降低细胞增殖能力.

  4. MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression

    Institute of Scientific and Technical Information of China (English)

    MA Qian; ZHAO Ji Zong; HE Jun Qi; ZHANG Yan; MENG Ran; XIE Kun Ming; XIONG Ying; LIN Song; HE Zong Lin K; TAO Tao; YANG Ying

    2015-01-01

    Objective To investigate the role and molecular mechanism of membrane-associated guanylate kinase inverted 3 (MAGI3) in glioma cell proliferation. Methods The expression levels of MAGI3 and PTEN were assessed in glioma samples by Western blotting. MAGI3 was stably transfected into C6 glioma cells to obtain C6-MAGI3 cells. Then, the proliferation, the expression levels of MAGI3 and PTEN, and Akt phosphorylation were evaluated in C6 and C6-MAGI3 cells. Xenograft tumor models were established by subcutaneous injection of C6 and C6-MAGI3 cells into nude mice, and the growth rates of xenografts in the mice were compared. The potential role of MAGI3 expression in PI3K/Akt signaling activation was further investigated by examining the correlation between MAGI3 expression and the expression of PI3K/Akt signaling downstream target genes in a glioma dataset using gene set enrichment analysis (GSEA). Results Expression levels of MAGI3 and PTEN were significantly downregulated in gliomas. Overexpression of MAGI3 in the glioma C6 cell line upregulated PTEN protein expression, inhibited the phosphorylation of Akt, and suppressed cell proliferation. MAGI3 overexpression also inhibited the growth of C6 glioma tumor xenografts in nude mice. Analysis based on the GEO database confirmed the negative correlation between activation of PI3K/Akt pathway and MAGI3 mRNA levels in human glioma samples. Conclusion The loss of MAGI3 expression in glioma may enhance the proliferation of glioma cells via downregulation of PTEN expression, leading to the activation of the PI3K/Akt pathway. MAGI3 is a potential glioma suppressor.

  5. PDGF-B链基因三链形成寡核苷酸对C6胶质瘤细胞增殖和凋亡的影响%Effects of proliferation and apoptosis of C6 glioma cells with triplex forming oligonucleotides (TFO)

    Institute of Scientific and Technical Information of China (English)

    李维方; 周定标; 余新光; 金由辛

    2005-01-01

    目的观察PDGF-B链基因三链形成寡核苷酸(triplex-forming oligonucleotide,TFO)对C6胶质瘤细胞增殖和凋亡的影响.方法应用流式细胞技术观察TFO对C6胶质瘤细胞PDGF-B、PCNA表达的影响,应用流式细胞技术观察TFO对C6胶质瘤细胞凋亡的影响.结果TFO对C6胶质瘤细胞PDGF-B、PCNA的表达有明显抑制作用,而且抑制作用存在浓度依赖性.TFO有明显诱导C6胶质瘤细胞细胞凋亡作用,而且诱导作用存在浓度依赖性.结论TFO抑制C6胶质瘤细胞细胞增殖,同时诱导C6胶质瘤细胞细胞凋亡.

  6. Stem cell signatures in glioma

    OpenAIRE

    He, Xiaobing

    2012-01-01

    Gliomas are the most common tumors of the central nervous system in adults. Glioblastoma, the most aggressive form, has a median survival of 15 months regardless of the standard treatment with surgery and temozolomide-based radiochemotherapy. Therefore, it is imperative to improve treatment options for patients with glioblastoma. It has been suggested that the putative tumor stem cells in brain tumors are responsible for glioma initiation, development and resistance to ...

  7. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  8. GDNF剪接体α-pro-GDNF在大鼠C6胶质瘤细胞中的表达及其意义%The expression and significaceof GDNF splice variant α-pro-GDNF in rat C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    魏赫; 李亨; 雷宇; 于如同; 虞正权; 高殿帅

    2016-01-01

    目的:探讨大鼠C6胶质瘤细胞中GDNF选择性剪接体的表达情况及意义.方法:通过检测C6胶质瘤细胞中GDNF基因△78位点剪接体α-pro-GDNF mRNA和β-pro-GDNF mRNA及其受体蛋白GFRα1、GFRα2、Ret和NCAM表达,结合介导肿瘤迁移相关蛋白RhoA、Cdc42、Rac1的表达情况,分析其相关关系.结果:(1)C6胶质瘤细胞中,可以检测到α-pro-GDNF和β-pro-GDNF的mRNA表达,且α-pro-GDNF mRNA表达水平比β-pro-GDNF高;与星形胶质细胞相比,α-pro-GDNF mRNA表达水平的增高趋势较β-pro-GDNF明显;(2)C6胶质瘤细胞中RhoA mRNA表达水平与α-pro-GDNF mRNA表达水平成显著正相关(R2=0.699,P<0.05),Cdc 42 mRNA表达水平与α-pro-GDNF mRNA表达水平呈显著正相关(R2=0.803,P<0.05),与β-pro-GDNF mRNA表达相关性不显著.结论:C6胶质瘤中α-pro-GDNF具有优先表达,可能与胶质瘤细胞的迁移具有相关性.

  9. PDGF-B链基因TFO抑制C6胶质瘤细胞PDGF-B链基因表达及细胞生长%Inhibiting the expression of PDGF-B chain and the proliferation of C6 glioma cells with triplex-forming oligonucleotide

    Institute of Scientific and Technical Information of China (English)

    李维方; 周定标; 余新光; 金由辛

    2004-01-01

    目的:观察 PDGF-B 链基因三链形成寡核苷酸(triplex-forming oligonucleotide,TFO)对 C6 胶质瘤细胞 PDGF-B 链基因表达和细胞生长的作用.探索 PDGF-B 链基因 TFO 作为抗肿瘤治疗新药的可能性.方法:应用MTT法观察 PDGF-B 链基因 TFO对 C6 胶质瘤细胞生长的抑制作用;应用流式细胞技术观察 PDGF-B 链基因 TFO 对 C6 胶质瘤细胞 PDGF-B 链基因表达的影响.结果:PDGF-B 链基因 TFO 对 C6 胶质瘤细胞 PDGF-B 链基因的表达和细胞生长有明显抑制作用,而且抑制作用存在浓度依赖性.结论:PDGF-B 链基因 TFO 能够抑制 C6 胶质瘤细胞 PDGF-B 链基因的表达和细胞生长,有望成为抑制 PDGF-B 原癌基因表达的一种全新药物.

  10. Temporal dynamic changes of connexin 43 expression in C6 cells following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    Ling Liu; Haiyan Liu; Zhenping Gao; Linbo Zhang; Lue Su; Guojun Dong; Haiyang Yu; Jiayi Tian; Hang Zhao; Yanyan Xu

    2012-01-01

    Connexin 43, a gap junction protein, is expressed mainly in glia in the central nervous system.Neuroinflammation plays an important role in central nervous system injury. Changes to glial connexin 43 levels and neuroinflammation may trigger brain injury and neurodegenerative diseases.To illustrate the relationship between connexin 43 and neuroinflammation, this study investigated how connexin 43 expression levels change in lipopolysaccharide-stimulated rat C6 glioma cells. C6 cells were treated with 0.05, 0.25, 0.5, 1, 2.5 and 5 μg/mL lipopolysaccharide for 24 hours. The nitrite estimation-detected nitric oxide release level was elevated substantially after lipopolysaccharide stimulation. To test the transcriptional level changes of inducible nitric oxide synthase, tumor necrosis factor-α and connexin 43 mRNA, C6 cells were treated with 5 μg/mL lipopolysaccharide for 3-48 hours. Reverse transcription-PCR showed that the expression of inducible nitric oxide synthase and tumor necrosis factor-α mRNA increased over time, but connexin 43 mRNA levels increased in lipopolysaccharide-stimulated C6 cells at 3 and 6 hours, and then decreased from 12 to 48 hours. Connexin 43 protein expression was detected by immunofluorescence staining, and the protein levels matched the mRNA expression levels. These results suggest that connexin 43 expression is biphasic in lipopolysaccharide-inducedneuroinflammation in C6 cells, which may be correlated with the connexin 43 compensatorymechanism.

  11. Experimental study on BPA uptake of C6, BT-325 and SHG-44 glioma cell lines%胶质瘤细胞系摄取BPA实验研究

    Institute of Scientific and Technical Information of China (English)

    曹锐峰; 章翔; 陈伟; 江新标; 姬西团; 王西玲; 梁景文

    2003-01-01

    目的探讨孵育时间和细胞周期对胶质瘤细胞摄取BPA(p-boronophenylalanine)的影响,进一步阐明BPA的胶质瘤细胞选择性作用机制.方法将C6,BT-325,SHG-44胶质瘤细胞和原代大鼠星形胶质细胞培养在含BPA的培养液中,分别培养4 h、8 h、12 h、16 h、20 h和24 h后,采用感应耦合等离子体原子发射光谱(ICP-AES)法测定细胞内硼的含量.培养24 h后,流式细胞仪分选Go/G1和G2/M期的细胞,ICP-AES法分别测定细胞内硼的水平.结果三种胶质瘤细胞在每个检测时间点的细胞内硼含量均显著高于对照组胶质细胞(P<0.01).三种胶质瘤细胞G2/M期与Go/G1期相比硼含量均明显增高(P<0.05),而星形胶质细胞两期差异不明显.C6、SHG-44和BT-325与星形胶质细胞Go/G1期的硼浓度比分别为1.46、1.51和1.40,G2/M期的硼浓度比分别为3.65、3.96和3.76.结论有丝分裂的过程可以加强胶质瘤对BPA的吸收,这一过程可能与胶质瘤细胞对BPA的主动运输有关.主动运输可能是BPA对胶质瘤选择性作用的基础.

  12. 巢蛋白基因沉默通过激活细胞周期依赖性激酶(cdk5)促进大鼠神经胶质瘤细胞C6的迁移和增殖%Silencing of Nestin Promotes Glioma Cell Migration and Proliferation through Activation of Cyclin-dependent Kinase 5

    Institute of Scientific and Technical Information of China (English)

    兰宝金; 马晓雯; 沈丽; 鲁文静; 兰峰; 曹翠丽; 葛瑞民; 陈玲珑; 张小燕; 陆爱丽; 吴碧莲

    2011-01-01

    中间纤维蛋白巢蛋白(nestin)在各种胚胎前体细胞及成熟组织中均有表达.近年一些研究显示,巢蛋白的表达上调和一些恶性肿瘤的病理特征有相关性.但是,巢蛋白在干细胞分化及肿瘤发生中的作用还不为人知.在本研宄中,我们运用短发卡状的RNA为工具,以大鼠神经胶质瘤细胞系C6为模型,对巢蛋白的功能进行了研究.划痕实验和迁移实验的结果均显示,巢蛋白基因沉默可以促进C6细胞的迁移.同时,BrdU渗入实验显示,此过程伴随着细胞增殖的增加.进一步研究显示,细胞周期依赖性激酶cdk5的活性在此过程中有显著的增加.此外,巢蛋白基因沉默所引起的迁移改变可以被cdk5特异性抑制剂roscovitine所回复,而对细胞增殖则没有显著影响.综上所述,本研究揭示了巢蛋白基因沉默与神经胶质瘤细胞的迁移和增殖相关,而cdk5是此过程的重要调节因子.%Nestin is an intermediate filament protein expressed in the progenitor cells of various embryonic and adult tissues. Recently, studies have indicated that overexpression of nestin associated with clinical pathology of several malignant tumors. However, little is known about the function of nestin in both stem cell differentiation and cancer carcinogenesis. In the study, we used short hairpin RNA transfection to investigate the function of nestin in C6 glioma cells. The results indicated that nestin silencing increased cell motility from both wound healing and transwell assays and moderately elevated cell proliferation from the BrdU incorporation assay. The nestin knockdown induced increase of Cdk5 kinase activity could be reversed by the CdkS specific inhibitor roscovitine. This study showed that Cdk5 was an important regulator to mediated the function of nestin in cell mortality and proliferation in glioma cells.

  13. Investigating effect of fusion gene therapy by MR diffusion-weighted imaging in a rat C6 glioma model

    International Nuclear Information System (INIS)

    Objective: To evaluate the use of diffusion-weighted imaging (DWI) for early detection of tumor response to Angiostatin-Endostatin (Statin-AE) fusion gene therapy in a rat C6 glioma model. Methods: Fifty male wistar rats with C6 tumor cells implanted into the striatum were examined by a 3.0T MR scanner, then the rats bearing tumors were divided into two groups, treatment group and control group. Rats in the treatment group received 107 plaque forming unit (pfu) recombinant herps simplex viral (R-HSV) mediated Statin-AE fusion gene therapy on day 7, and then the tumors were conformed on MRI. Conventional MR and DWI examination were acquired on 1, 2, 3 weeks after implantation with a 5-inch surface coil. Two (1 w), eight (2 w) and all the residual rats (3 w) of each group were sacrificed to perform the histopathological examination after each MRI examination. Pretreatment and post treatment tumor volumes and apparent diffusion coefficient (ADC) values were calculated. Bank sum test and t test were employed for statistical analysis. Results: On MRI, 43 rats demonstrated tumors on day 7 with a successful rate of 86%. On week 2, the tumor volumes of the controls and treatment group were 90. 6 and 91.64 mm3 , with no significant difference (Z=-0.14, P>0.05). On week 3, the tumor volumes of the controls and treatment group were 156.64 and 29.64 mm3, and a significant difference was observed (Z=-3.45, P-3 and (0.99 ± 0.08) x 10-3mm2/s, and the values of the tumor peripheral parts of the two groups were (1.00 ± 0.25) x 10-3 and (0.83 ± 0.12) x 10-3 mm2/s, the ADC values of both tumor centers and peripheral parts of the treatment group were significantly higher than those of the control group (t=-0.82 and -0.46, P-3 and (0.99 ± 0.09) x 10-3mm2/s, and the values of the tumor peripheral parts of the two groups were (0.81±0.19) x 10-3 and (0.78±0.11) x 10-3 mm2/s, there were no statistical difference between the two groups (t=0.82, and -0.46, P<0.05). HE stained slices

  14. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    Science.gov (United States)

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  15. Expression and function of DMT1 without IRE in C6 cells mediated by recombinant adenovirus

    Institute of Scientific and Technical Information of China (English)

    Xixun DU; Huamin XU; Hong JIANG; Jun WANG; Lei WANG; Junxia XIE

    2009-01-01

    Divalent metal transporter 1 (DMT1) is a ferrous iron import protein. The improper expression of DMT1 is involved in neurodegenerative diseases. In the present study, we constructed a recombinant adenovirus containing the gene of DMT1 without the iron response element (DMT1-IRE) and investigated its expression and function in the C6 glioma cell line. The DMTI-IRE gene, obtained by RT-PCR, was cloned into the shuttle plasmid-ing pAdTrack-CMV containing green fluorescent protein (GFP) reporter gene. Linearized plasmid pAdTrack-CMV-DMTI-IRE was subsequently co-transformed into Escher-iehia coli (E. coli) BJ5183 cells along with an adenoviral backbone plasmid pAdEasy-1 after digestion with Pme I. Pac I-digested pAdEasy 1-DMT 1-IRE was then transfected into El-transformed human embryonic kidney cells (HEK293 cells), in which recombinant adenoviruses were generated within 7 to 10 days. The results demon-strated that we obtained the DMTI-IRE gene. pAdEasyl-DMT1-IRE yielded a large fragment, plus a smaller fragment of 4.5kb after digestion with Pac I. PCR confirmed pAdEasy1-DMT1-IRE contained gene DMT1-IRE, indicating the successful construction of recombi-nant adenovirus plasmid containing DMT1-IRE. GFP fluorescence further confirmed the generation of recombi-nant AdDMTI-IRE adenovirus. AdDMTI-IRE could efficiently infect C6 glioma cells. And cell viability decreased in AdDMT1-IRE infected cells after iron overload compared to the control. These results suggest that the over expressed DMT1-IRE can aggravate the iron induced cell death due to its iron influx function.

  16. CT perfusion imaging as an early biomarker of differential response to stereotactic radiosurgery in C6 rat gliomas.

    Directory of Open Access Journals (Sweden)

    Timothy Pok Chi Yeung

    Full Text Available BACKGROUND: The therapeutic efficacy of stereotactic radiosurgery for glioblastoma is not well understood, and there needs to be an effective biomarker to identify patients who might benefit from this treatment. This study investigated the efficacy of computed tomography (CT perfusion imaging as an early imaging biomarker of response to stereotactic radiosurgery in a malignant rat glioma model. METHODS: Rats with orthotopic C6 glioma tumors received either mock irradiation (controls, N = 8 or stereotactic radiosurgery (N = 25, 12 Gy in one fraction delivered by Helical Tomotherapy. Twelve irradiated animals were sacrificed four days after stereotactic radiosurgery to assess acute CT perfusion and histological changes, and 13 irradiated animals were used to study survival. Irradiated animals with survival >15 days were designated as responders while those with survival ≤15 days were non-responders. Longitudinal CT perfusion imaging was performed at baseline and regularly for eight weeks post-baseline. RESULTS: Early signs of radiation-induced injury were observed on histology. There was an overall survival benefit following stereotactic radiosurgery when compared to the controls (log-rank P<0.04. Responders to stereotactic radiosurgery showed lower relative blood volume (rBV, and permeability-surface area (PS product on day 7 post-stereotactic radiosurgery when compared to controls and non-responders (P<0.05. rBV and PS on day 7 showed correlations with overall survival (P<0.05, and were predictive of survival with 92% accuracy. CONCLUSIONS: Response to stereotactic radiosurgery was heterogeneous, and early selection of responders and non-responders was possible using CT perfusion imaging. Validation of CT perfusion indices for response assessment is necessary before clinical implementation.

  17. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  18. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Science.gov (United States)

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent. PMID:19050827

  19. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  20. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    OpenAIRE

    Tysnes, Berit B.; H. Rainer Maurert; Torsten Porwol; Beatrice Probst; Rolf Bjerkvig; Frank Hoover

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell a...

  1. New naphthoquinone derivatives against glioma cells.

    Science.gov (United States)

    Redaelli, Marco; Mucignat-Caretta, Carla; Isse, Abdirisak Ahmed; Gennaro, Armando; Pezzani, Raffaele; Pasquale, Riccardo; Pavan, Valeria; Crisma, Marco; Ribaudo, Giovanni; Zagotto, Giuseppe

    2015-01-01

    This work was aimed to the development of a set of new naphtoquinone derivatives that can act against glioma. The compounds were tested in order to find out their ability to inhibit the growth of glioma cells, and the results of these assays were correlated with electrochemical analysis and NMR-based reoxidation kinetic studies, suggesting that a redox mechanism underlies and may explain the observed biological behavior. In addition to a full description of the synthetic pathways, electrochemistry, NMR and single crystal X-ray diffraction data are provided. PMID:25916907

  2. Applying stereotactic technique to establish C6 brain glioma models for laser interstitial thermotherapy research%立体定向技术建立大鼠脑胶质瘤激光间质热疗模型

    Institute of Scientific and Technical Information of China (English)

    石键; 张宏; 卜文良; 陈鹏; 赵洪洋; 傅伟明

    2010-01-01

    Objective C6 brain glioma models were established with stereotactic technique to study laser interstitial thermotherapy (LITT) in SD rats C6 intracranial glioma models. Methods The C6 cells cultured in vitro were stereotaxically implanted into the right caudate nucleus of SD rat brain (20 μl free serum DMEM for one rat which concentration was 1×10~(11)/L). The following step was to judge MRI scan. Tumor was confirmed with staining of ⅧR, GFAP and S - 100 immunohistochemistry. After MRI scanning and correction of tumor location, the models were divided into groups according treating time and laser power from 2 to 10 W. Semiconductor laser optical fibers were inserted in tumors for LITT, simultaneously cortex's temperature conducted from center target was measured by ThermaCAM S65 type infrared thermograph, and (or) deep tissue's temperature around target was measured by thermocouple. Results Inoculated with optimized stereotactic technique, rat C6 gliomas resembled histopathological features of human glioma. This kind of model was a more reliant and reproducible one, with 96. 67% yield of intracranial tumor as well as no extracranial growth extension. The difference between cortex temperature conducted from center target and deep tissue temperature around target had no statistical significance (P>0.05). Conclusion A rat C6 brain glioma model resembles histopathological features of human glioma, as a perfect model to study LITT of glioma. Infrared thermograph technique to measure temperature conveniently, effectually, non invasive and the data could be treated by software in LITT research. Combining thermocouple to measure deep tissue temperature, it would have a better effect.%目的 利用立体定向技术接种SD大鼠C6脑胶质瘤,并建立脑胶质瘤激光间质热疗(LITT)模型.方法 采用立体定向技术,将体外培养并调制的C6胶质瘤细胞悬液20μl(浓度1×10~(11)/L)接种于SD大鼠右侧尾状核区.分时段MRI检查;做组织病理

  3. 苦参碱对胶质瘤大鼠模型中Fas表达的调节作用的实验研究%Effect of mtrine on Fas expression in C6 glioma in rats

    Institute of Scientific and Technical Information of China (English)

    戚基萍; 刘微; 张淑君; 昝丽坤; 孙玉兰; 宋月佳

    2009-01-01

    目的 探讨苦参碱应用前后C6脑胶质瘤大鼠模型中Fas因子的表达变化及意义.方法采用脑立体定向技术,将体外培养的C6胶质瘤细胞注入大鼠尾状核区制备胶质瘤大鼠模型,并根据是否用药及用药量的多少分为空白对照组、冰片组、苦参碱低剂量组、苦参碱高剂量组、苦参碱低剂量+冰片组、苦参碱高剂量+冰片组.通过大鼠生存状态、标本的大体所见、MRI、HE染色观察苦参碱对胶质瘤大鼠模型生存质量及胶质瘤体积的影响,用免疫组织化学方法检测苦参碱对胶质瘤大鼠模型肿瘤细胞中Fas表达的影响.结果 大鼠生存状态、标本的大体所见、MRI及HE染色显示苦参碱可显著提高胶质瘤大鼠模型的生存质量,抑制胶质瘤细胞增殖.免疫组化结果显示,苦参碱低剂量+冰片组(98.16±11.82)、苦参碱高剂量+冰片组(1 12.80±12.12)Fas表达高于空白对照组(39.09±7.79)、冰片组(46.87±7.43)、苦参碱低剂量组(42.41±7.83)、苦参碱高剂量组(44.20±7.47),苦参碱高剂量+冰片组Fas表达高于苦参碱低剂量+冰片组,差异均有统计学意义(P<0.05).结论 苦参碱能增加胶质瘤细胞中Fas的表达,抑制胶质瘤细胞增殖.%Objective To investigate the effect of matrine on Fas expression in C6 glima in a tumor-bearing rat model. Methods Cultured cerebral glioma C6 cells wgre injected stereotactically into the lef tcaudate nucleus of the rats.The ratswere randomized into untreated group,bomeol-treated group,low-dose matrine group,high-dose maaine group,low-dose matrine+bomeol group,and high-dose matrine+borneol group.The effect of matrine on the quality of life of the rats and the glioma volume was evaluated according to the survival state of the rats and by gross observation,magnetic resonance imaging(MRJ)and HE smining of the brain tissue.Immunohistochemistry was performed to detect Fas expression in the glioma cells. Results The survival state

  4. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    Science.gov (United States)

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  5. Experimental Study on Treatment of Glioma by Embyonic Neural Stem Cell Transplnation in Rats

    Institute of Scientific and Technical Information of China (English)

    LUO Jie; ZHANG Li; TU Hanjun; HU Juntao; LI Xinjian; LI Dongsheng; LEI Ting

    2007-01-01

    The neural stem cells in Wistar rats were cultured in vitro, purified, and transplanted into C6 glioma model in order to observe their biological characters and provide a basic foundation for treatment of neurological diseases by neural stem cell transplantation. The cells at hippocampal area from gestation 15-day rats were cultured in vitro, and frozen and preserved in liquid nitrogen. C6 tu-mor-bearing models (n=25) and neural stem cells transplantation models (n=35) were established.When the tumor grew to 3 to 4 weeks,5 rats in each group were randomly selected for MRI examina-tion. At different intervals, the rats were perfused and sampled for HE staining, GFAP and BrdU im-munohistochemical staining. The results showed that after resuscitation of neural stem cells at 1-4 passages, the cell viability was 40%-63% with the difference being not significant. The cells could proliferate, passage, and most cells transplanted into glioma model survived. The mean survival time in neural stem cell transplantation group and control was 4.28 and 3.88 weeks respectively, and the average tumor size in the former was smaller than in the latter. It was concluded that embryonic neu- ral stem cells in rats could proliferate and differentiate, and after resuscitation the biological charac- teristic and viability of the cells were not influenced. Neural stem cells had inhibitory effects on the growth of glioma cells and could prolong the survival of rat model.

  6. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  7. Escin reduces cell proliferation and induces apoptosis on glioma and lung adenocarcinoma cell lines.

    Science.gov (United States)

    Çiftçi, Gülşen Akalin; Işcan, Arzu; Kutlu, Mehtap

    2015-10-01

    Aesculus hippocastanum (the horse chestnut) seed extract has a wide variety of biochemical and pharmacological effects including anti-inflammatory, antianalgesic, and antipyretic activities. The main active compound of this plant is escin. It is known that several medicinal herbs with anti-inflammatory properties have been found to have a role in the prevention and treatment of cancer. In the present study, the cytotoxic effects of escin in the C6 glioma and A549 cell lines were analyzed by MTT. Apoptotic effects of escin on both cell lines were evaluated by Annexin V binding capacity with flow cytometric analysis. Structural and ultrastructural changes were also evaluated using transmission electron microscopy. The results indicated that escin has potent antiproliferative effects against C6 glioma and A549 cells. These effects are both dose and time dependent. Taken together, escin possesses cell cycle arrest on G0/G1 phase and selective apoptotic activity on A549 cells as indicated by increased Annexin V-binding capacity, bax protein expression, caspase-3 activity and morphological changes obtained from micrographs by transmission electron microscopy. PMID:25906387

  8. Picosecond fluorescence lifetime imaging microscope for imaging of living glioma cells

    Science.gov (United States)

    Fang, Qiyin; Wang, Jingjing; Sun, Yinghua; Vernier, Thomas; Papaioannou, Thanassis; Jo, Javier; Thu, Mya M.; Gundersen, Martin A.; Marcu, Laura

    2005-03-01

    In this communication, we report the imaging of living glioma cells using fluorescence lifetime imaging (FLIM) technique. The growing interests in developing novel techniques for diagnosis and minimally invasive therapy of brain tumor have led to microscopic studies of subcellular structures and intracellular processes in glioma cells. Fluorescence microscopy has been used with a number of exogenous molecular probes specific for certain intracellular structures such as mitochondria, peripheral benzodiazepine receptor (PBR), and calcium concentration. When probes with overlapping emission spectra being used, separate samples are required to image each probe individually under conventional fluorescence microscopy. We have developed a wide-field FLIM microscope that uses fluorescence lifetime as an additional contrast for resolving multiple markers in the same essay. The FLIM microscope consists of a violet diode laser and a nitrogen-pumped dye laser to provide tunable sub-nanosecond excitation from UV to NIR. The detection system is based on a time-gated ICCD camera with minimum 80 ps gate width. The performance of the system was evaluated using fluorescence dyes with reported lifetime values. Living rat glioma C6 cells were stained with JC-1 and Rhodamine 123. FLIM images were acquired and their lifetimes in living cells were found in good agreements with values measured in solutions by a time-domain fluorescence spectrometer. These results indicate that imaging of glioma cells using FLIM can resolve multiple spectrally-overlapping probes and provide quantitative functional information about the intracellular environment.

  9. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    OpenAIRE

    Dongfeng Chen; Duo Zuo; Cheng Luan; Min Liu; Manli Na; Liang Ran; Yingyu Sun; Annette Persson; Elisabet Englund; Leif G Salford; Erik Renström; Xiaolong Fan; Enming Zhang

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. G...

  10. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  11. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  12. 腺相关病毒介导重组血管抑素联合雷公藤红素对大鼠颅内C6胶质瘤的抗血管生成作用%Anti-angiogenesis effect of adeno-associated virus-mediated recombinant angiostatin combined with celastrol on intracranial C6 glioma in rats

    Institute of Scientific and Technical Information of China (English)

    王冠; 周洁; 冯珂珂; 田麒

    2011-01-01

    目的:腺相关病毒(adeno-associated virus,AAV)介导的重组血管抑素(angiostatin,AS)联合应用雷公藤红素( celastrol)治疗大鼠颅内C6胶质瘤,观察其对肿瘤体积、新生血管密度及肿瘤细胞凋亡的影响,探讨抗血管生成重组基因联合雷公藤红素对胶质瘤治疗的前景.方法:建立颅内原位荷C6脑胶质瘤大鼠模型,7d后随机分为4组,分别给予0.9%氯化钠溶液(作为对照)、AAV-AS、雷公藤红素及两者联合用药.每隔7d行头部强化MRI检查,计算肿瘤体积.于22 d后处死动物,检测AS蛋白表达、血管密度及肿瘤细胞凋亡情况.结果:联合治疗组及AAV-AS治疗组均检测到AS蛋白表达,证实基因转导成功.联合治疗组第22天时肿瘤体积、血管密度和凋亡指数均与对照组、雷公藤红素组及AAV-AS治疗组相比差异有统计学意义(P<0.05),联合治疗可以抑制肿瘤生长,降低新生血管密度,促进肿瘤细胞凋亡.结论:基因治疗联合雷公藤红素可通过抑制胶质瘤血管生成而抑制肿瘤生长;两者联合应用具有协同作用,可弥补两者单独应用的不足之处.%Objective: To examine the effects of therapeutic alliance of adeno-associated virus-mediated recombinant angiostatin (AAV-AS) combined with celastrol on tumor growth, microvessel density and apoptosis of intracranial glioma in rats, and to give a prospective of this therapeutic alliance. Methods: A rat intracranial C6 glioma model was established, and then the rats (n=40) were randomly assigned into four groups after 7 days, which were saline control group, AAV-AS group, celastrol group and therapeutic alliance group. The tumor growth was examined by magnetic resonance imaging (MRI) every 7 days, and the volume of tumor was calculated. The rats were killed after 22 days, and the expression of AS protein, the microvessel density and the apoptosis of tumor cells were detected. Results: The expression of AS protein was detectable in AAV

  13. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages12

    Science.gov (United States)

    Kobayashi, Kana; Yano, Hajime; Umakoshi, Akihiro; Matsumoto, Shirabe; Mise, Ayano; Funahashi, Yu; Ueno, Yoshitomo; Kamei, Yoshiaki; Takada, Yasutsugu; Kumon, Yoshiaki; Ohnishi, Takanori; Tanaka, Junya

    2016-01-01

    CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas. PMID:27108386

  14. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  15. Transcriptional regulation of 2',3'-cyclic nucleotide 3'-phosphodiesterase gene expression by cyclic AMP in C6 cells.

    Science.gov (United States)

    Gravel, M; Gao, E; Hervouet-Zeiber, C; Parsons, V; Braun, P E

    2000-11-01

    It was recently shown that the two transcripts encoding the isoforms of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP1 and CNP2) are differentially regulated during the process of oligodendrocyte maturation. In oligodendrocyte precursors, only CNP2 mRNA is present, whereas in differentiating oligodendrocytes, both CNP1 and CNP2 mRNAs are expressed. This pattern of CNP expression is likely due to stage-specific transcriptional regulation of the two CNP promoters during the process of oligodendrocyte differentiation. Here, we report the influence of increased intracellular cyclic AMP (cAMP) levels on the transcription of both CNP1 and CNP2 mRNAs in rat C6 glioma cells. We found that the transcription of CNP1 mRNA was significantly increased in comparison with that of CNP2 mRNA in cells treated with cAMP analogues to elevate intracellular cAMP levels. This up-regulation of CNP1 expression (a) is due to an increase of transcription, (b) requires de novo protein synthesis, and (c) requires the activity of protein kinase A. These results are physiologically significant and support the idea that a cAMP-mediated pathway is part of the molecular mechanisms regulating the expression of CNP1 in oligodendrocytes. The regulation of CNP1 promoter activity by cAMP was then investigated in stably transfected C6 cell lines containing various deletions of the CNP promoter directing the bacterial chloramphenicol acetyltransferase gene. We showed that the sequence between nucleotides -126 and -102 was essential for the cAMP-dependent induction of CNP1 expression. Gel retardation analysis showed that two protein-DNA complexes are formed between this sequence and nuclear factors from C6 cells treated or not treated with cAMP. This suggests that the induction of CNP1 mRNA transcription is not mediated by changes in binding of nuclear factors that interact directly with the -126/-102 sequence. Sequence analysis of this region revealed the presence of a putative activator protein-2 (AP

  16. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    International Nuclear Information System (INIS)

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management

  17. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  18. Isolation of Rickettsia felis in the Mosquito Cell Line C6/36

    OpenAIRE

    Horta, Maurício C.; Labruna, Marcelo B.; Edison L. Durigon; Teresinha T.S. Schumaker

    2006-01-01

    We report the isolation and establishment of Rickettsia felis in the C6/36 cell line. Rickettsial growth was intense, always with 90 to 100% of cells being infected after few weeks. The rickettsial isolate was confirmed by testing infected cells by PCR and sequencing fragments of three major Rickettsia genes (gltA, ompB, and the 17-kDa protein gene).

  19. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    Science.gov (United States)

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma. PMID:21921941

  20. 牛蒡子苷元对大鼠脑胶质瘤的作用及初步作用机制探讨%Effects and primary mechanism of arctigenin in C6 rat glioma

    Institute of Scientific and Technical Information of China (English)

    苏勤勇; 李晓梅; 姚景春; 王平平; 张贵民

    2015-01-01

    Aim To observe the effect and primary mechanism of arctigenin ( ARG) in C6 rat glioma. At the same time, to investigate the effect of ARG com-bined with temozolomide. Methods C6 glioma rat model was established, and 90 rats were divided into six groups, which were subcutaneously administered with model, low and high ARG (0. 05 and 0. 1 mg· kg-1 , sc) , temozolomide (20 mg·kg-1 , p. o. ) , low ARG combined with temozolomide(TMZ / ARG 0. 05) and high ARG combined with temozolomide ( TMZ /ARG 0. 1 ) . The tumor specimens of brain were col-lected after tumor graft. Proliferating cell nuclear anti-gen ( PCNA ) , glial fibrillary acidic protein ( GFAP ) and CD40 in tumor specimens were determined by im-munohistochemistry. Results ① Compared with the model group, the tumor sizes of rats in the arctigenin treatment groups were decreased ( P significantly decreased PCNA and CD40 expression ( P<0. 05 ) and increased GFAP expression ( P<0. 05 ) .③ Compared with model group, arctigenin combined with temozolomide decreased the tumor sizes ( P <0. 01 ) , and the tumor inhibition rate was higher than that of the arctigenin and temozolomide. At the same time, arctigenin combined with temozolomide de-creased PCNA and CD40 expression ( P <0. 01 ) and increased GFAP expression ( P <0. 05 ) , which was better than arctigenin and temozolomide. Conclusion Arctigenin inhibits rat glioma growth, and synergizes with temozolomide, which may be associated with in-hibiting PCNA and CD40 expression and strengthening GFAP expression.%目的:观察牛蒡子苷元对大鼠C6胶质瘤的作用及作用机制的研究。同时探讨牛蒡子苷元与替莫唑胺合用对脑胶质瘤是否有协同作用。方法采用脑内注射C6胶质瘤细胞建立大鼠C6胶质瘤模型;牛蒡子苷元连续皮下给药15 d,替莫唑胺从d5开始给药,连续灌胃给药5 d;测量肿瘤的长短径,计算肿瘤体积;采用免疫组化方法检测脑瘤组织中GFAP、PCNA和CD40的表达。结

  1. Glioma cell line proliferation controlled by different chemical functional groups in vitro

    Institute of Scientific and Technical Information of China (English)

    Su-Ju XU; Fu-Zhai CUI; Xiao-Long YU; Xiang-Dong KONG

    2013-01-01

    Glioma cell line C6 cultured on silicon surfaces modified by different chemical functional groups, including mercapto (-SH), carboxyl (-COOH), amino (-NH2), hydroxyl (-OH) and methyl (-CH3) groups, was studied here to investigate the influence of surface chemistry on the cell proliferation, adhesion and apoptosis. AFM confirmed the similar characteristic of different functional groups occupation. The adhering C6 exhibited morphological changes in response to different chemical functional groups. The C6 adhered to -COOH, -NH2, -OH and -CH3 surfaces and flattened morphology, while those on -SH surface exhibited the smallest contact area with mostly rounded morphology, which led to the death of cancer cells. The results of MTT assay showed that the -COOH and -NH2 groups promoted ceil proliferation, while the -SH significantly inhibited the proliferation. Compared with other chemical functional groups, the -SH group exhibited its unique effect on the fate of cancer cells, which might provide means for the design of biomaterials to prevent and treat glioma.

  2. Radiation effects on human glia and glioma cells in vitro

    International Nuclear Information System (INIS)

    The radiosensitivity of human glia and glioma cells has been studied in vitro, and a new cloning method has been developed to overcome the difficulties due to the very low cloning efficiency of these cells. The cells were confined to small palladium areas surrounded by agarose, which increased the cell density, but kept the clones separated. Using this method, the glia cells were found to be very sensitive to gamma irradiation (D0=1.0-1.5 Gy and n=1) in comparision with the glioma cells (D0=1.5-2.5 Gy and n=3.5). The induction and repair of DNA strand breaks were studied with two DNA unwinding techniques. No differences between the two cell-lines were detected when induction and fast repair were studied with the single-labelling method, while the glioma cells showed less unrepaired DNA strand breaks than the glia cells after 1, 2 and 3 hours, when the double-labelling method was used. Detachment, attachment and growth kinetics were studied using the palladium-agarose cloning method. All of the glioma cell-lines studied, detached and attached themselves at rates higher than the normal diploid glia cell-lines. All of the cell-lines contained clones with different properties. Some clones were rapidly growing, others maintained a nearly constant number of cells or even decreased. The effects of chronic hypoxia were tested in a few experiments. Low oxygen tension in the culture medium reduced the rate of growth and the DNA synthesis of the glioma cells. The present study indicates that cultured human glioma cells are less radiosensitive than cultured glia cells. The palladium-agarose technique, enable studying growth kinetics detachment, attachment and radiosensitivity in a quantitative manner for cells with low cloning efficiency. (author)

  3. Using of the surface plasmon resonance cytosensor for real-time and non-invasive monitoring of cellular effects in living C6 cells induced by PMA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Developing novel instruments and technologies for spatio-temporal and dynamic measurements of the intricate cellular effects involving molecular translocation, signal transduction, and molecular interactions inside living cells is essential for the cell and molecular biology science. For the purpose of monitoring and investigating molecular events in living cells at real-time, the surface plasmon resonance based cytosensor (SBCS) for cell culturing and signal monitoring was established, and on the basis of it, the corresponding technology was also established by monitoring and analyzing SPR responses induced in rat C6 glioma cells by phorbol 12-myristate 13-acetate (PMA). The SPR signals induced by PMA in living C6 cells were significantly different from those groups without cells. These responses were strongly dependent on and saturable to the concentrations of PMA, and could be suppressed by the specific and potent PKC inhibitors, which indicated that the measured signal could be the reflection of the redistribution of intracellular components near the cell membrane triggered by the activation of PKC. This research provides a quantitative and non-invasive technique to study the spatio-temporal characteristics of the cellular effects in living cells at real-time. Furthermore, this technology could also be widely used in the basic research as well as applied realms, such as space effects evaluation, environmental safety assessment, biological weapon detection, cellular and molecular research, and drug screening.

  4. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  5. Chloride transport in a glioma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wolpaw, E.W.

    1984-01-01

    Maintenance of the extracellular environment is a major function of central nervous system astroglia. The transport of Cl/sup -/ across the cell membrane may be an integral part of this function, since Cl/sup -/ transport has been implicated in homeostasis of cell volume, pH, and extracellular K/sup +/ concentration. The work presented here investigated Cl/sup -/ transport in the glioma cell line LRM55. Results indicate that LRM55 cells are a good model for astroglia and that these cells contain three Cl/sup -/ transporters; a Cl/sup -//HCO/sub 3//sup -/ exchanger, a K/sup +//Cl/sup -/ cotransporter, and a Cl/sup -//SO/sub 4//sup 2 -/ exchanger. Ion transport studies measured the fluxes of Cl/sup -/ (as /sup 36/Cl/sup -/), K/sup +/ (as /sup 86/Rb/sup +/), and SO/sub 4//sup 2 -/ (as /sup 35/SO/sub 4//sup 2 -/). Cl/sup -/ flux was trans-simulated by Cl/sup -/ or HCO/sub 3//sup -/ and was inhibited by SITS or furosemide. External K/sup +/ stimulated Cl/sup -/ influx and external Cl/sup -/ stimulated Rb/sup +/ influx. Furosemide, but not SITS, inhibited the K/sup +//Cl/sup -/ cotransporter. High K/sup +/ medium increased cell volume and Cl/sup -/ content. Steady-state Cl/sup -/ concentration was at least twice that predicted from passive equilibration according to the Nernst equation. SO/sub 4//sup 2 -/ flux was trans-stimulated by SO/sub 4//sup 2 -/ or by Cl/sup -/. Cl/sup -/ was a competitive inhibitor of SO/sub 4//sup 2 -/ influx, but SO/sub 4//sup 2 -/ had no detectable effect on Cl/sup -/ influx or efflux. SO/sub 4//sup 2 -/ flux was inhibited by SITS or furosemide.

  6. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha, also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6 and human neuroblastoma (IMR-32 cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

  7. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  8. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Elodie A.; Valable, Samuel [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Guillamo, Jean-Sebastien [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Departement de Neurologie, CHU de Caen (France); Marteau, Lena [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Bernaudin, Jean-Francois [Service d' Histologie-Biologie Tumorale, ER2UPMC, Universite Paris 6, Hopital Tenon, Paris (France); Roussel, Simon [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Lechapt-Zalcman, Emmanuele [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Service d' Anatomie Pathologique, CHU de Caen (France); Bernaudin, Myriam [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Petit, Edwige, E-mail: epetit@cyceron.fr [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France)

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  9. Successful propagation of Alkhumra (misnamed as Alkhurma) virus in C6/36 mosquito cells.

    Science.gov (United States)

    Madani, Tariq A; Kao, Moujahed; Azhar, Esam I; Abuelzein, El-Tayeb M E; Al-Bar, Hussein M S; Abu-Araki, Huda; Ksiazek, Thomas G

    2012-03-01

    Epidemiological data suggest that Alkhumra (misnamed as Alkhurma) virus (ALKV) is transmitted from livestock animals to humans by direct contact with animals or by the mosquito bites, but not by ticks. To assess the ability of the virus to replicate in mosquito cells, serum and plasma of seven acutely febrile patients with clinically suspected ALKV infection reported in Najran, Saudi Arabia in 2009 were inoculated onto Aedes albopictus mosquito cells (C6/36) and directly examined with ALKV-RNA-specific real time RT-PCR as well as indirect immunfluorescence assay (IFA) using ALKV-specific polyclonal antibodies. The isolated virus was titrated in the mammalian rhesus monkey kidney cells (LLC-MK2). Five of the seven specimens were RT-PCR- and culture-positive demonstrating cytopathic effects in the form of cell rounding and aggregation appearing on day 3 post inoculation with syncytia eventually appearing on day 8 post inoculation. Identification of ALKV-RNA in the cell culture was confirmed with RT-PCR and IFA. The virus titre was 3.2×10(6) tissue culture infective dose 50 (TCID(50)) per mL. Three more viral passages were successfully made in the C6/36 cells. This is the first description of propagation of ALKV in mosquito cells. PMID:22154975

  10. Enhanced invasion in vitro and the distribution patterns in vivo of CD133+ glioma stem cells

    Institute of Scientific and Technical Information of China (English)

    YU Sheng-ping; YANG Xue-jun; ZHANG Bin; MING Hao-lang; CHEN Cong; REN Bing-cheng; LIU Zhi-feng; LIU Bin

    2011-01-01

    Background Recent studies have suggested that cancer stem cells cause tumor recurrence based on their resistance to radiotherapy and chemotherapy.Although the highly invasive nature of glioblastoma cells is also implicated in the failure of current therapies,it is not clear whether cancer stem cells are involved in invasiveness.This study aimed to assess invasive ability of glioma stem cells (GSCs) derived from C6 glioma cell line and the distribution patterns of GSCs in Sprague-Dawley (SD) rat brain tumor.Methods Serum-free medium culture and magnetic isolation were used to gain purely CD133+ GSCs.The invasive stem cell markers and luxol fast blue staining for white matter tracts were performed to show the distribution patterns of GSCs in brain tumor of rats and the relationship among GSCs,vessels,and white matter tracts.The results of matrigel invasion assay were estimated using the Student's t test and the analysis of Western blotting was performed using the one-way analysis of variance (ANOVA) test.Results CD133+GSCs(number:85.3±4.1)were significantly more invasive in vitro than matched CD133- cells(number:25.9±3.1) (t=14.5,P <0.005).GSCs invaded into the brain diffusely and located in perivascular niche of tumor-brain interface or resided within perivascular niche next to white fiber tracts.The polarity of glioma cells containing GSCs was parallel to the white matter tracts.Conclusions Our data suggest that CD133+ GSCs exhibit more aggressive invasion in vitro and GSCs in vivo probably disseminate along the long axis of blood vessels and transit through the white matter tracts.The therapies targeting GSCs invasion combined with traditional glioblastoma multiforme therapeutic paradigms might be a new approach for avoiding malignant glioma recurrence.

  11. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components.

    Directory of Open Access Journals (Sweden)

    Alexa Kiss

    Full Text Available Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.

  12. Epigenetic biomarkers of T-cells in human glioma

    OpenAIRE

    Wiencke, John K.; Accomando, William P.; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J.; Hsuang, George; Christensen, Brock C.; Houseman, E. Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L.; Wrensch, Margaret; Nelson, Heather H.; Kelsey, Karl T.

    2012-01-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10−16), demonstrating the validity of...

  13. Glioma-initiating cells and molecular pathology: implications for therapy.

    Science.gov (United States)

    Natsume, Atsushi; Kinjo, Sayano; Yuki, Kanako; Kato, Takenori; Ohno, Masasuke; Motomura, Kazuya; Iwami, Kenichiro; Wakabayashi, Toshihiko

    2011-02-01

    There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.

  14. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2015-03-02

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  15. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  16. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Philip G.R. [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, Bethesda, MD 20892 (United States); Shen, Michael J.; Park, John K., E-mail: parkjk@ninds.nih.gov [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-02-10

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.

  17. Activated vascular endothelia regulate invasion of glioma cells through expression of fibronectin

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-xiong; YANG Li-juan; HUANG Qiang; FU Jin

    2010-01-01

    Background Previous researches have indicated that glioma invasion may occur within a tumor-host microecology, and that fibronectin may be involved in glioma invasion as an important component of the extracellular matrix. However, how the interaction between tumor cells and vascular endothelial cells affects glioma invasion is poorly understood. The aim of this study was to investigate the effects of the interaction between tumor cells and vascular endothelial cells on glioma invasion, and the relationship of this interaction to fibronectin.Methods The localization of fibronectin in different brain astrocytoma tissues was determined by immunohistochemistry. Then, vascular endothelial cells and glioma cells were co-cultured in a Transwell co-culturing system. Fibronectin expression was detected by reverse transcriptase-polymerase chain reaction, immunocytochemistry, and enzyme-linked immunosorbent assay. Additionally, the influence of the interaction between tumor cells and vascular endothelial cells on glioma cell invasion was determined by an in vitro rapid invasion test.Results In brain astrocytoma tissues, fibronectin was present on the endothelial cells, in the extracellular matrix. Fibronectin expression was greater in higher grade tumors than in lower grade tumors. The interaction of glioma cells and vascular endothelial cells in vitro induced fibronectin release from vascular endothelial cells, which in turn stimulated glioma cell migration. This effect was inhibited by fibronectin blocking antibody.Conclusion Glioma cells may induce vascular epithelial cells to express fibronectin, and in turn fibronectin could promote glioma cell invasion.

  18. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    Science.gov (United States)

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.

  19. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  20. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  1. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  2. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina;

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model ...

  3. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.

    Science.gov (United States)

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-12-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.

  4. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  5. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    International Nuclear Information System (INIS)

    Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19

  6. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  7. Role of Dicer on tumorigenesis in glioma cells

    Institute of Scientific and Technical Information of China (English)

    Anling Zhang; Lei Han; Guangxiu Wang; Zhifan Jia; Peiyu Pu; Chunsheng Kang

    2010-01-01

    Micro RNAs(miRNAs)are non-coding,single-stranded RNAs that regulate target gene expression by repressing translation or promoting RNA cleavage.Recent studies show that miRNA expression is globally decreased in some human tumors.Dicer is an essential component of the miRNA processing machinery.To determine whether global reduction of miRNA effects tumorigenesis,small interfering RNA were designed to target Dicer to restrain whole miRNA expression in the glioblastoma cell line-TJ905.With effective knock-down of Dicer,tumor cells were invasive and proliferative,and globally impaired miRNA processing enhanced proliferation and invasiveness of glioma cells in vitro.Suppression of Dicer expression resulted in a more aggressive glioma phenotype,which suggests that global reduction of miRNA expression could have an oncogenic role in glioblastoma cells.

  8. Antiproliferative activity of melanoidins isolated from heated potato fiber (potex) in glioma cell culture model.

    Science.gov (United States)

    Langner, Ewa; Nunes, Fernando M; Pozarowski, Piotr; Kandefer-Szerszeń, Martyna; Pierzynowski, Stefan G; Rzeski, Wojciech

    2011-03-23

    Potex constitutes a potato fiber preparation widely used as an ingredient to meat and bakery products which thermal treatment results in creation of new compounds. Melanoidins are high molecular weight brown end products of Maillard reaction, and few data presenting tumor cell growth inhibiting activity of melanoidins have been reported. Thus, in present study we utilized water extract of Potex roasted (180 °C for 2 h), whose chemical characterization revealed the presence of melanoidin complexes. Heated Potex extract inhibited C6 glioma cell proliferation in a dose-dependent manner measured by MTT method. High molecular weight components present in initial extract were responsible for stronger antiproliferative effect compared with low molecular weight fraction. Impaired MAPK (mitogen-activated protein kinase) and Akt signaling was found in cells treated with the extract. Moreover, flow cytometry analyses revealed the extract to induce G1/S arrest in glioma cells. Simultaneously, Western blot analysis showed elevated levels of p21 protein with concomitant decrease of cyclin D1. In conclusion, observed antiproliferative activity of melanoidins present in heated Potex was linked to disregulated MAPK and Akt signaling pathways, as well as to cell cycle cessation. These results suggest potential application of Potex preparation as a functional food ingredient and chemopreventive agent.

  9. Epigenetic biomarkers of T-cells in human glioma.

    Science.gov (United States)

    Wiencke, John K; Accomando, William P; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J; Hsuang, George; Christensen, Brock C; Houseman, E Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L; Wrensch, Margaret; Nelson, Heather H; Kelsey, Karl T

    2012-12-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10 (-16) ), demonstrating the validity of the assay. Furthermore, there was a high correlation between qMSP and immunohistochemistry (IHC) in quantifying tumor infiltrating T-cells (r = 0.85; p = 3.4 × 10 (-11) ). Applying our qMSP methods to archival whole blood from 65 glioblastoma multiforme (GBM) cases and 94 non-diseased controls, GBM cases had highly statistically significantly lower T-cells (p = 1.7 × 10 (-9) ) as well as Tregs (p = 5.2 × 10 (-11) ) and a modestly lower ratio of Tregs/T-cells (p = 0.024). Applying the methods to 120 excised glioma tumors, we observed that tumor infiltrating CD3+ T-cells were positively correlated with glioma tumor grade (p = 5.7 × 10 (-7) ), and that Tregs were enriched in tumors compared with peripheral blood indicating active chemoattraction of suppressive Tregs into the tumor compartment. Poorer patient survival was correlated with higher levels of tumor infiltrating T-cells (p = 0.01) and Tregs (p = 0.04). DNA methylation based immunodiagnostics represent a new generation of powerful laboratory tools offering many advantages over conventional methods that will facilitate large clinical epidemiologic studies and capitalize on stored archival blood and tissue banks. PMID:23108258

  10. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells

    Science.gov (United States)

    YU, ZHIYUN; ZHAO, GANG; LI, PENGLIANG; LI, YUNQIAN; ZHOU, GUANGTONG; CHEN, YONG; XIE, GUIFANG

    2016-01-01

    Glioblastoma is the most common and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas, but it is not curative. The difficulties in treating glioblastoma may be as a result of the presence of glioma stem cells (GSCs), which are a source of relapse and chemoresistance. Another reason may be that endogenous Akt kinase activity may be activated in response to clinically relevant concentrations of TMZ. Akt activation is correlated with the increased tumorigenicity, invasiveness and stemness of cancer cells and overexpression of an active form of Akt increases glioma cell resistance to TMZ. Mounting evidence has demonstrated that cancer stem cells are preferentially sensitive to an inhibitor of Akt and down-regulation of the PI3K/Akt pathway may enhance the cytotoxicity of TMZ. Metformin (MET), the first-line drug for treating diabetes, it has been proved that it reduces AKT activation and selectively kills cancer stem cells, but whether it can potentiate the cytotoxicity of TMZ for GSCs remains unknown. In the present study, the GSCs isolated from human glioma cell line U87 and Rat glioma cell line C6, in vitro treatment with TMZ either alone or with MET. The present study demonstrates that MET acts synergistically with TMZ in inhibiting GSCs proliferation and generating the highest apoptotic rates when compared to either drug alone. These findings implicate that GSCs cytotoxicity mediated by TMZ may be stimulated by MET, have a synergistic effect, but the definite mechanisms remain elusive. PMID:27073554

  11. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  12. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation

    Directory of Open Access Journals (Sweden)

    Trejo-Solís Cristina

    2012-04-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate. Methods The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia, a copper compound, on rat malignant glioma C6 cells was investigated. Results Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS and increased activity of c-jun NH2-terminal kinase (JNK. The presence of 3-methyladenine (as selective autophagy inhibitor increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine decreased apoptosis, autophagy and JNK activity. Moreover, the JNK –specific inhibitor SP600125 prevented Cas III-ia-induced cell death. Conclusions Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS –dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma.

  13. Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells

    International Nuclear Information System (INIS)

    HSV-tk/ ganciclovir (GCV) gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and BclXL. Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC), from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment

  14. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Science.gov (United States)

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  15. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Directory of Open Access Journals (Sweden)

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  16. Perturbation of Hyaluronan Interactions Inhibits Malignant Properties of Glioma Cells

    OpenAIRE

    Ward, Jeanine A; Huang, Lei; Guo, Huiming; Ghatak, Shibnath; Toole, Bryan P.

    2003-01-01

    Malignant progression of gliomas is characterized by acquisition of inappropriate growth and invasive properties. In vitro, these malignant properties are reflected in, and measured by, the ability to grow in an anchorage-independent manner and to invade artificial extracellular matrices. The results of numerous studies have suggested that the extracellular and pericellular matrix polysaccharide, hyaluronan, plays an important role in these attributes of malignant cancer cells. However, with ...

  17. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    OpenAIRE

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  18. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    International Nuclear Information System (INIS)

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  19. Bromelain reversibly inhibits invasive properties of glioma cells.

    Science.gov (United States)

    Tysnes, B B; Maurer, H R; Porwol, T; Probst, B; Bjerkvig, R; Hoover, F

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, and invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that alpha3 and beta1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, and translational attenuation.

  20. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Directory of Open Access Journals (Sweden)

    Berit B. Tysnes

    2001-01-01

    Full Text Available Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that a3 and α1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, translational attenuation.

  1. Growth and radiosensitivity of irradiated human glioma cell progeny

    Institute of Scientific and Technical Information of China (English)

    Chao Li; Li Li; Changshao Xu; Juying Zhou

    2008-01-01

    BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases.OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44.DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006.MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation.METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10. The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2,6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media.MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle.RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P=0.052). Compared to

  2. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  3. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133+ cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  4. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model

    Directory of Open Access Journals (Sweden)

    Meurer Luise

    2006-09-01

    Full Text Available Abstract Background ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. Methods To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. Results C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p Conclusion These results indicate that the participation of extracellular ATP and the ecto-nucleotidases may be associated with the development of this type of brain tumor in an in vivo glioma model.

  5. Non-permissive C6/36 cell culture for the Australian isolate of Macrobrachium rosenbergii nodavirus.

    Science.gov (United States)

    Hayakijkosol, O; Owens, L

    2013-04-01

    Macrobrachium rosenbergii nodavirus (MrNV) that causes white tail disease (WTD) is an emerging disease that contributes to serious production losses in Macrobrachium hatcheries worldwide. Mosquito cell lines (C6/36) have been reported to support the growth of MrNV and used to observe the cytopathic effects (CPE) in infected cells. This study determined the susceptibility of C6/36 mosquito cells to the Australian isolate of MrNV in order to use fewer animals in further investigations. Different staining methods were used to observe MrNV viral activity in C6/36 cells. Typical cytopathic effects such as vacuolation and viral inclusion bodies were observed in infected C6/36 cells with H&E and Giemsa staining. With acridine orange, it was easier to detect presumptive MrNV messenger ribonucleic acid in the infected cells. Using neutral red staining to measure mitochondrial activity showed light absorption of infected cells maximized at day 4 (O.D. = 0.6) but was significantly lower (chi-square = 41.265, df = 1, P < 0.05) than control groups (O.D. = 2) which maximized at day 12. Using trypan blue staining to count the number of cells with disrupted cell membranes, the maximum number of presumptively dead cells at day 8 (4 × 10(5)  cells) in infected treatments was higher than the control treatment at day 10 (1.8 × 10(5)  cells). However, TaqMan real-time PCR did not confirm the replication of MrNV in the cells over 14 days. The mean viral copies and mean cycle times of positive samples were stable at 2.07 × 10(4) and 24.12, respectively. Limited evidence of viral replication was observed during four serial passages. This study determined the mortality of the C6/36 cell line to the Australian isolate of MrNV but suggests limited patent replication was occurring. Trying different cell lines or adapting the virus to the C6/36 cells may be necessary to successfully replicate Australian MrNV in cell lines.

  6. Interleukin-2 expression and glioma cell proliferation following Vaceinia vector gene transfection in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiaogang Wang; Xuezhong Wei; Jiangqiu Liu

    2008-01-01

    BACKGROUND: The effectiveness of gene therapy is closely related to the efficiency of vector transfection and expression.OBJECTIVE: This study was designed to transfect a human brain glioma cell line with recombinant Vaccinia virus expressing the interleukin-2 (rVV-IL-2) gene, and to observe IL-2 expression and glioma cell proliferation potential after transfection. DESIGN: Experimental observation. SETTING: Department of Neurosurgery, Shenyang Military Area Command of Chinese PLA. MATERIALS: The rVV-IL-2 vectors were obtained through homologous recombination and screening in the Second Military Medical University of Chinese PLA. The human brain glioma cell line and IL-2-dependent cells were produced by the Second Military Medical University of Chinese PLA. Human IL-2 was produced by Genzyme Corporation. MAIN OUTCOME MEASURES: IL-2 expression at different time points after transfection of human brain glioma cells with varying MOI of Vaccinia viral vectors; in vitro proliferation capacity of human brain glioma cells among the 4 groups. RESULTS: IL-2 expression was detectable 4 hours after Vaccinia viral vector transfection and reached 300 kU/L by 8 hours. There was no significant difference in the proliferating rate of human brain glioma cells among the 4 groups (P > 0.05).CONCLUSION: Vaccinia viral vectors can transfect human brain glioma cells in vitro and express high levels of IL-2. Vaccinia virus and high IL-2 expression do not influence the proliferation rate of human brain glioma cells in vitro.

  7. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    OpenAIRE

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSC...

  8. Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations.

    Directory of Open Access Journals (Sweden)

    Pierre Voisin

    2010-10-01

    Full Text Available Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth.However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the

  9. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  10. Capacity of ultraviolet-induced DNA repair in human glioma cells

    International Nuclear Information System (INIS)

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment. (author)

  11. Investigating effect of fusion gene therapy by MR diffusion-weighted imaging in a rat C6 glioma model%融合基因治疗大鼠C6胶质瘤的MR扩散加权成像研究

    Institute of Scientific and Technical Information of China (English)

    沈慧聪; 赵炜疆; 高培毅; 戴建平; 魏新华; 王建交; 李少武; 马军; 艾林; 刘福生; 柴奇

    2008-01-01

    Objective To evaluate the use of diffusion-weighted imaging(DWI)for early detection of tumor response to Angiostatin-Endostatin(Statin-AE)fusion gene therapy in a rat C6 glioma model.Methods Fifty male wistar rats with C6 tumor cells implanted into the striatum were examined by a 3.0T MR scanner,then the rats beating tmors were divided into two groups,treatment group and control group.Rats in the treatment group received 107 plaque forming unit(pfu)recombinant herps simplex viral (R-HSV)mediated Statin-AE fusion gene therapy on day 7,and then the tumors were conformed on MRI.Conventional MR and DWI examination were acquired on 1,2,3 weeks after implantation with a 5-inch surface coil.Two(1 w),eight(2 w)and all the residual rats(3 w)of each group were sacrificed to perform the histopathological examination after each MBI examination.Pretreatment and post treatment tumor volulnes and apparent diffusion coefficient(ADC)values were calculated.Rank sum test and t test were employed for statistical analysis.Results On MRI,43 rats demonstrated tumors on day 7 with a successful rate of 86%,On week 2,the tumor volumes of the controh and treatment group were 90.6 and 91.64 mm3,with no significant difference(Z=-0.14,P>0.05).On week 3,the tumor volumes of the controls and treatment group were 156.64 and 29.64 mm3,and a significant difference was observed(Z=-3.45,P<0.01).On week 2.the ADC values of the tumor centers of the treatment group and the control group were (1.20±0.25)×10-3 and(0.99±0.08)×10-3 mm2/s,and the values of the tumor peripheral parts of the two groups were(1.00±0.25)×10-3 and(0.83±0.12)×10-3mm2/s,the ADC values of both tumor centers and peripheral parts of the treatment group were significantly higher than those of the control group (t=-0.82 and-0.46,P<0.05).On week 3,the ADC values of the tumor centers of the treatment group and the control group were(0.92±0.21)× 10-3 and(0.99±0.09)×10-3mm2/s,and the values of the tumor peripheral parts of

  12. Three-dimensional structure determination of capsid of Aedes albopicus C6/36 cell densovirus

    Institute of Scientific and Technical Information of China (English)

    CHENG Lingpeng; CHEN Senxiong; Jenifer M.Brannan; Joanita Jakana; ZHANG Qinfen; Z.H.Zhou; ZHANG Jingqiang

    2004-01-01

    The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-(A) resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.

  13. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  14. 冬凌草甲素诱导C6脑胶质瘤细胞凋亡的初步研究%Apoptosis of C6 astrocytoma cells induced by oridonin

    Institute of Scientific and Technical Information of China (English)

    尹波; 俞利生; 林坚; 盛汉松; 张弩

    2012-01-01

    Objective: To investigate the proliferation suppression and apoptosis inducing effect of oridonin on Rat C6 astrocytoma cells. Methods: C6 cells were treated with different concentrations of oridonin for various time intervals. Oridonin concentration-time viability curve were used to test the effect of oridonin on the C6 cells. The distribution of cell cycle and percentage of apoptosis cells was analyzed with flow cytotnetry. Results: The results of viability curve demonstrated that oridonin induced suppression of prolifera tion in a concentration-and time-dependent manner. Hochest 33258 staining and flow cytometry revealed that oridonin induced apoptosis and arrested the entry into G2/M phase of C6 cells. Conclusion: Oridonin can cause the suppression of proliferation and the cell apoptosis in C6 astrocytoma cells.%目的:研究冬凌草甲素对大鼠C6脑胶质瘤细胞的抑制增殖及诱导凋亡的作用.方法:不同浓度的冬凌草甲素在不同的时间间隔内作用于C6脑胶质瘤细胞,用冬凌草甲素浓度时间生存曲线来测试冬凌草甲素对C6脑胶质瘤细胞的作用.用流式细胞技术来分析细胞周期的分布情况及凋亡细胞的百分数.结果:生存曲线结果证实冬凌草甲素诱导增殖抑制呈浓度依赖和时间依赖.Hochest 33258斑点染色及流式细胞技术揭示冬凌草甲素诱导C6脑胶质瘤细胞凋亡及抑制其进入细胞周期的G2/M相.结论:冬凌草甲素能够抑制C6脑胶质瘤细胞增殖,诱导细胞凋亡.

  15. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  16. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner. PMID:22318356

  17. Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Direct current electric fields (DCEFs can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC or overexpression of mitochondrial superoxide dismutase (MnSOD, but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk1/2, c-Jun N-terminal kinase (JNK, and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the "bridges" coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration.

  18. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  19. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.

  20. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  1. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma.

    Science.gov (United States)

    Song, Ye; Hu, Zheng; Long, Hao; Peng, Yuping; Zhang, Xi'an; Que, Tianshi; Zheng, Shihao; Li, Zhiyong; Wang, Gang; Yi, Liu; Liu, Zhen; Fang, Weiyi; Qi, Songtao

    2014-09-01

    HDGF is overexpressed in gliomas as compared to normal brain. We therefore analyzed the molecular mechanisms of HDGF action in gliomas. HDGF was downregulated in normal brain tissue as compared to glioma specimens at both the mRNA and the protein levels. In glioma samples, increased HDGF expression was associated with disease progression. Knocking down HDGF expression not only significantly decreased cellular proliferation, migration, invasion, and tumorigenesis, but also markedly enhanced TMZ-induced cytotoxicity and apoptosis in glioma cells. Mechanistic analyses revealed that CCND1, c-myc, and TGF-β were downregulated after stable HDGF knockdown in the U251 and U87 glioma cells. HDGF knockdown restored E-cadherin expression and suppressed mesenchymal cell markers such as vimentin, β-catenin, and N-cadherin. The expression of cleaved caspase-3 increased, while Bcl-2 decreased in each cell line following treatment with shHDGF and TMZ, as compared to TMZ alone. Furthermore, RNAi-based knockdown study revealed that HDGF is probably involved in the activation of both the PI3K/Akt and the TGF-β signaling pathways. Together, our data suggested that HDGF regulates glioma cell growth, apoptosis and epithelial-mesenchymal transition (EMT) probably through the Akt and the TGF-β signaling pathways. These results provide evidence that targeting HDGF or its downstream targets may lead to novel therapies for gliomas.

  2. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    Science.gov (United States)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  3. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Peng-fei GE; Ji-zhou ZHANG; Xiao-fei WANG; Fan-kai MENG; Wen-chen LI; Yong-xin LUAN; Feng LING; Yi-nan LUO

    2009-01-01

    Aim:The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation.Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy.Due to the dual roles of autophagy in tumor cell survival and death,the effect of autophagy on the destiny of glioma cells remains unclear.In this study,we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells.Methods:The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells,and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA.Cell viability was measured by MTT assay.Apoptosis and cell cycle were detected by flow cytometry.The expression of autophagy related proteins was determined by Western blot.Results:MG-132 inhibited cell proliferation,induced cell death and cell cycle arrest at G~JM phase,and activated autophagy in SHG-44 glioma cells.The expression of autophagy-related Beclin-1 and LC3-1 was significantly up-regulated and part of LC3-1 was converted into LC3-11.However,when SHG-44 glioma cells were co-treated with MG-132 and 3-MA,the cells became less viable,but cell death and cell numbers at G2/M phase increased.Moreover,the accumulation of acidic vesicular organelles was decreased,the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-11 from LC3-1 was also inhibited.Conclusion:Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells,and inhibition of autophagy increases cell death.This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.

  4. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Xin Hui Derryn Chan

    2012-09-01

    Full Text Available Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138 as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.

  5. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells. PMID:25875864

  6. Matrine inhibits the invasive properties of human glioma cells by regulating epithelial‑to‑mesenchymal transition.

    Science.gov (United States)

    Wang, Zhongwei; Wu, Yi; Wang, Yali; Jin, Yingying; Ma, Xiulong; Zhang, Yang; Ren, Hongtao

    2015-05-01

    Matrine is reported to be effective in tumor therapies; however, the anti‑metastatic effect and molecular mechanism(s) of matrine on glioma remain poorly understood. Therefore, the purpose of this study was to assess the effects of matrine on glioma and the associated mechanism(s). In the study, we demonstrated that matrine inhibited the proliferation of glioma cells. We also observed that matrine inhibited the migration and invasion of glioma cells at non‑toxic concentrations. Matrine also decreased the expression of E‑cadherin and increased the expression of N‑cadherin. These results suggest that the anti‑metastatic effect of matrine may be correlated with epithelial‑to‑mesenchymal transition (EMT). Moreover, matrine could reduce the phosphorylation levels of p38 and AKT proteins. In conclusion, these results suggest matrine may be a potential alternative against invasive glioma cells via the p38 MAPK and AKT signaling‑dependent inhibition of EMT.

  7. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    International Nuclear Information System (INIS)

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma

  8. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-08-01

    The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy. PMID:24842385

  9. Utilization of {sup 13}C-enriched substrates for the NMR study of the channelling of Krebs cycle intermediates in glioma C6; Utilisation de substrats enrichis en {sup 13}C pour l`etude par RMN de la canalisation des intermediaires du cycle de Krebs dans le gliome C6

    Energy Technology Data Exchange (ETDEWEB)

    Merle, M.; Peron, M.; Valeins, H.; Canioni, P. [Bordeaux-2 Univ., 33 (France)

    1994-12-31

    Unequal enrichments are observed for the C2 and C3 carbons of glutamate (C2>C3) and of aspartate (C3>C2) during incubation of C6 cells with (1-{sup 13} C) glucose. In order to study if this result is the result of an entry of {sup 13}C at the oxalo-acetate level or of another phenomenon, the enrichment distribution on asparte C1 and C4 carbons of C6 cells incubated with (1-{sup 13} C) glucose and the enrichment of C2 and C3 carbons of glutamate during cell incubation with (2-{sup 13} C) acetate, i.e. cases where the entry of {sup 13}C in the cycle, via the activity of the pyruvate carboxylase, is very unlikely, are examined. 4 figs., 1 tab., 1 ref.

  10. ET-67SUICIDE GENE THERAPY FOR GLIOMA USING MULTILINEAGE-DEFFERENTIATING STRESS ENDURING (MUSE) CELLS

    OpenAIRE

    Yamasaki, Tomohiro; Wakao, Shohei; KAWAJI, Hiroshi; Suzuki, Tomo; Kamio, Yoshinobu; AMANO, SHINJI; Sameshima, Tetsuro; Sakai, Naoto; TOKUYAMA, TSUTOMU; Dezawa, Mari; NAMBA, HIROKI

    2014-01-01

    INTRODUCTION: We have been investigating cell-based glioma gene therapy using various kinds of stem cells transduced with the herpes simplex virus thymidine kinase gene (HSVtk). In our previous study, we used SSEA3/CD105 double-positive multilineage-differentiating stress-enduring (Muse) cells transduced with HSVtk (Muse-tk cells) as the vehicle for HSVtk/ganciclovir (GCV) gene therapy. We demonstrated a potent in vitro tumoricidal bystander effect for various glioma cells. In the present stu...

  11. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    Science.gov (United States)

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells.

  12. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    Science.gov (United States)

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells. PMID:27175912

  13. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  14. Tumor-derived hepatocyte growth factor is associated with poor prognosis of patients with glioma and influences the chemosensitivity of glioma cell line to cisplatin in vitro

    Directory of Open Access Journals (Sweden)

    Guo You-feng

    2012-06-01

    Full Text Available Abstract Background We examined the association of tumor-derived hepatocyte growth factor (HGF with the clinicopathological features of gliomas and investigated the effect of HGF inhibition on the biological behavior of tumor cells in vitro in order to determine whether HGF is a valuable prognostic predictor for glioma patients. Methods Seventy-six cases of glioma were collected. The tumor-derived HGF expression, cell proliferation index (PI and intratumoral microvessels were evaluated by immunohistochemistry. Correlation between immunostaining and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. U87MG glioma cells were transfected with short interference (si-RNA for HGF, and the cell viability, migratory ability and chemosensitivity to cisplatin were evaluated in vitro. Results Both high HGF expression in tumor cells (59.2%, 45/76 and high PI were significantly associated with high-grade glioma and increased microvessels in tumors (P P = 0.004 and high-expression of HGF (P = 0.008 emerged as independent prognostic factors for the overall survival of glioma patients. The tumor-derived HGF mRNA and protein expressions were significantly decreased in vitro after transfection of HGF siRNA. HGF siRNA inhibited the cell growth and reduced cell migratory ability. Moreover, HGF siRNA transfection enhanced the chemosensitivity of U87MG glioma cells to cisplatin. Conclusion This study indicated that there was significant correlation among tumor cell-derived HGF, cell proliferation and microvessel proliferation in gliomas. HGF might influence tumor progression by modulating the cell growth, migration and chemoresistance to drugs. Increased expression of HGF may be a valuable predictor for prognostic evaluation of glioma patients.

  15. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    International Nuclear Information System (INIS)

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  16. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  17. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  18. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  19. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  20. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  1. Intraoperative neuropathology of glioma recurrence: cell detection and classification

    Science.gov (United States)

    Abas, Fazly S.; Gokozan, Hamza N.; Goksel, Behiye; Otero, Jose J.; Gurcan, Metin N.

    2016-03-01

    Intraoperative neuropathology of glioma recurrence represents significant visual challenges to pathologists as they carry significant clinical implications. For example, rendering a diagnosis of recurrent glioma can help the surgeon decide to perform more aggressive resection if surgically appropriate. In addition, the success of recent clinical trials for intraoperative administration of therapies, such as inoculation with oncolytic viruses, may suggest that refinement of the intraoperative diagnosis during neurosurgery is an emerging need for pathologists. Typically, these diagnoses require rapid/STAT processing lasting only 20-30 minutes after receipt from neurosurgery. In this relatively short time frame, only dyes, such as hematoxylin and eosin (H and E), can be implemented. The visual challenge lies in the fact that these patients have undergone chemotherapy and radiation, both of which induce cytological atypia in astrocytes, and pathologists are unable to implement helpful biomarkers in their diagnoses. Therefore, there is a need to help pathologists differentiate between astrocytes that are cytologically atypical due to treatment versus infiltrating, recurrent, neoplastic astrocytes. This study focuses on classification of neoplastic versus non-neoplastic astrocytes with the long term goal of providing a better neuropathological computer-aided consultation via classification of cells into reactive gliosis versus recurrent glioma. We present a method to detect cells in H and E stained digitized slides of intraoperative cytologic preparations. The method uses a combination of the `value' component of the HSV color space and `b*' component of the CIE L*a*b* color space to create an enhanced image that suppresses the background while revealing cells on an image. A composite image is formed based on the morphological closing of the hue-luminance combined image. Geometrical and textural features extracted from Discrete Wavelet Frames and combined to classify

  2. Assessment of Tumor Cells in a Mouse Model of Diffuse Infiltrative Glioma by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Kuniaki Tanahashi

    2014-01-01

    Full Text Available Glioma of infiltrative nature is challenging for surgeons to achieve tumor-specific and maximal resection. Raman spectroscopy provides structural information on the targeted materials as vibrational shifts. We utilized Raman spectroscopy to distinguish invasive tumors from normal tissues. Spectra obtained from replication-competent avian sarcoma-(RCAS- based infiltrative glioma cells and glioma tissues (resembling low-grade human glioma were compared with those obtained from normal mouse astrocytes and normal tissues. In cell analysis, the spectra at 950–1000, 1030, 1050–1100, 1120–1130, 1120–1200, 1200–1300, 1300–1350, and 1450 cm−1 were significantly higher in infiltrative glioma cells than in normal astrocytes. In brain tissue analysis, the spectra at 1030, 1050–1100, and 1200–1300 cm−1 were significantly higher in infiltrative glioma tissues than in normal brain tissues. These spectra reflect the structures of proteins, lipids, and DNA content. The sensitivity and specificity to predict glioma cells by distinguishing normal cells were 98.3% and 75.0%, respectively. Principal component analysis elucidated the significance of spectral difference between tumor tissues and normal tissues. It is possible to distinguish invasive tumors from normal tissues by using Raman spectroscopy.

  3. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  4. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  5. Isolation, cultivation and identification of brain glioma stem cells by magnetic bead sorting

    Institute of Scientific and Technical Information of China (English)

    Xiuping Zhou; Chao Zheng; Qiong Shi; Xiang Li; Zhigang Shen; Rutong Yu

    2012-01-01

    This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening. Furthermore, the proliferation, differentiation and self-renewal biological features of brain glioma stem cells were identified. Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated. Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability, and expressed the stem cell-specific markers CD133 and nestin. After incubation with fetal bovine serum, the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly, indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons. Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells. These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors.

  6. Characterization and Comparison of Cancer Stem Cells in Human and Canine Glioma Cell Lines

    Directory of Open Access Journals (Sweden)

    Thomas Clements

    2012-01-01

    Full Text Available Gliomas are among the most common and malignantforms of primary brain tumors that occur naturally inhumans. They represent about 33% of brain tumorsand 80% of malignant brain tumors. Gliomas alsospontaneously arise in specific breeds in the canine family.Canine gliomas are histologically similar to human gliomaand have similar presentation and response to treatmentin the clinic. A comparison of canine and human gliomascould prove to be invaluable, because the acceptedrodent model has limitations when testing therapies andidentifying targets. Our goal is to obtain global proteinexpression and metabolic profiles of different classificationand grades of human and canine glioma, in order toidentify and compare the tumor survival strategies in bothsystems. Toward this end, we harvested and cultured cellsfrom a naturally occurring grade-3 oligodendrogliomatumor that was isolated from a canine patient at the PurdueUniversity Veterinary Teaching Hospital. Similar to cellsfrom human glioma, these cells formed neurosphereswhen cultured in serum free media in the presence of FGFand EGF. The cells were also sensitive to plating densityand oxygen concentrations.This work was supported by the National Institutes ofHealth, National Cancer Institute R25CA128770 CancerPrevention Internship Program administered by theOncological Sciences Center and the Discovery LearningResearch Center at Purdue University. This work wasalso supported by Showalter Research Foundation and aCollege of Technology Seed Grant.

  7. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  8. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Science.gov (United States)

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  9. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.

    Directory of Open Access Journals (Sweden)

    Sune Munthe

    Full Text Available Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1. A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3, a proliferation marker (Ki-67 as well as a chemo-resistance marker (MGMT. Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential.

  10. The classical photoactivated drug 8-methoxypsoralen and related compounds are effective without UV light irradiation against glioma cells.

    Science.gov (United States)

    de Oliveira, Diêgo Madureira; Ferreira Lima, Rute Maria; Clarencio, Jorge; Velozo, Eudes da Silva; de Amorim, Ilza Alves; Andrade da Mota, Tales Henrique; Costa, Silvia Lima; Silva, Fábio Pittella; El-Bachá, Ramon Dos Santos

    2016-10-01

    Currently, there is no effective therapy for high grade gliomas. 8-Methoxypsoralen (8-MOP) is a compound used in the treatment of skin diseases combined with UV light irradiation. In this work, rat glioma C6 cells, normal astrocytes and human glioblastoma GL-15 cells comprised an in vitro model to evaluate the antitumor activity of 8-MOP. We found that 8-MOP promoted a time- and concentration-dependent reduction of cell viability in tumor, but not in normal cells. This effect was more evident in log-phase growing culture, indicating antiproliferative activity, which was confirmed by colony formation assay. Long-term effect of 8-MOP at low concentration was also attested. The concentrations used in the tests (0.02-0.4 mM) were lower than plasmatic concentration found in patients. Despite the treatment leads to considerable morphological changes and apoptosis when used at high concentrations, 8-MOP did not promote cell cycle arrest, change in migration pattern neither necrosis. In addition, we evaluated the effect of 8-MOP in MDA-MB-231, CT-26 and SCC-3 cell lines, derived from other kind of primary tumors, and found that CT-26 cells did not respond to 8-MOP treatment, indicating that this compound does not act through a generic mechanism. Coumarin derivatives structurally related to 8-MOP were screened for its antitumor potential and presented different patterns of biological activity, and then it was possible to suggest the relevance of 8-MOP molecular structure for antiproliferative action. Therefore, 8-MOP, a drug with an outstanding record of safety, and related coumarins are good prototypes for development of a new class of anti-glioma drugs. PMID:27292695

  11. Expression of elongation factor-2 kinase contributes to anoikis resistance and invasion of human glioma cells

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Yi ZHANG; Xiao-yuan LIU; Zheng-hong QIN; Jin-ming YANG

    2011-01-01

    Aim: To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored.Methods: Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3.Results: Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis.Conclusion: The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy.

  12. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  13. The prognostic value of clinical factors and cancer stem cell-related markers in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard

    2014-01-01

    -renewal, proliferation, and differentiation during development of different (normal) tissues. The same characteristics were identified in cancer cells, and recently a major part of the glioma research has focused on the cancer stem cell (CSC) hypothesis, suggesting that only CSCs posses the ability of initiating new......UNLABELLED: Gliomas are the most frequent brain tumours among adults, and it is estimated that gliomas constitute half of the about 1500 new brain tumours diagnosed in Denmark every year. Existing treatment strategies include neurosurgery, radiation, and chemotherapy. Therapy selection is based...

  14. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  15. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    Science.gov (United States)

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  16. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  17. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    Science.gov (United States)

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo.

  18. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  19. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya’nan; Dai, Dongwei [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Lu, Qiong; Fei, Mingyu [Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai (China); Li, Mengmeng [Department of Rheumatology, Changzheng Hospital, Second Military Medical University, Shanghai (China); Wu, Xi, E-mail: xiwuchh@sina.com [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.

  20. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  1. Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines

    OpenAIRE

    Simona Baronchelli; Angela Bentivegna; Serena Redaelli; Gabriele Riva; Valentina Butta; Laura Paoletta; Giuseppe Isimbaldi; Monica Miozzo; Silvia Tabano; Antonio Daga; Daniela Marubbi; Monica Cattaneo; Ida Biunno; Leda Dalprà

    2013-01-01

    Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together th...

  2. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells

    Directory of Open Access Journals (Sweden)

    Song T

    2015-08-01

    Full Text Available Tao Song,1 Hui Li,2 Zhiliang Tian,3 Chaojiu Xu,4 Jingfang Liu,1 Yong Guo1 1Department of Neurosurgery, Xiangya Hospital, Central South University, 2Department of Immunology and Microbiology, Medical School of Jishou University, 3Department of Neurosurgery, 4Department of Oncology, The Hospital of Xiangxi Autonomous Prefecture, Jishou, People’s Republic of China Background: Resistance to temozolomide (TMZ in glioma is modulated by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT. This study aimed to examine the effects of fluoxetine (FLT on MGMT expression in glioma cells and to investigate its underlying mechanisms.Materials and methods: Expression of MGMT, GluR1, or IκB kinase β (IKKβ was attenuated using short hairpin RNA-mediated gene knockdown. The 3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to evaluate the growth inhibition induced by FLT or TMZ. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL was conducted to detect apoptotic cells. Western blotting was conducted to analyze the protein expression of MGMT, IKKβ, and NF-κB/p65 following FLT treatment. The murine subcutaneous xenograft model was used to evaluate the combinational effect of TMZ and FLT.Results: FLT markedly reduced MGMT expression in glioma cells, which was independent of GluR1 receptor function. Further, FLT disrupted NF-κB/p65 signaling in glioma cells and consequently attenuated NF-κB/p65 activity in regulating MGMT expression. Importantly, FLT sensitized MGMT-expressing glioma cells to TMZ, as FLT enhanced TMZ’s ability to impair the in vitro tumorigenic potential and to induce apoptosis in glioma cells. Knockdown of MGMT or IKKβ expression abolished the synergistic effect of FLT with TMZ in glioma cells, which suggested that FLT might sensitize glioma cells to TMZ through down-regulation of MGMT expression. Consistently, TMZ combined with FLT markedly attenuated NF

  3. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in glioma U87 cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhong; Xiangyuan Wu; Chunkui Shao; Qu Lin; Min Dong; Jingyun Wen; Xiaokun Ma; Li Wei

    2010-01-01

    Studies have shown that tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)exhibits strong induction of apoptosis in human glioma cells.It remains unclear whether the mitochondrion pathway,an important apoptosis signaling pathway,is involved in TRAIL-induced glioma cell apoptosis.In the present study,in vitro cultured human glioma U87 cells were treated with human recombinant soluble TRAIL.Apoptosis of glioma U87 cells,mitochondrial transmembrane potential(Δψm),cytoplasmic cytochrome c concentration and changes in caspase-3,-8 and-9 activity following human recombinant soluble TRAIL treatment were investigated to determine the mechanism of glioma U87 cell apoptosis induced by TRAIL.Additionally,blocking caspase-8resulted in TRAIL-induced mitochondrion pathway activation,suggesting that TRAIL,through activating caspase-8,initiated a series of mitochondrial events and resulted in apoptosis of glioma U87 cells.

  4. SURFACE MULTI-FUNCTIONALIZATION OF POLY(LACTIC ACID)NANOPARTICLES AND C6 GLIOMA CELL TARGETING in vivo

    Institute of Scientific and Technical Information of China (English)

    Xu-bo Yuan; Chun-sheng Kang; Yun-hui Zhao; Ming-qi Gu; Pei-yu Pu

    2009-01-01

    Polysaccharide coated PLA nanopartieles bearing aldehyde groups were prepared by dialysis of DMSO solution of cholesterol hydrophobic-modified dextran polyaldehyde and PLA against water.The average diameter of the nanoparticles was about 160 nm,and the size distribution was nearly homogenous.The nanoparticles were functionalized simultaneously with CD71 and EGFR antibody through the Schiff's base reaction,and then radiolabeled with 99mTc.After perfused the radiolabeled nanoparticles into tumor-bearing rats through left common carotid artery,the radioactivity in liver,spleen,kidney and brain was measured by scintillation counter.The results showed that less than 2% of nanoparticles were uptaken by the brain due to the uptake of the nanoparticles by the RES system.However,the coupling of transferrin antibody on the nanoparticles facilitated the penetration of nanoparticles across the blood brain barrier,and more specially,compared with monofuctionalized and native nanoparticles,the multifunctionalization enhanced the tumor accumulation of the nanoparticles in vivo.

  5. Semaphorin3B modulates radiosensitivity of human glioma U-87MG cells

    International Nuclear Information System (INIS)

    This study was to determine the Semaphorin3B (SEMA3B) role in glioma cells responding to irradiation. Two glioma cell lines, which were used here was wild-type p53 (U-87MG), and the other was harboring mutated p53 (U-251). The SEMA3B mRNA could be detected in the two cell lines. The expression level of SEMA3B mRNA was higher in U-87MG cells than in U-251 cells, and increased with time in U-87MG cells after irradiation. Knockdown of SEMA3B expression by shRNA decreased the radiosensitivity of U-87MG cells, this may be associated with the increased G2 accumulation after irradiation. In addition, G2 accumulation after irradiation was enhanced in SEMA3B low-expressing U-87MG cells. These results showed that the SEMA3B was implicated in glioma cells responding to irradiation. (authors)

  6. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard;

    2016-01-01

    in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers......Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness...... and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area...

  7. Effect and Mechanism of Epidermal Growth Factor on Proliferation of GL15 Gliomas Cell Line

    Institute of Scientific and Technical Information of China (English)

    WANG Heping; GUO Dongsheng; YE Fei; XI Guifa; WANG Baofeng; CHEN Jian; LEI Ting

    2006-01-01

    The effects of epidermal growth factor (EGF) on proliferation of G 15 glioma cells and the possible mechanisms were investigated. GFAP and EGFR expression was detected by immunohistochemical method. After the cells were treated with EGF at different concentrations, cell count method was used to determine the proliferation of glioma cells, cell cycle and apoptosis were analyzed by flow cytometry (FCM), and laser scan confocal microscope (LSCM) was used to measure the cytoplasmic free calcium. The results showed that GFAP was diffusedly expressed in GL15 cells and EGFR was over-expressed. EGF at doses of ≤ 1 ng/mL could significantly stimulate cell proliferation, cells in phase G0/G1 decreased, and those in phase S increased. EGF at doses of 10 and 100ng/ml could inhibit the cell proliferation significantly, and the apoptosis ratio in high dose of EGF group was higher than in control group. EGF could significantly induce a quick rise of intracellular free calcium, but the peak value of intracellular free calcium activated by high dose of EGF was higher than by low dose of EGF. It was suggested that EGF had a dual effect on gliomas: low dose of EGF could stimulate the cell proliferation of gliomas, but high dose of EGF could induce the cell apoptosis and inhibit the proliferation of gliomas, which might be contributed to the difference of intracellular free calcium.

  8. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1.

    Science.gov (United States)

    Ayala-Sarmiento, Alberto E; Martinez-Fong, Daniel; Segovia, José

    2015-08-01

    Glioblastoma is the most malignant primary brain tumor and is very resistant to treatment; hence, it has a poor prognosis. Neurotensin receptor type 1 (NTSR1) plays a key role in cancer malignancy and has potential therapeutic applications. However, the presence and function of neurotensin (NTS) receptors in glioblastoma is not clearly established. RT-PCR assays showed that healthy (non-tumor) astroglial cells and C6 glioma cells express NTSR2 and its isoform (vNTSR2) rather than NTSR1. In glioma cells, NTS promotes the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2), an effect that was completely abolished by blocking the internalization of the NTS/NTSR complex. We demonstrated pharmacologically that the internalization is dependent on the activation of NTSR2 receptors and it was prevented by levocabastine, a NTSR2 receptor antagonist. The internalization of NTSR2 and vNTSR2 was further demonstrated by its ability to mediate gene transfer (transfection) via the NTS-polyplex system. Expression of reporter transgenes and of the pro-apoptotic soluble form of growth arrest specific 1 (tGAS1) was observed in glioma cells. A significant reduction on the viability of C6 cells was determined when tGAS1 was transfected into glioma cells. Conversely, astroglial cells could neither internalize NTS nor activate ERK 1/2 and could not be transfected by the NTS-polyplex. These results demonstrate that the internalization process of NTSR2 receptors is a key regulator necessary to trigger the activation of the ERK 1/2. Our data support a new internalization pathway in glioma C6 cells that involve NTSR2/vNTSR2, which can be used to selectively transfer therapeutic genes using the NTS-polyplex system.

  9. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma.

    Science.gov (United States)

    Breunig, Joshua J; Levy, Rachelle; Antonuk, C Danielle; Molina, Jessica; Dutra-Clarke, Marina; Park, Hannah; Akhtar, Aslam Abbasi; Kim, Gi Bum; Hu, Xin; Bannykh, Serguei I; Verhaak, Roel G W; Danielpour, Moise

    2015-07-14

    As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  10. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  11. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    Science.gov (United States)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  12. CD81, a cell cycle regulator, is a novel target for histone deacetylase inhibition in glioma cells.

    Science.gov (United States)

    Gensert, JoAnn M; Baranova, Oxana V; Weinstein, David E; Ratan, Rajiv R

    2007-06-01

    Recent advances in cancer cell biology have focused on histone deacetylase inhibitors (HDACi's) because they target pathways critical to the development and progression of disease. In particular, HDACi's can induce expression of epigenetically silenced genes that promote growth arrest, differentiation and cell death. In glioma cells, one such repressed gene is the tetraspanin CD81, which regulates cytostasis in various cell lines and in astrocytes, the major cellular component of gliomas. Our studies show that HDACi's, trichostatin and sodium butyrate, promote growth arrest and differentiation with negligible cell death in glioma cells and induce expression of CD81 and cyclin-dependent kinase inhibitor 1A (p21(CIP/WAF-1)), another regulator of cytostasis in astrocytes. Interference RNA knock-down of CD81 abrogates cytostasis promoted by HDAC inhibition indicating that HDACi-induced CD81 is responsible for growth arrest. Induction of CD81 expression through HDAC inhibition is a novel strategy to promote growth arrest in glioma cells.

  13. THE EFFECT OF TRANSFECTED CX43 GENE ON THE GJIC AND PROLIFERATION OF GLIOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    浦佩玉; 夏之柏; 黄强; 王春艳; 王广秀

    2002-01-01

    Objective: To evaluate the effect of Cx43 gene on gap junction intercellular communication (GJIC) and proliferation of glioma cells. Methods: Cx43 cDNA was transfected into TJ905 human glioblastoma cells using lipofectamine. The expression of Cx43 was identified by Northern blot analyses, in situ hybridization and immunohistochemistry. MTT assay and average number of AgNORs (Argyrophlic nuclear organizer regions) were used to determine the cell proliferation. TUNEL method was used for detection of cell apoptosis, and scrape loading and dye tranfer method for examination of GJIC. Results: The Cx43 expression was greatly upregulated when Cx43 gene was transfected into TJ905 glioma cells. The cell proliferation was inhibited while the cell apoptosis was not increased and GJIC was significantly restored in the glioma cells tranfected with Cx43 gene. Conclusion: Cx43 gene has an inhibitory effect on the glioma cell proliferation, but no effect on induction of cell apoptosis. The restoration of GJIC may be the major mechanism involved in its effect. Cx43 gene can be the candidate for gene therapy of gliomas.

  14. Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing

    Science.gov (United States)

    Riccadonna, Cristina; Yacoub Maroun, Céline; Vuillefroy de Silly, Romain; Boehler, Margaux; Calvo Tardón, Marta; Jueliger, Simone; Taverna, Pietro; Barba, Leticia; Marinari, Eliana; Pellegatta, Serena; Bassoy, Esen Yonca; Martinvalet, Denis; Dietrich, Pierre-Yves; Walker, Paul R.

    2016-01-01

    Malignant gliomas are aggressive brain tumours with very poor prognosis. The majority of glioma cells are differentiated (glioma-differentiated cells: GDCs), whereas the smaller population (glioma-initiating cells, GICs) is undifferentiated and resistant to conventional therapies. Therefore, to better target this pool of heterogeneous cells, a combination of diverse therapeutic approaches is envisaged. Here we investigated whether the immunosensitising properties of the hypomethylating agent decitabine can be extended to GICs. Using the murine GL261 cell line, we demonstrate that decitabine augments the expression of the death receptor FAS both on GDCs and GICs. Interestingly, it had a higher impact on GICs and correlated with an enhanced sensitivity to FASL-mediated cell death. Moreover, the expression of other critical molecules involved in cognate recognition by cytotoxic T lymphocytes, MHCI and ICAM-1, was upregulated by decitabine treatment. Consequently, T-cell mediated killing of both GDCs and GICs was enhanced, as was T cell proliferation after reactivation. Overall, although GICs are described to resist classical therapies, our study shows that hypomethylating agents have the potential to enhance glioma cell recognition and subsequent destruction by immune cells, regardless of their differentiation status. These results support the development of combinatorial treatment modalities including epigenetic modulation together with immunotherapy in order to treat heterogenous malignancies such as glioblastoma. PMID:27579489

  15. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  16. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  17. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  18. Slit2 involvement in glioma cell migration is mediated by Robo1 receptor.

    Science.gov (United States)

    Mertsch, Sonja; Schmitz, Nicole; Jeibmann, Astrid; Geng, Jian-Guo; Paulus, Werner; Senner, Volker

    2008-03-01

    Slit and Robo proteins are evolutionarily conserved molecules whose interaction underlies axon guidance and neuronal precursor cell migration. During development secreted Slit proteins mediate chemorepulsive signals on cells expressing Robo receptors. Because similar molecular mechanisms may be utilized in glioma cell invasion and neuroblast migration, we studied the expression of Slit2 and its transmembrane receptor Robo1 as well as their functional role in migration in glioma cells. qRT-PCR and immunohistochemistry of human specimens revealed that Slit2 was distinctly expressed by non-neoplastic neurons, but at only very low levels in fibrillary astrocytoma and glioblastoma. Robo1 also was mainly restricted to neurons in the normal brain, whereas astrocytic tumor cells in situ as well as glioblastoma cell lines overexpressed Robo1 at mRNA and protein levels. Recombinant human Slit2 in a concentration of 0.45 nM was repulsive for glioma cell lines in a modified Boyden chamber assay. RNAi-mediated knockdown of Robo1 in glioma cell lines neutralized the repulsive effect of Slit2, demonstrating that Robo1 served as the major Slit2 receptor. Our findings suggest that a chemorepulsive effect mediated by interaction of Slit2 and Robo1 participates in glioma cell guidance in the brain.

  19. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway

    OpenAIRE

    Han, S.; Z. Li; Master, L M; Master, Z W; Wu, A

    2014-01-01

    Background: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. Methods and results: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and...

  20. MicroRNA-544 inhibits glioma proliferation, invasion and migration but induces cell apoptosis by targeting PARK7.

    Science.gov (United States)

    Jin, Shiguang; Dai, Yan; Li, Cheng; Fang, Xiao; Han, Huijing; Wang, Daxin

    2016-01-01

    Glioma is a common type of primary brain tumor. The survival rate in people with malignant gliomas is extremely low associated with the lack of effective treatment. Here, we firstly observed that miR-544 expression is downregulated in glioma tissues and its overexpression in glioma cell line dramatically reduces cell proliferation, migration and invasion. In addition, we found that the tumor growth in nude mouse was as well inhibited by miR-544 overexpressed in glioma cell. Our further investigation showed that the inhibitor role of miR-544 in tumor development was related to the downregulated expression of Park7 gene which has been demonstrated as a functional downstream target of miR-544. Thus, our discovery suggested that miR-544 might used as a therapeutic reagent for the treatment of glioma in the future.

  1. KLF8 Promotes Temozolomide Resistance in Glioma Cells via β-Catenin Activation

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-04-01

    Full Text Available Background/Aims: The transcription factor Krüppel-like factor (KLF 8 plays important roles in tumorigenesis and tumor metastasis. However, the relationship between KLF8 and glioma cell chemoresistance is not known. Methods: The effects of KLF8 on glioma cell proliferation, apoptosis and chemosensitivity to temozolomide (TMZ were analyzed by Cell Counting Kit 8 assay and flow cytometry assay. A xenograft model was used to study the effect of KLF8 on tumor growth and sensitivity to TMZ. Results: We found that in the absence of KLF8, glioma cells showed greater sensitivity to TMZ, resulting in the inhibition of cell growth and enhanced apoptosis. KLF8 overexpression had the opposite effect; that is, cell resistance to TMZ was increased, which was associated with β-catenin activation. Conclusion: Taken together, these data suggest that KLF8 modulates glioma cell resistance to TMZ via activation of β-catenin; therefore, therapies that inhibit KLF8 levels in glioma can enhance the efficacy of TMZ treatment.

  2. Identification of proteins involved in neural progenitor cell targeting of gliomas

    Directory of Open Access Journals (Sweden)

    Honeth Gabriella

    2009-06-01

    Full Text Available Abstract Background Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. Methods Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. Results We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. Conclusion These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.

  3. Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents

    Institute of Scientific and Technical Information of China (English)

    Xiang-xi MENG; Jia-qi WAN; Meng JING; Shi-guang ZHAO; Wei CAI; En-zhong LIU

    2007-01-01

    Aim: To determine whether glioma cells can be specifically and efficiently tar- geted by superparamagnetic iron oxide nanoparticle (SPIO)-fluorescein isothiocyanate (FITC)-chlorotoxin (SPIOFC) that is detectable by magnetic reso- nance imaging (MRI) and optical imaging. Methods: SPIOFC was synthesized by conjugating SPIO with FITC and chlorotoxin. Glioma cells (human U251-MG and rat C6) were cultured with SPIOFC and SPIOF (SPIO-FITC), respectively. Neural cells were treated with SPIOFC as the control for SPIOFC-targeted glioma cells. The internalization of SPIOFC by glioma cells was assessed by MRI and was quantified using inductively-coupled plasma emission spectroscopy. The optical imaging ability of SPIOFC was evaluated by confocal laser scanning microscopy. Results: Iron per cell of U251 (72.5±1.8 pg) and C6 (74.9±2.2 pg) cells cultured with SPIOFC were significantly more than those of U251 (6.6±1.0 pg) and C6 (7.1±0.8 pg) cells incubated with SPIOF. The T2 signal intensity of U251 and C6 cells cultured with SPIOFC (233.6±25.9 and 211.4±17.2, respectively) were substantially lower than those of U251 and C6 cells incubated with SPIOF (2275.3±268.6 and 2342.7±222.4, respectively). Moreover, there were significant differences in iron per cell and T2 signal intensity between SPIOFC-treated neural cells (1.3±0.3; 2533.6±199.2) and SPIOFC-treated glioma cells. SPIOFC internalized by glioma cells exhibited green fluorescence by confocal laser scanning microscopy. Conclusion: SPIOFC is suitable for the specific and efficient targeting of glioma cells. MRI and optical imaging in conjunction with SPIOFC can differentiate glioma cells from normal brain tissue cells.

  4. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    International Nuclear Information System (INIS)

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The [3H]-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (104-105M) and nimodipine (104-106M) significantly inhibited the [3H]-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x103M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels. (author)

  5. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    International Nuclear Information System (INIS)

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  6. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  7. RETROVIRAL-MEDIATED SUICIDE GENE THERAPY OF EXPERIMENTAL GLIOMA

    Institute of Scientific and Technical Information of China (English)

    Xu Lingfei; Ge Kai; Zheng Zhongcheng; Sun Lanying; Liu Xinyuan

    1998-01-01

    Objective: To establish a retroviral-mediated suicide gene therapy system for experimental glioma and test its efficacy. Methods: C6 rat glioma cells were infected with recombinant retrovirus containing HSV-tk gene. The C6/tk cell line which stably expressed tk was selected and cloned. The sensitivities of C6/tk cells to several nucleoside analogues, such as GCV, BVdU, ACV were compared by the growth inhibition studies. Antitumor effects were also observed after GCV treatment in nude mice bearing tumors derived from C6/tk cells. Results:The growth inhibition studies showed that GCV was the most efficient prodrug in this system. C6/tk cells were highly sensitive to GCV, with an IC50<0.2 μmol/L, being 500-fold less than that in tk-negative C6 cells. In vivo studies showed significant tumor inhibition in the treatment group. Conclusion: Glioma cells can be eradicated by using retroviral-mediated suicide gene system in vitro as well as in vivo.

  8. Radio-resistance induced by nitric oxide to heavy ion irradiation in A172 human glioma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qingming; ZHANG Hong; ZHANG Xingxia

    2007-01-01

    To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172,A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA172), were irradiated by 12C6+ ions to 0, 1 or 2Gy. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G2/M stage arrest induced by the 12C6+ ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection.The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.

  9. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

    Directory of Open Access Journals (Sweden)

    Dorine A Bax

    Full Text Available BACKGROUND: Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines. PRINCIPAL FINDINGS: All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression profiling identified 93 differentially expressed genes which were able to distinguish between the adult and paediatric high grade cell lines, including a number of kinases and co-ordinated sets of genes associated with DNA integrity and the immune response. SIGNIFICANCE: These data demonstrate that glioma cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell lines for preclinical and mechanistic studies.

  10. Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry

    International Nuclear Information System (INIS)

    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to β-tubulin and α-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells

  11. The effect of heavy ion 12C6+on the change of telomerase activity of the human hepatocellular cells and carcinoma cells

    Science.gov (United States)

    Dang, Bingrong

    The effect of heavy ion 12C6+on the change of telomerase activity of the human hepatocellular cells and carcinoma cells Dang Bingrong ,Hu Kaiqian (Institute of Modern Physics Chinese Academy of Sciences£¬Graduate University of Chinese Academy of Sciences lanzhou 730000) Abstract Objective To investigate the changes in telomerase and its activity in human tumor and normal cell after exposure of the cells to heavy ion radiation.Irradiation was performed at the Heavy Ion Researsh Facility in Lanzhou (HIRFL). Methods We use the hepatocellular cells HL-7702 and the hepatocellular carcinoma cells SMMC-7721 from the people to experiment. Cells were exposed to 12 C6+ irradiation at 0,1,2,3 and 4Gy. The hepatocellular cells HL-7702 exposed to 12 C6+ irradiation were re-cultured for 72 hours. The hepatocellular carcinoma cells SMMC-7721 were re-cultured for 24 hours and 72 hours. PCR based telomeric repeat amplification protocol(TRAP-PCR) method were used to determine the telomerase activity in SMMC-7721and HL-7702, respectively. Result HL-7702 cells didn't have telomerase. But the cells exposed to 2Gy and 3Gy have the telomerase activity, the cells exposed to 1Gy and 4Gy didn't have the telomerase activity. After exposure to heavy ionizing radiation 1-3Gy the telomerase activity in SMMC-7721 cells were significantly increased in a dose-and timedependent manner. The cells of 7721 exposed to 4Gy was significantly lower than that 0Gy cells. Conclusion Heavy ionizing radiation, as a high LET radiation,induces the increase in telomerase activity in low dose and the decrease in high dose. It indicates that telomerase participates in the repair process of DNA injury induced by heavy ionizing radiation. Key words telomerase heavy ion hepatocellular cells SMMC-7721 cells HL-7702 cells PCR- telomeric repeat amplification protocol

  12. Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines.

    Science.gov (United States)

    Cimini, E; Piacentini, P; Sacchi, A; Gioia, C; Leone, S; Lauro, G M; Martini, F; Agrati, C

    2011-01-01

    Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain tumor in humans, responds modestly to treatment: most patients survive less than one year after diagnosis, despite both classical and innovative treatment approaches. A recent paper focused on γδ T-cell response in GBM patients, suggesting the application of an immunomodulating strategy based on γδ T-cells which is already in clinical trials for other tumors. Human Vγ2 T-cells recognize changes in the mevalonate metabolic pathway of transformed cells by activating cytotoxic response, and by cytokine and chemokine release. Interestingly, this activation may also be induced in vivo by drugs, such as zoledronic acid, that induce the accumulation of Vγ2 T-cell ligand Isopentenyl-pyrophosphate by blocking the farnesyl pyrophosphate synthase enzyme. The aim of our work is to confirm whether bisphosphonate treatment would make glioma cell lines more susceptible to lysis by in vitro expanded γδ T-cells, improving their antitumor activity. We expanded in vitro human Vγ2 T-cells by phosphoantigen stimulation and tested their activity against glioma cell lines. Co-culture with glioma cells induced Vγ2 T-cell differentiation in effector/memory cells, killing glioma cells by the release of perforin. Interestingly, glioma cells were directly affected by zoledronic acid; moreover, treatment increased their activating ability on Vγ2 T-cells, inducing an effective antitumor cytotoxic response. Taken together, our results show that aminobisphosphonate drugs may play a dual role against GBM, by directly affecting tumor cells, and by enhancing the antitumor response of Vγ2 T-cells. Our results confirm the practicability of this approach as a new immunotherapeutic strategy for GBM treatment.

  13. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  14. RAD18 mediates resistance to ionizing radiation in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi, E-mail: drzwang@gmail.com; Yue, Wu, E-mail: drwuyue@gmail.com

    2014-02-28

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.

  15. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi (Niigata Univ. (Japan). Brain Research Inst.)

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  16. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy.

    Science.gov (United States)

    Jiang, Pengfei; Wang, Ping; Sun, Xiaoling; Yuan, Zhongshun; Zhan, Rucai; Ma, Xiangyu; Li, Weiguo

    2016-01-01

    Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87(TMZ) and U251(TMZ). In U87(TMZ) and U251(TMZ), the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas. PMID:27366087

  17. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy

    Science.gov (United States)

    Jiang, Pengfei; Wang, Ping; Sun, Xiaoling; Yuan, Zhongshun; Zhan, Rucai; Ma, Xiangyu; Li, Weiguo

    2016-01-01

    Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87TMZ and U251TMZ. In U87TMZ and U251TMZ, the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas. PMID:27366087

  18. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  19. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  20. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Cardama GA

    2014-10-01

    Full Text Available Georgina A Cardama,1 Nazareno Gonzalez,1 Matias Ciarlantini,2 Lucia Gandolfi Donadío,2 María Julieta Comin,2 Daniel F Alonso,1 Pablo Lorenzano Menna,1,* Daniel E Gomez1,*1Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; 2Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, San Martín, Argentina, *These authors contributed equally to this workAbstract: Malignant gliomas are characterized by an intrinsic ability to invade diffusely throughout the normal brain tissue. This feature contributes mainly to the failure of existing therapies. Deregulation of small GTPases signaling, in particular Rac1 activity, plays a key role in the invasive phenotype of gliomas. Here we report the effect of ZINC69391, a specific Rac1 inhibitor developed by our group, on human glioma cell lines LN229 and U-87 MG. ZINC69391 is able to interfere with the interaction of Rac1 with Dock180, a relevant Rac1 activator in glioma invasion, and to reduce Rac1-GTP levels. The kinase Pak1, a downstream effector of Dock180–Rac1 signaling, was also downregulated upon ZINC69391 treatment. ZINC69391 reduced cell proliferation, arrested cells in G1 phase, and triggered apoptosis in glioma cells. Importantly, ZINC69391 dramatically affected cell migration and invasion in vitro, interfering with actin cytoskeleton dynamics. We also evaluated the effect of analog 1A-116, a compound derived from ZINC69391 structure. 1A-116 showed an improved antiproliferative and antiinvasive activity on glioma cells. These findings encourage further preclinical testing in clinically relevant animal models.Keywords: GTPases. invasion, Dock180, small molecule

  1. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Del Valle Luis

    2010-06-01

    Full Text Available Abstract Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR signaling, PPARα activity, reactive oxygen species (ROS metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC, restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.

  2. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Su-zhi [Department of Neurology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang (China); Lin, Yan; Cao, Xiao-pan [Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang (China); Liu, Jia-ming, E-mail: wzljm@126.com [School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou 325035, Zhejiang (China)

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  3. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro

    OpenAIRE

    Zahra eMoinfar; Hannes eDambach; Pedro Michael Faustmann

    2014-01-01

    Gap junctions (GJs) are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration, and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, ex...

  4. Exogenous p16 gene therapy combined with X-ray irradiation suppresses the growth of human glioma cells

    Institute of Scientific and Technical Information of China (English)

    Hongbing Ma; Zhengli Di; Minghua Bai; Hongtao Ren; Zongfang Li

    2011-01-01

    In this study, we infected human glioma U251 cells with a replication-defective recombinant adeno-virus carrying the p16 gene. This adenovirus constructed was able to transfect exogenous p16 into the human glioma cells efficiently, and direct a high level of p16 protein expression. Tumor-inhibition experiments demonstrated that treatment with the adenovirus-p16 significantly inhibited the growth of glioma cells in vitro as well as the in vivo development of tumors in nude mice bearing a brain glioma. The combination of adenovirus-p16 gene treatment and X-ray irradiation resulted in a greater inhibition of tumor growth. Adenovirus-mediated p16 gene therapy conferred a significant antitumor effect against human glioma cells both in vitro and in vivo, and that there was a synergistic effect when X-ray irradiation was also used.

  5. Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway

    NARCIS (Netherlands)

    Gielen, P.R.; Aftab, Q.; Ma, N.; Chen, V.C.; Hong, X.; Lozinsky, S.; Naus, C.C.; Sin, W.C.

    2013-01-01

    Glioblastoma multiforme (GBM) is the most aggressive astrocytoma, and therapeutic options are generally limited to surgical resection, radiotherapy, and Temozolomide (TMZ) chemotherapy. TMZ is a DNA alkylating agent that causes DNA damage and induces cell death. Unfortunately, glioma cells often dev

  6. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    Science.gov (United States)

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  7. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    OpenAIRE

    Ying-Bin Wang; Yi Hu; Zhen Li; Ping Wang; Yi-Xue Xue; Yi-Long Yao; Bo Yu; Yun-Hui Liu

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma ...

  8. Glioma grading using cell nuclei morphologic features in digital pathology images

    Science.gov (United States)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  9. Human pontine glioma cells can induce murine tumors

    NARCIS (Netherlands)

    Caretti, V.; Sewing, A.C.; Lagerweij, T.; Schellen, P.; Bugiani, M.; Jansen, M.H.; Vuurden, D.G. van; Navis, A.C.; Horsman, I.; Vandertop, W.P.; Noske, D.P.; Wesseling, P.; Kaspers, G.J.L.; Nazarian, J.; Vogel, H.; Hulleman, E.; Monje, M.; Wurdinger, T.

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop

  10. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    Science.gov (United States)

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively. PMID:26453119

  11. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  12. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    Science.gov (United States)

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  13. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  14. Survivin-specific small interfering RNAs enhance sensitivity of glioma U-87MG cells to paclitaxel by promoting apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunliang Xie; Yanbo Liu; Weigao Shen; Bo Zhang; Qun Liu

    2012-01-01

    A survivin siRNA expression vector was transfected into glioma U-87MG cells and these cells were then treated with paclitaxel. The results showed that survivin-specific siRNA combined with paclitaxel treatment synergistically inhibited glioma U-87MG cell proliferation and promoted apoptosis. This treatment also inhibited the expression of the cell cycle regulatory proteins, survivin, cyclinD1, c-Myc and CDK4 and enhanced the sensitivity of U-87MG cells to paclitaxel.

  15. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R;

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region...... showed a lower cytotoxic response than the spleen cells from rats transplanted with the transfected variants of BT4Cn cells, indicating that the transfection procedure in itself mediated an activation of the immune system. The present data suggest that NCAM may influence the malignant behavior of rat...

  16. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    Science.gov (United States)

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  17. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  18. Preliminary Study of Local Immunotherapy with Autologous Cytokine-Induced Killer Cells for Glioma Patients

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Yonggao Mu; Zhongping Chen

    2008-01-01

    OBJECTIVE Cytokine-induced killer (CIK) cells are T-cells that display effective anti-tumor activity. In this study, we investigated the anti-tumor activity of CIK cells in vitro, and conducted a preliminary investigation using autologous CIK cells to treat glioma patients through local administration.METHODS The CIK cells were derived from peripheral blood monocytes (PBMCs) of the glioma patients. The anti-tumor activity of the CIK cells against human T98-G glioma cell was tested In vitro. In addition, the autologous CIK cells were locally administrated into the tumor cavity in the malignant glioma patients through an Ommaya reservoir which was pre-inserted during tumor resection. The 4×108 CIK cells in a 5 ml suspension were injected once a week 2 times per cycle. Five hundreds KU of IL-2 was injected every other day.RESULTS (I) With incubation, the CIK cells showed dual staining of CD3+CD56+ with a positive rate of 3.45% on day 10 and 55.2% on day 30. In vitro anti-tumor activity (againstT98-G cells) of the CIK cells reached the highest level after 18 days of incubation with different effector/target (E:T) ratios. (ii)Six patients received autologous CIK cell treatment (10 cycles).Two patients showed no recurrence and are still alive (24 and 10 months), while 4 cases had a recurrence 3 of which have died. The mean survival time from the first CIK cell treatment to the end of follow-up was 12.5 months. The main side-effects of the local CIK cell treatment was brain edema, which was controlled by mannitol in most of the cases. However for one patient injection of CIK cells and IL-2 had to be discontinued.CONCLUSION In vitro CIK cells are effective anti-glioma T-cells. Local therapy with CIK cells has potential anti-glioma efficacy and tolerable side-effects.

  19. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Both proliferating cell nuclear antigen and P27 protein are important factors to regulate cell cycle. While, the combination of them can provide exactly objective markers to evaluate prognosis of patients with brain glioma needs to be further studied based on pathological level.OBJECTIVE: To observe the expressions of proliferating cell nuclear antigen and P27 protein in both injured and normal brain glioma tissues and analyze the effect of them on onset and development of brain glioma.DESIGN: Case contrast observation.SETTING: Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University.PARTICIPANTS: A total of 63 patients with brain glioma were selected from Department of Neurosurgery,the Second Affiliated Hospital of Xi'an Jiaotong University from July 1996 to June 2000. There were 38 males and 25 females and their ages ranged from 23 to 71 years. Based on pathological classification and grading standards of brain glioma, patients were divided into grade Ⅰ - tⅡ (n =30) and grade Ⅲ - Ⅳ (n =33). All cases received one operation but no radiotherapy and chemiotherapy before operation. Sample tissues were collected from tumor parenchyma. Non-neoplastic brain tissues were collected from another 12 non-tumor subjects who received craniocerebral trauma infra-decompression and regarded as the control group. There were 10 males and 2 females and their ages ranged from 16 to 54 years. The experiment had got confirmed consent from local ethic committee and the collection was provided confirmed consent from patients and their relatives. All samples were restained with HE staining so as to diagnose as the brain glioma.While, all patients with brain glioma received radiotherapy after operation and their survival periods were followed up.METHODS: Primary lesion wax of brain glioma was cut into serial sections and stained with S-P immunohistochemical staining. Brown substance which was observed in tumor nucleus was regarded as the

  20. Origin of the U87MG glioma cell line: Good news and bad news.

    Science.gov (United States)

    Allen, Marie; Bjerke, Mia; Edlund, Hanna; Nelander, Sven; Westermark, Bengt

    2016-08-31

    Human tumor-derived cell lines are indispensable tools for basic and translational oncology. They have an infinite life span and are easy to handle and scalable, and results can be obtained with high reproducibility. However, a tumor-derived cell line may not be authentic to the tumor of origin. Two major questions emerge: Have the identity of the donor and the actual tumor origin of the cell line been accurately determined? To what extent does the cell line reflect the phenotype of the tumor type of origin? The importance of these questions is greatest in translational research. We have examined these questions using genetic profiling and transcriptome analysis in human glioma cell lines. We find that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell line of unknown origin.

  1. Origin of the U87MG glioma cell line: Good news and bad news.

    Science.gov (United States)

    Allen, Marie; Bjerke, Mia; Edlund, Hanna; Nelander, Sven; Westermark, Bengt

    2016-08-31

    Human tumor-derived cell lines are indispensable tools for basic and translational oncology. They have an infinite life span and are easy to handle and scalable, and results can be obtained with high reproducibility. However, a tumor-derived cell line may not be authentic to the tumor of origin. Two major questions emerge: Have the identity of the donor and the actual tumor origin of the cell line been accurately determined? To what extent does the cell line reflect the phenotype of the tumor type of origin? The importance of these questions is greatest in translational research. We have examined these questions using genetic profiling and transcriptome analysis in human glioma cell lines. We find that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell line of unknown origin. PMID:27582061

  2. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  3. Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells?

    Directory of Open Access Journals (Sweden)

    Chinmay Munje

    2014-01-01

    Full Text Available The molecular chaperone heat shock protein 90 alpha (Hsp90α has been recognized in various tumours including glioma. This pilot study using a proteomic approach analyses the downstream effects of Hsp90 inhibition using 17-allylamino-17-demethoxygeldanamycin (17AAG and a short hairpin RNA (shRNA oligonucleotide targeting hsp90α (shhsp90α in the U87-MG glioma cell line. Preliminary data coupled with bioinformatic analysis identified several known and unknown Hsp90 client proteins that demonstrated a change in their protein expression after Hsp90 inhibition, signifying an alteration in the canonical pathways of cell cycle progression, apoptosis, cell invasion, angiogenesis, and metastasis. Members of the glycolysis pathway were upregulated, demonstrating increased dependency on glycolysis for energy source by the treated glioma cells. Upregulated proteins also include Hsp70 and members of its family such as Hsp27 and gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function after Hsp90 inhibition. Considering Hsp70’s role in antiapoptosis, it was postulated that a combination therapy involving a multitarget approach could be carried out. Consequently inhibition of both Hsp90 and Hsp70 in U87-MG glioma cells resulted in 60% cell death indicating the importance of combination therapy for glioma therapeutics.

  4. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  5. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Science.gov (United States)

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  6. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  7. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001). PMID:26026061

  8. FLUORESCENT, SHORT-CHAIN C-6-NBD-SPHINGOMYELIN, BUT NOT C-6-NBD-GLUCOSYLCERAMIDE, IS SUBJECT TO EXTENSIVE DEGRADATION IN THE PLASMA-MEMBRANE - IMPLICATIONS FOR SIGNAL-TRANSDUCTION RELATED TO CELL-DIFFERENTIATION

    NARCIS (Netherlands)

    KOK, JW; BABIA, T; KLAPPE, K; HOEKSTRA, D

    1995-01-01

    The involvement of the plasma membrane in the metabolism of the sphingolipids sphingomyelin (SM) and glucosylceramide (GlcCer) was studied, employing fluorescent short-chain analogues of these lipids, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylsphingosylphosphorylcholine (C-6-NBD-SM), C-6-

  9. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens

    OpenAIRE

    Pollard, Steven M; YOSHIKAWA, KOICHI; Clarke, Ian D.; Danovi, Davide; Stricker, Stefan; Russell, Roslin; Bayani, Jane; Head, Renee; Lee, Marco; Bernstein, Mark; Squire, Jeremy A.; Smith, Austin; Dirks, Peter

    2009-01-01

    Human brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from ...

  10. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Directory of Open Access Journals (Sweden)

    Hana M Weingartl

    Full Text Available Rift Valley fever virus (RVFV, genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells.

  11. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Science.gov (United States)

    Weingartl, Hana M; Zhang, Shunzhen; Marszal, Peter; McGreevy, Alan; Burton, Lynn; Wilson, William C

    2014-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells. PMID:24489907

  12. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  13. miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Libing, E-mail: lb.song1@gmail.com [State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 (China); Huang, Quan; Chen, Kun [Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080 (China); Liu, Liping [Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 (China); Lin, Chuyong; Dai, Ting [Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 (China); Yu, Chunping [State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060 (China); Wu, Zhiqiang [Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 (China); Li, Jun, E-mail: junli99@gmail.com [Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 (China)

    2010-11-05

    Research highlights: {yields} miR-218 is markedly downregulated in glioma cell lines and in primary glioma tissues. {yields} Upregulation of miR-218 dramatically reduces the invasive ability of glioma cells. {yields} Ectopic expression of miR-218 inactivates IKK-{beta}/NF-{kappa}B signaling pathway. {yields} miR-218 directly targets the 3'-untranslated region (3'-UTR) of IKK-{beta}. -- Abstract: Aberrant activation of nuclear factor-kappa B (NF-{kappa}B) pathway has been proven to play important roles in the development and progression of cancers. Activation of NF-{kappa}B via the classical pathway is modulated by I{kappa}Bs kinase (IKK-{beta}). However, the mechanism underlying the epigenetic regulation of IKK-{beta}/NF-{kappa}B pathway remains largely unknown. In this study, we found that the expression level of miR-218 was markedly downregulated in glioma cell lines and in human primary glioma tissues. Upregulation of miR-218 dramatically reduced the migratory speed and invasive ability of glioma cells. Furthermore, we showed that ectopically expressing miR-218 in glioma cells resulted in downregulation of matrix metalloproteinase-9 (MMP-9) and reduction in NF-{kappa}B transactivity at a transcriptional level, but inhibition of miR-218 enhanced the expression of MMP-9 and transcriptional activity of NF-{kappa}B. Moreover, we showed that miR-218 inactivated the NF-{kappa}B pathway through downregulating IKK-{beta} expression by directly targeting the 3'-untranslated region (3'-UTR) of IKK-{beta}. Taken together, our results suggest that miR-218 plays an important role in preventing the invasiveness of glioma cells, and our results present a novel mechanism of miRNA-mediated direct suppression of IKK-{beta}/NF-{kappa}B pathway in gliomas.

  14. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  15. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  16. The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways

    Directory of Open Access Journals (Sweden)

    Bernardi A

    2013-02-01

    Full Text Available Andressa Bernardi,1,* Rudimar L Frozza,2,* Juliana B Hoppe,2 Christianne Salbego,2 Adriana R Pohlmann,1,3 Ana Maria O Battastini,2 Sílvia S Guterres11Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS, Porto Alegre, RS, Brasil; 2Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil; 3Departamento de Química Orgânica, Instituto de Química, UFRGS, Porto Alegre, RS, Brasil *Both authors contributed equally to this workAbstract: Despite recent advances in radiotherapy, chemotherapy, and surgical techniques, glioblastoma multiforme (GBM prognosis remains dismal. There is an urgent need for new therapeutic strategies. Nanoparticles of biodegradable polymers for anticancer drug delivery have attracted intense interest in recent years because they can provide sustained, controlled, and targeted delivery. Here, we investigate the mechanisms involved in the antiproliferative effect of indomethacin-loaded lipid-core nanocapsules (IndOH-LNC in glioma cells. IndOH-LNC were able to reduce cell viability by inducing apoptotic cell death in C6 and U138-MG glioma cell lines. Interestingly, IndOH-LNC did not affect the viability of primary astrocytes, suggesting that this formulation selectively targeted transformed cells. Mechanistically, IndOH-LNC induced inhibition of cell growth and cell-cycle arrest to be correlated with the inactivation of AKT and ß-catenin and the activation of GSK-3ß. IndOH-LNC also induced G0/G1 and/or G2/M phase arrest, which was accompanied by a decrease in the levels of cyclin D1, cyclin B1, pRb, and pcdc2 and an increase in the levels of Wee1 CDK inhibitor p21WAF1. Additionally, IndOH-LNC promoted GBM cell differentiation, observed as upregulation of glial fibrillary acidic protein (GFAP protein and downregulation of nestin and CD133. Taken together, the crosstalk among antiproliferative effects

  17. MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Dahlrot, Rikke Hedegaard; Nielsen, Boye Schnack;

    2013-01-01

    of diseases including gliomas. MicroRNA-21 (miR-21) is the most consistently overexpressed miRNA in several cancers including gliomas and is therefore very promising as a useful clinical biomarker and therapeutic target. To better understand the role of miR-21 in gliomas, paraffin-embedded glioma tissue...... samples from 193 patients with grade I, II, III, and IV tumors were analyzed by in situ hybridization (ISH) using LNA-DNA chimeric probes. We found miR-21 expression in tumor cells and tumor-associated blood vessels, whereas no expression was seen in adjacent normal brain parenchyma. Using advanced image...... analysis we obtained quantitative estimates reflecting the miR-21 expression levels in each of these compartments. The miR-21 levels correlated significantly with grade [p = 0.027, r (s) = 0.161, 95 % confidence interval (CI), 0.015-0.301] with the highest levels measured in glioblastomas. Only tumor cell...

  18. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    International Nuclear Information System (INIS)

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  19. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma.

    Science.gov (United States)

    Wang, Ting-Chung; Cheng, Chun-Yu; Yang, Wei-Hsun; Chen, Wen-Cheng; Chang, Pey-Jium

    2015-11-01

    The aim of the present study was to investigate the extensive invasion of tumor cells into normal brain tissue, a life‑threatening feature of malignant gliomas. How invasive tumor cells migrate into normal brain tissue and form a secondary tumor structure remains to be elucidated. In the present study, the morphological and phenotypic changes of glioma cells during invasion in a C6 glioma model were investigated. C6 glioma cells were stereotactically injected into the right putamen region of adult Sprague‑Dawley rats. The brain tissue sections were then subjected to hematoxylin and eosin, immunohistochemical or immunofluorescent staining. High magnification views of the tissue sections revealed that C6 cells formed tumor spheroids following implantation and marked invasion was observed shortly after spheroid formation. In the later stages of invasion, certain tumor cells invaded the perivascular space and formed small tumor clusters. These small tumor clusters exhibited certain common features, including tumor cell multilayers surrounding an arteriole, which occurred up to several millimeters away from the primary tumor mass; a high proliferation rate; and similar gene expression profiles to the primary tumor. In conclusion, the present study revealed that invading tumor cells are capable of forming highly proliferative cell clusters along arterioles near the tumor margin, which may be a possible cause of the recurrence of malignant glioma.

  20. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M;

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...... to cells transfected with expression-vector alone or untransfected cells. However, when injected subcutaneously into nude mice, both NCAM expressing cells and control cells produced invasive tumors. Nude mice injected with NCAM positive cells developed tumors with slower growth rates as compared to those...

  1. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    OpenAIRE

    Rieken, Stefan; Habermehl, Daniel; Mohr, Angela; Wuerth, Lena; Lindel, Katja; Weber, Klaus; Debus, Jürgen; Combs, Stephanie E

    2011-01-01

    Background Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Methods Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in...

  2. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  3. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1

    Science.gov (United States)

    Gu, Jianjun; Xu, Rong; Li, Yaxing; Zhang, Jianhe; Wang, Shousen

    2016-01-01

    To explore the effects of microRNA-218 (miR-218) on glioma cell lines and the related mechanism. U251 and U87 cells were transfected with negative control, miR-218 mimic or miR-218 inhibitor using lipofectamine 2000. The expressions of mRNA and proteins were detected with qRT-PCR and Western blotting. The cell proliferation, apoptosis, migration and invasion were studied using MTT, flow cytometry, Transwell assay and scratch-wound assay, respectively. The targeting effect of HMGB1 by miR-218 was measured with luciferase reporter assay. The results showed that miR-218 was significantly downregulated while HMGB1 was upregulated in both glioma cell lines. Transfection of miR-218 significantly reduced the cell viability and colony formation, increased cell apoptosis and arrested cell in G0/G1 phase. Transfection of miR-218 also decreased the invasion and migration of glioma cells. The expressions of HMGB1, RAGE, cyclin D1 and MMP-9 were downregulated while the expression of caspase-9 was upregulated by miR-218. Silencing HMGB1 increased the expression of RAGE, cyclin D1, MMP-9 but decreased the expression of caspase-9 in U251 and U87 cells. Co-transfection with pcHMGB1 and miR-218 significantly decreased the growth inhibition and increased the apoptosis of glioma cells while these effects were abolished in glioma cells co-transfected with HMGB1 siRNA and miR-218 inhibitor. In addition, co-transfection with pcHMGB1 and miR-218 inhibitor increased the invasiveness of U251 and U87 cells. These findings suggested that miR-218 may negatively regulate HMGB-mediated suppression of RAGE to regulate cell proliferation, apoptosis and invasion, and that intervention of miR-218-HMGB1-RAGE may be useful for developing potential clinical strategies. PMID:27725858

  4. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development

    DEFF Research Database (Denmark)

    Bax, Dorine A; Little, Suzanne E; Gaspar, Nathalie;

    2009-01-01

    in comparison to routinely used adult lines. PRINCIPAL FINDINGS: All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression...... profiling identified 93 differentially expressed genes which were able to distinguish between the adult and paediatric high grade cell lines, including a number of kinases and co-ordinated sets of genes associated with DNA integrity and the immune response. SIGNIFICANCE: These data demonstrate that glioma...... cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell...

  5. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide

    Science.gov (United States)

    Chen, Rui; Liu, Huan; Cheng, Quan; Jiang, Bing; Peng, Renjun; Zou, Qin; Yang, Wenren; Yang, Xiaosheng; Wu, Xiaobing; Chen, Zigui

    2016-01-01

    ABSTRACT MicroRNAs (miRNAs), a class of small non-coding RNAs, can induce mRNA degradation or repress translation by binding to the 3′-untranslated region (UTR) of its target mRNA. Recently, some specific miRNAs, e.g. miR-93, have been found to be involved in pathological processes by targeting some oncogenes or tumor suppressors in glioma. However, the regulatory mechanism of miR-93 in the biological behaviors and chemoresistance of glioma cells remains unclear. In the present study, in situ hybridization and real-time RT-PCR data indicated that miR-93 was significantly upregulated in glioma patients (n=43) compared with normal brain tissues (n=8). Moreover, the upregulated miR-93 level was significantly associated with the advanced malignancy. We also found that upregulation of miR-93 promoted the proliferation, migration and invasion of glioma cells, and that miR-93 was involved in the regulation of cell cycle progression by mediating the protein levels of P21, P27, P53 and Cyclin D1. P21 was further identified as a direct target of miR-93. Knockdown of P21 attenuated the suppressive effects of miR-93 inhibition on cell cycle progression and colony formation. In addition, inhibition of miR-93 enhanced the chemosensitization of glioma cells to temozolomide (TMZ). Based on these above data, our study demonstrates that miR-93, upregulated in glioma, promotes the proliferation, cell cycle progression, migration and invasion of human glioma cells and suppresses their chemosensitivity to TMZ. Therefore, miR-93 may become a promising diagnostic marker and therapeutic target for glioma. PMID:27185265

  6. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells.

    Science.gov (United States)

    Liu, Zhi-Jun; Liu, Hong-Lin; Zhou, Hai-Cun; Wang, Gui-Cong

    2016-01-01

    Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells. PMID:27656836

  7. Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro

    Institute of Scientific and Technical Information of China (English)

    Mingxia Zhang; Xingliang Dai; Xiaonan Li; Qiang Huang; Jun Dong; Junjie Chen; Lin Wang; Xiaoyan Ji; Lin Yang; Yujing Sheng; Hairui Liu; Haiyang Wang; Aidong Wang

    2016-01-01

    Objective:Real-time monitoring of cytokine secretion at the single immunocyte level, based on the concept of immune cells, sociology has been recently reported. However, the relationships between glioma-initiating cells (GICs) and host immune cells and their mutual interactions in the tumor microenvironment have not been directly observed and remain unclear. Methods:The dual fluorescence tracing technique was applied to label the co-cultured GICs and host macrophages (Mø), and the interactions between the two types of cells were observed using a live cell imaging system. Fusion cells in the co-culture system were monocloned and proliferated in vitro and their social interactions were observed and recorded. Results:Using real-time dynamic observation of target cells, 6 types of intercellular conjunction microtubes were found to function in the transfer of intercellular information between GICs and Mø;GICs and host Mø can fuse into hybrid cells after several rounds of mutual interactions, and then these fusion cells fused with each other;Fusion cells generated offspring cells through symmetrical and asymmetrical division or underwent apoptosis. A“cell in cell” phenomenon was observed in the fusion cells, which was often followed by cell release, namely entosis. Conclusions:Preliminary studies revealed the patterns of cell conjunction via microtubes between GICs and host Mø and the processes of cell fusion, division, and entosis. The results revealed malignant transformation of host Mø, induced by GICs, suggesting complex social relationships among tumor-immune cells in gliomas.

  8. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  9. Endothelial progenitor cells (EPCs as gene carrier system for rat model of human glioma.

    Directory of Open Access Journals (Sweden)

    Nadimpalli Ravi S Varma

    Full Text Available BACKGROUND: Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1 intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2 whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities. METHODS AND RESULTS: Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS. Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors. CONCLUSION: EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for

  10. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma.

    Science.gov (United States)

    Köritzer, Julia; Boxhammer, Veronika; Schäfer, Andrea; Shimizu, Tetsuji; Klämpfl, Tobias G; Li, Yang-Fang; Welz, Christian; Schwenk-Zieger, Sabina; Morfill, Gregor E; Zimmermann, Julia L; Schlegel, Jürgen

    2013-01-01

    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.

  11. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma.

    Directory of Open Access Journals (Sweden)

    Julia Köritzer

    Full Text Available Glioblastoma (GBM is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.

  12. GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo.

    Science.gov (United States)

    Zhou, Xiang; Shen, Fazheng; Ma, Pengju; Hui, Hongyan; Pei, Sujuan; Chen, Ming; Wang, Zhongwei; Zhou, Wenke; Jin, Baozhe

    2015-10-01

    Glioma is a type of primary malignant tumor of the central nervous system in humans. At present, standard treatment involves surgical resection, followed by radiation therapy and chemotherapy. However, the prognosis is poor and the long‑term survival rate remains low. An improved understanding of the molecular basis for glioma tumorigenesis is in urgently required. The pro‑survival effect of the insulin‑like growth factor (IGF) signaling pathway has been implicated in progression of the glioma disease state. GSK1838705A is a novel, small molecule kinase inhibitor of IGF‑IR, which inhibits IGF signal transduction and downstream target activation. Its anti-proliferative activity has been demonstrated in various tumor cell lines. The present study investigated the potential use of GSK1838705A for the treatment of glioma. Human U87MG glioma cells were used to examine the inhibitory activity of GSK1838705A in cell proliferation, migration and apoptosis. The antitumor activity of GSK1838705A was assessed in a xenograft mouse model. GSK1838705A inhibited the growth and induced the apoptosis of the U87MG glioma cells in a dose‑dependent manner. The GSK1838705A‑treated cells exhibited reduced migratory activity in response to chemoattractants. The present study further demonstrated the antitumor activity of GSK1838705A in vivo. The administration of GSK1838705A significantly inhibited the growth of glioma tumors by inducing the apoptosis of tumor cells. These results suggested that targeting IGF signaling with GSK1838705A may be a promising therapeutic strategy for the treatment of patients with glioma. PMID:26238593

  13. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication.

    Directory of Open Access Journals (Sweden)

    Regina Ching Hua Lee

    2015-03-01

    Full Text Available Chikungunya virus (CHIKV is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.

  14. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

    Science.gov (United States)

    Shi, Qiong; Song, Xu; Wang, Jun; Gu, Jia; Zhang, Weijian; Hu, Jinxia; Zhou, Xiuping; Yu, Rutong

    2015-01-01

    Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

  15. New advances of microRNAs in glioma stem cells, with special emphasis on aberrant methylation of microRNAs.

    Science.gov (United States)

    Zhao, Bing; Bian, Er-Bao; Li, Jia; Li, Jun

    2014-09-01

    Malignant brain tumors are thought to be originate from a small population of cells that display stem cell properties, including the capacity of self-renewal, multipotent differentiation, initiation of tumor tissues. Cancer stem cells (CSCs) have been identified in gliomas in which they are named as glioma stem cells (GSCs). GSCs, sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Recently, increasing evidences have showed that miRNAs play a central role in GSCs. In this review we focus on the role of GSCs in gliomas and in the abnomal expression of miRNAs in GSCs. Furthermore, we also discuss epigenetic dysregulation of tumor-suppressor miRNAs by promoter DNA methylation is involved in the regulation of GSCs biology. Recent advances in understanding dysregulated expression of miRNAs and methylation of tumor-suppressor miRNAs in GSCs and their possible use as new therapeutic targets of gliomas.

  16. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  17. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  18. Valproic Acid Downregulates the Expression of MGMT and Sensitizes Temozolomide-Resistant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Chung Heon Ryu

    2012-01-01

    Full Text Available Temozolomide (TMZ has become a key therapeutic agent in patients with malignant gliomas; however, its survival benefit remains unsatisfactory. Valproic acid (VPA has emerged as an anticancer drug via inhibition of histone deacetylases (HDACs, but the therapeutic advantages of a combination with VPA and TMZ remain poorly understood. The main aim of the present study was to determine whether an antitumor effect could be potentiated by a combination of VPA and TMZ, especially in TMZ-resistant cell lines. A combination of VPA and TMZ had a significantly enhanced antitumor effect in TMZ-resistant malignant glioma cells (T98 and U138. This enhanced antitumor effect correlated with VPA-mediated reduced O6-methylguanine-DNA methyltransferase (MGMT expression, which plays an important role in cellular resistance to alkylating agents. In vitro, the combination of these drugs enhanced the apoptotic and autophagic cell death, as well as suppressed the migratory activities in TMZ-resistant cell lines. Furthermore, in vivo efficacy experiment showed that treatment of combination of VPA and TMZ significantly inhibited tumor growth compared with the monotherapy groups of mice. These results suggest that the clinical efficacy of TMZ chemotherapy in TMZ-resistant malignant glioma may be improved by combination with VPA.

  19. 脂膜微囊承载紫杉醇靶向性治疗C6胶质瘤的体内外实验研究%The targeted therapeutic effect of a lipid-coated microbubble carrying Taxol on C6 glioma in vivo and vitro

    Institute of Scientific and Technical Information of China (English)

    宫崧峰; 李新钢; 李刚; 王东海; 徐淑军; 周旭东

    2007-01-01

    目的:在体内外研究脂膜微囊(LCM)承载紫杉醇(Taxol)治疗大鼠颅内C6质瘤的机制.方法:体外实验应用紫杉醇-脂膜微囊(Taxol-LCM)或单用LCM处理C6细胞系,采用免疫荧光显微镜或激光共聚焦显微镜下观察LCM在肿瘤细胞内的分布特点,用药前后肿瘤细胞形态的改变和细胞内超微结构的变化,动态观察LCM进入细胞的全过程;体内实验建立大鼠C6胶质瘤动物模型12只,成瘤大鼠分为4组:注射LCM-Taxol组、注射LCM组、注射Taxol组及载瘤动物组,每组取一只在最后一次尾静脉注射相应药物后处死,获取大鼠脑组织标本,进行油红O染色,观察LCM在肿瘤位点分布的特点;同时观察不同处理组大鼠的生存期.结果:体外实验表明,Taxol可结合于LCM并被胶质瘤细胞内吞,起到很强的的杀伤肿瘤细胞作用.其内吞过程为LCM先结合于细胞膜表面,后在细胞内重新分布,最终被细胞浆内的酸性成分所降解.体内油红O染色显示,注射LCM-Taxol组肿瘤区域有LCM聚集,胶质瘤明显坏死;而注射LCM组,肿瘤区域有LCM出现,但肿瘤区域无明显坏死;注射Taxol组及载瘤动物组肿瘤区域无明显坏死;生存期结果示,Taxol-LCM组生存期明显长于其他3组,而与其他3组生存期比较差异不明显.结论:LCM可承载Taxol在体内外起到杀伤胶质瘤细胞的作用.

  20. Theraputic Effect of Lipid-Coated Microbubble Carrying Taxol on Rat with Intracranial C6 Glioma%脂膜微囊承载紫杉醇靶向性治疗大鼠颅内C6胶质瘤的实验研究

    Institute of Scientific and Technical Information of China (English)

    宫崧峰; 李新钢

    2009-01-01

    目的:研究脂膜微囊承载紫杉醇靶向性治疗大鼠颅内C6胶质瘤的机制.方法:建立大鼠C6胶质瘤动物模型12只,成瘤大鼠分为四组;注射LCM-Taxol组,注射LCM组.注射Taxol组及载瘤动物组,每组取一只在最后一次尾静脉注射相应药物后处死,获取大鼠脑组织标本,进行常规HE染色,油红O染色.观察LCM在肿瘤位点分布的特点;同时观察不同处理组大鼠的生存期.结果:油红O染色显示注射LCM-Taxol组,肿瘤区域有LCM聚集,胶质瘤明显坏死;而注射LCM组,肿瘤区域有LCM出现,但肿瘤区域无明显坏死;注射TAXOL组及载瘤动物组肿瘤区域无明显坏死;生存期结果示Taxol-LCM组生存期明显长于注射LCM组和注射Taxol组及载瘤动物组,而注射LCM组、注射Taxol组、单纯载瘤动物组生存期差异不明显.结论:LCM-Taxol可以承载药物靶向性聚集于颅内胶质瘤区域,并起到杀伤肿瘤的作用,明显延长了大鼠的生存期;而注射LCM组、注射Taxol组未能明显延长载瘤大鼠的生存期.

  1. Withania somnifera Suppresses Tumor Growth of Intracranial Allograft of Glioma Cells.

    Science.gov (United States)

    Kataria, Hardeep; Kumar, Sushil; Chaudhary, Harshita; Kaur, Gurcharan

    2016-08-01

    Gliomas are the most frequent type of primary brain tumor in adults. Their highly proliferative nature, complex cellular composition, and ability to escape therapies have confronted investigators for years, hindering the advancement toward an effective treatment. Agents that are safe and can be administered as dietary supplements have always remained priority to be most feasible for cancer therapy. Withania somnifera (ashwagandha) is an essential ingredient of Ayurvedic preparations and is known to eliminate cancer cells derived from a variety of peripheral tissues. Although our previous studies have addressed the in vitro anti-proliferative and differentiation-inducing properties of ashwagandha on neuronal cell lines, in vivo studies validating the same are lacking. While exploring the mechanism of its action in vitro, we observed that the ashwagandha water extract (ASH-WEX) induced the G2/M phase blockade and caused the activation of multiple pro-apoptotic pathways, leading to suppression of cyclin D1, bcl-xl, and p-Akt, and reduced the expression of polysialylated form of neural cell adhesion molecule (PSA-NCAM) as well as the activity of matrix metalloproteinases. ASH-WEX reduced the intracranial tumor volumes in vivo and suppressed the tumor-promoting proteins p-nuclear factor kappa B (NF-κB), p-Akt, vascular endothelial growth factor (VEGF), heat shock protein 70 (HSP70), PSA-NCAM, and cyclin D1 in the rat model of orthotopic glioma allograft. Reduction in glial fibrillary acidic protein (GFAP) and upregulation of mortalin and neural cell adhesion molecule (NCAM) expression specifically in tumor-bearing tissue further indicated the anti-glioma efficacy of ASH-WEX in vivo. Combining this enhanced understanding of the molecular mechanisms of ASH-WEX in glioma with in vivo model system offers new opportunities to develop therapeutic strategy for safe, specific, and effective formulations for treating brain tumors. PMID:26208698

  2. Human cytomegalovirus gene expression in long-term infected glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Estefania Fiallos

    Full Text Available The most common adult primary brain tumor, glioblastoma (GBM, is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study. Interleukin 6 (IL-6 treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis.

  3. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro.

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    Full Text Available Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1 plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.

  4. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).

  5. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines

    DEFF Research Database (Denmark)

    Bax, Dorine A; Gaspar, Nathalie; Little, Suzanne E;

    2009-01-01

    to erlotinib despite expressing wild-type PTEN. Phosphorylated receptor tyrosine kinase profiling showed a specific activation of platelet-derived growth factor receptor alpha/beta in EGFRvIII-transduced pediatric glioblastoma cells, and targeted coinhibition with erlotinib and imatinib leads to enhanced......PURPOSE: The epidermal growth factor receptor (EGFR) is amplified and overexpressed in adult glioblastoma, with response to targeted inhibition dependent on the underlying biology of the disease. EGFR has thus far been considered to play a less important role in pediatric glioma, although extensive...... of pediatric glioma cell line models to the small-molecule EGFR inhibitor erlotinib. RESULTS: Amplification was detected in 11% of cases, with corresponding overexpression of the receptor. No kinase or extracellular domain mutations were observed; however, 6 of 35 (17%) cases harbored the EGFRvIII deletion...

  6. STIMULATION OF THE MIDKINE/ALK AXIS RENDERS GLIOMA CELLS RESISTANT TO CANNABINOID ANTI-TUMORAL ACTION

    OpenAIRE

    Velasco, Guillermo; Lorente, Mar; Torres, Sofía; Salazar, María; Carracedo, Arkaitz; Hernández-Tiedra, Sonia; Rodríguez-Fornés, Fátima; García-Taboada, Elena; Meléndez, Bárbara; Mollejo, Manuela; Campos, Yolanda; Lakatosh, Sergey; Barcia, Juan; Guzmán, Manuel

    2011-01-01

    Abstract Identifying the molecular mechanisms responsible for the resistance of gliomas to anti-cancer treatments is an issue of great therapeutic interest. ?9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, by analyzing the gene expression profile of a large ...

  7. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    Science.gov (United States)

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Dong, Xing-yu; Liu, Ru-en; Xu, Ru-xiang

    2015-01-01

    We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3), and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. PMID:26508835

  8. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  9. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  10. Comparison of dengue infection in human mononuclear leukocytes with mosquito C6/36 and mammalian Vero cells using flow cytometry to detect virus antigen

    Directory of Open Access Journals (Sweden)

    Sydow Farid FO von

    2000-01-01

    Full Text Available Fluorescent activated cell sorter (FACS analysis is useful for the detection of cellular surface antigens and intracellular proteins. We used this methodology in order to detect and quantify dengue antigens in highly susceptible cells such as clone C6/36 (Aedes albopictus and Vero cells (green monkey kidney. Additionally, we analyzed the infection in vitro of human peripheral blood mononuclear leukocytes (PBML. FACS analysis turned out to be a reliable technique to quantify virus growth in traditional cell cultures of C6/36 as well as Vero cells. High rates of infection were achieved with a good statistical correlation between the virus amount used in infection and the percentage of dengue antigen containing cells detected in infected cultures. We also showed that human monocytes (CD14+ are preferred target cells for in vitro dengue infection among PBML. Monocytes were much less susceptible to virus infection than cell lines but they displayed dengue antigens detected by FACS five days after infection. In contrast, lymphocytes showed no differences in their profile for dengue specific immunofluorescence. Without an animal model to reproduce dengue disease, alternative assays have been sought to correlate viral virulence with clinical manifestations and disease severity. Study of in vitro interaction of virus and host cells may highlight this relationship.

  11. Silencing of MGMT with small interference RNA reversed resistance in human BCUN-resistant glioma cell lines

    Institute of Scientific and Technical Information of China (English)

    XIE Si-ming; FANG Mao; GUO Hui; ZHONG Xue-yun

    2011-01-01

    Background Our previous study had cloned two glioma cell lines SWOZ1 and SWOZ2 isolated from parental glioma cell line SWO38.The 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) resistance of SWOZ1 was higher than that of SWOZ2.Since O6-methylguanine-DNA methyltransferase (MGMT) was thought to be closely related to BCNU resistance in glioma,this study aimed to explore the function of MGMT in glioma resistant to BCNU.Methods A BCNU resistant glioma cell line SWOZ2-BCNU was established.The expression of MGMT was detected in SWOZ1,SWOZ2 and SWOZ2-BCNU.Small interferencing RNA targeting MGMT was used to silence the expression of MGMT in resistant cell lines SWOZ1 and SWOZ2-BCNU.The cytotoxicity of BCNU to these cells was measured using the cell counting kit-8 assay.Statistical analysis was carried out by one-way analysis of variance in statistical package SPSS 13.0.Results The resistance of SWOZ1 and SWOZ2-BCNU against BCNU was 4.9-fold and 5.3-fold higher than that of SWOZ2.The results of quantitative RT-PCR and Western blotting confirmed that MGMT was both significantly increased in SWOZ1 and SWOZ2-BCNU compared to SOWZ2.After transfection with small interferencing RNA targeting MGMT,a decreased level of MGMT mRNA expression in SWOZ1 and SWOZ2-BCNU for more than 75% compared to negative control was found and confirmed by Western blotting.As a result,the resistance against BCNU was reversed for about 50% both in the BCNU-resistant cell lines SWOZ1 and SWOZ2-BCNU.Conclusions Silencing MGMT with specific small interferencing RNA can reverse the BCNU resistant phenotype in these glioma cell lines.MGMT may play an important role both in intrinsic and acquired BCNU-resistance in glioma.

  12. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    Science.gov (United States)

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  13. Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhuo Zhuang; Lin-Mei Long; Wen-Jun Ji; Zhong-Qin Liang

    2011-01-01

    Glioma stem/progenitor cells(GSPCs) are considered to be responsible for the initiation,propagation,and recurrence of gliomas.The factors determining their differentiation remain poorly defined.Accumulating evidences indicate that alterations in autophagy may influence cell fate during mammalian development and differentiation.Here,we investigated the role of autophagy in GSPC differentiation.SU-2 cells were treated with rapamycin,3-methyladenine (3-MA) plus rapamycin,E64d plus rapamycin,or untreated as control.SU-2 cell xenografts in nude mice were treated with rapamycin or 3-MA plus rapamycin,or untreated as control.Western blotting and immunocytochemistry showed up-regulation of microtubule-associated protein light chain-3(LC3)-II in rapamycin-treated cells.The neurosphere formation rate and the number of cells in each neurosphere were significantly lower in the rapamycin treatment group than in other groups.Real-time PCR and immunocytochemistry showed down-regulation of stem/progenitor cell markers and up-regulation of differentiation markers in rapamycin-treated cells.Transmission electron microscopy revealed autophagy activation in rapamycin-treated tumor cells in mice.Immunohistochemistry revealed decreased Nestin-positive cells and increased GFAP-positive cells in rapamycin-treated tumor sections.These results indicate that rapamycin induces differentiation of GSPCs by activating autophagy.

  14. Migfilin sensitizes cisplatin-induced apoptosis in human glioma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing FAN; Yun-wei OU; Chuan-yue WU; Chun-jiang YU; Yong-mei SONG; Qi-min ZHAN

    2012-01-01

    Aim:Filamin binding LIM protein 1,also known as migfilin,is a skeleton organization protein that binds to mitogen-inducible gene 2 at cell-extracellular matrix adhesions.The aim of this study was to investigate the role of migfilin in cisplatin-induced apoptosis in human glioma cells,to determine the functional domains of migfilin,and to elucidate the molecular mechanisms underlying the regulation of cisplatin-related chemosensitivity.Methods:The human glioma cell lines Hs683,H4,and U-87 MG were transfected with pEGFP-C2-migfilin to elevate the expression level of migfilin.RNA interference was used to reduce the expression of migfilin.To determine the functional domains of migfilin,U-87 MG cells were transfected with plasmids of migfilin deletion mutants.After treatment with cisplatin (40 μmol/L) for 24 h,the cell viability was assessed using the MTS assay,and the cell apoptotic was examined using the DAPI staining assay and TUNEL analysis.Expression levels of apoptosis-related proteins were detected by Western blot analysis.Results:Overexpression of migfilin significantly enhanced cisplatin-induced apoptosis in Hs683,H4,and U-87 MG cells,whereas downregulation of migfilin expression inhibited the chemosensitivity of these cell lines.The N-terminal region of migfilin alone was able to enhance the cisplatin-induced apoptosis.However,despite the existence of the N-terminal region,mutants of migfilin with any one of three LIM domains deleted led to a function loss.Furthermore,apoptotic proteins (PARP and caspase-3) and the anti-apoptotic protein Bcl-xL were modulated by the expression level of migfilin in combination with cisplatin.Conclusion:The LIM1-3 domains of migfilin play a key role in sensitizing glioma cells to cisplatin-induced apoptosis through regulation of apoptosis-related proteins.

  15. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    Science.gov (United States)

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins.

  16. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia.

    Science.gov (United States)

    Tong, Jiao Jian; Yan, Zhang; Jian, Ren; Tao, Huang; Hui, Ouyang Tao; Jian, Chen

    2012-09-01

    The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia. PMID:23741249

  17. On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance.

    Science.gov (United States)

    Gallego-Perez, Daniel; Chang, Lingqian; Shi, Junfeng; Ma, Junyu; Kim, Sung-Hak; Zhao, Xi; Malkoc, Veysi; Wang, Xinmei; Minata, Mutsuko; Kwak, Kwang J; Wu, Yun; Lafyatis, Gregory P; Lu, Wu; Hansford, Derek J; Nakano, Ichiro; Lee, L James

    2016-09-14

    Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.

  18. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  19. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    Full Text Available BACKGROUND: PTEN (phosphatase and tensin homologue deleted on chromosome ten is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310 alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC. Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain. CONCLUSIONS/SIGNIFICANCE: Our studies

  20. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  1. CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2.

    Science.gov (United States)

    Tang, Yuan; Zhan, Wenjian; Cao, Tong; Tang, Tianjin; Gao, Yong; Qiu, Zhichao; Fu, Chunling; Qian, Fengyuan; Yu, Rutong; Shi, Hengliang

    2016-03-01

    Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma. PMID:26825673

  2. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe.

    Science.gov (United States)

    Pérès, Elodie A; Gérault, Aurélie N; Valable, Samuel; Roussel, Simon; Toutain, Jérôme; Divoux, Didier; Guillamo, Jean-Sébastien; Sanson, Marc; Bernaudin, Myriam; Petit, Edwige

    2015-02-10

    Hypoxia-inducible genes may contribute to therapy resistance in glioblastoma (GBM), the most aggressive and hypoxic brain tumours. It has been recently reported that erythropoietin (EPO) and its receptor (EPOR) are involved in glioma growth. We now investigated whether EPOR signalling may modulate the efficacy of the GBM current treatment based on chemotherapy (temozolomide, TMZ) and radiotherapy (X-rays). Using RNA interference, we showed on glioma cell lines (U87 and U251) that EPOR silencing induces a G2/M cell cycle arrest, consistent with the slowdown of glioma growth induced by EPOR knock-down. In vivo, we also reported that EPOR silencing combined with TMZ treatment is more efficient to delay tumour recurrence and to prolong animal survival compared to TMZ alone. In vitro, we showed that EPOR silencing not only increases the sensitivity of glioma cells to TMZ as well as X-rays but also counteracts the hypoxia-induced chemo- and radioresistance. Silencing EPOR on glioma cells exposed to conventional treatments enhances senescence and induces a robust genomic instability that leads to caspase-dependent mitotic death by increasing the number of polyploid cells and cyclin B1 expression. Overall these data suggest that EPOR could be an attractive target to overcome therapeutic resistance toward ionising radiation or temozolomide.

  3. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  4. Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells

    Science.gov (United States)

    Pogoda, Katarzyna

    The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.

  5. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma

    Institute of Scientific and Technical Information of China (English)

    Cui Hai; Yong-Min Jin; Wen-Biao Jin; Zhe-Zhu Han; Mei-Nv Cui; Xue-Zhe Piao; Xiong-Hu Shen; Song-Nan Zhang; Hong-Hua Sun

    2012-01-01

    Although gene therapy was regarded as a promising approach for glioma treatment,its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems.Mesenchymal stem cells (MSCs) have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy.Therefore,in this study,we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus.We firstly compared the infectivity of type 3,type 5,and type 35 fiber-modified adenoviruses in MSCs.We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo.Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus.MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups.In conclusion,MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma,making it a potential therapeutic strategy for treating malignant glioma.

  6. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  7. Overexpression of DcR3 and Its Significance on Tumor Cell Differentiation and Proliferation in Glioma

    Directory of Open Access Journals (Sweden)

    Suning Huang

    2014-01-01

    Full Text Available Background. Overexpression of decoy receptor 3 (DcR3 have been reported in various classes of malignancies. However, its expression and clinicopathological contribution in gliomas has not been fully elucidated. Objective. To explore the expression and clinical significance of DcR3 protein in relation to tumor cell differentiation and proliferation in glioma cell lines and tissues. Methods. One hundred and twenty-five samples of glioma patients and 18 cases of normal brain tissues were recruited. The expression of DcR3 protein was detected using immunohistochemistry. Tumor differentiation was assessed by histologic characters and the status of glial fibrillary acidic protein (GFAP. Tumor cell labeling indexes (LIs of Ki-67 and PCNA were also obtained. The relationship between the DcR3 level and clinicopathological features was investigated, including tumor differentiation, LIs, and survival. Meanwhile, the expression of DcR3 protein was also measured in the supernatants of 8 glioma cell lines and glioma cells freshly prepared from 8 human glioblastoma specimens by using western blot. Results. The level of DcR3 protein in gliomas was significantly higher than that in normal brain tissues (P<0.01. DcR3 expression showed positive correlations with tumor pathological grade (r=0.621, P<0.01 and negative with GFAP expression (r=-0.489, P<0.01. Furthermore, there were positive correlations between DcR3 expression and Ki-67, PCNA LIs (r=0.529, P<0.01; r=0.556, P<0.01. The survival in the DcR3 negative group was 50 ± 1.79 months, longer than that of the DcR3 positive group (48.36 ± 2.90, however, without significance (P=0.149. Different levels of DcR3 could also be detected in the culturing supernatants of all the 8 glioma cell lines and glioma cells freshly obtained from 8 human glioblastoma specimens. Conclusions. The overexpression of DcR3 might play a crucial role in the tumorigenesis, differentiation, and proliferation of glioma.

  8. The Effect of Temozolomide/Poly(lactide-co-glycolide (PLGA/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior

    Directory of Open Access Journals (Sweden)

    Anhua Wu

    2012-01-01

    Full Text Available In this study, we investigated the effects of temozolomide (TMZ/Poly (lactide-co-glycolide(PLGA/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVβ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVβ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma.

  9. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Directory of Open Access Journals (Sweden)

    Dorothee Gramatzki

    Full Text Available BACKGROUND/AIMS: Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS: Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS: Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION: Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS

  10. Construction, expression, purification and functional analysis of recombinant 6C6 immunotoxin to human breast-tumor cells

    Institute of Scientific and Technical Information of China (English)

    刘晖; 朱玉贤; 李■秋

    1999-01-01

    The 28 ku membrane protein is usually over-expressl m human bnasl bmast cancer and other tumor cells. licould be a larget for tumor therapy . By using genetie engineermg teehmgues.a 606 immunotoxin (sefv606-PE40) was construeted by joining the 606 single-chain antibdy (SeFv606) with the truncll Pseudonwnas exotoxin A (PE40), SeFv606 contains both the heavy and light-chnia variable domams of 606 monoelonal antibody. Which speeifieally ree-ognizes the 28 ku protein. The bacterial expression level og 606 imnmmotoxin is 3.3%. about 5.5 mg ml baeterial lysate.lsing singlc-step llisTrap (Nr2 chelating) column chronnetogaphy, the reeombinant peptide was obtained with a purit of 33.2%.This baeterial espressed 606 immunotosin binuls to MDA-231 human breast-tumer ccll surfaee and kill these cells with a median lethal dosage of 92 ngnd.

  11. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  12. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  13. INHIBITION OF ERN1 SIGNALING ENZYME AFFECTS HYPOXIC REGULATION OF THE EXPRESSION OF E2F8, EPAS1, HOXC6, ATF3, TBX3 AND FOXF1 GENES IN U87 GLIOMA CELLS.

    Science.gov (United States)

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A

    2015-01-01

    Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function. PMID:26255341

  14. Response-predictive gene expression profiling of glioma progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvia Moeckel

    Full Text Available BACKGROUND: High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist. METHODS: In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a to enrich specimens for brain tumor initiating cells and (b to confront cells with a therapeutic agent before expression profiling. RESULTS: As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro. CONCLUSION: For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.

  15. 胶质瘤细胞系摄取BPA的实验研究%Experimental study on BPA uptake of glioma cell lines

    Institute of Scientific and Technical Information of China (English)

    杨磊; 赵葵; 王潇; 隋丽; 孔福全; 郝小娟; 郑洁莹; 马南茹; 崔素珍; 刘权卫

    2012-01-01

    Objective: to evaluate the incorporation of BPA by glioma cell lines, and to observe its relationship with the temperature and the concentration of BPA. Methods; C6, U251 and rat astrocyte cells were incubated in a culture medium, in which ' B concentration was 20, 40, 60, 80, 100 μg/mL for 24 h. Boron concentration in the cells was measured induced couple plasma-atomic emission spectroscopy (ICP-AES). C6 cells were pre-incu-bated for 24 h with different boron concentrations in growth medium. Then the mediums were changed to boron-free ones, and boron content was assessed after 1, 2, 3 h. Results; The content of the 10B in cells was increasing with the increasing concentration of BPA, and the boron concentration ratios of glioma cells to astrocyte are 2. 2. The BPA efflux is slower at the lower temperature. Conclusion; BPA has a selectivity for glioma cells, and the results of the efflux assay confirm the temperature dependence of the BPA transport out of the cells.%目的:探讨BPA(2,2-双(4-羟基苯基)丙烷,Bisphenol A)浓度和温度对胶质瘤细胞系摄取和析出10B的影响.方法:将C6和U251两种胶质瘤细胞系,及大鼠正常脑胶质细胞培养在含不同浓度BPA(10B浓度分别为20、40、60、80、100 μg/mL)的培养基中24h后,采用感应耦合等离子体原子发射光谱(ICP-AES)法测定细胞内硼的含量;将C6细胞培养在含不同浓度BPA的培养基中培养24h后,更换为不含10B培养基,在不同温度条件(4、25、37℃)下继续培养,并分别于换液后的1、2、3h,用ICP-AES方法检测细胞内的硼含量.结果:细胞内硼浓度随培养基中BPA浓度的增加而增高,胶质瘤细胞内10B浓度约为正常胶质细胞的2.2倍;温度越高,细胞内硼析出速度越快.结论:BPA对胶质瘤细胞系具有一定亲和力;细胞对10B的析出速率具有温度依赖性.

  16. 12C6+ ion beam induced DNA damage in human hepatocyte L02 cells detected by comet assay

    International Nuclear Information System (INIS)

    Human hepatocyte L02 cells were irradiated by the carbon ion beam with LET of 30 keV/μm and DNA strand breaks were detected immediately after the irradiation using comet assay. Based on the comet images, all the indexes of comet assay including head DNA%, tail DNA%, comet length, tail length, tail moment and olive tail moment were analyzed with CASP and SPSS 11.5 code. Statistically significant dose-effect relationships could be observed in all the indexes of comet assay and TM increased with increasing the radiation dose. These experimental results suggest that carbon ion beam with intermediate LET value would cause remarkable DNA strand breaks immediately and the damage increases in a dose-dependent manner. This work provides basic data and evidence for the risk assessment of heavy ion radiation to healthy tissue. (authors)

  17. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  18. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    Directory of Open Access Journals (Sweden)

    Esser Norbert

    2011-06-01

    Full Text Available Abstract Background and Purpose Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR. Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Materials and methods Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF and fibroblast growth factor-2 (FGF-2. Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. Results SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Conclusions Our results suggest the importance of delayed

  19. Enhancing alkylating agent resistance through ERCC2 gene transfection in human glioma cell line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhongping 陈忠平; ZHANG Junying 张俊英; Gérard MOHR

    2003-01-01

    Objective To confirm the enhancing effect of excision repair cross complementing rodent repair deficiency gene 2 (ERCC2) on alkylating agents resistance. Methods The authors constructed a pcDNA3-ERCC2 plasmid. The pcDNA3-ERCC2 was transfected into a selected ERCC2 negative human glioma cell line, SKMG-4, using liposome-mediated transfection. After G418 selection, a stable transfected cell line was obtained and tested for cytotoxicity of several alkylating agents. Results The stable transfectant was obtained and confirmed by RT-PCR as well as Western blot analysis to be strongly expressing ERCC2 at both mRNA and protein levels. The IC90 (μmol/L) of two alkylating agents, cisplatin and melphalan, increased from 1.0 to 1.75 (75%) and 5.6 to 9.0 (61%), respectively, compared with control cell line. Conclusion The present data provided evidences and confirmed the authors' previous results that ERCC2 contributes, at least partially, to alkylating agent resistance in human glioma cell line.

  20. Screening of dengue Ⅱ virus-binding molecules from Aedes albopictus C6/36 cells%白纹伊蚊C6/36细胞登革Ⅱ型病毒结合分子的筛选

    Institute of Scientific and Technical Information of China (English)

    郑学礼; 雷子庆; 潘京

    2012-01-01

    Objective To screen the molecules binding dengue II virus expressed in Aedes albopictus C6/36 cells and characterize their biological functions. Methods Aedes albopictus C6/36 cells were infected with dengue II virus, and the virus were collected and purified. The total and membrane proteins of C6/36 cells were extracted and analyzed using 12% SDS-polyacrylamide gel (PAGE). After electophoresis, the proteins were transferred to a nitrocellulose membrane, and virus overlay protein-binding assay (VOPBA) was carried out using an anti-dengue virus 1-4 monoclonal antibody. Results Two specific bands of 67 000 and 30 000 occurred after VOPBA of the proteins from the cells incubated with the virus, while the negative control group did not show these specific bands. Conclusion Two putative dengue virus receptor molecules of 67 000 and 30000 have been obtained from C6/36 cells using VOPBA, and their functional identification is in progress .%目的 筛选白纹伊蚊C6/36细胞表达连接登革Ⅱ型病毒分子.方法 提取C6/36细胞的总蛋白和膜蛋白,收集和纯化登革Ⅱ型病毒,用12%SDS-PAGE分析C6/36细胞的总蛋白和膜蛋白,转于硝纤膜上,用病毒覆盖蛋白结合实验(VOPBA)筛选C6/36细胞表达连接登革Ⅱ型病毒分子.结果 C6/36细胞的总蛋白和膜蛋白经12% SDS-PAGE分离后转膜,分别与纯化的病毒液和阴性对照液孵育,用抗登革病毒Ⅰ~Ⅳ单克隆抗体检测,结果显示病毒孵育组在67 000和30 000的位置有特异性的条带出现,而阴性对照组无此条带.结论 用VOPBA法初步从白纹伊蚊C6/36细胞中筛选67 000和30 000等登革Ⅱ型病毒结合分子,其功能的鉴定正在进行.

  1. p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal.

    Science.gov (United States)

    Batista, Luis F Z; Roos, Wynand P; Kaina, Bernd; Menck, Carlos F M

    2009-02-01

    The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that it sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct importance of DNA repair is hard to access. Here, it is shown that the induction of photoproducts by UV light (UV-C) significantly induces apoptosis in a p53-mutated glioma background. This is caused by a reduced level of photoproduct repair, resulting in the persistence of DNA lesions in p53-mutated glioma cells. UV-C-induced apoptosis in p53 mutant glioma cells is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results indicate that UV-C-induced apoptosis of p53 mutant glioma cells is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data indicate that unrepaired DNA lesions induce apoptosis in p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that induce the formation of DNA lesions whose global genomic repair is dependent on p53.

  2. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines.

    Science.gov (United States)

    Yao, Kai; Wu, Junfeng; Zhang, Jianfeng; Bo, Jimei; Hong, Zhen; Zu, Hengbing

    2016-07-01

    Various useful animal models, such as Alzheimer's disease and Niemann-Pick disease, were provided by U18666A. However, the pathogenesis of U18666A-induced diseases, including U18666A-mediated apoptosis, remains incompletely elucidated, and therapeutic strategies are still limited. Dihydrotestosterone (DHT) has been reported to contribute to the prevention and treatment of neurodegenerative disorders. Our study investigated the neuroprotective activity of DHT in U18666A-related diseases. Apoptosis of C6 cells was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. Cell viability was assessed using Cell Counting Kit-8. Expression of apoptosis-related proteins, such as Akt, seladin-1, Bcl-2 family proteins, and caspase-3, was determined using Western blot. Our results demonstrated that the apoptotic rate of C6 cells significantly increased after U18666A addition, but was remarkably reduced after DHT treatment. Pretreatment with DHT attenuated U18666A-induced cell viability loss. PI3K inhibitor LY294002 could suppress DHT anti-apoptotic effect. Furthermore, we discovered that U18666A could significantly downregulate seladin-1 expression in a dose-dependent manner, but no significant change was observed in Bcl-xL, Bax, and P-Akt protein expressions. Compared with U18666A-treated group, the expression of P-Akt, seladin-1, and Bcl-xL significantly increased, and the expression of Bax and caspase-3 remarkably reduced after DHT treatment. However, in the presence of LY294002, the effect of DHT was reversed. In conclusion, we found that seladin-1 may take part in U18666A-induced apoptosis. DHT may inhibit U18666A-induced apoptosis by regulating downstream apoptosis-related proteins including seladin-1, caspase-3, Bcl-xL, and Bax through activation of the PI3K/Akt signal pathway. PMID:26340949

  3. Science Letters: Dendritic cell therapy with improved outcome in glioma multiforme--a case report

    Institute of Scientific and Technical Information of China (English)

    KHAN Jamal A.; YAQIN Sharmin

    2006-01-01

    Malignant gliomas are the most devastating tumors in clinical practice and have poorest survival. Immunological treatment of such patients may likely increase the survival and quality of life. Dendritic cells (DCs), most potent antigen presenting cells in combination with oral chemotherapeutic agents may be tried for patients giving consent to such treatment. We have successfully combined the two therapies in an adult male patient who was on downhill course after being operated on once with post operation chemotherapy and radiotherapy for glioma in the left parietal area. He received five dendritic cell therapy vaccines in combination with oral chemotherapy and responded dramatically having near normal quality of life for an additional five months with this regime, increasing the survival after operation to 11 months. This therapy is continuing with radiological betterment of the lesion. The DCs are matured with antigen extracted from wax embedded tissue at 6th day of culture. We feel that the treatment can be given to more number of patients to establish its efficacy for the dreaded cancer glioblastoma multiforme.

  4. GFAP expression is regulated by Pax3 in brain glioma stem cells.

    Science.gov (United States)

    Su, Xing; Liu, Xiaojiang; Ni, Lanchun; Shi, Wei; Zhu, Hui; Shi, Jinlong; Chen, Jian; Gu, Zhikai; Gao, Yilu; Lan, Qing; Huang, Qingfeng

    2016-09-01

    Glioblastomas are understood to evolve from brain glioma stem cells (BGSCs), and yet the biology underlying this model of tumorigenesis is largely unknown. Paired box 3 protein (Pax3) is a member of the paired box (Pax) family of transcription factors that is normally expressed during embryonic development, but has recently been implicated in tumorigenesis. The present study demonstrated that Pax3 is differentially expressed in U87MG human glioma cell, BGSC and normal 1800 human astrocyte lines. Herein, we identified that the glial fibrillary acidic protein (GFAP), a major intermediate filament protein of mature astrocytes, is directly downregulated during the differentiation of BGSCs via the binding of Pax3 to the promoter region of GFAP. Moreover, siRNA silencing of Pax3 arrested BGSC differentiation, while overexpression of Pax3 promoted the differentiation in BGSCs. Furthermore, we studied the cell proliferation, invasion, apoptosis, differentiation and expression of Pax3 and GFAP in Pax3 siRNA-knockdown and Pax3-overexpressing BGSC models by CCK-8, Transwell migration, flow cytometry and western blot assays. The results indicate that Pax3 regulates GFAP expression, and that Pax3 may contribute to the evolution of BGSCs towards malignancy. PMID:27432276

  5. Multiple Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple gliomas are well-recognized but uncommon tumors. The incidence of multiple gliomas according to some reports ranges from 0.5% to 20% of all gliomas diagnosed. Multiple gliomas can be divided into two categories. One is by location of the lesions (multifocal and multicentric). The second type is by the time of the lesions occur (synchronous and metachronous). The lesions generally show hypo, or isodensity on CT; a hypo- or isointense signal on T1-weighted images, and a hyperintense signal on T2-weighted images. Glioblastoma is the most frequent histotype. The prognosis of multiple gliomas remains unfavorable. The treatment of multiple gliomas includes surgery, radiotherapy and chemotherapy. Distinction between multicentric and multifocal gliomas is difficult. This report reviews in detail the aspects of multiple gliomas mentioned above.

  6. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  7. Expression of phosphoribosyl pyrophosphate synthetase genes in U87 glioma cells with ERN1 knockdown: effect of hypoxia and endoplasmic reticulum stress.

    Science.gov (United States)

    Minchenko, O H; Garmash, I A; Kovalevska, O V; Tsymbal, D O; Minchenko, D O

    2014-01-01

    Activation of pentose phosphate pathway is an important factor of enhanced cell proliferation and tumor growth. Phosphoribosyl pyrophosphate synthetase (PRPS) is a key enzyme of this pathway and plays a central role in the synthesis of purines and pyrimidines. Hypoxia as well as ERN1 (from endoplasmic reticulum to nuclei-1) mediated endoplasmic reticulum stress response-signalling pathway is linked to the proliferation because the blockade of ERN1 suppresses tumor growth, including glioma. We studied the expression of different PRPS genes in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that hypoxia decreases the expression of PRPS1 and PRPS2 genes in both types of glioma cells, being more pronounced in cells without ERN1 function, but PRPSAP1 and PRPSAP2 gene expressions are suppressed by hypoxia only in glioma cells with blockade of ERN1. Moreover, the blockade of endoribonuclease activity of ERN1 does not affect the expression of PRPS1 and PRPS2 as well as PPRS-associated protein genes in U87 glioma cells. At the same time, the induction of endoplasmic reticulum stress by tunicamycin in glioma cells with suppressed activity of ERN1 endoribonuclease decreases the expression level of PRPS1 and PRPS2 genes only. Results of this investigation clearly demonstrated that the expression of different genes encoding subunits of PRPS enzyme is affected by hypoxia in U87 glioma cells, but the effect of hypoxia is modified by suppression of endoplasmic reticulum stress signaling enzyme ERN1. PMID:25816608

  8. HCMV Infection Depress NGF Expression in Human Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    Hai-tao WANG; Bin WANG; Zhi-jun LIU; Zhi-qiang BAI; Ling LI; Dong-meng QIAN; Zhi-yong YAN; Xu-xia SONG

    2009-01-01

    Human cytomegalovirus (HCMV) is the most common cause of congenital infection, resulting in birth defects such as microcephaly. In this study, RT-PCR and Western Blotting were performed to quantify the regulation of endogenic nerve growth factor expression in neuroglia cells by HCMV infection. The results showed that basal, endogenous NGF expression in U251 was unchanged during early HCMV infection. NGF expression is strongly down-regulated during the latent phase of infection. These results suggest that HCMV can depress the NGF expression in U251 cells.

  9. Trichosanthin suppresses the proliferation of glioma cells by inhibiting LGR5 expression and the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Miao, Junjie; Jiang, Yilin; Wang, Dongliang; Zhou, Jingru; Fan, Cungang; Jiao, Feng; Liu, Bo; Zhang, Jun; Wang, Yangshuo; Zhang, Qingjun

    2015-12-01

    Studies have indicated that trichosanthin (TCS), a bioactive protein extracted and purified from the tuberous root of Trichosanthes kirilowii (a well‑known traditional Chinese medicinal plant), produces antitumor effects on various types of cancer cells. However, the effects of TCS on glioma cells are poorly understood. The objective of this study was to investigate the antitumor effects of TCS on the U87 and U251 cell lines. The in vitro effects of TCS on these two cell lines were determined using a Cell Counting Kit‑8 (CCK‑8) assay, Annexin V‑FITC staining, DAPI staining, Transwell assays, terminal deoxynucleotidyl transferase‑mediated dUTP nick end‑labeling (TUNEL) assays, 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethyl‑imidacarbocyanine iodide (JC‑1) staining and western blotting, which was utilized to assess the expression of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (LGR5) and key proteins in the Wnt/β‑catenin signaling pathway. Our data indicated that TCS inhibited the proliferation of glioma cells in a dose‑ and time‑dependent manner and played a role in inhibiting glioma cell invasion and migration. Additional investigation revealed that the expression levels of LGR5 and of key proteins in the Wnt/β‑catenin signaling pathway were markedly decreased after TCS treatment. The results suggest that TCS may induce apoptosis in glioma cells by targeting LGR5 and repressing the Wnt/β‑catenin signaling pathway. In the future, in vivo experiments should be conducted to examine the potential use of this compound as a novel therapeutic agent for gliomas.

  10. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    Science.gov (United States)

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity. PMID:19822186

  11. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  12. Autologous antibody to src-homology 3-domain GRB2-like 1 specifically increases in the sera of patients with low-grade gliomas

    Directory of Open Access Journals (Sweden)

    Matsutani Tomoo

    2012-10-01

    Full Text Available Abstract Background Glioma is the most common primary malignant central nervous system tumor in adult, and is usually not curable in spite of various therapeutic approaches. Clarification of the oncogenic process in its early stage is important for the diagnosis and effective therapy. Methods In the present study, we used the serological identification of antigens by recombinant cDNA expression cloning (SEREX to explore the subtle changes of the protein expression in low-grade glioma. The levels of serum autoantibodies to the SEREX-identified glioma-related antigens were analyzed by ELISA, and the epitope site was identified using deletion mutants and overlap peptide array. Changes in the serum autoantibody levels were examined in the rat glioma model using C6 and 9 L glioma cell lines. Results We identified 31 glioma-related antigens by SEREX. Among them, the serum level of autoantibody to src-homology 3-domain GRB2-like 1 (SH3GL1 was significantly higher in patients with low-grade glioma than healthy volunteers or high-grade gliomas. The 10 amino-acids at the C-terminal were identified as the epitope site by the overlap peptide array and the ELISA using deletion mutants. The tissue expression of SH3GL1 protein increased in proportion to glioma progression. The rat glioma models confirmed the increase of anti-SH3GL1 autoantibody level in the early stage and the suppression in the late stage. Conclusion SH3GL1 may be involved in the oncogenic process of gliomas and effectively elicit an autologous antibody response in low-grade gliomas. The immunological reaction to SH3GL1 would contribute to the establishment of a novel diagnostic and therapeutic target for gliomas.

  13. siRNA epidermal growth factor receptor silencing in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Chunsheng Kang; Zhiyong Zhang; Zhifan Jia; Qiang Huang; Guangxiu Wang; Mingzhe Qiu; Peiyu Pu

    2008-01-01

    BACKGROUND: Dicer, a large multidomain ribonuclease, is responsible for processing double-stranded RNAs (dsRNAs) to 20-bp-long small interfering RNAs (siRNAs), which act as effectors during RNA interference (RNAi). OBJECTIVE: To observe the efficacy of siRNA cocktails generated by recombinant human Dicer on the down-regulation of epidermal growth factor receptor (EGFR) expression in human glioma cells. DESIGN, TIME AND SETTING: The following in vitro experiment was performed at the Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute. MATERIALS: Mini-RNA isolation kit, human placenta complimentary DNA (cDNA) was produced by Tiangen Biotech (Beijing, China), human glioblastoma U251-MG cells were produced by the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. METHODS: A PCR product from the human EGFR, which corresponded to the tyrosine kinase domain of the 3'-end fragment, was used as the T7-promotor for in vitro transcription, siRNA cocktails were generated by in vitro dicing of double stranded RNA. A total of 500, 250 and 125 μg siRNA cocktails were transiently transfected into U251 glioma cells through the use of the GeneSilencer. MAIN OUTCOME MEASURE: Expression of EGFR was detected by real-time PCR. RESULTS: The total PCR product of the human EGFR, corresponding to the tyrosine kinase domain, is approximately 680 bp in length. The PCR transcriptants included GCC leader sequences and a T7 promoter sequence, with a fragment of EGFR cDNA at the center. The T7 promoter was prepared for in vitro transcription of dsRNA. After dicing for 24 hours, the 21-nt siRNA cocktails were verified by 4% agarose gel. The difference between threshold cycle of a sample assay and threshold cycle of the corresponding endogenous reference (△ Ct) among parental U251 cells and cells transfected with different doses of siRNA cocktails were determined to be 3.06, 7.35, and 10

  14. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Zahra eMoinfar

    2014-05-01

    Full Text Available Gap junctions (GJs are hemichannels on cell membrane. Once they are intercellulary connected to the neighboring cells, they build a functional syncytium which allows rapid transfer of ions and molecules between cells. This characteristic makes GJs a potential modulator in proliferation, migration and development of the cells. So far, several types of GJs are recognized on different brain cells as well as in glioma. Astrocytes, as one of the major cells that maintain neuronal homeostasis, express different types of GJs that let them communicate with neurons, oligodendrocytes and endothelial cells of the blood brain barrier; however, the main GJ in astrocytes is connexin 43. There are different cerebral diseases in which astrocyte GJs might play a role. Several drugs have been reported to modulate gap junctional communication in the brain which can consequently have beneficial or detrimental effects on the course of treatment in certain diseases. However, the exact cellular mechanism behind those pharmaceutical efficacies on GJs is not well-understood. Accordingly, how specific drugs would affect GJs and what some consequent specific brain diseases would be are the interests of the authors of this chapter. We would focus on pharmaceutical effects on GJs on astrocytes in specific diseases where GJs could possibly play a role including: 1 migraine and a novel therapy for migraine with aura, 2 neuroautoimmune diseases and immunomodulatory drugs in the treatment of demyelinating diseases of the central nervous system such as multiple sclerosis, 3 glioma and antineoplastic and anti-inflammatory agents that are used in treating brain tumors and 4 epilepsy and anticonvulsants that are widely used for seizures therapy. All of the above-mentioned therapeutic categories can possibly affect GJs expression of astrocytes and the role is discussed in the upcoming chapter.

  15. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  16. Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas

    Institute of Scientific and Technical Information of China (English)

    焦保华; 姚志刚; 耿少梅; 左书浩

    2004-01-01

    @@ Recently, a novel anti-apoptosis gene, named survivin,was identified as a structurally unique member of the inhibitor of apoptosis protein (lAP) family. The gene is located on chromosome 17q25. Survivin is a 16.5 kDa protein that is expressed in vivo in common human cancers, but not in normal adjacent tissue,1 during the G2/M phase of the cell cycle. Survivin expression is turned off during fetal development and not found in nonneoplastic adult human tissue, and it is turned on in most common human cancers. We investigated the expression of survivin in 50 patients with human gliomas, and determined its association with cell apoptosis and cell proliferation, and its impact on tumor progression and prognosis.

  17. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma

    OpenAIRE

    Ries, Christian; von Baumgarten, Louisa; Schichor, Christian; Berninger, Benedikt; Popp, Tanja; Neth, Peter; Goldbrunner, Roland; Kienast, Yvonne; Winkler, Frank; Jochum, Marianne; Egea, Virginia

    2010-01-01

    Abstract Bone marrow-derived human mesenchymal stem cells (hMSCs) have become valuable candidates for cell-based therapeutical applications including neuroregenerative and anti-tumor strategies. Yet, the molecular mechanisms that control hMSC transdifferentiation to neural cells and hMSC tropism toward glioma remain unclear. Here, we demonstrate that hMSCs incubated with 50 ng/ml TNF-? acquired astroglial cell morphology without affecting proliferation which was increased at 5 ng/m...

  18. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, Nguyen Thanh, E-mail: ngtthuy02@yahoo.com [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Nga, Phan Thi [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Morita, Kouichi [Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki (Japan); Dunia, Irene; Benedetti, Lucio [Institut Jacques Monod, UMR7592 Université Paris Diderot/CNRS, Paris (France)

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  19. PD-1 marks dysfunctional regulatory T cells in malignant gliomas

    OpenAIRE

    Lowther, Daniel E.; Goods, Brittany A.; Lucca, Liliana E.; Lerner, Benjamin A.; Raddassi, Khadir; van Dijk, David; Hernandez, Amanda L.; Duan, Xiangguo; Gunel, Murat; Coric, Vlad; Krishnaswamy, Smita; Love, J. Christopher; Hafler, David A.

    2016-01-01

    Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing,...

  20. Mechanism of thalidomide to enhance cytotoxicity of temozolomide in U251-MG glioma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    GAO Song; YANG Xue-jun; ZHANG Wen-gao; JI Yan-wei; PAN Qiang

    2009-01-01

    Background Glioma is the most common primary brain tumor with poor prognosis. Temozolomide has been used with thalidomide to treat gliomas. We investigated the synergistic mechanism of these two drugs in vitro.Methods Human malignant glioma cells U251-MG were cultured and assigned to four groups with different treatments for 3 days: temozolomide group (100 pmol/L), thalidomide group (100 pg/L), temozolomide (100 IJmol/L) plus thalidomide group (100 pg/L) and control group. MTT assay was applied to evaluate the cell viability. Cell cycle was analyzed by flow cytometry. The ultra-structural features of autophagosomes were observed with electron microscope. Acridine orange and monodansylcadavedne were adopted to label autophagosomes and flow cytometry was applied for quantification of autophagosomes. The expression of autophagy-associated protein was detected by Western blotting.Results Proliferation of tumor cell was obviously suppressed by temozolomide with thalidomide treatment than by either drug used alone (P=-0.000 for each day). The combination treatment induced cell cycle arrest at G0/G1 phase.Typical autophagic ultra-structural character was found after the combined treatment. Thalidomide promoted the autophagy induced by temozolomide. The autophagy-associated proteins - microtubule associated protein 1 light chain 3 (MAPILC3) and Beclinl were more significantly up-regulated by the combined treatment than temozolomide used alone (MAP1LC3, P=-0.000; Beclinl, P=-0.004). The expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN), which promoted autophagy by suppressing PI3K/Akt/mTOR signaling pathway, was elevated by thalidomide (thalidomide group: P=-0.000; combined group: P=0.002).Conclusions Thalidomide enhances the cytotoxicity of temozolomide by promoting the autophagy induced by temozolomide. Contributing to the up-regulation of PTEN by thalidomide, the expression of autophagy associated protein-MAP1LC3 and Beclinl was enhanced

  1. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells

    International Nuclear Information System (INIS)

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1α bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.

  2. Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells

    Directory of Open Access Journals (Sweden)

    Norelle C. Wildburger

    2015-09-01

    Full Text Available Bone marrow-derived human mesenchymal stem cells (BM-hMSCs show promise as cell-based delivery vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors” with those to do not (“non-attractors” to identify pathways that may modulate BM-hMSC homing, followed by targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in the stromal cells suggests microenvironmental cross-talk.

  3. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. PMID:27207037

  4. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells.

    Science.gov (United States)

    Sriraman, Shravan Kumar; Pan, Jiayi; Sarisozen, Can; Luther, Ed; Torchilin, Vladimir

    2016-02-01

    Current research in cancer therapy is beginning to shift toward the use of combinational drug treatment regimens. However, the efficient delivery of drug combinations is governed by a number of complex factors in the clinical setting. Therefore, the ability to synchronize the pharmacokinetics of the individual therapeutic agents present in combination not only to allow for simultaneous tumor accumulation but also to allow for a synergistic relationship at the intracellular level could prove to be advantageous. In this work, we report the development of a novel folic acid-targeted liposomal formulation simultaneously co-loaded with C6 ceramide and doxorubicin [FA-(C6+Dox)-LP]. In vitro cytotoxicity assays showed that the FA-(C6+Dox)-LP was able to significantly reduce the IC50 of Dox when compared to that after the treatment with the doxorubicin-loaded liposomes (Dox-LP) as well as the untargeted drug co-loaded (C6+Dox)-LP on HeLa, A2780-ADR, and H69-AR cells. The analysis of the cell cycle distribution showed that while the C6 liposomes (C6-LP) did not cause cell cycle arrest, all the Dox-containing liposomes mediated cell cycle arrest in HeLa cells in the G2 phase at Dox concentrations of 0.3 and 1 μM and in the S phase at the higher concentrations. It was also found that this arrest in the S phase precedes the progression of the cells to apoptosis. The targeted FA-(C6+Dox)-LP were able to significantly enhance the induction of apoptotic events in HeLa cell monolayers as compared to the other treatment groups. Next, using time-lapse phase holographic imaging microscopy, it was found that upon treatment with the FA-(C6+Dox)-LP, the HeLa cells underwent rapid progression to apoptosis after 21 h as evidenced by a drastic drop in the average area of the cells after loss of cell membrane integrity. Finally, upon evaluation in a HeLa spheroid cell model, treatment with the FA-(C6+Dox)-LP showed significantly higher levels of cell death compared to those with C6-LP and

  5. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  6. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  7. Functional expression of human D3 dopamine receptors in differentiated neuroblastoma x glioma NG108-15 cells.

    OpenAIRE

    Seabrook, G. R.; Kemp, J.A.; Freedman, S B; Patel, S.; Sinclair, H. A.; McAllister, G.

    1994-01-01

    This study describes the depression of calcium currents caused by activation of human D3 dopamine receptors which have been stably expressed in the neuroblastoma x glioma NG108-15 cell line. Transfected cells, which had been differentiated with prostaglandin E1 and isobutylmethylxanthine, exclusively expressed D3 receptor mRNA, which was demonstrated by reverse transcription polymerase chain reaction techniques. Transfected cells had high affinity binding sites for iodosulpiride, with a Kd of...

  8. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy

    Directory of Open Access Journals (Sweden)

    Arya MB

    2006-03-01

    Full Text Available Abstract Background Multicellular spheroids, an appropriate in vitro system for simulating 3-D tumor micro-milieu can be used for evaluating and predicting tumor response to therapeutic agents including metabolic inhibitors. However, detailed understanding of the nature, distribution and sensitivity/responses of cellular sub-populations to potential therapeutic agents/strategies is required for using this unique model with optimal precision. Spheroid characteristics may also vary considerably with the origin and type of cell line used, and thorough characterization of viable and dissociated glioma cell spheroids is not yet completely known. In order to evaluate in vivo responses of gliomas to various therapeutic strategies, especially the metabolic inhibitors capable of penetrating the blood brain barrier, we have characterized continuously growing spheroids of a human glioma cell line (BMG-1 with respect to organization, growth, viability, cell survival, cell death, metabolic and mitochondrial status, oxidative stress and radiation response using microscopy, flow cytometry and enzymatic assays. Spheroids were fed daily with fresh medium in order to maintain nutrient supply to outer cellular layers while hypoxia/necrosis developed in the innermost cells of enlarging spheroids. Results Volume of spheroids, fed daily with fresh medium, increased exponentially during 7–28 days of growth through three population doublings. Proportion of G1-phase cells was higher (~60% than exponentially growing monolayer cells (~48%. A significant fraction of S-phase cells turned metabolically inactive (disengaged in DNA synthesis with increasing age of the spheroids, unlike in quiescent monolayer cultures, where the fraction of S-phase cells was less than 5%. With increasing spheroid size, increasing sub-populations of cells became non-viable and entered apoptosis or necrosis revealed by Annexin-V-FITC/PI staining. PI positive (necrotic cells were not confined to

  9. EFFECTS OF p16INK4 GENE ON CHEMOSENSITIVITY OF HUMAN GLIOMA U251 CELL LINE TO TENIPOSIDE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To determine the effects on the cell growth, tumorigenicity and chemosensitivity of p16/CDK4I in human glioma. Methods: p16 gene was transfected into U251 cells by lipofectin. Expression of exogenous p16 gene was confirmed by immunohistochemistry and Northern blot. The effects of exogenous p16 gene on the growth and chemosensitivity to teniposide were examined. Results: Expression of exogenous p16 gene inhibited the growth dramatically in vitro. G1 arrest of tumor cells was observed. However, wt p16-positive U251 was less sensitive than control cell lines and the number of apoptotic cells after chemotherapy was reduced. Conclusion: The expression of exogenous p16 gene could inhibit the growth of glioma. On the other hand, the chemosensitivity to teniposide of p16-positive U251 was decreased.

  10. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  11. Glioma Cell Migration on Three-dimensional Nanofiber Scaffolds Is Regulated by Substrate Topography and Abolished by Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Paula A. Agudelo-Garcia

    2011-09-01

    Full Text Available A hallmark of malignant gliomas is their ability to disperse through neural tissue, leading to long-term failure of all known therapies. Identifying new antimigratory targets could reduce glioma recurrence and improve therapeutic efficacy, but screens based on conventional migration assays are hampered by the limited ability of these assays to reproduce native cell motility. Here, we have analyzed the motility, gene expression, and sensitivity to migration inhibitors of glioma cells cultured on scaffolds formed by submicron-sized fibers (nanofibers mimicking the neural topography. Glioma cells cultured on aligned nanofiber scaffolds reproduced the elongated morphology of cells migrating in white matter tissue and were highly sensitive to myosin II inhibition but only moderately affected by stress fiber disruption. In contrast, the same cells displayed a flat morphology and opposite sensitivity to myosin II and actin inhibition when cultured on conventional tissue culture polystyrene. Gene expression analysis indicated a correlation between migration on aligned nanofibers and increased STAT3 signaling, a known driver of glioma progression. Accordingly, cell migration out of glioblastoma-derived neurospheres and tumor explants was reduced by STAT3 inhibitors at subtoxic concentrations. Remarkably, these inhibitors were ineffective when tested at the same concentrations in a conventional two-dimensional migration assay. We conclude that migration of glioma cells is regulated by topographical cues that affect cell adhesion and gene expression. Cell migration analysis using nanofiber scaffolds could be used to reproduce native mechanisms of migration and to identify antimigratory strategies not disclosed by other in vitro models.

  12. THE EFFECT OF ANTISENSE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) RNA ON THE PROLIFERATION OF HUMAN GLIOMA CELLS AND INDUCTION OF CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    PU Pei-yu; LIU Xu-wen; LIU Ai-xue; WANG Chun-yan; WANG Guang-xiu

    1999-01-01

    Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot analysis,in situ hybridization and immunohistochemical staining were used to detect the integration and expression of antisense EGFR constructs. MTT assay and the average number of AgNOR for evaluation of cell proliferation, and the TUNEL method and ultrastructural change for observation of cell apoptosis. Results: Exogenous antisense EGFR cDNA was integrated into the genome of glioma cells and highly expressed, which resulted in a dramatic decrease of endogenous EGFR mRNA and GEPR protein levels.Clones with high expression of the antisense construct showed a lower proliferation activity and the induction of apoptosis in vitro. Conclusion: This study suggests that EGFR plays an important role in the genesis of gliomas; it may be used as a target for antisense gene therapy of gliomas.

  13. Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines.

    Directory of Open Access Journals (Sweden)

    Simona Baronchelli

    Full Text Available Glioblastoma multiforme (GBM, the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs. The term "multiforme" describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common "signature" of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis. We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene; on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there's a sort of selective force acting on them in order to converge towards the impairment of cell development and

  14. Effect of flupirtine on the growth and viability of U373 malignant glioma cells

    International Nuclear Information System (INIS)

    Flupirtine is a non-opioid analgesic without antipyretic or antiphlogistic properties but with favorable tolerability in humans. This analgesic also exhibits neuroprotective activities. Furthermore, flupirtine antagonizes glutamate- and NMDA-induced intracellular levels of Ca2+ and counteracts the effects of focal cerebral ischemia. Although flupirtine has been used to relieve pain caused by different diseases and clinical procedures, information on the safety and efficacy of flupirtine is limited. The present study was conducted to investigate the neuroprotective effects of flupirtine on U373 malignant glioma (MG) cell lines. Cell viability and cell cycle analysis was performed by MTT assay and flow cytometry, respectively. Variations in the growth of U373 MG cells in 5 mM N-methyl-D-aspartate (NMDA), 1 mM flupirtine, and combined treatment indicated the antagonistic effects of NMDA and flupirtine on MG cell lines. The variation in the percentage of gated cell population in different cell cycle phases showed significant variations after 48 h of treatment. Flupirtine has neuroprotective effect of on U373 MG cells, which limits its use in the pain management of brain tumors. This property warrants further studies using animal models and large-scale clinical trials

  15. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yang

    Full Text Available Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs. We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.

  16. Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-β signaling.

    Science.gov (United States)

    Yao, Ting; Zhang, Chen-Guang; Gong, Ming-Tao; Zhang, Min; Wang, Lei; Ding, Wei

    2016-07-01

    Decorin (DCN) is a major member of the small leucine-rich proteoglycan (SLRP) family that is critically involved in tumorigenesis and the development of metastasis of cancers, including glioma. Overexpression of DCN was indicated to suppress glioma cell growth. However, the role of DCN in the migration of glioma cells remain elusive. In this study, we found that treatment with exogenous DCN inhibited the adhesion and migration of U87MG glioma cells with down-regulation of TGF-β signaling. DCN also activated autophagy, as indicated by monodansylcadaverine (MDC) staining, increase in LC3 I/LC3 II conversion, and p62/SQSTM1 degradation in U87MG cells. The increased activity of autophagy was found to be connected to the inhibition on glioma cell migration. Knockdown of DCN expression or the disruption of autophagy with 3-methyladenine (3-MA) was able to reduce the suppression on cell adhesion and migration induced by DCN. When U87MG cells were treated with temozolomide (TMZ), induction of autophagy and up-regulation of DCN were observed, accompanied by suppressed cell adhesion and migration. Transfection of siRNA targeting DCN attenuated the suppressive effect of TMZ on glioma cell migration and adhesion. Our results indicated that the migration of glioma cells was under the control of the active status of autophagy, with DCN serving as a key player, as well as an indicator of the outcome. Therefore, it is suggested that autophagy-modulating reagents could be considered for the treatment of invasive glioma.

  17. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal

    Science.gov (United States)

    Parajuli, Prahlad; Anand, Rohit; Mandalaparty, Chandramouli; Suryadevara, Raviteja; Sriranga, Preethi U.; Michelhaugh, Sharon K.; Cazacu, Simona; Finniss, Susan; Thakur, Archana; Lum, Lawrence G.; Schalk, Dana; Brodie, Chaya; Mittal, Sandeep

    2016-01-01

    Gliomas are the most common primary brain tumor and one of the most lethal solid tumors. Mechanistic studies into identification of novel biomarkers are needed to develop new therapeutic strategies for this deadly disease. The objective for this study was to explore the potential direct impact of IL-17−IL-17R interaction in gliomas. Immunohistochemistry and flow cytometry analysis of 12 tumor samples obtained from patients with high grade gliomas revealed that a considerable population (2–19%) of cells in all malignant gliomas expressed IL-17RA, with remarkable co-expression of the glioma stem cell (GSC) markers CD133, Nestin, and Sox2. IL-17 enhanced the self-renewal of GSCs as determined by proliferation and Matrigel® colony assays. IL-17 also induced cytokine/chemokine (IL-6, IL-8, interferon-γ-inducible protein [IP-10], and monocyte chemoattractant protein-1 [MCP-1]) secretion in GSCs, which were differentially blocked by antibodies against IL-17R and IL-6R. Western blot analysis showed that IL-17 modulated the activity of signal transducer and activator of transcription 3 (STAT3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), glycogen synthase kinase-3β (GSK-3β) and β-catenin in GSCs. While IL-17R-mediated secretion of IL-6 and IL-8 were significantly blocked by inhibitors of NF-κB and STAT3; NF-κB inhibitor was more potent than STAT3 inhibitor in blocking IL-17-induced MCP-1 secretion. Overall, our results suggest that IL-17–IL-17R interaction in GSCs induces an autocrine/paracrine cytokine feedback loop, which may provide an important signaling component for maintenance/self-renewal of GSCs via constitutive activation of both NF-κB and STAT3. The results also strongly implicate IL-17R as an important functional biomarker for therapeutic targeting of GSCs. PMID:26755664

  18. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence.

    Science.gov (United States)

    Auffinger, Brenda; Spencer, Drew; Pytel, Peter; Ahmed, Atique U; Lesniak, Maciej S

    2015-01-01

    Glioma stem cells (GSCs) constitute a slow-dividing, small population within a heterogeneous glioblastoma. They are able to self-renew, recapitulate a whole tumor, and differentiate into other specific glioblastoma multiforme (GBM) subpopulations. Therefore, they have been held responsible for malignant relapse after primary standard therapy and the poor prognosis of recurrent GBM. The failure of current therapies to eliminate specific GSC subpopulations has been considered a major factor contributing to the inevitable recurrence in GBM patients after treatment. Here, we discuss the molecular mechanisms of chemoresistance of GSCs and the reasons why complete eradication of GSCs is so difficult to achieve. We will also describe the targeted therapies currently available for GSCs and possible mechanisms to overcome such chemoresistance and avoid therapeutic relapse.

  19. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Weber Klaus

    2011-10-01

    Full Text Available Abstract Background Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Methods Eight μm pore size membranes were coated with vitronectin (VN, collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT, serum stimulation and addition of monoclonal antibodies directed to human integrins ανβ3 and ανβ5. Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Results Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either ανβ3 or ανβ5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Conclusions Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB. Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation.

  20. Role of Autophagy in Capsaicin-Induced Apoptosis in U251 Glioma Cells.

    Science.gov (United States)

    Liu, Ya-Ping; Dong, Fu-Xing; Chai, Xiang; Zhu, Shuang; Zhang, Bao-Le; Gao, Dian-Shuai

    2016-07-01

    In recent years, the role of capsaicin in cancer prevention and treatment has gained people's attention. However, the mechanism of anti-glioma cells by capsaicin has not been elucidated. Here, we discuss the mechanism of capsaicin in U251 cells. Cell viability was detected by MTT and extracellular LDH measurements, while immunofluorescence was performed to measure changes of LC3 in U251 cells. The expressions of LC3II, Puma-α, Beclin1, P62, Procaspase-3, and P53 were observed by immunoblotting. The cell viability decreased and the punctate patterns of LC3 in U251 cells were observed after Capsaicin treatment. Meanwhile, the expressions of Beclin1, P62, and Puma-α increased. After using 3-MA, the expressions of Beclin1 and Procaspase-3 were reduced while those of P53 and Puma-α increased. The expression of LC3II was increased after Pifithrin-α treatment. Therefore, we believed that capsaicin could induce apoptosis in U251 cells, and the inhibition of autophagy could contribute to apoptosis. PMID:26351174

  1. Depletion of drug-surviving glioma cells by a second phase treatment with low concentration of salinomycin

    Directory of Open Access Journals (Sweden)

    Zahid M. Delwar

    2011-06-01

    Full Text Available Standard treatment for glioma includes surgery, radiotherapy and chemotherapy but the outcome of patients is very poor. Antineoplastic drugs are usually administered alone or in combination for variable times (continuously or in cycles in a single phase schedule. In this study we explored in vitro the antiproliferative effect of a 2 phases treatment. In the first phase, glioma cells where treated for 3-4 weeks with hydroxyurea (HU or aphidicolin and then for 4 weeks with salinomycin, a drug that preferentially inhibits the proliferation of cancer stem cells. We found that salinomycin, is able to slowly deplete the fraction of glioma cells that survive the exposure to HU or aphidicolin. Surviving cells were killed at salinomycin concentrations lower than those required to kill untreated cells. The fraction of surviving cell showed traits of senescence including increased activity of the senescence associated -β-galactosidase (SA-β-gal marker. Our data suggest that drug-induced senescent cells may constitute a novel target for cancer treatment and can be exploited in a two phases therapeutic regimen.

  2. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2015-06-01

    Full Text Available Yonghong Zhang,1,2 Xinlin Sun,1 Min Huang,1 Yiquan Ke,1 Jihui Wang,1 Xiao Liu1 1National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 2Department of Neurosurgery, First Hospital of Lanzhou University, Lanzhou, People’s Republic of China Background: In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas.Materials and methods: In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo.Results: In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01. In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model.Conclusion: The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. Keywords: bispecific immunotoxin, human mesenchymal stem cells, ephrin A1, VEGF165, malignant glioma

  3. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells.

    Science.gov (United States)

    Gu, Jian-Jun; Zhang, Jian-He; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non‑neoplastic brain specimens. Specifically, higher expression levels of miR‑130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR‑130b interacted with the 3'-untranslated region of peroxisome proliferator‑activated receptor-γ (PPAR‑γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR‑130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR‑130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.

  4. Autologous Tumor Lysate-pulsed Dendritic Cell Immunotherapy for Pediatric Patients with Newly Diagnosed or Recurrent High-grade Gliomas

    OpenAIRE

    Lasky, Joseph L.; Panosyan, Eduard H.; Plant, Ashley; Davidson, Tom; Yong, William H.; Robert M Prins; Liau, Linda M.; Moore, Theodore B.

    2013-01-01

    Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1×106 cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild s...

  5. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    OpenAIRE

    Weber Klaus; Lindel Katja; Wuerth Lena; Mohr Angela; Habermehl Daniel; Rieken Stefan; Debus Jürgen; Combs Stephanie E

    2011-01-01

    Abstract Background Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Methods Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were an...

  6. Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin αV.

    Directory of Open Access Journals (Sweden)

    Akiko Niibori-Nambu

    Full Text Available Glioma initiating cells (GICs are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanism of GIC maintenance/differentiation, we established GIC clones having the potential to differentiate into malignant gliomas, and subjected to DNA microarray/iTRAQ based integrated proteomics. 21,857 mRNAs and 8,471 proteins were identified and integrated into a gene/protein expression analysis chart. Gene Ontology analysis revealed that the expression of cell adhesion molecules, including integrin subfamilies, such as α2 and αV, and extracellular matrices (ECMs, such as collagen IV (COL4, laminin α2 (LAMA2, and fibronectin 1 (FN, was significantly upregulated during serum-induced GIC differentiation. This differentiation process, accompanied by the upregulation of MAPK as well as glioma specific proteins in GICs, was dramatically accelerated in these ECM (especially FN-coated dishes. Integrin αV blocking antibody and RGD peptide significantly suppressed early events in GIC differentiation, suggesting that the coupling of ECMs to integrin αV is necessary for GIC differentiation. In addition, the expression of integrin αV and its strong ligand FN was prominently increased in glioblastomas developed from mouse intracranial GIC xenografts. Interestingly, during the initial phase of GIC differentiation, the RGD treatment significantly inhibited GIC proliferation and raised their sensitivity against anti-cancer drug temozolomide (TMZ. We also found that combination treatments of TMZ and RGD inhibit glioma progression and lead the longer survival of mouse intracranial GIC xenograft model. These results indicate that GICs induce/secrete ECMs to develop microenvironments with serum factors, namely differentiation niches that further stimulate GIC differentiation and proliferation via the integrin recognition motif RGD. A combination of RGD treatment with TMZ could have the higher inhibitory

  7. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    Science.gov (United States)

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  8. Telomerase reverse transcriptase promoter-driven expression of iodine pump genes for targeted radioiodine therapy of malignant glioma cells

    Institute of Scientific and Technical Information of China (English)

    Jian Tan; Wei Li; Peng Wang

    2011-01-01

    Radioiodine is a routine therapy for differentiated thyroid cancers. Non-thyroid cancers can intake radioiodine after transfection of the human sodium iodide symporter (hNIS) gene. The human telomerase reverse transcriptase (hTERT) promoter, an excellent tumor-specific promoter, has potential value for targeted gene therapy of glioma. We used the hTERT promoter to drive the expression of the hNIS and human thyroid peroxidase (hTPO) gene as a primary step for testing the effects of radioiodine therapy on malignant glioma. The U87 and U251 cells were co-transfected with two adenoviral vectors, in which the hNIS gene had been coupled to the hTERT promoter and the hTPO gene had been coupled to the CMV promoter, respectively. Then, we performed Western blot, 135l intake and efflux assays, and clonogenic assay with cancer cells. We also did 99mTc tumor imaging of nude mice models. After co-transfection with Ad-hTERT-hNIS and Ad-CMV-hTPO, glioma cells showed the 125l intake almost 1.5 times higher than cells transfected with Ad-hTERT-hNIS alone. Western blots revealed bands of approximately 70 kDa and 110 kDa, consistent with the hNIS and hTPO proteins. In clonogenic assay, approximately 90% of co transfected cells were killed, compared to 50% of control cells after incubated with 37 MBq of 131I. These results demonstrated that radioiodine therapy was effective in treating malignant glioma cell lines following induction of tumor-specific iodide intake by the hTERT promoter-directed hNIS expression in vitro. Co transfected hNIS and hTPO genes can result in increased intake and longer retention of radioiodine. Nude mice harboring xenografts transfected with Ad-hTERT-NIS can take 99mTc scans.

  9. Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    NARCIS (Netherlands)

    Bijnsdorp, Irene; Berg, van den Jaap; Kuipers, Gitta; Wedekind, Laurine; Slotman, Ben; Rijn, van Johannes; Lafleur, M.; Sminia, Peter

    2007-01-01

    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 in

  10. The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates

    International Nuclear Information System (INIS)

    This in vitro study was undertaken to determine if ultrahigh dose rates could improve the radiation response of human tumors. Two cell lines, human glioma (U-87 MG), which is radioresistant, and human melanoma (HT-144), which is radiosensitive, were irradiated at ultrahigh and high dose rates under aerobic and anoxic conditions to determine if their oxygen enhancement ratios are modified by dose rate. In fact, the survival curves, and hence the oxygen enhancement ratios, were found to be independent of the dose rate. The oxygen enhancement ratio for glioma cells irradiated in plateau phase was 2.8 (± 0.3). The oxygen enhancement ratio was 2.7 (± 0.4) for melanoma cells in plateau phase and 2.8 (± 0.3) in exponential phase. These results indicate that there is no advantage in treating these tumors using ultrahigh dose rate instead of conventional dose rates. 28 refs., 4 figs., 1 tab

  11. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

    Science.gov (United States)

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133+ primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133+ glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133+ glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133+ glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of

  12. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a.

    Science.gov (United States)

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133(+) primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133(+) glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133(+) glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133(+) glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The

  13. 白纹伊蚊中肠组织和C6/36细胞与登革病毒相互作用蛋白的筛选%Screening of proteins interacting with dengue virus from Aedes albopictus midgut tissue and C6/36 cells

    Institute of Scientific and Technical Information of China (English)

    潘京; 朱娉婷; 郑学礼

    2013-01-01

    目的 筛选登革Ⅱ型病毒与白纹伊蚊中肠组织和C6/36细胞中的连接分子.方法 富集纯化登革Ⅱ型病毒,用12%SDS-PAGE分析提取的C6/36细胞膜蛋白和白纹伊蚊中肠组织总蛋白,将分离胶上的蛋白转于硝酸纤维素膜(PVDF)上,应用病毒覆盖蛋白结合试验(VOPBA)方法筛选白纹伊蚊中肠组织和C6/36细胞中表达连接登革Ⅱ型病毒的分子.结果 白纹伊蚊中肠组织总蛋白经12% SDS-PAGE分离后转膜,分别与纯化的病毒液和阴性对照液孵育,用抗登革病毒单克隆抗体检测,结果显示病毒孵育组在分子量30 kDa的位置有特异性的条带出现,而阴性对照组无此条带;用同样的方法筛选C6/36细胞上表达蛋白,病毒孵育组在分子量30 kDa和40 kDa的位置出现特异条带,而阴性对照组无.结论 VOPBA结果显示分子量为30 kDa的分子在中肠组织与C6/36细胞中都能表达,具有连接登革Ⅱ型病毒的作用,对其氨基酸序列的鉴定和功能分析工作正在进行中.%To screen the molecules binding dengue Ⅱ virus expressed in Aedes albopiclus midgut tissue and C6/36 cells, C6/36 cells were infected with dengue Ⅱ virus, and the virus were collected and purified. The total proteins of Aedes albopiclus midgut tissue and membrane proteins of C6/36 cells were extracted and analyzed using12% SDS-polyacrylamide gel (PAGE). After electrophoresis, the proteins were transferred to a nitrocellulose membrane, and virus overlay protein binding assay (VOPBA) was carried out using an anti-dengue virus monoclonal antibody; one specific band of 30 kDa occurred after VOPBA of the proteins from Aedes albopiclus midgut tissue incubated with the virus, while the negative control group did not show this specific band. Two specific bands of 30 kDa and 40 kDa occurred after VOPBA of the proteins from the cells incubated with the virus, while the negative control group did not show these specific bands; the 30 kDa molecular binding with

  14. E series prostaglandins alter the proliferative, apoptotic and migratory properties of T98G human glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Gomes Renata N

    2012-12-01

    Full Text Available Abstract Background In many types of cancer, prostaglandin E2 (PGE2 is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE1, PGE2 and Ibuprofen (IBP observed in the T98G human glioma cell line in vitro. Methods T98G human glioma cells were treated with IBP, PGE1 or PGE2 at varying concentrations for 24–72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively. The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results A significant decrease was seen in cell number (54% in the presence of 50 μM IBP. Mitotic index and bromodeoxyuridine (BrdU incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167% and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74% and the transwell migration assay (36%. In contrast, the presence of exogenous PGE1 or PGE2 caused significant increases in cell number (37% PGE1 and 45% PGE2. When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE1 (62% and to a greater extent by PGE2 (100%. The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE1 and 44% PGE2 and the transwell migration assay (28% PGE1 and 68% PGE2. Conclusions The present study demonstrated that treatments which alter PGE1 and PGE

  15. Sema3C Promotes the Survival and Tumorigenicity of Glioma Stem Cells through Rac1 Activation

    Directory of Open Access Journals (Sweden)

    Jianghong Man

    2014-12-01

    Full Text Available Different cancer cell compartments often communicate through soluble factors to facilitate tumor growth. Glioma stem cells (GSCs are a subset of tumor cells that resist standard therapy to contribute to disease progression. How GSCs employ a distinct secretory program to communicate with and nurture each other over the nonstem tumor cell (NSTC population is not well defined. Here, we show that GSCs preferentially secrete Sema3C and coordinately express PlexinA2/D1 receptors to activate Rac1/nuclear factor (NF-κB signaling in an autocrine/paracrine loop to promote their own survival. Importantly, Sema3C is not expressed in neural progenitor cells (NPCs or NSTCs. Disruption of Sema3C induced apoptosis of GSCs, but not NPCs or NSTCs, and suppressed tumor growth in orthotopic models of glioblastoma. Introduction of activated Rac1 rescued the Sema3C knockdown phenotype in vivo. Our study supports the targeting of Sema3C to break this GSC-specific autocrine/paracrine loop in order to improve glioblastoma treatment, potentially with a high therapeutic index.

  16. RNAi-Mediated Simultaneous Downregulation of uPAR and Cathepsin B Induces Caspase 8-Mediated Apoptosis in SNB19 Human Glioma Cells

    OpenAIRE

    Christopher S Gondi; Kandhukuri, Neelima; Kondraganti, Shakuntala; Gujrati, Meena; Olivero, William C.; Dinh, Dzung H.; Rao, Jasti S.

    2006-01-01

    The invasive character of gliomas depends on proteolytic cleavage of the surrounding extracellular matrix. Cathepsin B and uPAR together are known to be overexpressed in gliomas, and as such, are attractive targets for gene therapy. In the present study, we used plasmid constructs to induce the RNAi-mediated downregulation of uPAR and Cathepsin B in SNB19 human glioma cells. We observed that the simultaneous downregulation of uPAR and Cathepsin B induces the up-regulation of pro-apoptotic gen...

  17. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation.

    Science.gov (United States)

    Zhang, Bao-Le; Liu, Jie; Lei, Yu; Xiong, Ye; Li, Heng; Lin, Xiaoqian; Yao, Rui-Qin; Gao, Dian-Shuai

    2016-09-01

    Glioma cells express high levels of GDNF. When investigating its transcriptional regulation mechanism, we observed increased or decreased methylation of different cis-acting elements in the gdnf promoter II. However, it is difficult to determine the contributions of methylation changes of each cis-acting element to the abnormally high transcription of gdnf gene. To elucidate the contributions of methylation changes of specific cis-acting elements to the regulation of gdnf transcription, we combined gene site-directed mutation, molecular cloning, and dual luciferase assay to develop the "specific sequence methylation followed by plasmid recircularization" method to alter methylation levels of specific cis-acting elements in the gdnf promoter in living cells and assess gene transcriptional activity. This method successfully introduced artificial changes in the methylation of different cis-acting elements in the gdnf promoter II. Moreover, compared with unmethylated gdnf promoter II, both silencer II hypermethylation plus enhancer II unmethylation and hypermethylation of the entire promoter II (containing enhancer II and silencer II) significantly enhanced gdnf transcriptional activity (P  0.05). Enhancer II hypermethylation plus silencer II unmethylation did not significantly affect gene transcription (P > 0.05). Furthermore, we found significantly increased DNA methylation in the silencer II of the gdnf gene in high-grade astroglioma cells with abnormally high gdnf gene expression (P < 0.01). The absence of silencer II significantly increased gdnf promoter II activity in U251 cells (P < 0.01). In conclusion, our specific sequence methylation followed by plasmid recircularization method successfully altered the methylation levels of a specific cis-acting element in a gene promoter in living cells. This method allows in-depth investigation of the impact of methylation changes of different cis-acting elements in the same promoter on gene transcriptional

  18. Differential biodistribution of intravenously administered endothelial progenitor and cytotoxic T-cells in rat bearing orthotopic human glioma

    International Nuclear Information System (INIS)

    A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. Human cord blood EPCs, T-cells and CD14+ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14+ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). We observed differential biodistribution of In-111

  19. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  20. In vitro anticancer drug test: A new method emerges from the model of glioma stem cells

    Directory of Open Access Journals (Sweden)

    Gabriele Riva

    2014-01-01

    Full Text Available Glioblastoma multiforme (GBM is a grade IV astrocytoma and the most common malignant brain tumor. Current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. The failure of current therapies may be due to the presence, within the tumor, of cells characterized by enhanced self-renewal capacity, multilineage differentiation potential and elevated invasive behavior, called glioma stem cells (GSCs. To evaluate the pharmacological efficacy of selected drugs on six GSC lines, we set up a multiple drug responsivity assay based on the combined evaluation of cytomorphological and functional parameters, including the analysis of polymorphic nuclei, mitotic index and cell viability. In order to understand the real pharmacological efficacy of the tested drugs, we assigned a specific drug responsivity score to each GSC line, integrating the data produced by multiple assays. In this work we explored the antineoplastic effects of paclitaxel (PTX, an inhibitor of microtubule depolymerization, utilized as standard treatment in several cancers, and of valproic acid (VPA, an inhibitor of histone deacetylases (HDACs with multiple anticancer properties. We classified the six GSC lines as responsive or resistant to these drugs, on the basis of their responsivity scores. This method can also be useful to identify the best way to combine two or more drugs. In particular, we utilized the pro-differentiating effect of VPA to improve the PTX effectiveness and we observed a significant reduction of cell viability compared to single treatments.

  1. miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase.

    Science.gov (United States)

    Sakr, Moustafa; Takino, Takahisa; Sabit, Hemragul; Nakada, Mitsutoshi; Li, Zichen; Sato, Hiroshi

    2016-08-10

    Gliomas are the most frequent primary tumors of the brain, and there is no successful treatment for highly malignant gliomas. MicroRNAs (miRNAs) are involved in a variety of biological processes. Recent studies showed that miR-150-5p and miR-133a are downregulated in various human malignancies, and one of target mRNAs was shown to be membrane-type 1 matrix metalloproteinase (MT1-MMP) mRNA. However, their detailed role in the processes of cancer remains to be determined. Here we found that miR-150-5p and miR-133a expression was significantly downregulated in glioma tissues compared with normal tissues, and that MT1-MMP expression was inversely upregulated in glioma tissues. Knockdown of MT1-MMP by specific siRNAs in U87 and U251 glioma cells induced suppression of cell proliferation and invasion/migration. Transfection of miR-150-5p or miR-133a mimics into glioma cell lines reduced MT1-MMP expression and MMP-2 activation by these cells, and cell proliferation and invasion/migration were also suppressed by it. Co-transfection of specific inhibitor oligo DNA for miR-150-5p or miR-133a abrogated miR-150-5p or miR-133a mimic's actions, respectively. These results suggest that miR-150-5p and miR-133a may suppress malignancy of gliomas by targeting MT1-MMP, and could be used as an anti-metastatic therapy for glioma patients. PMID:27154818

  2. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling

    Institute of Scientific and Technical Information of China (English)

    DONG Jun; LAN Qing; HUANG Qiang; DAI Xing-liang; LU Zhao-hui; FEI Xi-feng; CHEN Hua; ZHANG Quan-bin; ZHAO Yao-dong; WANG Zhi-min; WANG Ai-dong

    2012-01-01

    Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells.However,these tumor cells are hard to be visualized directly in histopathological preparations,or in experimental glioma models.Therefore,we developed an experimental human dual-color in vivo glioma model,which made tracking solitary invasive glioma cells possible,for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells.This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling.Methods Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice.Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive.Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene,and a rat C6 glioma cell line was stained directly with CM-Dil,to establish three glioma cell lines emitting red fluorescence (SU3-RFP,U87-RFP,and C6-CM-Dil).Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice.Tumor-bearing mice were sacrificed when their clinical symptoms appeared,and the whole brain was harvested and snap frozen for further analysis.Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells.Results Almost all the essential tissues of the established EGFP athymic Balb/c nude mice,except hair and erythrocytes,fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm,approximately 50% of the offsprings were nu/nu EGFP+.SU3-RFP,U87-RFP,and C6-CM-Dil almost 100% expressed red fluorescence under the fluorescence

  3. Lineage-restricted OLIG2-RTK signaling governs the molecular subtype of glioma stem-like cells

    Science.gov (United States)

    Kupp, Robert; Shtayer, Lior; Tien, An-Chi; Szeto, Emily; Sanai, Nader; Rowitch, David H.; Mehta, Shwetal

    2016-01-01

    SUMMARY The bHLH transcription factor OLIG2 is a master regulator of oligodendroglial fate decisions and tumorigenic competence of glioma stem-like cells (GSCs). However, the molecular mechanisms underlying dysregulation of OLIG2 function during gliomagenesis remains poorly understood. Here, we show that OLIG2 modulates growth factor signaling in two distinct populations of GSCs, characterized by expression of either the EGFR or PDGFRα. Biochemical analyses of OLIG2 function in normal and malignant neural progenitors reveal a positive feedforward loop between OLIG2 and EGFR to sustain co-expression. Furthermore, loss of OLIG2 function results in mesenchymal transformation in PDGFRαHIGH GSCs, a phenomenon that appears to be circumscribed in EGFRHIGH GSCs. Exploitation of OLIG2’s dual and antithetical, pro-mitotic (EGFR-driven) and lineage-specifying (PDGFRα-driven) functions by glioma cells, appears to be critical for sustaining growth factor signaling and GSC molecular subtype. PMID:27626655

  4. Proteomic data analysis of glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    Science.gov (United States)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Wengert, Georg; Houben, Ivo; Lobbes, Marc; Stadlbauer, Andreas; Meyer-Bäse, Anke

    2016-05-01

    Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the application of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the protein-level fold changes and putative upstream regulators for the GSCs. However the extracted molecular information is insufficient in classifying GSCs and paving the pathway to an improved therapeutics of the heterogeneous glioma.

  5. Effects and mechanisms of chronic morphine exposure on extracellular glutamate concentration in C6 cells%吗啡慢性暴露对C6细胞胞外谷氨酸浓度的影响及其机制

    Institute of Scientific and Technical Information of China (English)

    傅艳妮; 郭明炎; 刘玲; 纪风涛; 刘安民; 曹铭辉

    2015-01-01

    目的 探讨慢性吗啡暴露对C6胶质瘤细胞胞外谷氨酸浓度的影响及其机制.方法 培养好的C6细胞随机分为4组:对照组(细胞培养液培养,不加任何药物)、10 Mor组(10 μmol/L吗啡处理48 h)、撤药组(10 μmol/L吗啡预处理48 h后停药12 h)、5 Mor组(10 μmol/L吗啡预处理48 h、停药12h后再以5μmol/L吗啡复处理4h).采用磺酰罗丹明B(SRB)法检测细胞存活率,高效液相色谱测定细胞外液谷氨酸(Glu)水平,Western blot法检测细胞兴奋性氨基酸转运蛋白3(EAAT3)蛋白表达,实时定量反转录聚合酶链反应(RT-qPCR)检测EAAT3 mRNA表达水平.结果 (1)对照组细胞外液谷氨酸浓度为(18.03 ±1.11) mg/L.10 μmol/L吗啡作用C6细胞48 h后细胞外液Glu浓度上升至(41.76 ±7.14) mg/L,与对照组比较明显增加(P<0.05).撤药12 h后Glu浓度降至(25.22±2.26) mg/L,后再以5μmol/L吗啡处理4h后,细胞外液Glu浓度再次升至(40.18±7.08) mg/L,较对照组与撤药12h均明显增加(P<0.05).(2)C6细胞经吗啡作用48 h后EAAT3蛋白表达较对照组明显减少(P<0.05),撤药12h后EAAT3蛋白表达水平与对照组差异无统计学意义(P>0.05);5μmol/L吗啡再次处理4h,EAAT3蛋白表达再次明显升高(P<0.05).(3)4组中EAAT3 mRNA表达水平差异均无统计学意义(P>0.05).结论 吗啡慢性暴露引起C6细胞胞外Glu浓度增加,与EAAT3蛋白表达下降有关,EAAT3表达下调可能为转录后水平调节.%Objective To explore the effects and mechanisms of chronic morphine exposure on extracellular glutamate (Glu) concentration in C6 cells.Methods Well-grown C6 cells were divided into 4 groups: control group (C6 cells were treated with no drugs), 10 Mor group (10 μmol/L morphine treatment for 48 h), withdrawal group (after 10 μmol/L morphine treatment for 48 h, C6 cells were cultured in medium without morphine for 12 h, a simulation of the abstinence process), 5 Mor group (after C6 cells experienced morphine exposure

  6. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF-beta2 and migration of glioma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Corinna Seliger

    Full Text Available BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1, a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

  7. miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells

    Science.gov (United States)

    Roscigno, Giuseppina; Romano, Giulia; Diaz-Lagares, Angel; Iaboni, Margherita; Donnarumma, Elvira; Fiore, Danilo; De Marinis, Pasqualino; Soini, Ylermi; Esteller, Manel; Condorelli, Gerolama

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O6-methylguanine–DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis. PMID:24147153

  8. MiR-221/222 target the DNA methyltransferase MGMT in glioma cells.

    Directory of Open Access Journals (Sweden)

    Cristina Quintavalle

    Full Text Available Glioblastoma multiforme (GBM is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6-methylguanine-DNA methyltransferase (MGMT impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis.

  9. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  10. XuefuZhuyu Tang exerts antitumor effects by inhibiting glioma cell metastasis and invasion via regulating tumor microenvironment

    Science.gov (United States)

    Liu, Jianmin; Zhang, Ji; Huang, Liangwen; Zhu, Xuhong; Chen, Wei; Hu, Peng

    2016-01-01

    Background XuefuZhuyu Tang (XZT) is a traditional Chinese herb used for destagnation and is currently being used for oncotherapy. This study was intended to assess the effects of XZT on glioma along with its anticancer mechanism. Materials and methods U251 cells were divided into five groups: CNC (cells were cultured with normal saline), TSC (cells were treated with TaohongSiwu Tang [TST]), XSC (cells were treated with XZT), THC (cells were treated with homogenate of TST), and XHC (cells were treated with homogenate of XZT). The mRNA and protein expression of VEGF/VEGFR, CXCR4/CXCL12, and TIMP1/MMP9/MMP2 were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Moreover, MTT assay, transwell assay, wound-healing assay, and flow cytometry were conducted to assess the cell viability, cell migration and invasion, cell motility, and cell apoptosis of U251 cells, respectively. In vivo, three mice models (group CNM, gavaging saline; group TSM, gavaging TST; group XZM, gavaging XZT) were constructed after establishing xenograft mice models. Then, models were examined using hematoxylin and eosin staining, RT-PCR, and Western blotting. Results In vitro, XZT significantly upregulated TIMP1 expression and downregulated the expression of VEGF, VEGFR, CXCR4, CXCL12, MMP9, and MMP2 in U251 cells (all Pherb for curing glioma. PMID:27382298

  11. Significance of the expression of green fluorescent protein on detection of glioma invasion in vivo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the invasion and metastasis of gliomain vivo by xenotransplanted tumor established by implanting C6 glioma cells transfected with green fluorescent protein (GFP) gene in vitro into the brain of SD rats. Methods: C6 cells were transfected with a plasmid vector (pEGEP-N3) containing the GFP gene. Stable GFP-expressing clones were isolated and performed examination by flow cytometry and electron microscope. GFP-expressing cells were stereotactically injected into the brain parenchyma of SD rats to establish xenotransplanted tumor. Four weeks later rats were killed and continuous brain sections respectively were examined by HE staining, immunohistochemistry method and fluorescence microscopy for detection of tumor cell invasion. Xenotransplanted tumor was primarily cultured to determine the storage of exotic GFP gene in vivo. Results: There were not obvious changes in cell cycle and ultrastructure for the cells transfected with GFP gene. C6 cells transfected with GFP gene maintained stable high-level GFP expression in the central nervous system during their growth in vivo. GFP fluorescence clearly demarcated the primary tumor margin and readily allowed for the detection of distant invasion on the single-cell level, which was evidently superior to HE and immunohistochemistry staining. There was not GFP gene loss of transfected cells in vivo. Conclusions: It is suggested that C6 cells transfected with GFP gene can be visualized by fluorescent microscopy after intracranial implantation. This model is an excellent experimental animal model in research on invasion of glioma.

  12. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G2/M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G2/M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G2/M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  13. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  14. EFFECT OF HYPOXIA ON THE EXPRESSION OF GENES THAT ENCODE SOME IGFBP AND CCN PROTEINS IN U87 GLIOMA CELLS DEPENDS ON IRE1 SIGNALING.

    Science.gov (United States)

    Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L

    2015-01-01

    We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth. PMID:27025059

  15. Ribotrap Analysis of Proteins Associated with FHL3 3’Untranslated Region in Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    Wei Han; Qing Xia; Bin Yin Xiao-zhong Peng

    2014-01-01

    Objective To screen the proteins associated with four-and-a-half LIM domains 3 (FHL3) 3’ untranslated region (3’UTR) in glioma cells. Methods Western blot was adopted to detect the regulatory effect of poly(C)-binding protein 2 (PCBP2) on FHL3. Biotin pull-down and sliver staining were employed to screen and verify the candidate binding proteins of FHL3 3’UTR. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecule annotation system were used to identify and analyze the candidate binding proteins. Immuno-precipitation was conducted to study the interaction between PCBP2 and polypyrimidine tract-binding protein 1 (PTBP1), a binding protein identified by LC-MS/MS. Results PCBP2 could bind to FHL3 mRNA 3’UTR-A and inhibited the expression of FHL3 in T98G glioms cells. 22 candidate binding proteins were identified. Among them, there were 11 RNA binding proteins, including PCBP2. PTBP1 associated with FHL3 mRNA 3’UTR and interacted with PCBP2 protein. Conclusion PCBP2 and PTBP1 can both associate with FHL3 mRNA 3’UTR through forming a protein complex.

  16. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion.

    Directory of Open Access Journals (Sweden)

    Deborah Huveldt

    Full Text Available Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM. Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1 activation of Src family kinases (SFKs is common in GBM, 2 the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3 SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.

  17. Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells—Characterization of a New in Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Stojković

    2016-06-01

    Full Text Available Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl-1-nitrosourea (BCNU and temozolomide (TMZ. Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells’ invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats’ behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.

  18. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    OpenAIRE

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A.; de Andrade-Lima, L C; V. Munford; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types