WorldWideScience

Sample records for c4 photosynthetic pathway

  1. Characterization and expression patterns of key C4 photosynthetic pathway genes in bread wheat (Triticum aestivum L.) under field conditions.

    Science.gov (United States)

    Bachir, Daoura Goudia; Saeed, Iqbal; Song, Quanhao; Linn, Tay Zar; Chen, Liang; Hu, Yin-Gang

    2017-06-01

    Wheat is a C3 plant with relatively low photosynthetic efficiency and is a potential target for C4 photosynthetic pathway engineering. Here we reported the characterization of four key C4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C4-like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C4-like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  3. Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype.

    Science.gov (United States)

    Sonawane, Balasaheb V; Sharwood, Robert E; von Caemmerer, Susanne; Whitney, Spencer M; Ghannoum, Oula

    2017-11-28

    C4 photosynthesis evolved independently many times, resulting in multiple biochemical pathways; however, little is known about how these different pathways respond to temperature. We investigated the photosynthetic responses of eight C4 grasses belonging to three biochemical subtypes (NADP-ME, PEP-CK, and NAD-ME) to four leaf temperatures (18, 25, 32, and 40 °C). We also explored whether the biochemical subtype influences the thermal responses of (i) in vitro PEPC (Vpmax) and Rubisco (Vcmax) maximal activities, (ii) initial slope (IS) and CO2-saturated rate (CSR) derived from the A-Ci curves, and (iii) CO2 leakage out of the bundle sheath estimated from carbon isotope discrimination. We focussed on leakiness and the two carboxylases because they determine the coordination of the CO2-concentrating mechanism and are important for parameterizing the semi-mechanistic C4 photosynthesis model. We found that the thermal responses of Vpmax and Vcmax, IS, CSR, and leakiness varied among the C4 species independently of the biochemical subtype. No correlation was observed between Vpmax and IS or between Vcmax and CSR; while the ratios Vpmax/Vcmax and IS/CSR did not correlate with leakiness among the C4 grasses. Determining mesophyll and bundle sheath conductances in diverse C4 grasses is required to further elucidate how C4 photosynthesis responds to temperature. © Society for Experimental Biology 2017.

  4. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species.

    Science.gov (United States)

    Bräutigam, Andrea; Schliesky, Simon; Külahoglu, Canan; Osborne, Colin P; Weber, Andreas P M

    2014-07-01

    C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. However, a comparison between C3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C4 photosynthesis is still missing. An integrative analysis of all three C4 subtypes has also not been possible to date, since no comparison has been available for closely related C3 and PEP-CK C4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C4 cycle intermediates to other metabolic pathways, as critical components of C4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C4 species compared with C3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M

  5. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  6. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species

    OpenAIRE

    Bräutigam, A.; Schliesky, S.; Külahoglu, C.; Osborne, C. P.; Weber, A. P. M.

    2014-01-01

    C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. ...

  7. Studies on anatomical characters indicating C3 and C4 photosynthetic metabolism in the genus Boerhavia L. (Nyctaginaceae

    Directory of Open Access Journals (Sweden)

    Abdulwakeel Ayokun-nun Ajao

    2017-08-01

    Full Text Available The C3 and C4 photosynthetic pathways in dicotyledons were investigated with the four species of Boerhavia occurring in Nigeria using light microscopy. The study is not yet well reported on dicotyledons as done for monocotyledons. The features cross-examined were stomata index, stomata size, inter-stomatal distance, stomatal density, interveinal distance, intercellular air spaces, leaf thickness, mesophyll thickness, Kranz tissue, one cell distant count criterion, maximum lateral cell count criterion, vein density and vein distance. Based on these features, these species (B. erecta, B. coccinea and B. repens were grouped into C4 while B. diffusa was grouped as a C3 plant. In particular, interveinal distance less than 166µm and maximum lateral count ranging 2 to 6 will help in grouping C4 dicotyledons species while those that were greater than these values are useful in grouping C3 and plants.

  8. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.

    Science.gov (United States)

    Ripley, Brad; Visser, Vernon; Christin, Pascal-Antoine; Archibald, Sally; Martin, Tarryn; Osborne, Colin

    2015-10-01

    Grasses using the C4 photosynthetic pathway dominate frequently burned savannas, where the pathway is hypothesized to be adaptive. However, independent C4 lineages also sort among different fire environments. Adaptations to fire may thus depend on evolutionary history, which could be as important as the possession of the C4 photosynthetic pathway for life in these environments. Here, using a comparative pot experiment and controlled burn, we examined C3 and C4 grasses belonging to four lineages from the same regional flora, and asked the following questions: Do lineages differ in their responses to fire, are responses consistent between photosynthetic types, and are responses related to fire frequency in natural habitats? We found that in the C4 Andropogoneae lineage, frost killed a large proportion of aboveground biomass and produced a large dry fuel load, which meant that only a small fraction of the living tissue was lost in the fire. C3 species from the Paniceae and Danthonioideae lineages generated smaller fuel loads and lost more living biomass, while species from the C4 lineage Aristida generated the smallest fuel loads and lost the most living tissue. Regrowth after the fire was more rapid and complete in the C4 Andropogoneae and C3 Paniceae, but incomplete and slower in the C3 Danthonioideae and C4 Aristida. Rapid recovery was associated with high photosynthetic rates, high specific leaf area, delayed flowering, and frequent fires in natural habitats. Results demonstrated that phylogenetic lineage was more important than photosynthetic type in determining the fire response of these grasses and that fire responses were related to the frequency that natural habitats burned.

  9. A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism.

    OpenAIRE

    Bellasio, C.

    2016-01-01

    The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-depende...

  10. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3-C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy.

    Science.gov (United States)

    Voznesenskaya, Elena V; Koteyeva, Nuria K; Edwards, Gerald E; Ocampo, Gilberto

    2017-01-01

    Portulacaceae is a family that has considerable diversity in photosynthetic phenotypes. It is one of 19 families of terrestrial plants where species having C4 photosynthesis have been found. Most species in Portulaca are in the alternate-leaved (AL) lineage, which includes one clade (Cryptopetala) with taxa lacking C4 photosynthesis and three clades having C4 species (Oleracea, Umbraticola and Pilosa). All three species in the Cryptopetala clade lack Kranz anatomy, the leaves have C3-like carbon isotope composition and they have low levels of C4 cycle enzymes. Anatomical, biochemical and physiological analyses show they are all C3-C4 intermediates. They have intermediate CO2 compensation points, enrichment of organelles in the centripetal position in bundle sheath (BS) cells, with selective localization of glycine decarboxylase in BS mitochondria. In the three C4 clades there are differences in Kranz anatomy types and form of malic enzyme (ME) reported to function in C4 (NAD-ME versus NADP-ME): Oleracea (Atriplicoid, NAD-ME), Umbraticola (Atriplicoid, NADP-ME) and Pilosa (Pilosoid, NADP-ME). Structural and biochemical analyses were performed on Pilosa clade representatives having Pilosoid-type leaf anatomy with Kranz tissue enclosing individual peripheral vascular bundles and water storage in the center of the leaf. In this clade, all species except P. elatior are NADP-ME-type C4 species with grana-deficient BS chloroplasts and grana-enriched M chloroplasts. Surprisingly, P. elatior has BS chloroplasts enriched in grana and NAD-ME-type photosynthesis. The results suggest photosynthetic phenotypes were probably derived from an ancestor with NADP-ME-type C4, with two independent switches to NAD-ME type. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism.

    Science.gov (United States)

    Bellasio, Chandra

    2017-01-01

    The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-dependent malic enzyme, NADP-dependent malic enzyme, or phosphoenolpyruvate carboxykinase) are explicitly included. The SMA can be used to refine experimental data analysis or formulate hypothetical scenarios, and is coded in a freely available Microsoft Excel workbook. The theoretical underpinnings and general model behaviour are analysed with a range of simulations, including (i) an analysis of C3, C2, C2+C4, and C4 in operational conditions; (ii) manipulating photorespiration in a C3 plant; (iii) progressively upregulating a C2 shuttle in C3 photosynthesis; (iv) progressively upregulating a C4 cycle in C2 photosynthesis; and (v) manipulating processes that are hypothesized to respond to transient environmental inputs. Results quantify the functional trade-offs, such as the electron transport needed to meet ATP/NADPH demand, as well as metabolite traffic, inherent to different subtypes. The SMA refines our understanding of the stoichiometry of photosynthesis, which is of paramount importance for basic and applied research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of compartmentation in C4 photosynthetic chemistry and C3 photorespiration.

    Science.gov (United States)

    Zhou, Youping; Grice, Kliti; Stuart-Williams, Hilary; Hocart, Charles H; Gessler, Arthur; Farquhar, Graham D

    2016-12-01

    The 2 H/1 H ratio of carbon-bound H in biolipids holds potential for probing plant lipid biosynthesis and metabolism. The biochemical mechanism underlying the isotopic differences between lipids from C3 and C4 plants is still poorly understood. GC-pyrolysis-IRMS (gas chromatography-pyrolysis-isotope ratio mass spectrometry) measurement of the 2 H/1 H ratio of leaf lipids from controlled and field grown plants indicates that the biochemical isotopic fractionation (ε2 Hlipid_biochem ) differed between C3 and C4 plants in a pathway-dependent manner: ε2 HC4  > ε2 HC3 for the acetogenic pathway, ε2 HC4  C4 mesophyll (M) and bundle sheath (BS) cells and suppression of photorespiration in C4 M and BS cells both result in C4 M chloroplastic pyruvate - the precursor for acetogenic pathway - being more depleted in 2 H relative to pyruvate in C3 cells. In addition, compartmentation in C4 plants also results in (i) the transferable H of NADPH being enriched in 2 H in C4 M chloroplasts compared with that in C3 chloroplasts for the 1-deoxy-D-xylulose 5-phosphate pathway pathway and (ii) pyruvate relatively 2 H-enriched being used for the mevalonic acid pathway in the cytosol of BS cells in comparison with that in C3 cells. © 2016 John Wiley & Sons Ltd.

  13. Differences in photosynthetic responses of NADP-ME type C4 species to high light.

    Science.gov (United States)

    Romanowska, Elżbieta; Buczyńska, Alicja; Wasilewska, Wioleta; Krupnik, Tomasz; Drożak, Anna; Rogowski, Paweł; Parys, Eugeniusz; Zienkiewicz, Maksymilian

    2017-03-01

    Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m-2 s-1) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m-2 s-1). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H2O2 suggests that antioxidant defense is not responsible

  14. Tissue-Specific and Light-Mediated Expression of the C4 Photosynthetic NAD-Dependent Malic Enzyme of Amaranth Mitochondria.

    Science.gov (United States)

    Long, J. J.; Berry, J. O.

    1996-01-01

    In the C4 dicotyledonous grain plant amaranth (Amaranthus hypochondriacus), a mitochondrial NAD-dependent malic enzyme (NAD-ME; EC 1.1.1.39) serves a specialized and essential role in photosynthetic carbon fixation. In this study we have examined specialized photosynthetic gene expression patterns for the NAD-ME [alpha] subunit. We show here that the [alpha] subunit gene is preferentially expressed in leaves and cotyledons (the most photosynthetically active tissues), and this expression is specific to the bundle-sheath cells of these tissues from the earliest stages of development. Synthesis of the [alpha] subunit polypeptide and accumulation of its corresponding mRNA are strongly light-dependent, but this regulation is also influenced by seedling development. In addition, light-dependent accumulation of the [alpha] subunit mRNA is regulated at transcriptional as well as posttranscriptional levels. Our findings demonstrate that the NAD-ME of amaranth has acquired numerous complex tissue-specific and light-mediated regulation patterns that define its specialized function as a key enzyme in the C4 photosynthetic pathway. PMID:12226404

  15. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway.

    Science.gov (United States)

    Horn, James W; Xi, Zhenxiang; Riina, Ricarda; Peirson, Jess A; Yang, Ya; Dorsey, Brian L; Berry, Paul E; Davis, Charles C; Wurdack, Kenneth J

    2014-12-01

    The mid-Cenozoic decline of atmospheric CO2 levels that promoted global climate change was critical to shaping contemporary arid ecosystems. Within angiosperms, two CO2 -concentrating mechanisms (CCMs)-crassulacean acid metabolism (CAM) and C4 -evolved from the C3 photosynthetic pathway, enabling more efficient whole-plant function in such environments. Many angiosperm clades with CCMs are thought to have diversified rapidly due to Miocene aridification, but links between this climate change, CCM evolution, and increased net diversification rates (r) remain to be further understood. Euphorbia (∼2000 species) includes a diversity of CAM-using stem succulents, plus a single species-rich C4 subclade. We used ancestral state reconstructions with a dated molecular phylogeny to reveal that CCMs independently evolved 17-22 times in Euphorbia, principally from the Miocene onwards. Analyses assessing among-lineage variation in r identified eight Euphorbia subclades with significantly increased r, six of which have a close temporal relationship with a lineage-corresponding CCM origin. Our trait-dependent diversification analysis indicated that r of Euphorbia CCM lineages is approximately threefold greater than C3 lineages. Overall, these results suggest that CCM evolution in Euphorbia was likely an adaptive strategy that enabled the occupation of increased arid niche space accompanying Miocene expansion of arid ecosystems. These opportunities evidently facilitated recent, replicated bursts of diversification in Euphorbia. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry.

    Science.gov (United States)

    Pengelly, Jasper J L; Sirault, Xavier R R; Tazoe, Youshi; Evans, John R; Furbank, Robert T; von Caemmerer, Susanne

    2010-09-01

    In C(4) plants, acclimation to growth at low irradiance by means of anatomical and biochemical changes to leaf tissue is considered to be limited by the need for a close interaction and coordination between bundle sheath and mesophyll cells. Here differences in relative growth rate (RGR), gas exchange, carbon isotope discrimination, photosynthetic enzyme activity, and leaf anatomy in the C(4) dicot Flaveria bidentis grown at a low (LI; 150 micromol quanta m(2) s(-1)) and medium (MI; 500 micromol quanta m(2) s(-1)) irradiance and with a 12 h photoperiod over 36 d were examined. RGRs measured using a 3D non-destructive imaging technique were consistently higher in MI plants. Rates of CO(2) assimilation per leaf area measured at 1500 micromol quanta m(2) s(-1) were higher for MI than LI plants but did not differ on a mass basis. LI plants had lower Rubisco and phosphoenolpyruvate carboxylase activities and chlorophyll content on a leaf area basis. Bundle sheath leakiness of CO(2) (phi) calculated from real-time carbon isotope discrimination was similar for MI and LI plants at high irradiance. phi increased at lower irradiances, but more so in MI plants, reflecting acclimation to low growth irradiance. Leaf thickness and vein density were greater in MI plants, and mesophyll surface area exposed to intercellular airspace (S(m)) and bundle sheath surface area per unit leaf area (S(b)) measured from leaf cross-sections were also both significantly greater in MI compared with LI leaves. Both mesophyll and bundle sheath conductance to CO(2) diffusion were greater in MI compared with LI plants. Despite being a C(4) species, F. bidentis is very plastic with respect to growth irradiance.

  17. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    Science.gov (United States)

    Weckopp, Silke C; Kopriva, Stanislav

    2014-01-01

    C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells (BSC) or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in BSC of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in BSC of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modeling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory toward C4 photosynthesis.

  18. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    Directory of Open Access Journals (Sweden)

    Silke Christine Weckopp

    2015-01-01

    Full Text Available C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in bundle sheath cells of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in bundle sheath cells of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modelling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory towards C4 photosynthesis.

  19. Seasonal and inter-annual photosynthetic response of representative C4 species to soil water content and leaf nitrogen concentration across a tropical seasonal floodplain

    NARCIS (Netherlands)

    Mantlana, K.B.; Arneth, A.; Veenendaal, E.M.; Wohland, P.; Wolski, P.; Kolle, O.; Lloyd, J.

    2008-01-01

    We examined the seasonal and inter-annual variation of leaf-level photosynthetic characteristics of three C4 perennial species, Cyperus articulatus, Panicum repens and Imperata cylindrica, and their response to environmental variables, to determine comparative physiological responses of plants

  20. Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture

    Science.gov (United States)

    Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.

    2016-12-01

    We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.

  1. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses.

    Science.gov (United States)

    Ripley, Brad; Frole, Kristen; Gilbert, Matthew

    2010-03-01

    The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response. Six species of locally co-occurring grasses, C3) species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types. Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance. Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.

  2. Characterization of a C 4 maize pyruvate orthophosphate dikinase ...

    African Journals Online (AJOL)

    Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in plants that utilize the C4 photosynthetic pathway to fix CO2. The enzymatic reaction catalyzed by PPDK is critically controlled by light and is one of the rate-limiting steps of the C4 pathway. The intact maize (Zea mays) C4-PPDK gene, containing its own promoter, ...

  3. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Science.gov (United States)

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  4. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    Directory of Open Access Journals (Sweden)

    Mohammad-Zaman Nouri

    2015-08-01

    Full Text Available Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4, type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  5. Major alterations in transcript profiles between C3-C4 and C4 photosynthesis of an amphibious species Eleocharis baldwinii.

    Science.gov (United States)

    Chen, Taiyu; Zhu, Xin-Guang; Lin, Yongjun

    2014-09-01

    Engineering C4 photosynthetic metabolism into C3 crops is regarded as a major strategy to increase crop productivity, and clarification of the evolutionary processes of C4 photosynthesis can help the better use of this strategy. Here, Eleocharis baldwinii, a species in which C4 photosynthesis can be induced from a C3-C4 state under either environmental or ABA treatments, was used to identify the major transcriptional modifications during the process from C3-C4 to C4. The transcriptomic comparison suggested that in addition to the major differences in C4 core pathway, the pathways of glycolysis, citrate acid metabolism and protein synthesis were dramatically modified during the inducement of C4 photosynthetic states. Transcripts of many transporters, including not only metabolite transporters but also ion transporters, were dramatically increased in C4 photosynthetic state. Many candidate regulatory genes with unidentified functions were differentially expressed in C3-C4 and C4 photosynthetic states. Finally, it was indicated that ABA, auxin signaling and DNA methylation play critical roles in the regulation of C4 photosynthesis. In summary, by studying the different photosynthetic states of the same species, this work provides the major transcriptional differences between C3-C4 and C4 photosynthesis, and many of the transcriptional differences are potentially related to C4 development and therefore are the potential targets for reverse genetics studies.

  6. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Kidmose, Rune Thomas; Petersen, Steen Vang

    2015-01-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface...... for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details...... of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode...

  7. [C4 type photosynthesis].

    Science.gov (United States)

    Drozak, Anna; Wasilewska, Wioleta; Buczyńska, Alicja; Romanowska, Elzbieta

    2012-01-01

    C4 photosynthesis includes several anatomical and biochemical modifications that allow plants to concentrate CO2 at the site of Rubisco. The photorespiratory pathway is repressed in C4 plants, since the rates of photosynthesis and biomass production are increased. This is an adaptation to high light intensities, high temperatures and dryness. C4 plants contain two distinct types of photosynthetic cells, mesophyll and bundle sheath. The processes of assimilation and reduction of CO2 are separated spatiality and catayzed by two different enzymes. Only the bundle sheath chloroplasts perform the reactions of the Calvin-Benson cycle with the help of the Rubisco enzyme present exclusively in this cell type. The primary CO2 fixation occurs in mesophyll cells through the action of the phosphoenolpyruvate carboxylase. The light-dependent reactions of the photosynthesis occur exclusively in the latter cell type. These differences in photochemistry lead to distinct redox profiles in both types of cells. C4 plants are divided into three biochemical subtypes on the basis of differences in the mechanisms of decarboxylation of the C4 acids. C4 plants will provide the main source of food for humans and animals in the nearest decade.

  8. Integration of C4-specific ppdk gene of Echinochloa to C3 upland ...

    African Journals Online (AJOL)

    Pyruvate orthophosphate dikinase (PPDK) plays a key role in C4 photosynthetic pathway. The enzymatic reaction is one of the rate-limiting steps of the C4 photosynthetic pathway. In this paper, the gene encoding Echinochloa pyruvate orthosphate dikinase (GenBank accession number: AB289641) was introduced into H65 ...

  9. A multi-pathway model for Photosynthetic reaction center

    CERN Document Server

    Qin, M; Yi, X X

    2015-01-01

    Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine (QHE). Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem {\\rm II} reaction center (PS{\\rm II} RC) to describe the charge separation. Our model mainly considers two charge-separation pathways more than that in the published literature. The two pathways can interfere via cross-couplings and work together to enhance the charge-separation yields. We explore how these cross-couplings increase the current and voltage of the charge separation and discuss the advantages of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PS{\\rm II} RC and dephasing induced by environments is also explored, and extension ...

  10. The Metabolite Pathway between Bundle Sheath and Mesophyll: Quantification of Plasmodesmata in Leaves of C3 and C4 Monocots.

    Science.gov (United States)

    Danila, Florence R; Quick, William Paul; White, Rosemary G; Furbank, Robert T; von Caemmerer, Susanne

    2016-06-01

    C4 photosynthesis is characterized by a CO2-concentrating mechanism between mesophyll (M) and bundle sheath (BS) cells of leaves. This generates high metabolic fluxes between these cells, through interconnecting plasmodesmata (PD). Quantification of these symplastic fluxes for modeling studies requires accurate quantification of PD, which has proven difficult using transmission electron microscopy. Our new quantitative technique combines scanning electron microscopy and 3D immunolocalization in intact leaf tissues to compare PD density on cell interfaces in leaves of C3 (rice [Oryza sativa] and wheat [Triticum aestivum]) and C4 (maize [Zea mays] and Setaria viridis) monocot species. Scanning electron microscopy quantification of PD density revealed that C4 species had approximately twice the number of PD per pitfield area compared with their C3 counterparts. 3D immunolocalization of callose at pitfields using confocal microscopy showed that pitfield area per M-BS interface area was 5 times greater in C4 species. Thus, the two C4 species had up to nine times more PD per M-BS interface area (S. viridis, 9.3 PD µm(-2); maize, 7.5 PD µm(-2); rice 1.0 PD µm(-2); wheat, 2.6 PD µm(-2)). Using these anatomical data and measured photosynthetic rates in these C4 species, we have now calculated symplastic C4 acid flux per PD across the M-BS interface. These quantitative data are essential for modeling studies and gene discovery strategies needed to introduce aspects of C4 photosynthesis to C3 crops. © 2016 American Society of Plant Biologists. All rights reserved.

  11. Photosynthetic pathway influences xylem structure and function in Flaveria (Asteraceae).

    Science.gov (United States)

    Kocacinar, Ferit; McKown, Athena D; Sage, Tammy L; Sage, Rowan F

    2008-10-01

    Higher water use efficiency (WUE) in C(4) plants may allow for greater xylem safety because transpiration rates are reduced. To evaluate this hypothesis, stem hydraulics and anatomy were compared in 16 C(3), C(3)-C(4) intermediate, C(4)-like and C(4) species in the genus Flaveria. The C(3) species had the highest leaf-specific conductivity (K(L)) compared with intermediate and C(4) species, with the perennial C(4) and C(4)-like species having the lowest K(L) values. Xylem-specific conductivity (K(S)) was generally highest in the C(3) species and lower in intermediate and C(4) species. Xylem vessels were shorter, narrower and more frequent in C(3)-C(4) intermediate, C(4)-like and C(4) species compared with C(3) species. WUE values were approximately double in the C(4)-like and C(4) species relative to the C(3)-C(4) and C(3) species. C(4)-like photosynthesis arose independently at least twice in Flaveria, and the trends in WUE and K(L) were consistent in both lineages. These correlated changes in WUE and K(L) indicate WUE increase promoted K(L) decline during C(4) evolution; however, any involvement of WUE comes late in the evolutionary sequence. C(3)-C(4) species exhibited reduced K(L) but little change in WUE compared to C(3) species, indicating that some reduction in hydraulic efficiency preceded increases in WUE.

  12. Analyzing the Light Energy Distribution in the Photosynthetic Apparatus of C4 Plants Using Highly Purified Mesophyll and Bundle-Sheath Thylakoids.

    Science.gov (United States)

    Pfundel, E.; Nagel, E.; Meister, A.

    1996-11-01

    The chlorophyll fluorescence characteristics of mesophyll and bundle-sheath thylakoids from plant species with the C4 dicarboxylic acid pathway of photosynthesis were investigated using flow cytometry. Ten species with the NADP-malic enzyme (NADP-ME) biochemical type of C4 photosynthesis were tested: Digitaria sanguinalis (L.) Scop., Euphorbia maculata L., Portulaca grandiflora Hooker, Saccharum officinarum L., Setaria viridis (L.) Beauv., Zea mays L., and four species of the genus Flaveria. This study also included three species with NAD-ME biochemistry (Atriplex rosea L., Atriplex spongiosa F. Muell., and Portulaca oleracea L.). Two C4 species of unknown biochemical type were investigated: Cyperus papyrus L. and Atriplex tatarica L. Pure mesophyll and bundle-sheath thylakoids were prepared by flow cytometry and characterized by low-temperature fluorescence spectroscopy. In pure bundle-sheath thylakoids from many species with C4 photosynthesis of the NADP-ME type, significant amounts of photosystem II (PSII) emission can be detected by fluorescence spectroscopy. Simulation of fluorescence excitation spectra of these thylakoids showed that PSII light absorption contributes significantly to the apparent excitation spectrum of photosystem I. Model calculations indicated that the excitation energy of PSII is efficiently transferred to photosystem I in bundle-sheath thylakoids of many NADP-ME species.

  13. Response of photosynthetic characters to CO2 change on C3 and C4 cereal crops grown in Lunar Palace 1

    Science.gov (United States)

    Wang, Minjuan; Liu, Hong; Fu, Yuming; Shao, Lingzhi; Dong, Chen; Liu, Guanghui

    Lunar Palace 1, as an integrative experiment facility for Permanent Astrobase Life-support Artificial Closed Ecosystem (P.A.L.A.C.E.), provides a largely closed environment for crop growth tests for Bioregenerative Life Support System (BLSS). In this study, we evaluated the response of photosynthetic characters of two soybean cultivars (Glycine max (L.) Merr., ‘Zhonghuang13’and ‘Heihe35’) of C _{3} plants and one maize ( Zea mays L.) of C _{4} plants, which were selected as candidates for cultivation in BLSS. Plants were cultivated in stainless steel pots equipped with the porous-tube nutrient delivery system (PTNDS) and grew under controlled environmental conditions of Lunar Palace 1 (12 h photoperiod, light intensity 500 umol m (-2) s (-1) , temperature regime 26/22 (o) C light/dark). Fertigation was performed with a standard Hoagland solution, in which pH was kept at 5.8. A gas exchange/chlorophyII fluorescence analysis was performed to determine their net photosynthesis (Pn), stomatal (g _{s}) and mesophyll (g _{m}) conductances, intercellular CO _{2} concentration (Ci), and transpiration rate (E) under different elevated CO _{2} concentration. In order to partially describe how leaf physiology responds to the elevated CO _{2}, Chl content and the activity and amount of rubisco were analyzed. This study provides a theoretical basis for the crop selection in BLSS.

  14. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    Science.gov (United States)

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway

    Science.gov (United States)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and ecophysiological functioning of leaves and the structural components of the canopy. These responses have the potential to significantly modify plant carbon uptake and surface energy partitioning, and have been attributed with large-scale changes in surface hydrology over recent decades. While the aggregated effects of vegetation acclimation can be pronounced, they often result from subtle changes in canopy properties that require the resolution of physical, biochemical and ecophysiological processes through the canopy for accurate estimation. In this paper, the first of two, a multilayer canopy-soil-root system model developed to capture the emergent vegetation responses to environmental change is presented. The model incorporates both C3 and C4 photosynthetic pathways, and resolves the vertical radiation, thermal, and environmental regimes within the canopy. The tight coupling between leaf ecophysiological functioning and energy balance determines vegetation responses to climate states and perturbations, which are modulated by soil moisture states through the depth of the root system. The model is validated for three growing seasons each for soybean (C3) and maize (C4) using eddy-covariance fluxes of CO2, latent, and sensible heat collected at the Bondville (Illinois) Ameriflux tower site. The data set provides an opportunity to examine the role of important environmental drivers and model skill in capturing variability in canopy-atmosphere exchange. Vertical variation in radiative states and scalar fluxes over a mean diurnal cycle are examined to understand the role of canopy structure on the patterns of absorbed radiation and scalar flux magnitudes and the consequent differences in sunlit and shaded source/sink locations through the canopies. An analysis is made of the impact of

  16. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  17. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Science.gov (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-01-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265

  18. Solution Structures of Complement C2 and its C4 Complexes Propose Pathway Specific Mechanisms for Control and Activation of the Complement Proconvertases

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Jensen, Jan Kristian; Andersen, Gregers Rom

    2016-01-01

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4......, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained...... to the crystal structure of the AP C3 convertase C3bBb which is in accordance with their identical functions in cleaving the complement proteins C3 and C5....

  19. Why Are C3-C4 Intermediate Species Rare?

    Science.gov (United States)

    Johnson, J. E.; Field, C. B.; Berry, J. A.

    2014-12-01

    While C3-C4 intermediate photosynthesis is thought to represent the evolutionary bridge between C3 and C4 photosynthesis, C3-C4 intermediate species are ecologically rare in comparison to both C3 and C4 species. Here, we report results from a laboratory experiment, field observations, and model simulations that suggest a new explanation for the ecological rarity of C3-C4 intermediate species. In the laboratory experiment, we combined gas exchange and fluorescence to characterize the temperature response of photosynthesis in three closely-related species in the genus Flaveria that are representatives of the C3, C3-C4 intermediate, and C4 photosynthetic pathways. The leaf temperature that maximized the quantum yield for CO2 assimilation (Topt(ΦCO2)) was 24.9 ± 0.7°C in Flaveria robusta (C3), 29.8 ± 1.0°C in F. chloraefolia (C3-C4), and 35.7 ± 0.8°C in F. bidentis (C4), and was linearly related to the temperature sensitivity of the coupling between CO2 assimilation and electron transport (d(ΦCO2/ ΦPSII)/dT)). While F. chloraefolia does not simultaneously occur with F. robusta and F. bidentis in naturally-assembled communities, this C3-C4 intermediate species does occur with other C3 and C4 species. During the growing season in two of these mixed-photosynthetic-type communities, leaf temperatures for F. chloraefolia were similar to the Topt(ΦCO2) determined in the laboratory. A model of maximum potential carbon gain suggests that competitive coexistence of C3, C3-C4 intermediate, and C4 species could be dependent on a temperature regime that highlights the distinct relative advantages of the C3-C4 intermediate pathway. In combination, these results suggest that the relative temperature sensitivity of the C3, C3-C4 intermediate, and C4 photosynthetic pathways combined with environmental variation in temperature may help to explain why C3-C4 intermediate species are generally rare.

  20. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata.

    Science.gov (United States)

    Ripley, Brad S; Gilbert, Matthew E; Ibrahim, Douglas G; Osborne, Colin P

    2007-01-01

    The C4 photosynthetic pathway uses water more efficiently than the C3 type, yet biogeographical analyses show a decline in C4 species relative to C3 species with decreasing rainfall. To investigate this paradox, the hypothesis that the C4 advantage over C3 photosynthesis is diminished by drought was tested, and the underlying stomatal and metabolic mechanisms of this response determined. The effects of drought and high evaporative demand on leaf gas exchange and photosynthetic electron sinks in C3 and C4 subspecies of the grass Alloteropsis semialata were examined. Plant responses to climatic variation and soil drought were investigated using a common garden experiment with well-watered and natural rainfall treatments, and underlying mechanisms analysed using controlled drying pot experiments. Photosynthetic rates were significantly higher in the C4 than the C3 subspecies in the garden experiment under well-watered conditions, but this advantage was completely lost during a rainless period when unwatered plants experienced severe drought. Controlled drying experiments showed that this loss was caused by a greater increase in metabolic, rather than stomatal, limitations in C4 than in the C3 leaves. Decreases in CO2 assimilation resulted in lower electron transport rates and decreased photochemical efficiency under drought conditions, rather than increased electron transport to alternative sinks. These findings suggest that the high metabolic sensitivity of photosynthesis to severe drought seen previously in several C4 grass species may be an inherent characteristic of the C4 pathway. The mechanism may explain the paradox of why C4 species decline in arid environments despite high water-use efficiency.

  1. C4 cycles: past, present, and future research on C4 photosynthesis.

    Science.gov (United States)

    Langdale, Jane A

    2011-11-01

    In the late 1960s, a vibrant new research field was ignited by the discovery that instead of fixing CO(2) into a C(3) compound, some plants initially fix CO(2) into a four-carbon (C(4)) compound. The term C(4) photosynthesis was born. In the 20 years that followed, physiologists, biochemists, and molecular and developmental biologists grappled to understand how the C(4) photosynthetic pathway was partitioned between two morphologically distinct cell types in the leaf. By the early 1990s, much was known about C(4) biochemistry, the types of leaf anatomy that facilitated the pathway, and the patterns of gene expression that underpinned the biochemistry. However, virtually nothing was known about how the pathway was regulated. It should have been an exciting time, but many of the original researchers were approaching retirement, C(4) plants were proving recalcitrant to genetic manipulation, and whole-genome sequences were not even a dream. In combination, these factors led to reduced funding and the failure to attract young people into the field; the endgame seemed to be underway. But over the last 5 years, there has been a resurgence of interest and funding, not least because of ambitious multinational projects that aim to increase crop yields by introducing C(4) traits into C(3) plants. Combined with new technologies, this renewed interest has resulted in the development of more sophisticated approaches toward understanding how the C(4) pathway evolved, how it is regulated, and how it might be manipulated. The extent of this resurgence is manifest by the publication in 2011 of more than 650 pages of reviews on different aspects of C(4). Here, I provide an overview of our current understanding, the questions that are being addressed, and the issues that lie ahead.

  2. Phenology and productivity of C3 and C4 grasslands in Hawaii.

    Directory of Open Access Journals (Sweden)

    Stephanie Pau

    Full Text Available Grasslands account for a large proportion of global terrestrial productivity and play a critical role in carbon and water cycling. Within grasslands, photosynthetic pathway is an important functional trait yielding different rates of productivity along environmental gradients. Recently, C3-C4 sorting along spatial environmental gradients has been reassessed by controlling for confounding traits in phylogenetically structured comparisons. C3 and C4 grasses should sort along temporal environmental gradients as well, resulting in differing phenologies and growing season lengths. Here we use 10 years of satellite data (NDVI to examine the phenology and greenness (as a proxy for productivity of C3 and C4 grass habitats, which reflect differences in both environment and plant physiology. We perform phylogenetically structured comparisons based on 3,595 digitized herbarium collections of 152 grass species across the Hawaiian Islands. Our results show that the clade identity of grasses captures differences in their habitats better than photosynthetic pathway. Growing season length (GSL and associated productivity (GSP were not significantly different when considering photosynthetic type alone, but were indeed different when considering photosynthetic type nested within clade. The relationship between GSL and GSP differed most strongly between C3 clade habitats, and not between C3-C4 habitats. Our results suggest that accounting for the interaction between phylogeny and photosynthetic pathway can help improve predictions of productivity, as commonly used C3-C4 classifications are very broad and appear to mask important diversity in grassland ecosystem functions.

  3. The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway.

    Science.gov (United States)

    Bellasio, Chandra; Griffiths, Howard

    2014-01-01

    The C4 photosynthesis carbon-concentrating mechanism in maize (Zea mays) has two CO2 delivery pathways to the bundle sheath (BS; via malate or aspartate), and rates of phosphoglyceric acid reduction, starch synthesis, and phosphoenolpyruvate regeneration also vary between BS and mesophyll (M) cells. The theoretical partitioning of ATP supply between M and BS cells was derived for these metabolic activities from simulated profiles of light penetration across a leaf, with a potential 3-fold difference in the fraction of ATP produced in the BS relative to M (from 0.29 to 0.96). A steady-state metabolic model was tested using varying light quality to differentially stimulate M or BS photosystems. CO2 uptake, ATP production rate (JATP; derived with a low oxygen/chlorophyll fluorescence method), and carbon isotope discrimination were measured on plants under a low light intensity, which is considered to affect C4 operating efficiency. The light quality treatments did not change the empirical ATP cost of gross CO2 assimilation (JATP/GA). Using the metabolic model, measured JATP/GA was compared with the predicted ATP demand as metabolic functions were varied between M and BS. Transamination and the two decarboxylase systems (NADP-malic enzyme and phosphoenolpyruvate carboxykinase) were critical for matching ATP and reduced NADP demand in BS and M when light capture was varied under contrasting light qualities.

  4. The Operation of Two Decarboxylases, Transamination, and Partitioning of C4 Metabolic Processes between Mesophyll and Bundle Sheath Cells Allows Light Capture To Be Balanced for the Maize C4 Pathway1[W

    Science.gov (United States)

    Bellasio, Chandra; Griffiths, Howard

    2014-01-01

    The C4 photosynthesis carbon-concentrating mechanism in maize (Zea mays) has two CO2 delivery pathways to the bundle sheath (BS; via malate or aspartate), and rates of phosphoglyceric acid reduction, starch synthesis, and phosphoenolpyruvate regeneration also vary between BS and mesophyll (M) cells. The theoretical partitioning of ATP supply between M and BS cells was derived for these metabolic activities from simulated profiles of light penetration across a leaf, with a potential 3-fold difference in the fraction of ATP produced in the BS relative to M (from 0.29 to 0.96). A steady-state metabolic model was tested using varying light quality to differentially stimulate M or BS photosystems. CO2 uptake, ATP production rate (JATP; derived with a low oxygen/chlorophyll fluorescence method), and carbon isotope discrimination were measured on plants under a low light intensity, which is considered to affect C4 operating efficiency. The light quality treatments did not change the empirical ATP cost of gross CO2 assimilation (JATP/GA). Using the metabolic model, measured JATP/GA was compared with the predicted ATP demand as metabolic functions were varied between M and BS. Transamination and the two decarboxylase systems (NADP-malic enzyme and phosphoenolpyruvate carboxykinase) were critical for matching ATP and reduced NADP demand in BS and M when light capture was varied under contrasting light qualities. PMID:24254314

  5. C4 Protein of Sweet Potato Leaf Curl Virus Regulates Brassinosteroid Signaling Pathway through Interaction with AtBIN2 and Affects Male Fertility in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Huiping Bi

    2017-09-01

    Full Text Available Sweepoviruses have been identified globally and cause substantial yield losses and cultivar decline in sweet potato. This study aimed to investigate the interaction between sweepovirus and plant host by analyzing the function of the viral protein C4 of Sweet potato leaf curl virus-Jiangsu (SPLCV-JS, a sweepovirus cloned from diseased sweet potato plants in East China. Ectopic expression of the C4 in Arabidopsis altered plant development drastically with phenotypic changes including leaf curling, seedling twisting, deformation of floral tissues and reduction of pollen fertility, and seed number. Using bimolecular fluorescence complementation analysis, this study demonstrated that the SPLCV-JS C4 protein interacted with brassinosteroid-insensitive 2 (AtBIN2 in the plasma membrane of Nicotiana benthamiana cells. The C4 AtBIN2 interaction was further confirmed by yeast two-hybrid assays. This interaction led to the re-localization of AtBIN2-interacting proteins AtBES1/AtBZR1 into the nucleus which altered the expression of brassinosteroid (BR-response genes, resulting in the activation of BR-signaling pathway. The interaction of SPLCV-JS C4 and AtBIN2 also led to the down-regulated expression of key genes involved in anther and pollen development, including SPROROCYTELESS/NOZZLE, DEFECTIVE IN TAPEL DEVELOPMENT AND FUNCTION 1, and ABORTED MICROSPORES, which caused abnormal tapetal development, followed by defective exine pattern formation of microspores and pollen release. Consequently, male fertility in the C4 transgenic Arabidopsis was reduced. The present study illustrated how the sweepovirus C4 protein functioned in host cells and affected male fertility by interacting with the key components of BR-signaling pathway.

  6. 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth.

    Science.gov (United States)

    Takai, Noriyuki; Jain, Anjali; Kawamata, Norihiko; Popoviciu, Laura M; Said, Jonathan W; Whittaker, Sadie; Miyakawa, Isao; Agus, David B; Koeffler, H Phillip

    2005-12-15

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 25-30% of ovarian carcinoma cases and a correlation between increased HER2 expression and decreased survival has been demonstrated. HER2 is a ligand-less member of the HER family that functions as the preferred coreceptor for epidermal growth factor receptor (EGFR), HER3, and HER4. An approach was developed to target HER2's role as a coreceptor using a monoclonal antibody, 2C4, which sterically hinders HER2's recruitment into a functional HER complex. HER2 was robustly expressed in all eight ovarian carcinoma cell lines; expression of EGFR and HER3 was variable. Even though four of the eight cell lines responded to EGF, 2C4 antibody moderately inhibited in vitro proliferation of only two cell lines (OVCA433 and SK-OV-3). Furthermore, ligand-stimulated p-MAPK expression was inhibited by 2C4 only in these two cell lines after exposure to EGF. Immunoprecipitation and eTag analysis revealed that OVCA433 expressed heterodimers of EGFR/HER2, and these heterodimers were disrupted after treatment with 2C4, whereas OVCA432 cells did not have these heterodimers. In murine xenograft experiments, the in vivo growth of OVCA433, but not of OVCA432, ovarian carcinoma cells was significantly inhibited by 2C4 treatment of the mice. 2C4 is able to disrupt the HER signaling pathway and inhibit the in vitro and in vivo growth of ovarian carcinoma cell lines. The response appears limited to lines in which HER2 heterodimers were able to transduce proliferative signals. Our findings suggest a strong rationale to conduct clinical trials of 2C4 in a subset of patients with ovarian tumors. Copyright 2005 American Cancer Society.

  7. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  8. Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2017-10-01

    Full Text Available Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO2 exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.

  9. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  10. ISLSCP II C4 Vegetation Percentage

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The photosynthetic composition (C3 or C4) of vegetation on the land surface is essential for accurate simulations of biosphere-atmosphere exchanges of...

  11. ISLSCP II C4 Vegetation Percentage

    Data.gov (United States)

    National Aeronautics and Space Administration — The photosynthetic composition (C3 or C4) of vegetation on the land surface is essential for accurate simulations of biosphere-atmosphere exchanges of carbon, water,...

  12. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers.

    Science.gov (United States)

    Faries, Kaitlyn M; Kressel, Lucas L; Wander, Marc J; Holten, Dewey; Laible, Philip D; Kirmaier, Christine; Hanson, Deborah K

    2012-03-09

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.

  13. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    Science.gov (United States)

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.

    Science.gov (United States)

    Tikhonov, Alexander N

    2014-08-01

    Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Nature's green revolution: the remarkable evolutionary rise of C4 plants.

    Science.gov (United States)

    Osborne, Colin P; Beerling, David J

    2006-01-29

    Plants with the C4 photosynthetic pathway dominate today's tropical savannahs and grasslands, and account for some 30% of global terrestrial carbon fixation. Their success stems from a physiological CO2-concentrating pump, which leads to high photosynthetic efficiency in warm climates and low atmospheric CO2 concentrations. Remarkably, their dominance of tropical environments was achieved in only the past 10 million years (Myr), less than 3% of the time that terrestrial plants have existed on Earth. We critically review the proposal that declining atmospheric CO2 triggered this tropical revolution via its effects on the photosynthetic efficiency of leaves. Our synthesis of the latest geological evidence from South Asia and North America suggests that this emphasis is misplaced. Instead, we find important roles for regional climate change and fire in South Asia, but no obvious environmental trigger for C4 success in North America. CO2-starvation is implicated in the origins of C4 plants 25-32 Myr ago, raising the possibility that the pathway evolved under more extreme atmospheric conditions experienced 10 times earlier. However, our geochemical analyses provide no evidence of the C4 mechanism at this time, although possible ancestral components of the C4 pathway are identified in ancient plant lineages. We suggest that future research must redress the substantial imbalance between experimental investigations and analyses of the geological record.

  16. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2016-02-01

    Full Text Available Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK of C4 pathway and a salt tolerance-related gene (SAT of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species

  17. C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism1[W][OA

    Science.gov (United States)

    de Oliveira Dal’Molin, Cristiana Gomes; Quek, Lake-Ee; Palfreyman, Robin William; Brumbley, Stevens Michael; Nielsen, Lars Keld

    2010-01-01

    Leaves of C4 grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C3 plants, where photosynthetic CO2 fixation proceeds in the mesophyll (M), the fixation process in C4 plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C4 genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C4 photosynthesis. C4GEM, to our knowledge, is the first large-scale metabolic model that encapsulates metabolic interactions between two different cell types. C4GEM is based on the Arabidopsis (Arabidopsis thaliana) model (AraGEM) but has been extended by adding reactions and transporters responsible to represent three different C4 subtypes (NADP-ME [for malic enzyme], NAD-ME, and phosphoenolpyruvate carboxykinase). C4GEM has been validated for its ability to synthesize 47 biomass components and consists of 1,588 unique reactions, 1,755 metabolites, 83 interorganelle transporters, and 29 external transporters (including transport through plasmodesmata). Reactions in the common C4 model have been associated with well-annotated C4 species (NADP-ME subtypes): 3,557 genes in sorghum, 11,623 genes in maize, and 3,881 genes in sugarcane. The number of essential reactions not assigned to genes is 131, 135, and 156 in sorghum, maize, and sugarcane, respectively. Flux balance analysis was used to assess the metabolic activity in M and BS cells during C4 photosynthesis. Our simulations were consistent with chloroplast proteomic studies, and C4GEM predicted the classical C4 photosynthesis pathway and its major effect in organelle function in M and BS. The model also highlights differences in metabolic activities around photosystem I and photosystem II for three different C4 subtypes. Effects of CO2 leakage were also explored. C4GEM is a viable framework for in silico analysis of cell cooperation between M and BS

  18. The roles of organic acids in C4 photosynthesis

    Directory of Open Access Journals (Sweden)

    Martha eLudwig

    2016-05-01

    Full Text Available Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate, malate, and aspartate are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, oxaloacetate is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and aspartate, resulting from the rapid conversion of oxaloacetate, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while aspartate fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types

  19. Deconstructing Kranz anatomy to understand C4 evolution.

    Science.gov (United States)

    Lundgren, Marjorie R; Osborne, Colin P; Christin, Pascal-Antoine

    2014-07-01

    C4 photosynthesis is a complex physiological adaptation that confers greater productivity than the ancestral C3 photosynthetic type in environments where photorespiration is high. It evolved in multiple lineages through the coordination of anatomical and biochemical components, which concentrate CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most C4 plants, the CO2-concentrating mechanism is achieved via the confinement of Rubisco to bundle-sheath cells, into which CO2 is biochemically pumped from surrounding mesophyll cells. The C4 biochemical pathway relies on a specific suite of leaf functional properties, often referred to as Kranz anatomy. These include the existence of discrete compartments differentially connected to the atmosphere, a close contact between these compartments, and a relatively large compartment to host the Calvin cycle. In this review, we use a quantitative dataset for grasses (Poaceae) and examples from other groups to isolate the changes in anatomical characteristics that generate these functional properties, including changes in the size, number, and distribution of different cell types. These underlying anatomical characteristics vary among C4 origins, as similar functions emerged via different modifications of anatomical characteristics. In addition, the quantitative characteristics of leaves all vary continuously across C3 and C4 taxa, resulting in C4-like values in some C3 taxa. These observations suggest that the evolution of C4-suitable anatomy might require relatively few changes in plant lineages with anatomical predispositions. Furthermore, the distribution of anatomical traits across C3 and C4 taxa has important implications for the functional diversity observed among C4 lineages and for the approaches used to identify genetic determinants of C4 anatomy. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For

  20. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    Full Text Available Rational engineering to produce biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Here we capitalized on our previously described gene-to-metabolite network in order to engineer rosmarinic acid (RA biosynthesis pathway for the production of beneficial RA and lithospermic acid B (LAB in Salvia miltiorrhiza hairy root cultures. Results showed their production was greatly elevated by (1 overexpression of single gene, including cinnamic acid 4-hydroxylase (c4h, tyrosine aminotransferase (tat, and 4-hydroxyphenylpyruvate reductase (hppr, (2 overexpression of both tat and hppr, and (3 suppression of 4-hydroxyphenylpyruvate dioxygenase (hppd. Co-expression of tat/hppr produced the most abundant RA (906 mg/liter and LAB (992 mg/liter, which were 4.3 and 3.2-fold more than in their wild-type (wt counterparts respectively. And the value of RA concentration was also higher than that reported before, that produced by means of nutrient medium optimization or elicitor treatment. It is the first report of boosting RA and LAB biosynthesis through genetic manipulation, providing an effective approach for their large-scale commercial production by using hairy root culture systems as bioreactors.

  1. Late pliocene-pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning : Geology

    NARCIS (Netherlands)

    Zhou, B.; Shen, C.; Sun, W.; Bird, M.; Ma, W.; Taylor, D.; Liu, W.; Peterse, F.; Yi, W.; Zheng, H.

    2014-01-01

    Plants using the C4 photosynthetic pathway, commonly tropical and subtropical grasses, increased in abundance in East Asia during the late Cenozoic. Determining the exact timing and likely factors leading to this major vegetation change requires region-specific studies. Here variations in pyrogenic

  2. De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae

    Directory of Open Access Journals (Sweden)

    Maximilian Lauterbach

    2017-11-01

    Full Text Available C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis

  3. Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and drought.

    Science.gov (United States)

    Ibrahim, Douglas G; Gilbert, Matthew E; Ripley, Brad S; Osborne, Colin P

    2008-07-01

    The regional abundance of C(4) grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C(3) and C(4) grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C(3) and C(4) subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C(4) than C(3) subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C(4) plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C(4) subspecies under irrigated conditions from spring through autumn. However, the C(4) leaves were killed by winter frost, while photosynthesis continued in the C(3) plants. Unexpectedly, the C(4) subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C(3) and C(4) grasses.

  4. Strategies for improving C4 photosynthesis.

    Science.gov (United States)

    von Caemmerer, Susanne; Furbank, Robert T

    2016-06-01

    Recent activities to improve photosynthetic performance in crop plants has focused mainly on C3 photosynthesis where there are clear identified targets such as improving Rubisco kinetics, installation of a CO2 concentrating mechanism and alleviating limitations in chloroplast electron transport. Here we address strategies to improve photosynthetic performance in C4 plants, which utilize a CO2 concentrating mechanism, having evolved a complex blend of anatomy and biochemistry to achieve this. While the limitations to photosynthetic flux are not as well studied in C4 plants, work in transgenic Flaveria bidentis, a transformable model C4 dicot, and recent transcriptional analysis of leaves from diverse C4 plants, provides several gene candidates for improvement of carbon metabolism (such as pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxylase and Rubisco) and for access of CO2 to phosphoenolpyruvate carboxylase in the mesophyll cells (such as carbonic anhydrase and CO2 porins). Chloroplast electron transport in C4 plants is shared between the two cell types, providing opportunities not only to alleviate limitations to flux through intersystem electron transport by targeting nuclear encoded proteins in the cytochrome (Cyt) b6/f complex, but in better sharing the harvesting of light energy between mesophyll and bundle sheath chloroplasts. Gene candidates for improvement of C4 photosynthesis could be utilized either through transgenic approaches or via mining natural allelic variation in sequenced populations of crop species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors.

    Science.gov (United States)

    Wang, Shuyue; Tholen, Danny; Zhu, Xin-Guang

    2017-01-01

    Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle-sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle-sheath cell wall thickness, bundle-sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle-sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3 -C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed. © 2016 John Wiley & Sons Ltd.

  6. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  7. Plastid transport and metabolism of C3 and C4 plants--comparative analysis and possible biotechnological exploitation.

    Science.gov (United States)

    Weber, Andreas P M; von Caemmerer, Susanne

    2010-06-01

    Recent progress in genomics has provided complete or near complete genome sequences of several C(3) (e.g. Arabidopsis, rice, and poplar) and C(4) (e.g. sorghum and maize) plant species. These genome sequences enabled comparative quantitative proteomic and transcriptomic analyses of C(3) and C(4) plants, in particular of their chloroplasts. Such analyses have revealed a comprehensive picture of the distribution of C(4) pathway components between bundle sheath and mesophyll cell chloroplasts and they permitted the prediction of novel pathway components. A comprehensive understanding of the C(4) photosynthetic mechanism is required for the transfer of C(4)-like photosynthesis into C(3) crop plants, such as rice. Copyright 2010. Published by Elsevier Ltd.

  8. Diurnal variations in pathways of photosynthetic carbon fixation in a freshwater cyanobacterium

    Science.gov (United States)

    Labiosa, R. G.; Arrigo, K. R.; Grossman, A.; Reddy, T. E.; Shrager, J.

    2003-04-01

    Understanding phytoplankton photosynthesis is critical to several fields including ecology and global biogeochemistry. The efficiency with which phytoplankton fix carbon depends upon the ambient light field, which is in turn dependent upon sun angle and the depth of mixing in the water column. In this pilot project, Synechocystis PCC 6803 was chosen as a model organism with which to study the molecular and physiological responses of phytoplankton to diurnal changes in light levels. Advantages of using this organism include that its genome has been sequenced, allowing the use of microarray technology, that it is readily grown as single colonies on plates and in liquid cultures, and that it is easy to manipulate genetically (generate and complement mutants). Axenic cultures of Synechocystis were grown under precisely controlled conditions in a "cyclodyne", a chemostat in which the light intensity cycles to mimic diurnal changes in light level, where the light consisted of sinusoidal daylight (400 μ mol photons m-2 s-1 at noon) followed by 12 hours of darkness for several weeks. After one week to allow the cells to acclimate to the light conditions, the cultures were sampled and extracted for RNA analysis every two hours over the course of several days. At these time points, absorption spectra, light scattering and chlorophyll a concentrations were determined. Initial results from Northern Blot hybridizations (examining RNA levels for individual genes) indicate that, the transcripts encoding photosynthetic proteins (i.e., PsbA2, PsaA and CpcB, in photosystem II, photosystem I, and phycobilisomes, respectively) are highest during the light. Initial results show that in the middle of the night, the psbA2 transcripts are 2-fold less while the psaA and cpcB are greater than 4-fold less than in the middle of the day. For the most part, the transcripts encoding photosynthetic proteins track the light cycle, although with different trends at daybreak and after night falls

  9. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  10. Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2

    OpenAIRE

    Pinto, Harshini; Sharwood, Robert E.; Tissue, David T.; Ghannoum, Oula

    2014-01-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared ...

  11. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    Science.gov (United States)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15-45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  12. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.

    Science.gov (United States)

    Schuler, Mara L; Mantegazza, Otho; Weber, Andreas P M

    2016-07-01

    C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.

    Science.gov (United States)

    Pinto, Harshini; Sharwood, Robert E; Tissue, David T; Ghannoum, Oula

    2014-07-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3-C4 grass grown under ambient (400 μl l(-1)) and glacial (180 μl l(-1)) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3-C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3-C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3-C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3-C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3-C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments. © The Author 2014

  14. Evolution of CAM and C4 carbon-concentrating mechanisms

    Science.gov (United States)

    Keeley, Jon E.; Rundel, Philip W.

    2003-01-01

    distribution of C4 species. The theory is sound; however, many of the studies cited in support of this model are open to alternative interpretations, and none has eliminated climatic factors as important selective agents. CAM and C4 evolution required coupling of biochemical pathways with structural changes in photosynthetic tissues, succulence in CAM and Kranz in C4. This was apparently accomplished by piecemeal evolution beginning with mechanisms for recapturing respiratory CO2, although this need not have been so in aquatic CAM species. It has been proposed that the extreme rarity of both pathways in the same plant results from biochemical and structural incompatibilities (Sage 2002). Equally important is the fact that the selective environments are quite different, with CAM evolution thriving on stressful sites inhospitable to C3 species whereas C4 evolution has selected for rapid growth capable of outcompeting associated C3 plants.

  15. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Janouškovec, J.; Keeling, P. J.; Oborník, Miroslav

    2011-01-01

    Roč. 23, č. 9 (2011), s. 3454-3462 ISSN 1040-4651 R&D Projects: GA ČR GA206/08/1423; GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : YEAST SACCHAROMYCES-CEREVISIAE * HEME-BIOSYNTHESIS PATHWAY * PLASMODIUM-FALCIPARUM * MALARIA PARASITE * 5-AMINOLEVULINATE SYNTHASE * SECONDARY PLASTIDS * TOXOPLASMA-GONDII * PROTEIN-TRANSPORT * EUGLENA-GRACILIS * METABOLIC MAPS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  16. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    Directory of Open Access Journals (Sweden)

    Sylvain Aubry

    2014-06-01

    Full Text Available With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors

  17. Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

    Science.gov (United States)

    Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.

    2014-01-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  18. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae)

    Science.gov (United States)

    Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Ocampo, Gilberto

    2010-01-01

    Portulacaceae is one of 19 families of terrestrial plants in which species having C4 photosynthesis have been found. Representative species from major clades of the genus Portulaca were studied to characterize the forms of photosynthesis structurally and biochemically. The species P. amilis, P. grandiflora, P. molokiniensis, P. oleracea, P. pilosa, and P. umbraticola belong to the subgenus Portulaca and are C4 plants based on leaf carbon isotope values, Kranz anatomy, and expression of key C4 enzymes. Portulaca umbraticola, clade Umbraticola, is NADP-malic enzyme (NADP-ME)-type C4 species, while P. oleracea and P. molokiniensis in clade Oleracea are NAD-ME-type C4 species, all having different forms of Atriplicoid-type leaf anatomy. In clade Pilosa, P. amilis, P. grandiflora, and P. pilosa are NADP-ME-type C4 species. They have Pilosoid-type anatomy in which Kranz tissues enclose peripheral vascular bundles with water storage in the centre of the leaf. Portulaca cf. bicolor, which belongs to subgenus Portulacella, is an NADP-ME C4 species with Portulacelloid-type anatomy; it has well-developed Kranz chlorenchyma surrounding lateral veins distributed in one plane under the adaxial epidermis with water storage cells underneath. Portulaca cryptopetala (clade Oleracea), an endemic species from central South America, was identified as a C3–C4 based on its intermediate CO2 compensation point and selective localization of glycine decarboxylase of the photorespiratory pathway in mitochondria of bundle sheath cells. The C4 Portulaca species which were examined also have cotyledons with Kranz-type anatomy, while the stems of all species have C3-type photosynthetic cells. The results indicate that multiple structural and biochemical forms of C4 photosynthesis evolved in genus Portulaca. PMID:20591900

  19. Systematic comparison of C3 and C4 plants based on metabolic network analysis.

    Science.gov (United States)

    Wang, Chuanli; Guo, Longyun; Li, Yixue; Wang, Zhuo

    2012-01-01

    The C4 photosynthetic cycle supercharges photosynthesis by concentrating CO2 around ribulose-1,5-bisphosphate carboxylase and significantly reduces the oxygenation reaction. Therefore engineering C4 feature into C3 plants has been suggested as a feasible way to increase photosynthesis and yield of C3 plants, such as rice, wheat, and potato. To identify the possible transition from C3 to C4 plants, the systematic comparison of C3 and C4 metabolism is necessary. We compared C3 and C4 metabolic networks using the improved constraint-based models for Arabidopsis and maize. By graph theory, we found the C3 network exhibit more dense topology structure than C4. The simulation of enzyme knockouts demonstrated that both C3 and C4 networks are very robust, especially when optimizing CO2 fixation. Moreover, C4 plant has better robustness no matter the objective function is biomass synthesis or CO2 fixation. In addition, all the essential reactions in C3 network are also essential for C4, while there are some other reactions specifically essential for C4, which validated that the basic metabolism of C4 plant is similar to C3, but C4 is more complex. We also identified more correlated reaction sets in C4, and demonstrated C4 plants have better modularity with complex mechanism coordinates the reactions and pathways than that of C3 plants. We also found the increase of both biomass production and CO2 fixation with light intensity and CO2 concentration in C4 is faster than that in C3, which reflected more efficient use of light and CO2 in C4 plant. Finally, we explored the contribution of different C4 subtypes to biomass production by setting specific constraints. All results are consistent with the actual situation, which indicate that Flux Balance Analysis is a powerful method to study plant metabolism at systems level. We demonstrated that in contrast to C3, C4 plants have less dense topology, higher robustness, better modularity, and higher CO2 and radiation use efficiency

  20. Plasticity of metabolic networks and the evolution of C4 photosynthesis

    Science.gov (United States)

    Bogart, Eli; Myers, Chris

    2012-02-01

    Over 50 groups of plants have independently developed a common mechanism (C4 photosynthesis) for increasing the efficiency of photosynthetic carbon dioxide assimilation. Understanding the high degree of evolvability of the C4 system could offer useful guidance for attempts to introduce it artificially to other plants. Previously, the nonlinear relationship between carbon dioxide levels and rates of carbon assimilation and photorespiration has prevented the application of genome-scale metabolic models to the problem of the evolution of the pathway. We apply a nonlinear optimization method to find feasible flux distributions in a plant metabolic model, allowing us to explore the plasticity of the metabolic network and characterize the fitness landscape of the transition from C3 to C4 photosynthesis.

  1. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2

    DEFF Research Database (Denmark)

    Yaseen, Sadam; Demopulos, Gregory; Dudler, Thomas

    2017-01-01

    All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3, via formation of C3-activating enzymes (C3 convertases...... native C3 into its activation fragments, C3a and C3b. This residual C4 and/or C2 bypass route is dependent on LP-specific mannan-binding lectin-associated serine protease-2. By using various serum sources with defined complement deficiencies, we demonstrate that, under physiologic conditions LP......-specific C4 and/or C2 bypass activation of C3 is mediated by direct cleavage of native C3 by mannan-binding lectin-associated serine protease-2 bound to LP-activation complexes captured on ligand-coated surfaces.-Yaseen, S., Demopulos, G., Dudler, T., Yabuki, M., Wood, C. L., Cummings, W. J., Tjoelker, L. W...

  2. Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures.

    Directory of Open Access Journals (Sweden)

    Roy I Pinhassi

    Full Text Available Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2 from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.

  3. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses.

    Science.gov (United States)

    Liu, Mei-Zhen; Osborne, Colin P

    2013-05-01

    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species.

  4. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses

    Science.gov (United States)

    Liu, Mei-Zhen; Osborne, Colin P.

    2013-01-01

    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species. PMID:23599273

  5. Diversification of C(4) grasses (Poaceae) does not coincide with their ecological dominance.

    Science.gov (United States)

    Bouchenak-Khelladi, Yanis; Slingsby, Jasper A; Verboom, G Anthony; Bond, William J

    2014-02-01

    The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled. We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma. C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance. C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.

  6. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel.

    Science.gov (United States)

    Leakey, Andrew D B

    2009-07-07

    Crops with the C(4) photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO(2)] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C(4) plant responses to elevated [CO(2)] has been controversial. Recent evidence from free-air CO(2) enrichment (FACE) experiments suggests that elevated [CO(2)] does not directly stimulate C(4) photosynthesis. Nonetheless, drought stress can be ameliorated at elevated [CO(2)] as a result of lower stomatal conductance and greater intercellular [CO(2)]. Therefore, unlike C(3) crops for which there is a direct enhancement of photosynthesis by elevated [CO(2)], C(4) crops will only benefit from elevated [CO(2)] in times and places of drought stress. Current projections of future crop yields have assumed that rising [CO(2)] will directly enhance photosynthesis in all situations and, therefore, are likely to be overly optimistic. Additional experiments are needed to evaluate the extent to which amelioration of drought stress by elevated [CO(2)] will improve C(4) crop yields for food and fuel over the range of C(4) crop growing conditions and genotypes.

  7. iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate.

    Science.gov (United States)

    Qin, Jun; Zhang, Jianan; Liu, Duan; Yin, Changcheng; Wang, Fengmin; Chen, Pengyin; Chen, Hao; Ma, Jinbing; Zhang, Bo; Xu, Jin; Zhang, Mengchen

    2016-08-01

    Photosynthetic rate which acts as a vital limiting factor largely affects the potential of soybean production, especially during the senescence phase. However, the physiological and molecular mechanisms that underlying the change of photosynthetic rate during the developmental process of soybean leaves remain unclear. In this study, we compared the protein dynamics during the developmental process of leaves between the soybean cultivar Hobbit and the high-photosynthetic rate cultivar JD 17 using the iTRAQ (isobaric tags for relative and absolute quantification) method. A total number of 1269 proteins were detected in the leaves of these two cultivars at three different developmental stages. These proteins were classified into nine expression patterns depending on the expression levels at different developmental stages, and the proteins in each pattern were also further classified into three large groups and 20 small groups depending on the protein functions. Only 3.05-6.53 % of the detected proteins presented a differential expression pattern between these two cultivars. Enrichment factor analysis indicated that proteins involved in photosynthesis composed an important category. The expressions of photosynthesis-related proteins were also further confirmed by western blotting. Together, our results suggested that the reduction in photosynthetic rate as well as chloroplast activity and composition during the developmental process was a highly regulated and complex process which involved a serial of proteins that function as potential candidates to be targeted by biotechnological approaches for the improvement of photosynthetic rate and production.

  8. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis.

    Science.gov (United States)

    Ishikawa, Noriko; Takabayashi, Atsushi; Noguchi, Ko; Tazoe, Youshi; Yamamoto, Hiroshi; von Caemmerer, Susanne; Sato, Fumihiko; Endo, Tsuyoshi

    2016-10-01

    C4 photosynthesis exhibits efficient CO2 assimilation in ambient air by concentrating CO2 around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) through a metabolic pathway called the C4 cycle. It has been suggested that cyclic electron flow (CEF) around PSI mediated by chloroplast NADH dehydrogenase-like complex (NDH), an alternative pathway of photosynthetic electron transport (PET), plays a crucial role in C4 photosynthesis, although the contribution of NDH-mediated CEF is small in C3 photosynthesis. Here, we generated NDH-suppressed transformants of a C4 plant, Flaveria bidentis, and showed that the NDH-suppressed plants grow poorly, especially under low-light conditions. CO2 assimilation rates were consistently decreased in the NDH-suppressed plants under low and medium light intensities. Measurements of non-photochemical quenching (NPQ) of Chl fluorescence, the oxidation state of the reaction center of PSI (P700) and the electrochromic shift (ECS) of pigment absorbance indicated that proton translocation across the thylakoid membrane is impaired in the NDH-suppressed plants. Since proton translocation across the thylakoid membrane induces ATP production, these results suggest that NDH-mediated CEF plays a role in the supply of ATP which is required for C4 photosynthesis. Such a role is more crucial when the light that is available for photosynthesis is limited and the energy production by PET becomes rate-determining for C4 photosynthesis. Our results demonstrate that the physiological contribution of NDH-mediated CEF is greater in C4 photosynthesis than in C3 photosynthesis, suggesting that the mechanism of PET in C4 photosynthesis has changed from that in C3 photosynthesis accompanying the changes in the mechanism of CO2 assimilation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.

    Science.gov (United States)

    Kromdijk, Johannes; Ubierna, Nerea; Cousins, Asaph B; Griffiths, Howard

    2014-07-01

    Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology

  10. The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity.

    Science.gov (United States)

    Kirst, Henning; Melis, Anastasios

    2014-01-01

    The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.

  11. Rubisco gene expression in C4 plants.

    Science.gov (United States)

    Patel, Minesh; Berry, James O

    2008-01-01

    In leaves of most C(4) plants, ribulose 1,5 bisphosphate carboxylase (Rubisco) accumulates only in bundle sheath (bs) cells that surround the vascular centres, and not in mesophyll (mp) cells. It has been shown previously that in the C(4) dicots amaranth and Flaveria bidentis, post-transcriptional control of mRNA translation and stability mediate the C(4) expression patterns of genes encoding the large and small Rubisco subunits (chloroplast rbcL and nuclear RbcS, respectively). Translational control appears to regulate bs cell-specific Rubisco gene expression during early dicot leaf development, while control of mRNA stability appears to mediate bs-specific accumulation of RbcS and rbcL transcripts in mature leaves. Post-transcriptional control is also involved in the regulation of Rubisco gene expression by light, and in response to photosynthetic activity. Transgenic and transient expression studies in F. bidentis provide direct evidence for post-transcriptional control of bs cell-specific RbcS expression, which is mediated by the 5' and 3' untranslated regions (UTRs) of the mRNA. Comparisons of Rubisco gene expression in these dicots and in the monocot maize indicates possible commonalities in the regulation of RbcS and rbcL genes in these divergent C(4) species. Now that the role of post-transcriptional regulation in C(4) gene expression has been established, it is likely that future studies of mRNA-protein interactions will address long-standing questions about the establishment and maintenance of cell type-specificity in these plants. Some of these regulatory mechanisms may have ancestral origins in C(3) species, through modification of pre-existing factors, or by the acquisition of novel C(4) processes.

  12. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  13. Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2

    Science.gov (United States)

    Pinto, Harshini; Sharwood, Robert E.; Tissue, David T.; Ghannoum, Oula

    2014-01-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3–C4 grass grown under ambient (400 μl l–1) and glacial (180 μl l–1) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3–C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3–C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3–C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3–C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3–C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments. PMID:24723409

  14. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    Science.gov (United States)

    Pau, Stephanie; Edwards, Erika J; Still, Christopher J

    2013-01-01

    A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs. comparing all C4 and all C3 grasses (i.e., ignoring phylogenetic structure). These results were due to important differences in the environmental preferences of C3 BEP and PACMAD clades (the two main grass clades). Winter precipitation was found to be more important for understanding the distribution and environmental niche of C3 PACMADs in comparison with both C3 BEPs and C4 taxa, for which temperature was much more important. Results comparing closely related C3 -C4 sister taxa supported the patterns derived from our modeling of the larger clade groupings. Our findings, which are novel in comparing the distribution and niches of clades, demonstrate that the evolutionary history of taxa is important for understanding the functional diversity of C3 and C4 grasses, and should have implications for how grasslands will respond to global change. © 2012

  15. Insights into C4 metabolism from comparative deep sequencing.

    Science.gov (United States)

    Burgess, Steven J; Hibberd, Julian M

    2015-06-01

    C4 photosynthesis suppresses the oxygenation activity of Ribulose Bisphosphate Carboxylase Oxygenase and so limits photorespiration. Although highly complex, it is estimated to have evolved in 66 plant lineages, with the vast majority lacking sequenced genomes. Transcriptomics has recently initiated assessments of the degree to which transcript abundance differs between C3 and C4 leaves, identified novel components of C4 metabolism, and also led to mathematical models explaining the repeated evolution of this complex phenotype. Evidence is accumulating that this complex and convergent phenotype is partly underpinned by parallel evolution of structural genes, but also regulatory elements in both cis and trans. Furthermore, it appears that initial events associated with acquisition of C4 traits likely represent evolutionary exaptations related to non-photosynthetic processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Spatiotemporal analysis of projected impacts of climate change on the major C3 and C4 crop yield under representative concentration pathway 4.5: Insight from the coasts of Tamil Nadu, South India.

    Science.gov (United States)

    A, Ramachandran; Praveen, Dhanya; R, Jaganathan; D, RajaLakshmi; K, Palanivelu

    2017-01-01

    India's dependence on a climate sensitive sector like agriculture makes it highly vulnerable to its impacts. However, agriculture is highly heterogeneous across the country owing to regional disparities in exposure, sensitivity, and adaptive capacity. It is essential to know and quantify the possible impacts of changes in climate on crop yield for successful agricultural management and planning at a local scale. The Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) was employed to generate regional climate projections for the study area using the Regional Climate Model (RCM) RegCM4.4. The dynamics in potential impacts at the sub-district level were evaluated using the Representative Concentration Pathway 4.5 (RCPs). The aim of this study was to simulate the crop yield under a plausible change in climate for the coastal areas of South India through the end of this century. The crop simulation model, the Decision Support System for Agrotechnology Transfer (DSSAT) 4.5, was used to understand the plausible impacts on the major crop yields of rice, groundnuts, and sugarcane under the RCP 4.5 trajectory. The findings reveal that under the RCP 4.5 scenario there will be decreases in the major C3 and C4 crop yields in the study area. This would affect not only the local food security, but the livelihood security as well. This necessitates timely planning to achieve sustainable crop productivity and livelihood security. On the other hand, this situation warrants appropriate adaptations and policy intervention at the sub-district level for achieving sustainable crop productivity in the future.

  17. Environmental influence on photosynthetic efficiency

    Science.gov (United States)

    Zilinskas, Barbara A.

    Photosynthesis is arguably the single most important metabolic process on earth. Through a series of reactions, ranging from 10-15 sec for absorption of light to 106 sec for primary productivity of a field crop, atmospheric CO2 is assimilated into carbohydrate necessary for the sustenance of all life forms. The process involves movement of electrons from water to CO2 through a series of charge transfer reactions. The ultimate source of energy to drive these reactions is solar energy absorbed by a collection of light-harvesting pigment-proteins and specialized reaction centers. Approximately half of the solar irradiance is useful in photosynthesis, but of this only 2-3% is converted into organic matter. Usually, light does not limit photosynthesis, but other environmental factors do, most often CO2 and water availability. Three different biochemical pathways for CO2 assimilation have independently evolved. These provide C3, C4 and CAM plants (names designating the different means of assimilating CO2) with adaptive advantages under the various environmental conditions encountered by plants in nature. Our current understanding of the photosynthetic light and carbon-fixing reactions now permits a closer look at responses of photosynthesis to changes in the environment, particularly with regard to making predictive models for absolute efficiencies of light, CO2 and water utilization.

  18. Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation

    Science.gov (United States)

    He, Juan; Jia, Guodong; Li, Li; Wang, Pinxian

    2017-09-01

    Compound-specific stable carbon isotope composition of terrestrial leaf wax n-alkyl lipids (δ13Calk) was measured in sediments from the northern South China Sea (SCS), allowing assessment of vegetation change in the source area within the penultimate glacial cycle during 60-160 kyr. Our δ13Calk record suggested a prominent vegetation contrast between the glacial and the interglacial, with more C4 plant developing during the glaciation and a rapid decline during the glacial termination. This deglacial change in δ13Calk was attributed to an increase in humidity caused by the enhancement of the East Asian Summer Monsoon (EASM). However, the inferred deglacial C4 decline lagged by 4 kyr behind the grass retreat inferred from published pollen record. We argue that the time discrepancy in the two terrestrial plant proxies may have resulted from their differential responses to regional climate change, with grass community structure more sensitive to temperature rise and plant photosynthetic pathway more sensitive to humidity increase. Therefore, an earlier penultimate deglacial warming relative to humidity increase can be inferred from the lead of grass retreat relative to C4 decline, which implies that EASM may be delayed during the deglacial warming.

  19. The recurrent assembly of C4 photosynthesis, an evolutionary tale.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2013-11-01

    Today, plants using C4 photosynthesis are widespread and important components of major tropical and subtropical biomes, but the events that led to their evolution and success started billions of years ago (bya). A CO2-fixing enzyme evolved in the early Earth atmosphere with a tendency to confuse CO2 and O2 molecules. The descendants of early photosynthetic organisms coped with this property in the geological eras that followed through successive fixes, the latest of which is the addition of complex CO2-concentrating mechanisms such as C4 photosynthesis. This trait was assembled from bricks available in C3 ancestors, which were altered to fulfill their new role in C4 photosynthesis. The existence of C4-suitable bricks probably determined the lineages of plants that could make the transition to C4 photosynthesis, highlighting the power of contingency in evolution. Based on the latest findings in C4 research, we present the evolutionary tale of C4 photosynthesis, with a focus on the general evolutionary phenomena that it so wonderfully exemplifies.

  20. Balanced {C_4, C_5}-Quatrefoil Systems

    OpenAIRE

    Ushio, Kazuhiko

    2004-01-01

    In graph theory, the decomposition problems of graphs are very important topics. Various types of decompositions of many graphs can be seen in the literature of gaph theory. We give the necessary and sufficient condition for the existence of a balanced {C_4, C_5}-quatrefoil decomposition of K_n for each of (C_4, C_4, C_4, C_4)-quatrefoil, (C_4, C_4, C_4, C_5)-quatrefoil, (C_4, C_4, C_5, C_5)-quatrefoil, (C_4, C_5, C_5, C_5)-quatrefoil, and (C_5, C_5, C_5, C_5)-quatrefoil. These decompositions...

  1. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    Directory of Open Access Journals (Sweden)

    Jianfang Xu

    Full Text Available Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxylase (PEPC, and phosphoenolpyruvate carboxykinase (PCK. To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature. The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  2. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  3. [Regulation of alternative CO{sub 2} fixation pathways in prokaryotic and eukaryotic photosynthetic organisms]. Progress report, June 15, 1991--June 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, R.

    1993-12-31

    The goal of this project to determine how photosynthetic microorganisms regulate the assimilation of CO{sub 2} via pathways alternative to the usual Calvin-Benson-Bassham reductive pentose phosphate scheme, particularly in the molecular basis for switches in CO{sub 2} metabolic paths. We have identified proteins on one-dimensional and two-dimensional SDS gels that appear differentially expressed in R. sphaeroides strain 16PHC which may be due to a mutation or change in some locus that controls the expression of several genes and their products. Similar observations were made relative to R. rubrum I-19 and the wild-type, namely that additional protein bands were observed in extracts of I-19 compared to the wild-type when both were grown photoheterotrophically with malate as electron donor and CO{sub 2} as the obligatory electron acceptor. The results of Tn5 mutagenesis of R. sphaeroides 16PHC resulted in the isolation of several strains that effectively changed back to the 16 phenotype; i.e., no malate-dependent phototrophic growth with CO{sub 2} as electron acceptor. We have found that both wild-type R. sphaeroides and R. rubrum, and the respective RubisCO negative mutant strains, are all capable of photolithoautotrophic growth using reduced sulfur compounds as electron donors and CO{sub 2} as the sole carbon source and electron acceptor. The fact that the RubisCO negative are capable of photoautotrophic growth is an exciting development for us because it proves that alternative or nonCalvin CO{sub 2} fixation pathways are extremely important to the overall carbon metabolism of these organisms. Moreover, wild-type strains turn off the synthesis of RubisCO under these cultural conditions. Thus, there appears to be separate autotrophic CO{sub 2} fixation pathways in these organisms, and a major emphasis has been placed to identify how these bacteria can grow autotrophically and fix CO{sub 2} in the absence of RubisCO.

  4. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes.

    Science.gov (United States)

    Bräutigam, Andrea; Hoffmann-Benning, Susanne; Hofmann-Benning, Susanne; Weber, Andreas P M

    2008-09-01

    C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.

  5. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.

    Science.gov (United States)

    Christin, Pascal-Antoine; Salamin, Nicolas; Muasya, A Muthama; Roalson, Eric H; Russier, Flavien; Besnard, Guillaume

    2008-11-01

    Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.

  6. Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis

    OpenAIRE

    Wang Chuanli; Guo Longyun; Li Yixue; Wang Zhuo

    2012-01-01

    Abstract Background The C4 photosynthetic cycle supercharges photosynthesis by concentrating CO2 around ribulose-1,5-bisphosphate carboxylase and significantly reduces the oxygenation reaction. Therefore engineering C4 feature into C3 plants has been suggested as a feasible way to increase photosynthesis and yield of C3 plants, such as rice, wheat, and potato. To identify the possible transition from C3 to C4 plants, the systematic comparison of C3 and C4 metabolism is necessary. Results We c...

  7. Evidence that inducible C-4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot

    NARCIS (Netherlands)

    Reiskind, JB; Madsen, TV; VanGinkel, LC; Bowes, G

    Hydrilla verticillata (L.f.) Royle exhibits an inducible C-4- type photosynthetic cycle, but lacks Kranz anatomy. Leaves in the C-4-type state (but not C-3-type) contained up to 5-fold higher internal dissolved inorganic carbon (DIG) concentrations than the medium, indicating that they possessed a

  8. Carbon Concentrating Mechanisms & C4 Enzymes In Marine Phytoplankton

    Science.gov (United States)

    Moolna, A.; Hermoso, M.; Rickaby, R.

    2009-12-01

    Photosynthetic CO2 assimilation by marine phytoplankton is a major sink in the Earth’s carbon cycle. Understanding the molecular biogeochemistry of this carbon capture is crucial to predicting how the Earth will respond to the carbon emissions driving human-induced climate change. We are investigating the connection of phytoplankton photosynthesis to different CO2 levels using the diatom Thalassiosira weissflogii and the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Phytoplankton in equilibrium with present-day atmospheric CO2 levels have carbon concentrating mechanisms (CCMs) that increase their internal concentration of dissolved inorganic carbon (DIC) relative to their surrounding seawater. By acclimating cultures to seawater with quadrupled DIC availability, the CCM physiology is relaxed. This is demonstrated by resuspending the phytoplankton in CO2-free seawater and then plotting the response curve of photosynthetic O2 evolution rate against the addition of specific concentrations of DIC (Figure 1). Relaxation implies less energy used for CCMs and so more energy may be available for carbon fixation. Scanning electron micrographs of high DIC G. oceanica cultures, for example, show that the size of both the coccosphere and of individual coccoliths is unchanged; but the external shield of the coccolith extends further into the central area. This suggests an increase in calcification, with implications for carbon partition between organic and inorganic fluxes to the seafloor. Of particular interest is the possibility that C4 photosynthesis could provide a CCM for marine phytoplankton. The carbon-fixing Rubisco enzyme can only use CO2 as a substrate but, due to reaction between CO2 and H2O, most of the CO2 dissolved in seawater is actually present as HCO3-. In C4 land plants, CO2 for Rubisco is provided via a four-carbon intermediate compound generated from HCO3-; and the basic C4 machinery is found in all photosynthetic life because of

  9. Mathematical review of the energy transduction stoichiometries of C4 leaf photosynthesis under limiting light

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2012-01-01

    A generalized model for electron (e-) transport limited C4 photosynthesis of NAD–malic enzyme and NADP–malic enzyme subtypes is presented. The model is used to review the thylakoid stoichiometries in vivo under strictly limiting light conditions, using published data on photosynthetic quantum yield

  10. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants.

    Science.gov (United States)

    Bowman, Shaun M; Patel, Minesh; Yerramsetty, Pradeep; Mure, Christopher M; Zielinski, Amy M; Bruenn, Jeremy A; Berry, James O

    2013-09-22

    Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding

  11. Microscale modeling of gas exchange during C4 photosythesis

    NARCIS (Netherlands)

    Retta, Moges

    2017-01-01

    Improving the efficiency of photosynthesis could contribute to better food security under an unprecedented rise in global population and climate-change. The photosynthesis pathway in C4 plants, such as maize (Zea mays L.), Miscanthus (Miscanthus x giganteus), and sugarcane (Saccharum officinarum

  12. Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway.

    Science.gov (United States)

    Jin, Yi; Mesaros, A Clementina; Blair, Ian A; Penning, Trevor M

    2011-07-01

    Active sex hormones such as testosterone and progesterone are metabolized to tetrahydrosteroids in the liver to terminate hormone action. One main metabolic pathway, the 5β-pathway, involves 5β-steroid reductase (AKR1D1, where AKR refers to the aldo-keto reductase superfamily), which catalyses the reduction of the 4-ene structure, and ketosteroid reductases (AKR1C1-AKR1C4), which catalyse the subsequent reduction of the 3-oxo group. The activities of the four human AKR1C enzymes on 5β-dihydrotestosterone, 5β-pregnane-3,20-dione and 20α-hydroxy-5β-pregnan-3-one, the intermediate 5β-dihydrosteroids on the 5β-pathway of testosterone and progesterone metabolism, were investigated. Product characterization by liquid chromatography-MS revealed that the reduction of the 3-oxo group of the three steroids predominantly favoured the formation of the corresponding 3α-hydroxy steroids. The stereochemistry was explained by molecular docking. Kinetic properties of the enzymes identified AKR1C4 as the major enzyme responsible for the hepatic formation of 5β-tetrahydrosteroid of testosterone, but indicated differential routes and roles of human AKR1C for the hepatic formation of 5β-tetrahydrosteroids of progesterone. Comparison of the kinetics of the AKR1C1-AKR1C4-catalysed reactions with those of AKR1D1 suggested that the three intermediate 5β-dihydrosteroids derived from testosterone and progesterone are unlikely to accumulate in liver, and that the identities and levels of 5β-reduced metabolites formed in peripheral tissues will be governed by the local expression of AKR1D1 and AKR1C1-AKR1C3.

  13. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    Science.gov (United States)

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  14. Control of Photosynthetic and High-Light-Responsive Genes by the Histidine Kinase DspA: Negative and Positive Regulation and Interactions between Signal Transduction Pathways

    OpenAIRE

    Hsiao, Hui-Yi; He, Qingfang; van Waasbergen, Lorraine G.; Grossman, Arthur R.

    2004-01-01

    We have deleted a gene for a sensor histidine kinase, dspA (or hik33), in the cyanobacterium Synechocystis sp. strain PCC6803. In low and moderate light, the mutant grew slowly under photoautotrophic conditions, with a doubling time of ∼40 h, and had severely reduced photosynthetic oxygen evolution. When the mutant was maintained in low or moderate light in the presence of glucose, its growth rate was only somewhat lower than that of wild-type cells. However, the mutant was light sensitive an...

  15. The evolutionary ecology of C4 plants.

    Science.gov (United States)

    Christin, Pascal-Antoine; Osborne, Colin P

    2014-12-01

    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche--growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Using vegetation model-to-data comparisons to test the role of abiotic factors in the Neogene and Quaternary origins of modern C4 grasslands

    Science.gov (United States)

    Fox, D. L.; Strömberg, C.; Pau, S.; Taylor, L.; Lehmann, C.; Osborne, C.; Beerling, D. J.; Still, C. J.

    2014-12-01

    Grasslands dominated by taxa using the C4 photosynthetic pathway evolved on several continents during the Neogene and Quaternary, long after C4 photosynthesis first evolved among grasses. The histories of these ecosystems are relatively well documented in the geological record from stable carbon isotopes (fossil vertebrate herbivores, paleosols) and the plant microfossil record (pollen, phytoliths). The distinct biogeography and ecophysiology of modern C3 and C4 grasses have led to hypotheses explaining the origins of C4 grasslands in terms of long term changes in the Earth system such as increased aridity and decreasing atmospheric pCO2. However, proxies for key parameters of these hypotheses (e.g., temperature, precipitation, pCO2) are still in development, not yet widely applied, or remain contentious, so testing the hypotheses globally remains difficult. To understand better possible links between changes in the Earth system and the origin of C4 grasslands on different continents, we are undertaking a global scale comparison between observational records of C4 grass abundances in Miocene and Pliocene localities compiled from the literature, and three increasingly complex models of C4 dominance and abundance. The literature compilation comprises >2,600 δ13C values of both fossil vertebrates and of paleosol carbonates and >6,700 paleobotanical records. We are using paleoclimate output from the HadCM3L GCM over a range of pCO2 values for each epoch to model C4 dominance or abundance in grid cells as (Model 1) months per year exceeding the temperature at which net assimilation is greater for C4 than C3 photosynthesis (crossover temperature); (Model 2) the number of months per year exceeding the crossover temperature and having sufficient precipitation for growth (≥25 cm/yr; Collatz model); and (Model 3) the Sheffield Dynamic Global Vegetation Model (SDGVM), output from which includes biomass (g C/m2/yr) for distinct structural components (roots, stems, leaves

  17. The Road to C4 Photosynthesis: Evolution of a Complex Trait via Intermediary States.

    Science.gov (United States)

    Schlüter, Urte; Weber, Andreas P M

    2016-05-01

    C4 photosynthesis enables high photosynthetic energy conversion efficiency as well as high nitrogen and water use efficiencies. Given the multitude of biochemical, structural and molecular changes in comparison with C3 photosynthesis, it appears unlikely that such a complex trait would evolve in a single step. C4 photosynthesis is therefore believed to have evolved from the ancestral C3 state via intermediary stages. Consequently, the identification and detailed characterization of plant species representing transitory states between C3 and C4 is important for the reconstruction of the sequence of evolutionary events, especially since C4 evolution occurred in very different phylogenetic backgrounds. There is also significant interest in engineering of C4 or at least C4-like elements into C3 crop plants. A detailed and mechanistic understanding of C3-C4 intermediates is likely to provide guidance for the experimental design of such approaches. Here we provide an overview on the most relevant results obtained on C3-C4 intermediates to date. Recent knowledge gains in this field will be described in more detail. We thereby concentrate especially on biochemical and physiological work. Finally, we will provide a perspective and outlook on the continued importance of research on C3-C4 intermediates. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants.

    Science.gov (United States)

    Weissmann, Sarit; Ma, Fangfang; Furuyama, Koki; Gierse, James; Berg, Howard; Shao, Ying; Taniguchi, Mitsutaka; Allen, Doug K; Brutnell, Thomas P

    2016-02-01

    C4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localized malate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the loss of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ∼ 25% of the photosynthetic activity. The results emphasize the importance of malate transport during C4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize. © 2016 American Society of Plant Biologists. All rights reserved.

  19. What does leaf wax δD from a mixed C3/C4 vegetation region tell us?

    Science.gov (United States)

    Wang, Yiming V.; Larsen, Thomas; Leduc, Guillaume; Andersen, Nils; Blanz, Thomas; Schneider, Ralph R.

    2013-06-01

    Hydrogen isotope values (δD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because δD of precipitation is commonly assumed as the first order controlling factor of leaf wax δD. Plant functional types and their photosynthetic pathways can also affect leaf wax δD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence δD values we here present a 37,000-year old record of δD and stable carbon isotopes (δ13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo δ13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between δD and δ13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their δD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that δD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that δD and δ13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane δD requires additional knowledge of regional vegetation changes from which n-alkanes are synthesized, and that the combination of δD and δ13C values of multiple n-alkanes can help to differentiate

  20. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that

  1. C# 4.0 in a Nutshell

    CERN Document Server

    Albahari, Joseph

    2010-01-01

    What people are saying about C# 4.0 in a Nutshell "C# 4.0 in a Nutshell is one of the few books I keep on my desk as a quick reference. It is a book I recommend."--Scott Guthrie, Corporate Vice President, .NET Developer Platform, Microsoft Corporation "A must-read for a concise but thorough examination of the parallel programming features in the .NET Framework 4."--Stephen Toub, Parallel Computing Platform Program Manager, Microsoft "This wonderful book is a great reference for developers of all levels."-- Chris Burrows, C# Compiler Team, Microsoft When you have questions about how to u

  2. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation

    National Research Council Canada - National Science Library

    Mitchell, Peter

    2011-01-01

    ... in oxidative phosphorylation in mitochondria is that, for the equivalent of each pair of electrons traversing the respiratory chain, up to 3 anhydrobond equivalents may normally traverse the h/d pathway from adenosine diphosphate plus inorganic phosphate (ADP + P i ) to water. In photosynthetic phosphorylation the stoichiometry is less certain, and it is thought...

  3. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  4. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes.

    Directory of Open Access Journals (Sweden)

    Shan Chi

    Full Text Available Both Calvin-Benson-Bassham (C3 and Hatch-Slack (C4 cycles are most important autotrophic CO2 fixation pathways on today's Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK and aspartate aminotransferase (AST with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.

  5. Understanding metabolite transport and metabolism in C4 plants through RNA-seq.

    Science.gov (United States)

    Schlüter, Urte; Denton, Alisandra K; Bräutigam, Andrea

    2016-06-01

    RNA-seq, the measurement of steady-state RNA levels by next generation sequencing, has enabled quantitative transcriptome analyses of complex traits in many species without requiring the parallel sequencing of their genomes. The complex trait of C4 photosynthesis, which increases photosynthetic efficiency via a biochemical pump that concentrates CO2 around RubisCO, has evolved convergently multiple times. Due to these interesting properties, C4 photosynthesis has been analyzed in a series of comparative RNA-seq projects. These projects compared both species with and without the C4 trait and different tissues or organs within a C4 plant. The RNA-seq studies were evaluated by comparing to earlier single gene studies. The studies confirmed the marked changes expected for C4 signature genes, but also revealed numerous new players in C4 metabolism showing that the C4 cycle is more complex than previously thought, and suggesting modes of integration into the underlying C3 metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2016-10-01

    Full Text Available As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco. C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME and NADP-dependent malic enzyme (NADP-ME. The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  7. Elements Required for an Efficient NADP-Malic Enzyme Type C4 Photosynthesis1[C][W][OPEN

    Science.gov (United States)

    Wang, Yu; Long, Stephen P.; Zhu, Xin-Guang

    2014-01-01

    C4 photosynthesis has higher light, nitrogen, and water use efficiencies than C3 photosynthesis. Although the basic anatomical, cellular, and biochemical features of C4 photosynthesis are well understood, the quantitative significance of each element of C4 photosynthesis to the high photosynthetic efficiency are not well defined. Here, we addressed this question by developing and using a systems model of C4 photosynthesis, which includes not only the Calvin-Benson cycle, starch synthesis, sucrose synthesis, C4 shuttle, and CO2 leakage, but also photorespiration and metabolite transport between the bundle sheath cells and mesophyll cells. The model effectively simulated the CO2 uptake rates, and the changes of metabolite concentrations under varied CO2 and light levels. Analyses show that triose phosphate transport and CO2 leakage can help maintain a high photosynthetic rate by balancing ATP and NADPH amounts in bundle sheath cells and mesophyll cells. Finally, we used the model to define the optimal enzyme properties and a blueprint for C4 engineering. As such, this model provides a theoretical framework for guiding C4 engineering and studying C4 photosynthesis in general. PMID:24521879

  8. On the smell of Composition C-4.

    Science.gov (United States)

    Kranz, William; Kitts, Kelley; Strange, Nicholas; Cummins, Joshua; Lotspeich, Erica; Goodpaster, John

    2014-03-01

    In efforts to locate hidden explosives, humans have had few allies as valuable as the explosives-detecting canine. The unrivaled sensitivity and selectivity of the canine nose have combined to make these animals an attractive choice for law enforcement, military, and private security applications. Although the efficacy of trained detector dogs is well-established, the question of which chemical compounds are responsible for causing a dog to recognize a particular odor and alert to it remains a subject of debate for several explosive formulations--including, perhaps most notably, Composition C-4. Previous studies have indicated that cyclohexanone, 2,3-dimethyl-2,3-dinitrobutane, and 2-ethyl-1-hexanol are the chemicals that may cause canines to alert to C-4. This has led to the suggestion that these substances could be used as a substitute for genuine C-4 in the training, testing, and maintenance of explosives-detecting canines. In this paper, we present an alternative view. Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we have discovered that 2-ethyl-1-hexanol off-gasses not only from C-4, but also from benign sources, such as the common plasticizers bis(2-ethylhexyl)adipate, bis(2-ethylhexyl)sebacate, and bis(2-ethylhexyl)phthalate; as well as several plasticized items common to our everyday world, including PVC tile, PVC pipe, electrical tape, and credit cards. This observation may potentially discourage the use of 2-ethyl-1-hexanol for training purposes. We also present the results of our own canine field trials focused on the detection of C-4. Through the use of contingency tables and statistical testing, we demonstrate the failure of trained law enforcement dogs in our study to respond in any significant way to these potential odor compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici.

    Science.gov (United States)

    Lung, Shiu-Cheung; Yanagisawa, Makoto; Chuong, Simon D X

    2011-04-01

    Although transient gene expression using reporters such as green fluorescent protein is a versatile tool for examining gene functions and intracellular protein trafficking, the establishment of a highly efficient gene manipulation method remains a challenge in many plant species. A reliable transformation protocol has not yet been established for the three single-cell C(4) species, despite their potential of serving as model systems for their extraordinary C(4) photosynthetic metabolism. We report the first protocol optimized for isolating a large-scale and homogenous population of protoplasts from chlorenchyma cells of the single-cell C(4) species Bienertia sinuspersici. Cytochemical staining confirmed the preservation of the unusual subcellular compartmentation of organelles in chlorenchyma cells after cell wall digestion. Approximately 84% of isolated protoplasts expressed the reporter fluorescent protein following our optimized polyethylene glycol-mediated transfection procedures. Fluorescent fusion protein tagged with various intracellular sorting signals demonstrated potential use of the transient gene expression system in subcellular protein localization and organelle dynamics studies. Further applications of the current protoplast isolation and transfection techniques in understanding the novel single-cell C(4) photosynthetic mechanism are discussed.

  10. Expression of the peptide C4b‐binding protein β in the arthritic joint

    Science.gov (United States)

    Sánchez‐Pernaute, O; Esparza‐Gordillo, J; Largo, R; Calvo, E; Alvarez‐Soria, M A; Marcos, M E; Herrero‐Beaumont, G; de Córdoba, S R

    2006-01-01

    Background C4b‐binding protein (C4BP) is a plasma oligomeric glycoprotein that participates in the regulation of complement and haemostasis. Complement‐regulatory activity depends on the C4BPα‐polypeptide, whereas the C4BPβ‐polypeptide inactivates protein S, interfering with the anti‐coagulatory protein C‐dependent pathway. Objective To investigate the expression of C4BPβ in the rheumatoid joint. Methods Expression of C4BP was studied in synovial explants from patients with rheumatoid arthritis, osteoarthritis and healthy controls, using immunohistochemistry and in situ hybridisation. C4BP isoforms and free C4BPβ were studied in synovial effusions from patients with rheumatoid arthritis, osteoarthritis and microcrystalline arthritis (MCA) by immunoblotting; total and free protein S levels were studied by enzyme immunoassay. Results C4BPβ was overexpressed in the synovial membranes of patients with rheumatoid arthritis, in close association with the severity of synovitis and the extension of interstitial fibrin deposits. As many as 85% fluids from patients with rheumatoid arthritis contained free C4BPβ, whereas this unusual polypeptide was present in 50% fluids from patients with MCA and 40% fluids from patients with osteoarthritis. Free protein S at the effusions was pathologically reduced in patients with rheumatoid arthrits and MCA, and remained normal in patients with osteoarthritis. Conclusion C4BPβ is expressed by the inflamed synovial tissue, where it can participate in processes of tissue remodelling associated with invasive growth. PMID:16679431

  11. Intracellular position of mitochondria in mesophyll cells differs between C3and C4grasses.

    Science.gov (United States)

    Hatakeyama, Yuto; Ueno, Osamu

    2017-09-01

    In C 3 plants, part of the CO 2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C 3 grasses would increase the efficiency of refixation of CO 2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/​oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C 4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C 3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C 4 grasses of different C 4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C 3 -C 4 intermediate grass, Steinchisma hians, under an electron microscope. In C 4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C 3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C 3 cells. These results suggest that the mitochondrial positioning in C 4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO 2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.

  12. Enzyme Regulation in C4 Photosynthesis 12

    Science.gov (United States)

    Jacquot, Jean-Pierre P.; Buchanan, Bob B.; Martin, F.; Vidal, J.

    1981-01-01

    NADP-malate dehydrogenase, a light-modulated enzyme of C4 photosynthesis, was purified to homogeneity from leaves of corn. The pure enzyme was activated by thioredoxin m that was reduced either photochemically (with ferredoxin and ferredoxin-thioredoxin reductase) or chemically (with dithiothreitol). Unactivated corn leaf NADP-malate dehydrogenase had a molecular weight of 50,000 to 60,000 and was chromophorefree. The enzyme appeared to have a high content of serine and glycine and to contain both S—S and SH groups. Consequently, NADP-malate dehydrogenase seems to be capable of undergoing reversible oxidation/reduction during its photoregulation. PMID:16661905

  13. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.

    Science.gov (United States)

    Sage, Rowan F; de Melo Peixoto, Murilo; Friesen, Patrick; Deen, Bill

    2015-07-01

    There is much interest in cultivating C4 perennial plants in northern climates where there is an abundance of land and a potential large market for biofuels. C4 feedstocks can exhibit superior yields to C3 alternatives during the long warm days of summer at high latitude, but their summer success depends on an ability to tolerate deep winter cold, spring frosts, and early growth-season chill. Here, we review cold tolerance limits in C4 perennial grasses. Dozens of C4 species are known from high latitudes to 63 °N and elevations up to 5200 m, demonstrating that C4 plants can adapt to cold climates. Of the three leading C4 grasses being considered for bioenergy production in cold climates--Miscanthus spp., switchgrass (Panicum virgatum), and prairie cordgrass (Spartina pectinata)--all are tolerant of cool temperatures (10-15 °C), but only cordgrass tolerates hard spring frosts. All three species overwinter as dormant rhizomes. In the productive Miscanthus×giganteus hybrids, exposure to temperatures below -3 °C to -7 °C will kill overwintering rhizomes, while for upland switchgrass and cordgrass, rhizomes survive exposure to temperatures above -20 °C to -24 °C. Cordgrass emerges earlier than switchgrass and M. giganteus genotypes, but lacks the Miscanthus growth potential once warmer days of late spring arrive. To enable C4-based bioenergy production in colder climates, breeding priorities should emphasize improved cold tolerance of M.×giganteus, and enhanced productivity of switchgrass and cordgrass. This should be feasible in the near future, because wild populations of each species exhibit a diverse range of cold tolerance and growth capabilities. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody

    DEFF Research Database (Denmark)

    Pilely, Katrine; Skjoedt, Mikkel-Ole; Nielsen, Christian

    2014-01-01

    a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera......, with a mean of 0.85mg/L and a range of 0.19-2.21mg/L. We believe that the C4c specific antibody and the ELISA might be important tools in the future assessment of in vivo activation in situations where the classical or the lectin complement pathways are involved in the pathogenesis....... and samples from factor I deficient patients. The specificity of the mAb was further evaluated by immunoprecipitation techniques and by analysis of eluted fragments of C4 after immunoaffinity chromatography. The anti-C4c mAb was confirmed to be C4c specific, as it showed no cross-reactivity with native (un...

  15. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    Science.gov (United States)

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.

  16. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.

    Science.gov (United States)

    Sage, Rowan F; Khoshravesh, Roxana; Sage, Tammy L

    2014-07-01

    In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photorespiratory glycine shuttle concentrates CO2 into an inner bundle-sheath-like compartment surrounding the vascular tissue. C2 Kranz is considered to be an intermediate stage in the evolutionary development of C4 Kranz, based on the intermediate branching position of C2 species in 14 evolutionary lineages of C4 photosynthesis. In the best-supported model of C4 evolution, Kranz anatomy in C2 species evolved from C3 ancestors with enlarged bundle sheath cells and high vein density. Four independent lineages have been identified where C3 sister species of C2 plants exhibit an increase in organelle numbers in the bundle sheath and enlarged bundle sheath cells. Notably, in all of these species, there is a pronounced shift of mitochondria to the inner bundle sheath wall, forming an incipient version of the C2 type of Kranz anatomy. This incipient version of C2 Kranz anatomy is termed proto-Kranz, and is proposed to scavenge photorespiratory CO2. By doing so, it may provide fitness benefits in hot environments, and thus represent a critical first stage of the evolution of both the C2 and C4 forms of Kranz anatomy. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Renal AA amyloidosis in a patient with hereditary complete complement C4 deficiency

    Directory of Open Access Journals (Sweden)

    Imed Helal

    2011-01-01

    Full Text Available Hereditary complete C4 deficiency has until now been reported in 30 cases only. A disturbed clearance of immune- complexes probably predisposes these individuals to systemic lupus erythematosus, other immune- complex diseases and recurrent microbial infections. We present here a 20- year- old female with hereditary complete C4 deficiency. Renal biopsy demonstrated renal AA amyloidosis. This unique case further substantiates that deficiency of classical pathway components predisposes to the development of recurrent microbial infections and that the patients may develop AA amyloidosis. Furthermore, in clinical practice, the nephrotic syndrome occurring in a patient with hereditary complete complement C4 deficiency should lead to the suspicion of renal AA amyloidosis.

  18. Oxygen dynamics in photosynthetic membranes.

    Science.gov (United States)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  19. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  20. Olefins production from C4 stream; Producao de olefinas a partir de corrente C4

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Julia A.; Feltran, Marina B.; Becker, Patricia Luiza; Rocha, Priscila L. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The petrochemical sector in Brazil has been growing in terms of investment and expansion of production capacity, due to increased demand for thermoplastic products. However, the offer of basic petrochemical raw materials obtained by conventional routes is not following this increasing demand which stimulates the search for new competitive technologies. Moreover, there is the opportunity to use low value added C4 streams from FCC process that are available in the Brazilian refineries, for the production of petrochemicals. Several possibilities of C4 stream use to produce butadienes, MTBE, maleic anhydride, ethylene and propylene have been discussed in this work. The production of propylene seems to be the most economically attractive option in Brazil, since its offer will not keep up with the growth in its demand, according to ABIQUIM forecasts. Therefore some propylene production technologies from C4 streams - steam cracking, metathesis and selective cracking - have been evaluated considering their basic characteristics and applications. The goal of this study is to provide preliminary information to support future project evaluations of petrochemical/refinery integration, through comparative analysis of these technologies. (author)

  1. Structural and biochemical characterization of the C3?C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco

    OpenAIRE

    Ueno, Osamu

    2011-01-01

    On the basis of its CO2 compensation concentration, Brassica gravinae Ten. has been reported to be a C3?C4 intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also examined in B. gravinae, B. napus L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia (L.) DC. (C3?C4) by immunogold electron microscopy to elucidate Rubisco expr...

  2. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Product Manager C4ISR On-The-Move Experimentation

    National Research Council Canada - National Science Library

    Utroska, William; Langan, Russell; Amabile, Michael

    2006-01-01

    Product Manager C4ISR On-The-Move (PM C4ISR OTM) provides a relevant operational field experimentation venue for the purpose of assessing emerging technologies in a System-of- Systems (SoS) environment...

  5. Complement C4 phenotypes in dementia of the Alzheimer type

    NARCIS (Netherlands)

    Eikelenboom, P.; Goetz, J.; Pronk, J. C.; Hauptmann, G.

    1988-01-01

    Complement C4 phenotype distribution was studied in 64 patients with dementia of the Alzheimer type. In contrast to reported findings we failed to find a significant association between C4B2 gene frequency and Alzheimer's dementia

  6. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  7. Applicability of Virtual Environments as C4ISR Displays

    Science.gov (United States)

    2006-06-01

    und Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION , INFORMATIONSVERARBEITUNG UND ERGONOMIEFGAN Applicability of Virtual Environments as C4ISR...Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION , INFORMATIONSVERARBEITUNG UND ERGONOMIE 1 FGAN Applicability of Virtual Environments as C4ISR Displays...Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION , INFORMATIONSVERARBEITUNG UND ERGONOMIE 2 FGAN C4ISR C4ISR stands for - Command (ability of mil. com

  8. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C4 grasses could help fill the yield gap. High-biomass C4 grasses exhibit high yield due to C4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 17 CFR 240.16c-4 - Derivative securities.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Derivative securities. 240.16c-4 Section 240.16c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED... Exchange Act of 1934 Exemption of Certain Transactions from Section 16(c) § 240.16c-4 Derivative securities...

  10. Combined C4d and CD3 immunostaining predicts immunoglobulin (Ig)A nephropathy progression

    NARCIS (Netherlands)

    Faria, B.; Henriques, C.; Matos, A. C.; Daha, M. R.; Pestana, M.; Seelen, M.

    A number of molecules have been shown recently to be involved in the pathogenesis and progression of immunoglobulin (Ig)A nephropathy (IgAN). Among these, we have selected C4d (complement lectin pathway involvement), CD3 (T cell marker, traducing interstitial inflammation), transglutaminase 2

  11. Anatomy and ultrastructure of embryonic leaves of the C4 species Setaria viridis.

    Science.gov (United States)

    Junqueira, Nicia E G; Ortiz-Silva, Bianca; Leal-Costa, Marcos Vinícius; Alves-Ferreira, Márcio; Dickinson, Hugh G; Langdale, Jane A; Reinert, Fernanda

    2018-02-05

    Setaria viridis is being promoted as a model C4 photosynthetic plant because it has a small genome (~515 Mb), a short life cycle (~60 d) and it can be transformed. Unlike other C4 grasses such as maize, however, there is very little information about how C4 leaf anatomy (Kranz anatomy) develops in S. viridis. As a foundation for future developmental genetic studies, we provide an anatomical and ultrastructural framework of early shoot development in S. viridis, focusing on the initiation of Kranz anatomy in seed leaves. Setaria viridis seeds were germinated and divided into five stages covering development from the dry seed (stage S0) to 36 h after germination (stage S4). Material at each of these stages was examined using conventional light, scanning and transmission electron microscopy. Dry seeds contained three embryonic leaf primordia at different developmental stages (plastochron 1-3 primordia). The oldest (P3) leaf primordium possessed several procambial centres whereas P2 displayed only ground meristem. At the tip of P3 primordia at stage S4, C4 leaf anatomy typical of the malate dehydrogenase-dependent nicotinamide dinucleotide phosphate (NADP-ME) subtype was evident in that vascular bundles lacked a mestome layer and were surrounded by a single layer of bundle sheath cells that contained large, centrifugally located chloroplasts. Two to three mesophyll cells separated adjacent vascular bundles and one mesophyll cell layer on each of the abaxial and adaxial sides delimited vascular bundles from the epidermis. The morphological trajectory reported here provides a foundation for studies of gene regulation during early leaf development in S. viridis and a framework for comparative analyses with other C4 grasses.

  12. Diversity in forms of C4 in the genus Cleome (Cleomaceae)

    Science.gov (United States)

    Koteyeva, Nuria K.; Voznesenskaya, Elena V.; Roalson, Eric H.; Edwards, Gerald E.

    2011-01-01

    Background and Aims Cleomaceae is one of 19 angiosperm families in which C4 photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C4 in genus Cleome. Methods Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). Key Results Three species with C4-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C4 photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C4 cycle (compared with the C3–C4 intermediate C. paradoxa and the C3 species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells. Conclusions NAD-malic enzyme-type C4 photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with

  13. Co-regulation of dark and light reactions in three biochemical subtypes of C(4) species.

    Science.gov (United States)

    Kiirats, Olavi; Kramer, David M; Edwards, Gerald E

    2010-08-01

    Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)₂'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)₂', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.

  14. Complement factor C4 activation in patients with hereditary angioedema

    DEFF Research Database (Denmark)

    Åbom, Anne; Bygum, Anette; Koch, Claus

    2017-01-01

    Objectives: Low complement factor C4 is usually considered a valuable screening tool for patients with the potentially life-threatening hereditary angioedema with C1-inhibitor (C1-INH) deficiency (C1-INH-HAE). However, there are patients with C1-INH-HAE presenting with normal C4 levels. This means......, that C1-INH-HAE may potentially be overlooked, if screening is performed only by measurement of C4. It has been suggested that measurement of C4 activation products is better suited to avoid false negative results. Our aim was to investigate whether total antigenic C4 or non-functional C4c is a better...... measure of the increased C4 activation in C1-INH-HAE patients. Design and methods: Two different monoclonal antibodies (mAb) to human C4 were produced: one had specificity for the β-chain of C4 and would thus react with both functional and non-functional C4, and the other was developed against the factor...

  15. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria.

    Science.gov (United States)

    Yerramsetty, Pradeep; Agar, Erin M; Yim, Won C; Cushman, John C; Berry, James O

    2017-07-20

    Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis.

    Science.gov (United States)

    Miyake, Hiroshi

    2016-05-01

    C4 plants have evolved >60 times from their C3 ancestors. C4 photosynthesis requires a set of closely co-ordinated anatomical and biochemical characteristics. However, it is now recognized that the evolution of C4 plants requires fewer changes than had ever been considered, because of the genetic, biochemical and anatomical pre-conditions of C3 ancestors that were recruited into C4 photosynthesis. Therefore, the pre-conditions in C3 plants are now being actively investigated to clarify the evolutionary trajectory from C3 to C4 plants and to engineer C4 traits efficiently into C3 crops. In the present mini review, the anatomical characteristics of C3 and C4 plants are briefly reviewed and the importance of the bundle sheath for the evolution of C4 photosynthesis is described. For example, while the bundle sheath of C3 rice plants accumulates large amounts of starch in the developing leaf blade and at the lamina joint of the mature leaf, the starch sheath function is also observed during leaf development in starch accumulator grasses regardless of photosynthetic type. The starch sheath function of C3 plants is therefore also implicated as a possible pre-condition for the evolution of C4 photosynthesis. The phylogenetic relationships between the types of storage carbohydrates and of photosynthesis need to be clarified in the future. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.

    Science.gov (United States)

    Allakhverdiev, Suleyman I; Kreslavski, Vladimir D; Thavasi, Velmurugan; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Nagata, Toshi; Nishihara, Hiroshi; Ramakrishna, Seeram

    2009-02-01

    Hydrogen can be important clean fuel for future. Among different technologies for hydrogen production, oxygenic natural and artificial photosyntheses using direct photochemistry in synthetic complexes have a great potential to produce hydrogen, since both use clean and cheap sources: water and solar energy. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms such as algae and cyanobacteria, water is split into electrons and protons, which during primary photosynthetic process are redirected by photosynthetic electron transport chain, and ferredoxin, to the hydrogen-producing enzymes hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. In contrast, nitrogenase is insensitive to O2, but has lower activity. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (>10%). Our review examines the main pathways of H2 photoproduction by using of photosynthetic organisms and biomimetic photosynthetic systems.

  18. Evolutionary analysis of two complement C4 genes: Ancient duplication and conservation during jawed vertebrate evolution.

    Science.gov (United States)

    Nonaka, Mayumi I; Terado, Tokio; Kimura, Hiroshi; Nonaka, Masaru

    2017-03-01

    The complement C4 is a thioester-containing protein, and a histidine (H) residue catalyzes the cleavage of the thioester to allow covalent binding to carbohydrates on target cells. Some mammalian and teleost species possess an additional isotype where the catalytic H is replaced by an aspartic acid (D), which binds preferentially to proteins. We found the two C4 isotypes in many other jawed vertebrates, including sharks and birds/reptiles. Phylogenetic analysis suggested that C4 gene duplication occurred in the early days of the jawed vertebrate evolution. The D-type C4 of bony fish except for mammals formed a cluster, termed D-lineage. The D-lineage genes were located in a syntenic region outside MHC, and evolved conservatively. Mammals lost the D-lineage before speciation, but D-type C4 was regenerated by recent gene duplication in some mammalian species or groups. Dual C4 molecules with different substrate specificities would have contributed to development of the antibody-dependent classical pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway.

    Science.gov (United States)

    Zhang, Liangsheng; Chen, Fei; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Niu, Shance; Xiong, Jin-Song; Lin, Zhenguo; Cheng, Zong-Ming Max; Liu, Zhong-Jian

    2016-04-01

    Crassulacean acid metabolism (CAM) is a CO2 fixation pathway that maximizes water-use efficiency (WUE), compared with the C3/C4 CO2 pathway, which permits CAM plants to adapt to arid environments. The CAM pathway provides excellent opportunities to genetically design plants, especially bioenergy crops, with a high WUE and better photosynthetic performance than C3/C4 in arid environments. The information available on the origin and evolution of CAM is scant, however. Here, we analyzed transcriptomes from 13 orchid species and two existing orchid genomes, covering CAM and C3 plants, with an emphasis on comparing 13 gene families involved in the complete carbon fixation pathway. The dosage of the core photosynthesis-related genes plays no substantial role in the evolution of CAM in orchids; however, CAM may have evolved primarily by changes at the transcription level of key carbon fixation pathway genes. We proposed that in both dark and light, CO2 is primarily fixed and then released through two metabolic pathways via known genes, such as PPC1, PPDK and PPCK. This study reports a comprehensive comparison of carbon fixation pathway genes across different photosynthetic plants, and reveals the importance of the level of expression of key genes in the origin and evolution of CAM. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. Development and Analysis of Integrated C4ISR Architectures

    National Research Council Canada - National Science Library

    Giammarco, Kristin; Carlomusto, Michael; Lock, J. D

    2005-01-01

    .... This paper presents an overview of the Communications- Electronics Research, Development, and Engineering Center Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR...

  1. Carbon and oxygen isotope working standards from C3 and C4 photosynthates.

    Science.gov (United States)

    Spangenberg, Jorge E

    2006-09-01

    A preparation of organic working standards for the online measurement of 13C/12C and 18O/16O ratios in biological material is presented. The organic working standards are simple and inexpensive C3 and C4 carbohydrates (sugars or cellulose) from distinct geographic origin, including white sugar, toilet and XEROX papers from Switzerland, maize from Ivory Coast, cane sugar from Brazil, papyrus from Egypt, and the core of the stem of a Cyperus papyrus plant from Kenya. These photosynthetic products were compared with International Atomic Energy standards CH-3 and CH-6 and other calibration materials. The presented working standards cover a 15% range of 13C/12C ratios and 9% for 18O/16O, with a precision10.

  2. Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria.

    Science.gov (United States)

    Sage, Tammy L; Busch, Florian A; Johnson, Daniel C; Friesen, Patrick C; Stinson, Corey R; Stata, Matt; Sultmanis, Stefanie; Rahman, Beshar A; Rawsthorne, Stephen; Sage, Rowan F

    2013-11-01

    The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis.

  3. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  4. The rise of C4 grassland ecosystems, a climate puzzle

    Science.gov (United States)

    Henderson, A.; Fox, D.; Freeman, K. H.

    2011-12-01

    The expansion of grasslands was one of the most profound ecological changes in the Cenozoic. Understanding the history of forest to grassland transitions, and the development of C4 grasslands in particular, is critical for understanding the relationship between land surface climate feedbacks, seasonality, and temperature. Modern distributions and ecological experiments demonstrate a strong correlation between C4 biogeography and high growing season temperatures and precipitation, as well as low pCO2 concentrations. The rise of C4 grasses in North America, as documented by carbonate nodule and mammal teeth δ13C values, began during a warm period with relatively stable pCO2 in the late Miocene. Surprisingly, C4 grasses continued to expand and then rose to dominance in the Great Plains as climates progressively cooled, moisture availability increased, and ice sheets formed further north on the continent. To understand this seemingly paradoxical scenario, we need constraints on the rate and character of increasing abundances of C4 vegetation. To this end, we use molecular and isotopic tools from terrestrial plant leaf wax n-alkanes extracted from carbonate nodules in the Meade Basin, Kansas and sites in Texas for the past 12 Ma. These records offer site-specific reconstructions tied directly to vegetation source. We compare our results to published continental-scale reconstructions of n-alkanes from the Mississippi River drainage basin and to climate records. From the distribution of C27 to C33 n-alkane abundances and patterns in δ13C values, we infer that C4 grasses coexisted with patches of C3 vegetation, including both grasses and trees. C4 grasses increasingly dominated the landscape, reaching modern abundances as ice sheets were reaching their southern limit in North America. Our results confirm that C4 grasslands emerged under cool and wet conditions, something we would not predict based on modern analogues, raising questions about our understanding of the

  5. The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae).

    Science.gov (United States)

    Leisner, Courtney P; Cousins, Asaph B; Offermann, Sascha; Okita, Thomas W; Edwards, Gerald E

    2010-12-01

    Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C(4) photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C(4) species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C(4) system. There is a large enhancement of growth in culture with 50-200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (δ(13)C) of leaves increased from -17.3(o)/(oo) (C(4)-like) without NaCl to -14.6(o)/(oo) (C(4)) with 200 mM NaCl, possibly due to increased capture of CO(2) from the C(4) cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (~2 fold) and more succulent, and the leaf solute levels increased up to ~2000 mmol kg solvent(-1). Photosynthesis on an incident leaf area basis (CO(2) saturated rates, and carboxylation efficiency under limiting CO(2)) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C(4) cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C(4) system in Bienertia is discussed.

  6. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to isomerization of C4-C6 aldoses to their corresponding C4-C6 ketoses. In particular, the invention concerns isomerization of C4-C6 aldoses over solid zeolite catalysts free of any metals other than aluminum, in the presence of suitable solvent(s) at suitable elevat...... in the catalyst. The ketoses obtained are used as sweeteners in the food and/or brewery industry, or treated to obtain downstream platform chemicals such as lactic acid, HMF, levulinic acid, furfural, MMHB, and the like....

  7. C4.5 programs for machine learning

    CERN Document Server

    Quinlan, J Ross

    1992-01-01

    Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available for download (see below). C4.5 starts with large sets of cases belonging to known classes. The cases,

  8. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  9. Photosynthetic terpene hydrocarbon production for fuels and chemicals.

    Science.gov (United States)

    Wang, Xin; Ort, Donald R; Yuan, Joshua S

    2015-02-01

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Modelling metabolic evolution on phenotypic fitness landscapes: a case study on C4 photosynthesis.

    Science.gov (United States)

    Heckmann, David

    2015-12-01

    How did the complex metabolic systems we observe today evolve through adaptive evolution? The fitness landscape is the theoretical framework to answer this question. Since experimental data on natural fitness landscapes is scarce, computational models are a valuable tool to predict landscape topologies and evolutionary trajectories. Careful assumptions about the genetic and phenotypic features of the system under study can simplify the design of such models significantly. The analysis of C4 photosynthesis evolution provides an example for accurate predictions based on the phenotypic fitness landscape of a complex metabolic trait. The C4 pathway evolved multiple times from the ancestral C3 pathway and models predict a smooth 'Mount Fuji' landscape accordingly. The modelled phenotypic landscape implies evolutionary trajectories that agree with data on modern intermediate species, indicating that evolution can be predicted based on the phenotypic fitness landscape. Future directions will have to include structural changes of metabolic fitness landscape structure with changing environments. This will not only answer important evolutionary questions about reversibility of metabolic traits, but also suggest strategies to increase crop yields by engineering the C4 pathway into C3 plants. © 2015 Authors; published by Portland Press Limited.

  11. Aerial energetic residue data from JBER C4 testing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aerially-collected energetic residues from surface detonation of C4. This dataset is associated with the following publication: Walsh, M., B. Gullett, M. Walsh, M....

  12. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  13. Small passenger car transmission test; Ford C4 transmission

    Science.gov (United States)

    Bujold, M. P.

    1980-01-01

    A 1979 Ford C4 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Ford C4 transmission.

  14. Diurnal and Seasonal Variation in the Carbon Isotope Composition of Leaf- and Root- respired CO2 in C3 and C4 Species

    Science.gov (United States)

    Sun, W.; Resco, V.; Chen, S.; Williams, D. G.

    2008-12-01

    The carbon isotope signature of leaf (δ13Cl) and root (δ13Cr) dark- respired CO2 records and integrates short-term metabolic changes. Plants with C3 and C4 photosynthetic metabolism are expected to differ in diurnal and seasonal patterns in δ13Cl and δ13Cr because of differences in photorespiration, isotopic fractionation at metabolic branch points and allocation patterns. A thorough understanding of the environmental and metabolic controls on δ13Cl and δ13Cr is necessary to interpret the δ13C of ecosystem respired CO2 and partition the CO2 efflux into autotrophic and heterotrophic respiration sources. We measured δ13Cl in two C3 tree species (Prosopis velutina and Celtis reticulata), a C3 herb (Viguiera dentata) and a C4 grass (Sporobolus wrightii), and δ13Cr in P. velutina and S. wrightii in a semiarid savanna in southeastern Arizona, USA. δ13Cl during the dry pre-monsoon period was relatively enriched in 13C during daytime periods and became depleted in 13C at night relative to daytime values for all species with the exception of S. wrightii, the C4 grass. δ13Cl in S. wrightii was strongly influenced by seasonal differences in water availability with a larger diurnal amplitude in δ13Cl (8.2 +/- 0.6‰) during the wet monsoon period compared to that in the dry pre-monsoon period (4.4 +/- 0.4‰). The δ13C values of starch and lipid fractions remained constant over diurnal periods within the pre-monsoon and monsoon seasons. For C3 species, δ13Cl and δ13C of the cumulative, flux-weighted photosynthate pool estimated from gas exchange were strongly positively correlated, suggesting that progressive 13C-enrichment of leaf-respired CO2 during the daytime period resulted from changes in the δ13C signature of respiratory substrates associated with short-term changes in photosynthetic 13C discrimination. Rapid decreases in δ13Cl following the daytime period was likely caused by decreases in the ratio of PDH:acetyl-CoA oxidation rather than by a shift in

  15. Evidence for the role of transposons in the recruitment of cis-regulatory motifs during the evolution of C4 photosynthesis.

    Science.gov (United States)

    Cao, Chensi; Xu, Jiajia; Zheng, Guangyong; Zhu, Xin-Guang

    2016-03-08

    C4 photosynthesis evolved from C3 photosynthesis and has higher light, water, and nitrogen use efficiencies. Several C4 photosynthesis genes show cell-specific expression patterns, which are required for these high resource-use efficiencies. However, the mechanisms underlying the evolution of cis-regulatory elements that control these cell-specific expression patterns remain elusive. In the present study, we tested the hypothesis that the cis-regulatory motifs related to C4 photosynthesis genes were recruited from non-photosynthetic genes and further examined potential mechanisms facilitating this recruitment. We examined 65 predicted bundle sheath cell-specific motifs, 17 experimentally validated cell-specific cis-regulatory elements, and 1,034 motifs derived from gene regulatory networks. Approximately 7, 5, and 1,000 of these three categories of motifs, respectively, were apparently recruited during the evolution of C4 photosynthesis. In addition, we checked 1) the distance between the acceptors and the donors of potentially recruited motifs in a chromosome, and 2) whether the potentially recruited motifs reside within the overlapping region of transposable elements and the promoter of donor genes. The results showed that 7, 4, and 658 of the potentially recruited motifs might have moved via the transposable elements. Furthermore, the potentially recruited motifs showed higher binding affinity to transcription factors compared to randomly generated sequences of the same length as the motifs. This study provides molecular evidence supporting the hypothesis that transposon-driven recruitment of pre-existing cis-regulatory elements from non-photosynthetic genes into photosynthetic genes plays an important role during C4 evolution. The findings of the present study coincide with the observed repetitive emergence of C4 during evolution.

  16. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  17. Arsenic biomethylation by photosynthetic organisms

    Science.gov (United States)

    Ye, Jun; Rensing, Christopher; Rosen, Barry P.; Zhu, Yong-Guan

    2013-01-01

    Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing ‘smart’ photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food. PMID:22257759

  18. Assessment of the role of silicon in the Cu-tolerance of the C4 grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Gallé, Alexander; Florez-Sarasa, Igor; Perdomo, Juan Alejandro; Galmés, Jeroni; Ribas-Carbó, Miquel; Flexas, Jaume

    2015-04-15

    An experiment was designed to investigate the effect of silicon supply (0 and 500 μM) on Spartina densiflora plants grown at two copper (Cu) concentrations: 0 and 15 mM. Growth parameters together with total concentrations of calcium, Cu, potassium, magnesium, manganese, sodium and nitrogen were determined in roots and leaves. Photosynthetic traits were followed by measurement of leaf gas exchange, efficiency of PSII biochemistry, total content of photosynthetic pigments and concentration and carbamylation of Rubisco sites concentration ([Rubisco]). Respiration and oxygen isotope fractionation were measured in roots to study the in vivo activities of cytochrome oxidase (COX) and alternative oxidase (AOX) pathways, as well as AOX capacity. The results confirm that Si supply improves growth of S. densiflora under Cu stress. Improved growth was associated with higher net photosynthetic rate. Beneficial effect of Si on S. densiflora photosynthetic apparatus was associated with a reduction of the Cu impact on active Rubisco sites, as well as on the photochemical apparatus and chlorophyll concentration. Moreover, ameliorative effects of Si were associated with the avoidance of Cu translocation from roots to leaves. Finally in vivo activities of COX and AOX pathways were strongly inhibited in Cu-treated plants, and this reduction was not mitigated by Si-treatment. Therefore, Si appears to play an important role in Cu-tolerance of S. densiflora, not by avoiding its uptake by roots, but via some mechanism to avoid Cu translocation from roots to leaves, resulting in a general reduction of Cu-induced deleterious effects on the leaf photosynthetic apparatus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Sustainable Separations of C4 -Hydrocarbons by Using Microporous Materials.

    Science.gov (United States)

    Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi; Tanase, Stefania

    2017-10-23

    Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C4 separations by using zeolites and metal-organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C4 separation are outlined, with a focus on the separation mechanisms and structure-selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C4 mixtures well. The pore sizes of eight-membered-ring zeolites, for example, are in the order of the kinetic diameters of C4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate-adsorbent interactions. MOF-5 and ZIF-7 show promising results in separating all C4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 μmol mol−1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  1. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 mol mol-1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  2. Ion chemistry in octafluorocyclobutane, c-C 4F 8

    Science.gov (United States)

    Jiao, C. Q.; Garscadden, A.; Haaland, P. D.

    1998-11-01

    Cross-sections for electron impact ionization of octafluorocyclobutane ( c-C 4F 8) have been measured from 10 to 200 eV by Fourier transform mass spectrometry. No parent ion is observed, and over half of the dissociative ionization yields C 2F 4+ and C 3F 5+. Eleven other fluorocarbon cations are produced with smaller cross-sections, giving a total ionization cross-section of (1.6±0.2)×10 -15 cm 2 between 80 and 200 eV. Only CF 2+ and C 2F 3+ react further with the parent molecule to yield C 3F 5+ as the primary product. No evidence of cationic polymerization was found. F - and C 4F 8- are formed by electron attachment at energies below 10 eV, but neither reacts further with c-C 4F 8.

  3. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  4. Wild Manihot Species Do Not Possess C4 Photosynthesis

    Science.gov (United States)

    CALATAYUD, P.‐A.; BARÓN, C. H.; VELÁSQUEZ, H.; ARROYAVE, J. A.; LAMAZE, T.

    2002-01-01

    Cultivated cassava (Manihot esculenta) has a higher rate of photosynthesis than is usual for C3 plants and photosynthesis is not light saturated. For these reasons it has been suggested that cultivated cassava could be derived from wild species possessing C4 photosynthesis. The natural abundance of 13C and activities of phosphoenolpyruvate carboxylase and phosphoglycolate phosphatase were measured in leaves of 20 wild cassava species to test this hypothesis. All the species studied, including M. flabellifolia the potential wild progenitor of cultivated cassava, clearly exhibited C3 not C4 characteristics. PMID:12096814

  5. Special issue of photosynthetic research

    NARCIS (Netherlands)

    Okamura, M.; Wraight, C.A.; van Grondelle, R.

    2014-01-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy

  6. Special issue of photosynthetic research.

    Science.gov (United States)

    Okamura, Melvin; Wraight, Colin A; van Grondelle, Rienk

    2014-05-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy conversion. Their key discoveries are briefly summarized and an overview of the special issue is presented.

  7. Previable Preeclampsia Diagnosed by Renal Biopsy in Setting of Novel Diagnosis of C4 Glomerulopathy

    Directory of Open Access Journals (Sweden)

    Jessica Parrott

    2017-01-01

    Full Text Available Background. Preeclampsia diagnosed before 20 weeks’ gestational age is a rare entity, particularly without any predisposing factors. We report a case of preeclampsia occurring prior to 20 weeks’ gestational age in the setting of a novel diagnosis of C4 glomerulopathy. Case. A G3P0020 at 18 weeks presented with new onset hypertension and proteinuria, requiring multiple antihypertensive agents to maintain control. Renal biopsy demonstrated thrombotic microangiopathic lesions and glomerular endotheliosis. C4-dominant staining and numerous subendothelial and mesangial electron dense deposits were found within the glomerulus. With no other definable etiologies, preeclampsia was diagnosed. She developed posterior reversible encephalopathic syndrome and pregnancy termination was recommended. Conclusion. The lectin complement pathway may play a role in the pathophysiology of severe, early onset preeclampsia. Renal biopsy may play an integral role in diagnosis.

  8. The potential of C4 grasses for cellulosic biofuel production

    NARCIS (Netherlands)

    Weijde, van der R.T.; Alvim Kamei, C.L.; Torres Salvador, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the

  9. Report Out of the C4I Study Group

    Science.gov (United States)

    2001-06-01

    Portugal has no problem in coupling its CAX system Visualização Gráfica do Terreno em Modelo Digital 3D (VIGRESTE) with Allied Tactical Command and...to C4ISR systems. It provides an excellent comparison and alternate viewpoint to the TRM. The TRM is more focused on information exchange, while the

  10. Characterization of a C4 maize pyruvate orthophosphate dikinase ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... Indica “IR64”), a C3 plant. Expression of C4-PPDK in most transgenic rice lines resulted in increased CO2 ... affected the phenotypes of plants particularly tillers and enhanced yield of transgenic IR64 rice plants in the greenhouse. ... different tissue types and, depending on the species, this activity is found ...

  11. Characterization of a C4 maize pyruvate orthophosphate dikinase ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... affected the phenotypes of plants particularly tillers and enhanced yield of transgenic IR64 rice plants in the greenhouse. Key words: Indica rice IR64, Maize (Zea mays), photosynthesis, PPDK (pyruvate orthophosphate dikinase), C4 rice. INTRODUCTION. In order to meet the demand for food from the ...

  12. Senescence, dormancy and tillering in perennial C4 grasses

    Science.gov (United States)

    Perennial, temperate, C4 warm-season grasses, such as switchgrass and miscanthus have been tabbed as sources of herbaceous biomass for the production of green fuels and chemicals based on a number of positive agronomic traits. Although there is important literature on the management of these specie...

  13. Combined C4d and CD3 immunostaining predicts immunoglobulin (Ig)A nephropathy progression.

    Science.gov (United States)

    Faria, B; Henriques, C; Matos, A C; Daha, M R; Pestana, M; Seelen, M

    2015-02-01

    A number of molecules have been shown recently to be involved in the pathogenesis and progression of immunoglobulin (Ig)A nephropathy (IgAN). Among these, we have selected C4d (complement lectin pathway involvement), CD3 (T cell marker, traducing interstitial inflammation), transglutaminase 2 (TGase-2, involved in tissue fibrosis development) and p-extracelluar-regulated kinase (ERK)1/2 (protein kinase intracellular signaling molecule) to perform a panel of immunohistological biomarkers and assess its predictive value for disease progression. Immunohistochemical staining of these biomarkers was performed in paraffin sections from 74 renal biopsy cases with the clinical diagnosis of IgAN. Association between score analysis of these parameters and disease course was assessed through univariate and multivariate analysis, including baseline clinical and histological data. Univariate analysis showed that glomerular C4d, tubulointerstitial TGase2 and CD3 scores were associated with baseline proteinuria and disease progression. Multivariate analysis showed that only baseline estimated glomerular filtration rate (eGFR), C4d and CD3 were associated independently with progressive kidney disease (decline of at least 50% in the eGFR or progression to end-stage renal disease (ESRD) during the follow-up period). Establishing an accurate prediction model for IgAN progression is still a matter of research in clinical nephrology. The complement system, particularly lectin pathway activation, and T cell activation, have been shown previously to be potential modifiers of the disease course. Here we show that the combination of two histological biomarkers (C4d and CD3) can be a powerful predictor of IgAN progression and a potential useful tool for the clinical approach of this disease. © 2014 British Society for Immunology.

  14. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  15. Photosynthetic and respiratory characterization of field grown tomato.

    Science.gov (United States)

    Bolaños, J A; Hsiao, T C

    1991-04-01

    The photosynthetic responses of tomato (Lycopersicum esculentum Mill.) leaves to environmental and ontogenetic factors were determined on plants grown in the field under high radiation and high nitrogen fertilization. Response curves showed net photosynthesis to only approach light saturation at a photosynthetic photon flux density (PPFD) of 2200 μmol m(-2) s(-1), with rates of approx. 40 μmol CO2 m(-2) s(-1). A broad temperature optimum was observed between 25° and 35°C, with 50% of the photosynthetic rates remaining even at 47°C. The high rate, the lack of saturation at the equivalent of full sunlight, and the tolerance to high temperature of tomato were unusual in light of the literature on this C3 species. Apparently, acclimation to the field environment of high radiation and hot daytime temperature, coupled with the high nitrogen nutrition, made possible the high photosynthetic performance normally associated with C4 species.Photosynthetic ability of the leaf reached a maximum near the time of its full expansion and declined steadily thereafter, regardless of the time of leaf initiation. Leaf nitrogen content showed a similar decline with leaf ontogeny. Photosynthesis was linearly correlated with nitrogen content, whether the nitrogen variation was due to leaf age or rates of nitrogen fertilization. Internal CO2 concentrations (Ci) of the leaf indicated that stomatal function was well coordinated with photosynthetic capacity as leaf age and fluence rate varied down to a PPFD of 500 μmol m(-2) s(-1). As PPFD decreased further, there was less stomatal control and Ci increased to as high as 320 μ bar bar(-1).Dark respiration was highest for expanding leaves and increased nearly exponentially with temperature. Respiration was also highest for young and expanding fruits, and next highest for fruits just turning pink. Fruit respiration increased approximately linearly with temperature, and was estimated to be an important component of the CO2 flux of the

  16. Inactivation of C4orf26 in toothless placental mammals.

    Science.gov (United States)

    Springer, Mark S; Starrett, James; Morin, Phillip A; Lanzetti, Agnese; Hayashi, Cheryl; Gatesy, John

    2016-02-01

    Previous studies have reported inactivated copies of six enamel-related genes (AMBN, AMEL, AMTN, ENAM, KLK4, MMP20) and one dentin-related gene (DSPP) in one or more toothless vertebrates and/or vertebrates with enamelless teeth, thereby providing evidence that these genes are enamel or tooth-specific with respect to their critical functions that are maintained by natural selection. Here, we employ available genome sequences for edentulous and enamelless mammals to evaluate the enamel specificity of four genes (WDR72, SLC24A4, FAM83H, C4orf26) that have been implicated in amelogenesis imperfecta, a condition in which proper enamel formation is abrogated during tooth development. Coding sequences for WDR72, SCL24A4, and FAM83H are intact in four edentulous taxa (Chinese pangolin, three baleen whales) and three taxa (aardvark, nine-banded armadillo, Hoffmann's two-toed sloth) with enamelless teeth, suggesting that these genes have critical functions beyond their involvement in tooth development. By contrast, genomic data for C4orf26 reveal inactivating mutations in pangolin and bowhead whale as well as evidence for deletion of this gene in two minke whale species. Hybridization capture of exonic regions and PCR screens provide evidence for inactivation of C4orf26 in eight additional baleen whale species. However, C4orf26 is intact in all three species with enamelless teeth that were surveyed, as well as in 95 additional mammalian species with enamel-capped teeth. Estimates of selection intensity suggest that dN/dS ratios on branches leading to taxa with enamelless teeth are similar to the dN/dS ratio on branches leading to taxa with enamel-capped teeth. Based on these results, we conclude that C4orf26 is tooth-specific, but not enamel-specific, with respect to its essential functions that are maintained by natural selection. A caveat is that an alternative splice site variant, which translates exon 3 in a different reading frame, is putatively functional in

  17. Quantitative light microscopic autoradiographic study on (/sup 3/H)leukotriene C4 binding to nonpregnant bovine uterine tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chegini, N.; Rao, C.V.

    1988-05-01

    Mammalian uteri contain both lipoxygenase and cyclooxygenase pathways of arachidonic acid metabolism. Sulfidopeptidyl leukotrienes formed by the lipoxygenase pathway can stimulate uterine contractions and play a role in uterine preparation for implantation. These actions of leukotrienes are perhaps mediated by binding to specific receptors. To understand the cellular basis of leukotriene C4 action, the present quantitative light microscopic autoradiographic study was undertaken on nonpregnant bovine uterine tissue. The results demonstrated that the circular and elongated myometrial smooth muscle, uterine vascular smooth muscle, stromal cells of endometrium, and fibroblasts of perimetrium, but not the endometrial glands, vascular endothelium, and erythrocytes in lumen of arterioles, contained specific silver grains after incubation with (/sup 3/H)leukotriene C4. The number of grains per 100-micron2 areas were similar in circular and elongated myometrial smooth muscle (P greater than 0.05), which was higher than in other uterine cells (P less than 0.05-0.01). The grains in all cells were greatly reduced after coincubation with excess unlabeled leukotriene C4, but not with leukotriene A4, leukotriene B4, leukotriene D4, leukotriene E4, prostaglandin E2, prostaglandin F2 alpha, or prostacyclin. In conclusion, leukotriene C4 may regulate both uterine cells and uterine vasculature and exert contractile and noncontractile actions via the specific leukotriene C4-binding sites present in different cell types.

  18. Engineering photosynthetic organisms for the production of biohydrogen.

    Science.gov (United States)

    Dubini, Alexandra; Ghirardi, Maria L

    2015-03-01

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering.  We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Finally we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.

  19. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  20. The potential of C4 grasses for cellulosic biofuel production

    Science.gov (United States)

    van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  1. de la fotosíntesis C4

    Directory of Open Access Journals (Sweden)

    J. C. Raya-Pérez

    2008-01-01

    Full Text Available La fotosíntesis C4 surgió hace unos 7-5 millones de años y tiene un origen polifilético. La disminución en la concentración atmosférica de CO2 a menos de 500 partes por millón (ppm propició la aparición de un mecanismo para concentrar este gas en la zona donde actúa la Rubisco (ribulosa bifosfato carboxilasa/oxigenasa, evitando así su actividad de oxigenasa. El análisis de los genes que codifican para las enzimas usadas en la vía C4, así como la caracterización bioquímica de algunas de estas enzimas, permiten entrever algunos de los cambios que han sufrido a fin de adaptarse a una nueva función, la de concentrar el CO2 a fin de que sea utilizado por la Rubisco.

  2. Initial Events during the Evolution of C4 Photosynthesis in C3 Species of Flaveria1[W][OPEN

    Science.gov (United States)

    Sage, Tammy L.; Busch, Florian A.; Johnson, Daniel C.; Friesen, Patrick C.; Stinson, Corey R.; Stata, Matt; Sultmanis, Stefanie; Rahman, Beshar A.; Rawsthorne, Stephen; Sage, Rowan F.

    2013-01-01

    The evolution of C4 photosynthesis in many taxa involves the establishment of a two-celled photorespiratory CO2 pump, termed C2 photosynthesis. How C3 species evolved C2 metabolism is critical to understanding the initial phases of C4 plant evolution. To evaluate early events in C4 evolution, we compared leaf anatomy, ultrastructure, and gas-exchange responses of closely related C3 and C2 species of Flaveria, a model genus for C4 evolution. We hypothesized that Flaveria pringlei and Flaveria robusta, two C3 species that are most closely related to the C2 Flaveria species, would show rudimentary characteristics of C2 physiology. Compared with less-related C3 species, bundle sheath (BS) cells of F. pringlei and F. robusta had more mitochondria and chloroplasts, larger mitochondria, and proportionally more of these organelles located along the inner cell periphery. These patterns were similar, although generally less in magnitude, than those observed in the C2 species Flaveria angustifolia and Flaveria sonorensis. In F. pringlei and F. robusta, the CO2 compensation point of photosynthesis was slightly lower than in the less-related C3 species, indicating an increase in photosynthetic efficiency. This could occur because of enhanced refixation of photorespired CO2 by the centripetally positioned organelles in the BS cells. If the phylogenetic positions of F. pringlei and F. robusta reflect ancestral states, these results support a hypothesis that increased numbers of centripetally located organelles initiated a metabolic scavenging of photorespired CO2 within the BS. This could have facilitated the formation of a glycine shuttle between mesophyll and BS cells that characterizes C2 photosynthesis. PMID:24064930

  3. C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3-C4 intermediate species Flaveria pubescens.

    Science.gov (United States)

    Keerberg, Olav; Pärnik, Tiit; Ivanova, Hiie; Bassüner, Burgund; Bauwe, Hermann

    2014-07-01

    Formation of a photorespiration-based CO2-concentrating mechanism in C3-C4 intermediate plants is seen as a prerequisite for the evolution of C4 photosynthesis, but it is not known how efficient this mechanism is. Here, using in vivo Rubisco carboxylation-to-oxygenation ratios as a proxy to assess relative intraplastidial CO2 levels is suggested. Such ratios were determined for the C3-C4 intermediate species Flaveria pubescens compared with the closely related C3 plant F. cronquistii and the C4 plant F. trinervia. To this end, a model was developed to describe the major carbon fluxes and metabolite pools involved in photosynthetic-photorespiratory carbon metabolism and used quantitatively to evaluate the labelling kinetics during short-term (14)CO2 incorporation. Our data suggest that the photorespiratory CO2 pump elevates the intraplastidial CO2 concentration about 3-fold in leaves of the C3-C4 intermediate species F. pubescens relative to the C3 species F. cronquistii. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Structural and biochemical characterization of the C3–C4 intermediate Brassica gravinae and relatives, with particular reference to cellular distribution of Rubisco

    Science.gov (United States)

    Ueno, Osamu

    2011-01-01

    On the basis of its CO2 compensation concentration, Brassica gravinae Ten. has been reported to be a C3–C4 intermediate. This study investigated the structural and biochemical features of photosynthetic metabolism in B. gravinae. The cellular distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was also examined in B. gravinae, B. napus L. (C3), Raphanus sativus L. (C3), and Diplotaxis tenuifolia (L.) DC. (C3–C4) by immunogold electron microscopy to elucidate Rubisco expression during the evolution from C3 to C3–C4 intermediate plants. The bundle sheath (BS) cells of B. gravinae contained centrifugally located chloroplasts as well as centripetally located chloroplasts and mitochondria. Glycine decarboxylase P-protein was localized in the BS mitochondria. Brassica gravinae had low C4 enzyme activities and high activities of Rubisco and photorespiratory enzymes, suggesting that it reduces photorespiratory CO2 loss by the glycine shuttle. In B. gravinae, the labelling density of Rubisco was higher in the mesophyll chloroplasts than in the BS chloroplasts. A similar cellular pattern was found in other Brassicaceae species. These data demonstrate that, during the evolution from C3 to C3–C4 intermediate plants, the intercellular pattern of Rubisco expression did not change greatly, although the amount of chloroplasts in the BS cells increased. It also appears that intracellular variation in Rubisco distribution may occur within the BS cells of B. gravinae. PMID:21825284

  5. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  6. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy.

    Science.gov (United States)

    Bellasio, Chandra; Griffiths, Howard

    2014-07-01

    C4 plants have a biochemical carbon-concentrating mechanism that increases CO2 concentration around Rubisco in the bundle sheath. Under low light, the activity of the carbon-concentrating mechanism generally decreases, associated with an increase in leakiness (ϕ), the ratio of CO2 retrodiffusing from the bundle sheath relative to C4 carboxylation. This increase in ϕ had been theoretically associated with a decrease in biochemical operating efficiency (expressed as ATP cost of gross assimilation, ATP/GA) under low light and, because a proportion of canopy photosynthesis is carried out by shaded leaves, potential productivity losses at field scale. Maize plants were grown under light regimes representing the cycle that leaves undergo in the canopy, whereby younger leaves initially developed under high light and were then re-acclimated to low light (600 to 100 μE·m(-2)·s(-1) photosynthetically active radiation) for 3 weeks. Following re-acclimation, leaves reduced rates of light-respiration and reached a status of lower ϕ, effectively optimizing the limited ATP resources available under low photosynthetically active radiation. Direct estimates of respiration in the light, and ATP production rate, allowed an empirical estimate of ATP production rate relative to gross assimilation to be derived. These values were compared to modelled ATP/GA which was predicted using leakiness as the sole proxy for ATP/GA, and, using a novel comprehensive biochemical model, showing that irrespective of whether leaves are acclimated to very low or high light intensity, the biochemical efficiency of the C4 cycle does not decrease at low photosynthetically active radiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    Directory of Open Access Journals (Sweden)

    Martin C. Lai

    2015-10-01

    Full Text Available Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the diversity of bioproducts synthesized by engineered cyanobacteria, the metabolic pathways used, and the current engineering strategies used for increasing their titers.

  8. Dimer rotation on the carbon-induced Si(001)-c(4×4) structure

    Science.gov (United States)

    Peng, G. W.; Sun, Y. Y.; Huan, A. C. H.; Feng, Y. P.

    2006-09-01

    We present first-principles results identifying the reaction pathways for Si dimer rotations on the carbon-induced Si(001)-c(4×4) surface. The nudged elastic band calculations show that the recently proposed rotated dimer model [Phys. Rev. Lett. 94, 076102 (2005)] can be obtained from the refined missing dimer model by dimer rotation with small energy barriers. It is found that the energy barrier is sensitive to the rotation directions of Si dimers. The energy barrier along the minimum energy path (MEP) is 0.82eV . Three stable configurations are identified along the MEP, one of which with a single rotated dimer is more stable than all existing models and its energy is lower than that of the rotated dimer model, the previously most stable structure, by 0.25eV per c(4×4) cell. The stabilization mechanism of the new stable structure is analyzed. We propose a possible method to search for new stable structures based on the existing models by mapping out the reaction paths in the phase configuration.

  9. Active C4 Electrodes for Local Field Potential Recording Applications.

    Science.gov (United States)

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M Selim; Knepper, Ronald

    2016-02-04

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.

  10. C4b binding protein binds to CD154 preventing CD40 mediated cholangiocyte apoptosis: a novel link between complement and epithelial cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin T Williams

    Full Text Available Activation of CD40 on hepatocytes and cholangiocytes is critical for amplifying Fas-mediated apoptosis in the human liver. C4b-Binding Protein (C4BP has been reported to act as a potential surrogate ligand for CD40, suggesting that it could be involved in modulating liver epithelial cell survival. Using surface plasmon resonance (BiaCore analysis supported by gel filtration we have shown that C4BP does not bind CD40, but it forms stable high molecular weight complexes with soluble CD40 ligand (sCD154. These C4BP/sCD154 complexes bound efficiently to immobilised CD40, but when applied to cholangiocytes they failed to induce apoptosis or proliferation or to activate NFkB, AP-1 or STAT 3, which are activated by sCD154 alone. Thus C4BP can modulate CD40/sCD154 interactions by presenting a high molecular weight multimeric sCD154/C4BP complex that suppresses critical intracellular signalling pathways, permitting cell survival without inducing proliferation. Immunohistochemistry demonstrated co-localisation and enhanced expression of C4BP and CD40 in human liver cancers. These findings suggest a novel pathway whereby components of the complement system and TNF ligands and receptors might be involved in modulating epithelial cell survival in chronic inflammation and malignant disease.

  11. Observations of Titan 3C-4 Transtage Fragmentation Debris

    Science.gov (United States)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan 3C-4 Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the US Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper will present a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots will also be shown using historical models for small fragmentation debris (down to 10 cm) believed to be associated with the Titan break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN# 25001, 33509, 33510) and the parent rocket body. Color index data will be used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In 2012, the SSN added 16 additional fragments to the catalogue. MODEST acquired magnitude data on ten Titan fragments in late 2012 and early 2013. The magnitude distribution of all the observed fragments are analyzed as a function of time. In order to better characterize the breakup fragments spectral measurements were acquired on the original rocket body and five Titan fragments using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra are compared with laboratory acquired spectra of materials (e.g., Aluminum and various paints) and categorized based on known absorption features for spacecraft materials.

  12. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.

    Science.gov (United States)

    Giraud, Eric; Moulin, Lionel; Vallenet, David; Barbe, Valérie; Cytryn, Eddie; Avarre, Jean-Christophe; Jaubert, Marianne; Simon, Damien; Cartieaux, Fabienne; Prin, Yves; Bena, Gilles; Hannibal, Laure; Fardoux, Joel; Kojadinovic, Mila; Vuillet, Laurie; Lajus, Aurélie; Cruveiller, Stéphane; Rouy, Zoe; Mangenot, Sophie; Segurens, Béatrice; Dossat, Carole; Franck, William L; Chang, Woo-Suk; Saunders, Elizabeth; Bruce, David; Richardson, Paul; Normand, Philippe; Dreyfus, Bernard; Pignol, David; Stacey, Gary; Emerich, David; Verméglio, André; Médigue, Claudine; Sadowsky, Michael

    2007-06-01

    Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.

  13. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Difference in photosynthetic performance among three peach ...

    African Journals Online (AJOL)

    RuBPCase), Ca2+- adenosinetriphosphatase (Ca2+-ATPase) and Mg2+- adenosine triphosphatase (Mg2+-ATPase) activities, together with nicotinamide adenine dinucleotide phosphate (NADPH) content and photosynthetic O2 evolution rate ...

  15. Design principles of photosynthetic light-harvesting.

    Science.gov (United States)

    Fleming, Graham R; Schlau-Cohen, Gabriela S; Amarnath, Kapil; Zaks, Julia

    2012-01-01

    Photosynthetic organisms are capable of harvesting solar energy with near unity quantum efficiency. Even more impressively, this efficiency can be regulated in response to the demands of photosynthetic reactions and the fluctuating light-levels of natural environments. We discuss the distinctive design principles through which photosynthetic light-harvesting functions. These emergent properties of photosynthesis appear both within individual pigment-protein complexes and in how these complexes integrate to produce a functional, regulated apparatus that drives downstream photochemistry. One important property is how the strong interactions and resultant quantum coherence, produced by the dense packing of photosynthetic pigments, provide a tool to optimize for ultrafast, directed energy transfer. We also describe how excess energy is quenched to prevent photodamage under high-light conditions, which we investigate through theory and experiment. We conclude with comments on the potential of using these features to improve solar energy devices.

  16. Hybrid system of semiconductor and photosynthetic protein

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  17. Separation, identification and quantification of photosynthetic ...

    African Journals Online (AJOL)

    Thirty one photosynthetic pigments (chlorophylls, carotenoids and degradation products) from the seaweeds, Codium dwarkense, (Chlorophyta), , Laurencia obtusa , (Rhodophyta) and , Lobophora variegata, (Phaeophyta), were separated in a single-step procedure by reversed phase high-performance liquid ...

  18. Atmospheric CO2enrichment effect on the Cu-tolerance of the C4cordgrass Spartina densiflora.

    Science.gov (United States)

    Pérez-Romero, Jesús Alberto; Idaszkin, Yanina Lorena; Duarte, Bernardo; Baeta, Alexandra; Marques, João Carlos; Redondo-Gómez, Susana; Caçador, Isabel; Mateos-Naranjo, Enrique

    2018-01-01

    A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO 2 at 0, 15 and 45mM Cu on the Cu-tolerance of C 4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO 2 mitigated growth reduction imposed by Cu in plants grown at 45mM Cu, leading to leaf Cu concentration bellow than 270mgKg -1 Cu, caused by an evident dilution effect. On the other hand, non-CO 2 enrichment plants showed leaf Cu concentration values up to 737.5mgKg -1 Cu. Furthermore, improved growth was associated with higher net photosynthetic rate (A N ). The beneficial effect of rising CO 2 on photosynthetic apparatus seems to be associated with a reduction of stomatal limitation imposed by Cu excess, which allowed these plants to maintain greater i WUE values. Also, plants grown at 45mM Cu and 700ppm CO 2 , showed higher ETR values and lower energy dissipation, which could be linked with an induction of Rubisco carboxylation and supported by the recorded amelioration of N imbalance. Furthermore, higher ETR values under CO 2 enrichment could lead to an additional consumption of reducing equivalents. Idea that was reflected in the lower values of ETR max /A N ratio, malondialdehyde (MDA) and ascorbate peroxidase (APx), guaiacol peroxidase (GPx) and superoxide dismutase (SOD) activities under Cu excess, which could indicate a lower production of ROS species under elevated CO 2 concentration, due to a better use of absorbed energy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. [The protective action of cytokinins on the photosynthetic apparatus and productivity of plants under stress (review)].

    Science.gov (United States)

    Cherniad'ev, I I

    2009-01-01

    A putative way of the protective action of cytokinins on the photosynthetic processes in crops experiencing various stress factors is considered. Various cytokinins are characterized. Pathways of the multiple effects of cytokinin preparations mediating the protection of the photosynthetic machinery from stress are described. Cytokinins interact with receptor proteins, and then the signal is transduced to primary cellular targets (primary response genes). These genes, which possess receptor domains, induce synthesis of the corresponding mRNAs and photosynthesis-related proteins of chlorophyll-protein complexes, the electron-transport chain, and carbon metabolism, primarily, the key enzyme ribulose bisphosphate carboxylase/oxygenase. The protective action of cytokinins under stress conditions preserves the structure and function of the photosynthetic apparatus. The application of cytokinins to improving crop yields is discussed.

  20. Oxidation Behavior and Mechanism of Al4SiC4 in MgO-C-Al4SiC4 System

    Directory of Open Access Journals (Sweden)

    Huabai Yao

    2017-06-01

    Full Text Available Al4SiC4 powder with high purity was synthesized using the powder mixture of aluminum (Al, silicon (Si, and carbon (C at 1800 °C in argon. Their oxidation behavior and mechanism in a MgO-C-Al4SiC4 system was investigated at 1400–1600 °C. XRD, SEM, and energy dispersive spectrometry (EDS were adopted to analyze the microstructure and phase evolution. The results showed that the composition of oxidation products was closely related to the atom diffusion velocity and the compound oxide layer was generated on Al4SiC4 surface. In addition, the effect of different CO partial pressure on the oxidation of Al4SiC4 crystals was also studied by thermodynamic calculation. This work proves the great potential of Al4SiC4 in improving the MgO-C materials.

  1. The ultraviolet photochemistry of diacetylene - Direct detection of primary products of the metastable C4H2* + C4H2 reaction

    Science.gov (United States)

    Bandy, Ralph E.; Lakshminarayan, Chitra; Frost, Rex K.; Zwier, Timothy S.

    1993-01-01

    The products of diacetylene's ultraviolet photochemistry over the 245-220 nm region were directly determined in experiments where C4H2 was excited within a small reaction tube attached to a pulsed nozzle. The products formed in the collisions of C4H2* with C4H2 were subsequently ionized by vacuum UV radiation (at 118 nm) in the ion source of a time-of-flight mass spectrometer. It was found that the reaction of C4H2* with C4H2 produces C6H2 (+C2H2), C8H2 (+2H,H2), and C8H3 (+H), confirming the results of Glicker and Okabe (1987). Under certain conditions, secondary products were observed. Mechanisms for the observed reactions are proposed.

  2. Solvation Thermodynamic Properties of Hydrogen Sulfide in [C4mim][PF6], [C4mim][BF4], and [C4mim][Cl] Ionic Liquids, Determined by Molecular Simulations.

    Science.gov (United States)

    Sánchez-Badillo, Joel; Gallo, Marco; Alvarado, Sandra; Glossman-Mitnik, Daniel

    2015-08-20

    Removal of hydrogen sulfide (H2S) and acid gases from natural gas is accomplished by absorption processes using a solvent. The gas solubility in a liquid can be used to measure the degree of removal of the gas and is quantified by the Henry's constant, the free energy of solvation at infinite dilution, or the excess chemical potential. In this work, Henry's constants and thermodynamic properties of solvation of H2S were calculated in three ionic liquids: [C4mim][PF6], [C4mim][BF4], and [C4mim][Cl] ([C4mim], 1-butyl-3-methyl imidazolium). The first step in this work was the evaluation of the force fields for the gas and condensed phases in order to obtain accurate values for the excess chemical potential for H2S on each ionic liquid using free energy perturbation techniques. In the H2S-[C4mim][PF6] and H2S-[C4mim][BF4] systems, the results obtained by molecular simulation agree with the experimental values reported in the literature. However, the solvation free energy calculated for the H2S-[C4mim][Cl] system can be considered predictive because of the lack of experimental data at the simulated conditions. Based on these results, the best solvent for removing H2S is [C4mim][Cl] because it has the highest affinity for this species (lowest value of the Henry's constant). Also, solvation thermodynamic properties such as enthalpy and entropy were calculated in order to evaluate their contribution to the free energy of solvation.

  3. 26 CFR 1.662(c)-4 - Illustration of the provisions of sections 661 and 662.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Illustration of the provisions of sections 661 and 662. 1.662(c)-4 Section 1.662(c)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Which Distribute Corpus § 1.662(c)-4 Illustration of the provisions of sections 661 and 662. The...

  4. 26 CFR 1.652(c)-4 - Illustration of the provisions of sections 651 and 652.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Illustration of the provisions of sections 651 and 652. 1.652(c)-4 Section 1.652(c)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE....652(c)-4 Illustration of the provisions of sections 651 and 652. The rules applicable to a trust...

  5. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  6. A Quantum Monte Carlo study of energy differences in C4H3 and C4H5isomers

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Xenophon

    2001-10-28

    Quantum Monte Carlo and a series of other ab initio as well as density functional theory calculations were performed for the enthalpy of formation of C{sub 4}H{sub 3} and C{sub 4}H{sub 5} radicals. The computed {Delta}{sub f}H{sub 298}{sup 0} values, in kcal/mol, are 126.0 for n-C{sub 4}H{sub 3}, 119.4 for i-C{sub 4}H{sub 3}, 83.4 for n-C{sub 4}H{sub 5}, and 76.2 for i-C{sub 4}H{sub 5}, all with one standard deviation of 0.6 kcal/mol. The enthalpy differences between the n and i isomers of C{sub 4}H{sub 3} and C{sub 4}H{sub 5} are predicted to be substantially lower than those obtained in recent theoretical studies. The nature of the middle C-C bond in these radicals was examined using the electron localization function topological analysis performed by bonding evolution theory for partitioning the molecular space into regions with clear chemical meaning. This analysis shows that the n isomers are represented by a unique Lewis structure while the i isomers are represented by a resonance description. For the latter systems, the middle C-C bond is only mildly conjugated and the corresponding degree of conjugation is calculated. These results signify higher prominence of the even-carbon-atom reaction pathways in the formation of the first aromatic ring in hydrocarbon pyrolysis and oxidation, consistent with the past kinetic modeling and recent experimental studies.

  7. Effects of root applications of gibberellic acid on photosynthesis and growth in C3 and C 4 plants.

    Science.gov (United States)

    Tsai, D S; Arteca, R N

    1985-01-01

    The effects of root applications of gibberellic acid (GA3) on growth and photosynthesis of 12 species of plants including C3 monocots (Triticum aestivum L., wheat, Hordeum vulgare L., barley and Avena sativa L., oat), C3 dicots (Vigna radiata L., mung bean, Cucurbita moschata L., squash and Capsicum annuum L., pepper), C4 monocots (Zea mays L., corn, Sorghum vulgare L., sorghum and Panicum ramosum L., millet) and C4 dicots (Amaranthus retroflexus L., pigweed, Kochia scoparis L., kochia and Gomphrena celosoides L., gomphrena) were evaluated. Relative growth rates (RGR) of barley, oat, squash, pepper, corn, sorghum, millet, pigweed and kochia were increased above the control by 12.7%, 9.9%, 11.3%, 10.7%, 19.2% 10.1%, 11.5%, 16.4% and 32.7% respectively, four days following optimum GA3 treatments. There was no effect of GA3 on RGR in wheat, mung bean, and gomphrena. Gibberellic acid decreased the chlorophyll content expressed on an area basis by 20.0%, 13.9%, 20.9%, 17.1%, 11.9% and 28.0% in barley, squash, pepper, sorghum, pigweed and kochia, respectively, while that of oat, wheat, mung bean, corn, millet and gomphrena remained unchanged. When photosynthetic rates were expressed per mg of chlorophyll, it showed that GA3 could stimulate photosynthesis in barley, squash, pepper, sorghum, millet, pigweed and kochia by 20.4%, 20.6%, 16.5%, 17.4%, 10.4%, 24.2%, and 29.4%; while there was no effect in oat, wheat, mung bean, corn and gomphrena. An increase in leaf blade area and/or length of sheath were observed in GA3 treated plants of oat, barley, mung bean, squash, pepper, corn, sorghum, millet and kochia. The transpiration rate remained unchanged following GA3 treatment in all 12 species.

  8. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    Science.gov (United States)

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C4-dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C4-dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C4-dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C4-dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C4-dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C4-dicarboxylic acids in A. carbonarius is the C4-dicarboxylate transporter. Furthermore it shows that the C4-dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C4-dicarboxylic acid production.

  9. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2.

    Science.gov (United States)

    Wang, Bo; Pugh, Shawn; Nielsen, David R; Zhang, Weiwen; Meldrum, Deirdre R

    2013-03-01

    (S)- and (R)-3-hydroxybutyrate (3HB) are precursors to synthesize the biodegradable plastics polyhydroxyalkanoates (PHAs) and many fine chemicals. To date, however, their production has been restricted to petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economical feasibility. With the ability to fix CO2 photosynthetically, cyanobacteria have attracted increasing interest as a biosynthesis platform to produce fuels and chemicals from alternative renewable resources. To this end, synthesis metabolic pathways have been constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803 to photosynthetically produce (S)- and (R)-3HB directly from CO2. Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing pathway by deleting slr1829 and slr1830 (encoding PHB polymerase) from the Synechocystis genome further promoted the 3HB production. Up to 533.4mg/L 3HB has been produced after photosynthetic cultivation of the engineered cyanobacterium Synechocystis TABd for 21 days. Further analysis indicated that the phosphate consumption during the photoautrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. For the first time, the study has demonstrated the feasibility of photosynthetic production of (S)- and (R)-3HB directly from sunlight and CO2. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Store-Independent Orai1/3 Channels Activated by Intracrine LeukotrieneC4: Role in Neointimal Hyperplasia

    Science.gov (United States)

    González-Cobos, José C.; Zhang, Xuexin; Zhang, Wei; Ruhle, Brian; Motiani, Rajender K.; Schindl, Rainer; Muik, Martin; Spinelli, Amy M.; Bisaillon, Jonathan M.; Shinde, Arti V.; Fahrner, Marc; Singer, Harold A.; Matrougui, Khalid; Barroso, Margarida; Romanin, Christoph; Trebak, Mohamed

    2013-01-01

    Rationale Through largely unknown mechanisms, Ca2+ signaling plays important roles in vascular smooth muscle cell (VSMC) remodeling. Orai1-encoded store-operated Ca2+ entry (SOCE) has recently emerged as an important player in VSMC remodeling. However, the role of the exclusively mammalian Orai3 protein in native VSMC Ca2+ entry pathways, its upregulation during VSMC remodeling and its contribution to neointima formation remain unknown. Objective The goal of this study was to determine the agonist-evoked Ca2+ entry pathway contributed by Orai3; Orai3 potential upregulation and role during neointima formation after balloon-injury of rat carotid arteries. Methods and Results Ca2+ imaging and patch clamp recordings showed that while the platelet-derived growth factor (PDGF) activates the canonical Ca2+ release-activated Ca2+ (CRAC) channels via store depletion in VSMC, the pathophysiological agonist thrombin activates a distinct Ca2+-selective channel contributed by Orai1, Orai3 and STIM1 in the same cells. Unexpectedly, Ca2+ store depletion is not required for activation of Orai1/3 channel by thrombin. Rather, the signal for Orai1/3 channel activation is cytosolic leukotrieneC4 produced downstream thrombin receptor stimulation through the catalytic activity of leukotrieneC4 synthase. Importantly, Orai3 is upregulated in an animal model of VSMC neointimal remodeling and in vivo Orai3 knockdown inhibits neointima formation. Conclusions These results demonstrate that distinct native Ca2+-selective Orai channels are activated by different agonists/pathways and uncover a mechanism whereby leukotrieneC4 acts through hitherto unknown intracrine mode to elicit store-independent Ca2+ signaling that promotes vascular occlusive disease. Orai3 and Orai3-containing channels provide novel targets for control of VSMC remodeling during vascular injury or disease. PMID:23349245

  11. CO2-induced photosynthetic and stoichiometric responses to phosphorus limitation

    Science.gov (United States)

    de Boer, Hugo; di Lallo, Giacomo; van Dijk, Jerry

    2017-04-01

    Carbon fertilisation from rising atmospheric CO2 concentrations increases the productivity of plants globally. Meanwhile, the global cycles of Nitrogen (N) and Phosphorus (P) are also altered due to anthropogenic emissions. In general, the additional supply of N is expected to exceed that of P, leading to an increase in P limitation in natural ecosystems. Although the direct carbon fertilisation effect and the interaction with available N is relatively well understood, it remains uncertain how carbon fertilisation is confounded by the availability of P. It is hypothesised that (i) the photosynthetic P-use efficiency increases at elevated CO2 owing to a direct increase in photosynthesis and (ii) the photosynthetic maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) are down-regulated in response to a combination of elevated CO2 and P-limitation via a coordinated reduction of leaf N and P content per unit leaf area. In this study we examined the hypothesised effects of P limitation and CO2 fertilisation on the photosynthetic and stoichiometric responses of three plant species: Holcus lanatus (C3 grass), Panicum miliaceum (C4 grass) and Solanum dulcamara (C3 herb). Individuals of these species were grown at sub-ambient (150 ppm), modern (450 ppm) and elevated CO2 concentrations (800 ppm) and exposed to an N:P treatment consisting of either severe nitrogen limitation at an N:P ratio of 1:1, or severe P limitation at an N:P ratio of 45:1, with a similar supply rate of N. Our results show significant effects of growth CO2 and P supply on Vcmax and Jmax, as well as the whole-plant biomass at the point of harvest. Interaction effects between growth CO2 and P supply were observed for the light-saturated photosynthesis rate, stomatal conductance, leaf P content, and the N:P ratio of the leaf. No significant change in the leaf N content was observed across treatments. These results suggest that limited availability of P constrains the biochemical potential

  12. Increased C4d and Bb immunoreactivity and decreased MBL immunoreactivity characterise first-time pathologic first-trimester miscarriage: a case-control study.

    Science.gov (United States)

    Canda, M Tunc; Caglayan, Latife Doganay; Demir, Namik; Ortaç, Ragıp

    2018-01-01

    The role of the complement system in first-time pathologic first-trimester miscarriage was investigated. In this case-control study, tissue samples of 126 women with pathologic miscarriage and termination of normal pregnancies were assessed. The pathologic pregnancy group consisted of 40 women with missed miscarriage, 13 women with incomplete miscarriage and 10 women with a blighted ovum. The control group consisted of 63 normal-appearing pregnancies. Immunoreactivity for C4d, Bb and MBL was evaluated in the deciduas and villous trophoblasts separately using a semi-quantitative histological scoring system (H-score). C4d and Bb H-scores were higher and MBL H-score was reduced in the deciduas and villous tissues from pathologic miscarriage compared to termination of pregnancies (p = .003 and p = .001; p = .011 and p < .001; p < .001 and p < .001, respectively). C4d and Bb activities were increased and MBL activity was decreased in human first-time pathologic first-trimester miscarriage. We suggest that three complement pathways may play a role in human first-time pathologic first-trimester miscarriage. Impact statement Previous studies focussed on complement proteins related to a single complement pathway in cases often associated with antiphospholipid syndrome (APS) or recurrent miscarriage. In APS-related cases, the classical pathway is activated. In antibody-dependent and in antibody-independent mouse models of foetal loss, classical and alternative pathways are activated, respectively. Lectin pathway deficiency has been reported in some recurrent miscarriage. The complement pathway or pathways, which have a role in human pathologic miscarriage was the starting point of this study. There has been no study done till now reporting the role of the three complement pathways in human pathologic miscarriage. In this study, we found increased classical and alternative complement pathway activities and decreased lectin pathway activity in tissues

  13. Toward a photosynthetic microbial platform for terpenoid engineering.

    Science.gov (United States)

    Davies, Fiona K; Jinkerson, Robert E; Posewitz, Matthew C

    2015-03-01

    Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.

  14. Anatomía del tejido fotosintético de diez taxa de Opuntia establecidos en el secano árido mediterráneo de Chile Anatomy of the photosynthetic tissue in ten taxa of Opuntia established to the mediterranean arid zone of Chile

    Directory of Open Access Journals (Sweden)

    SILVA HERMAN

    2001-06-01

    Full Text Available Se evaluó el efecto de la exposición de cladodios a la radiación en la anatomía del tejido fotosintético de 10 taxa de Opuntia, (plantas con metabolismo ácido crasuláceo, CAM establecidos en al secano árido de la IV Región de Chile. A nivel del tejido epidérmico se evaluó el grosor de la cutícula, la densidad de estomas y las dimensiones de células oclusivas. En el tejido fotosintetico, se evaluo las dimensiones celulares con el objeto de estimar la superficie de paredes celulares expuestas al intercambio gaseoso por unidad de tejido fotosintético, relación conocida como Ames/A. Los resultados señalan grandes dimensiones celulares y baja densidad estomática, lo que determina un número reducido de estomas por unidad de superficie en relación a especies de otras vías metabólicas (C3 y C4. La comparación entre taxones, muestra diferencias significativas en la relación de áreas Ames/A, parámetro estrechamente relacionado a la capacidad fotosintética. Estas características anatómicas y sus modificaciones en combinación con el metabolismo CAM, contribuyen a su adaptación a condiciones de pluviometría limitadaThe anatomy of the photosynthetic tissue and the effect of cladode exposure to radiation was studied in ten taxa of Opuntia, plants with crassulacean acid metabolism (CAM, established in the dry lands of the IV Region of Chile. At the epidermic level the cuticle thickness, stomatal frequency, and dimension of guard cells were evaluated. In the photosynthetic tissue, cell dimensions were determined in order to estimate the area of cell walls exposed to gaseous exchange per unit of photosynthetic tissue (A mes/ A. The results indicate large cell dimensions and low stomata frequency which results in a reduced number of stomata per unit area in relation to species with other metabolic pathways (C3 and C4, The comparison between taxa shows significant differences in the relation of Ames/A areas, a parameter closely

  15. The reinvestigation of the kinetics of the metathesis reactions t-C4H9• + HBr (HI) → i-C4H10 + Br• (I•) and of the t-C4H9• free radical thermochemistry.

    Science.gov (United States)

    Leplat, N; Rossi, M J

    2014-07-17

    A reinvestigation of the absolute rate constant of the metathesis reactions t-C4H9• + HBr → i-C4H10 + Br• (1) and t-C4H9• + HI → i-C4H10 + I• (2) was performed thanks to a recently developed apparatus consisting of a Knudsen reactor coupled to detection based on single-photon (VUV) photoionization mass spectrometry (SPIMS). It enables the generation of thermalized hydrocarbon free radicals owing to a source upstream of and external to the Knudsen reactor. The following Arrhenius expressions were obtained: k1 = 5.6(±1.4) × 10(–12) exp(−6.76(±0.94)/(RT)) and k2 = 2.0(±0.6) × 10(–11) exp(−8.48(±0.94)/(RT)) with R = 8.314 J mol(–1) K(–1) over the range 293 to 623 K. The mass balance of the reaction system based on closed shell product detection (CSPD) was checked in order to ensure the accuracy of the used reaction mechanism and as an independent check of k1 and k2. The wall-loss rate constants of the t-butyl free radical, kw(C4H9), were measured and found to be low compared with the corresponding escape rate constant, ke(C4H9), for effusion of t-C4H9• out of the Knudsen reactor. On the basis of the present results, the free radical standard heat of formation ΔfH298°(t-C4H9•) = 44.3 ± 1.7 kJ mol(–1) was obtained when combined with the kinetics of the inverse halogenation reaction taken from the literature and using S298°(t-C4H9•) = 322.2 J K(–1) mol(–1) following a “Third Law” evaluation method. The standard enthalpy for t-butyl free radical is consistent for both the bromination and iodination reactions within the stated uncertainties.

  16. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.

    Science.gov (United States)

    Munekage, Yuri Nakajima; Taniguchi, Yukimi Y

    2016-05-01

    C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.

    Science.gov (United States)

    Sunil, Meeta; Hariharan, Arun K; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R; Gupta, Ravi P; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-12-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. Sulfite Reductase Activity in Extracts of Various Photosynthetic Bacteria

    Science.gov (United States)

    Peck, H. D.; Tedro, S.; Kamen, M. D.

    1974-01-01

    Extracts of representative bacterial strains from the various families of photosynthetic prokaryotes are demonstrated to possess significant levels of sulfite reductase [EC 1.8.99.1; hydrogen-sulfide: (acceptor)oxidoreductase] activity with reduced methyl viologen as electron donor, but not NADPH2. The enzyme is localized primarily in the soluble fraction of the extracts, in contrast to adenylysulfate reductase [EC 1.8.99.2; AMP, sulfite: (acceptor) oxidoreductase], which is bound normally in the membrane fractions of those bacteria in which it is found. Assignment of the sulfite reductase activities to the biosynthetic (“assimilatory”) pathway is suggested by levels of specific activity noted and ready solubility. PMID:4526215

  19. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  20. Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation?

    Science.gov (United States)

    Cavanagh, Amanda P; Kubien, David S

    2014-02-01

    Photosynthetic acclimation varies among species, which likely reveals variations at the biochemical level in the pathways that constitute carbon assimilation and energy transfer. Local adaptation and phenotypic plasticity affect the environmental response of photosynthesis. Phenotypic plasticity allows for a wide array of responses from a single individual, encouraging fitness in a broad variety of environments. Rubisco catalyses the first enzymatic step of photosynthesis, and is thus central to life on Earth. The enzyme is well conserved, but there is habitat-dependent variation in kinetic parameters, indicating that local adaptation may occur. Here, we review evidence suggesting that land plants can adjust Rubisco's intrinsic biochemical characteristics during acclimation. We show that this plasticity can theoretically improve CO2 assimilation; the effect is non-trivial, but small relative to other acclimation responses. We conclude by discussing possible mechanisms that could account for biochemical plasticity in land plant Rubisco.

  1. The acclimation of photosynthesis and respiration to temperature in the C3 -C4 intermediate Salsola divaricata: induction of high respiratory CO2 release under low temperature.

    Science.gov (United States)

    Gandin, Anthony; Koteyeva, Nuria K; Voznesenskaya, Elena V; Edwards, Gerald E; Cousins, Asaph B

    2014-11-01

    Photosynthesis in C(3) -C(4) intermediates reduces carbon loss by photorespiration through refixing photorespired CO(2) within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C(3) -C(4) plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C(3) -C(4) Salsola divaricata was tested to determine whether it reverts to C(3) photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C(3) -C(4) features acclimate to these growth conditions. The CO(2) compensation point and net rates of CO(2) assimilation in cold-grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C(3) -C(4) intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non-phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold-grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain. © 2014 John Wiley & Sons Ltd.

  2. Study on the growth and photosynthetic characteristics of wheat seedlings under [C₄mim][OAc] (1-butyl-3-methyl-imidazolium acetate) with Cd²⁺ stress.

    Science.gov (United States)

    Chen, Zhonglin; Feng, Yingying; Wang, Yan; Li, Yue; Liu, Qiang; Xu, Sunan; Guan, Wei

    2015-05-01

    In this paper, the joint effect of 0.5 mmol·L(-1) Cd(2+) and various concentrations (50-400 mg·L(-1)) of the ionic liquid 1-butyl-3-methyl-imidazolium acetate ([C4min][OAc]) on the growth and photosynthetic performance of wheat seedlings in hydroponic culture was investigated. Seedlings grown in presence of Cd(2+) and [C4min][OAc] showed significant (p < 0.05) improvement in growth (shoot and root lengths and dry weights) and photosynthetic performance (photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll a but not chlorophyll b) compared to seedlings grown in the presence of Cd(2+) but without [C4min][OAc]. However, this only happened under the lower range of [C4min][OAc] concentrations (50-200 mg·L(-1)). In addition, significant reduction in the level of Cd(2+) was also observed in the leaf tissue of wheat seedlings grown in the presence of 0.5 mmol·L(-1) Cd(2+) and 100 mg·L(-1) [C4min][OAc]. Overall, Cd(2+) exerted a stronger inhibition than [C4min][OAc] on the growth and photosynthetic performance of wheat seedlings. However, when both Cd(2+) and [C4min][OAc] were present in the culture, the toxicity of Cd(2+) could be mitigated by lower concentrations of [C4mim][OAc]. This phenomenon could be due to [C4mim][OAc] forming metal complexes with Cd(2+), thus reducing the toxicity of Cd(2+).

  3. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  4. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, T M; Kristensen, Torsten

    1985-01-01

    placed residues and account for 75% and 67%, respectively, of the polypeptide chains of alpha 2M and pro-C3. Published sequence data for complement component C4 show that segments of this protein match well with corresponding stretches in alpha 2M and pro-C3. It is proposed that alpha 2M, C3 and C4...... common gross structure. The quartets of basic residues in pro-C3 and pro-C4, at which cleavage takes place to produce the mature subunits of these proteins, and most of the residues forming the anaphylatoxin peptides of C3 and C4 (C3a and C4a) are absent in alpha 2M. In addition, C3 and C4 contain large...

  5. Photosynthetic capacity of red spruce during winter

    Science.gov (United States)

    P.G. Schaberg; J.B. Shane; P.F. Cali; J.R. Donnelly; G.R. Strimbeck

    1998-01-01

    We measured the photosynthetic capacity (Pmax) of plantation-grown red spruce (Picea rubens Sarg.) during two winter seasons (1993-94 and 1994-95) and monitored field photosynthesis of these trees during one winter (1993-94). We also measured Pmax for mature montane trees from January through May 1995....

  6. Photosynthetic characteristics of Lycoris aurea and monthly ...

    African Journals Online (AJOL)

    AJL

    2012-02-21

    Feb 21, 2012 ... Medicinal Plant Resources, Key Laboratory of Hunan Higher Education for Hunan-western Medicinal Plant and. Ethnobotany ... lycorine and galantamine during the annual growth period were studied by using LI-6400 portable photosynthetic ... ingredients of several medicinal plants. Their production.

  7. Photosynthetic antenna engineering to improve crop yields.

    Science.gov (United States)

    Kirst, Henning; Gabilly, Stéphane T; Niyogi, Krishna K; Lemaux, Peggy G; Melis, Anastasios

    2017-05-01

    Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.

  8. Photosynthetic performance, epiphyte biomass and nutrient content ...

    African Journals Online (AJOL)

    Heavy nutrient loads in coastal waters often lead to excessive growth of microalgal and macroalgal epiphytes on seagrass leaves, with varying effects on the underlying seagrasses. This study evaluates the photosynthetic performance, epiphytic biomass and tissue nutrient content of two tropical seagrasses, Cymodocea ...

  9. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    Science.gov (United States)

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  10. Involvement of C4 protein of beet severe curly top virus (family Geminiviridae in virus movement.

    Directory of Open Access Journals (Sweden)

    Kunling Teng

    Full Text Available BACKGROUND: Beet severe curly top virus (BSCTV is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. METHODS AND FINDINGS: To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties. CONCLUSIONS: Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication.

  11. Plasma C4d+ Endothelial Microvesicles Increase in Acute Antibody-Mediated Rejection.

    Science.gov (United States)

    Tower, Cindy M; Reyes, Morayma; Nelson, Karen; Leca, Nicolae; Kieran, Niamh; Muczynski, Kimberly; Jefferson, Jonathan A; Blosser, Christopher; Kukla, Aleksandra; Maurer, David; Chandler, Wayne; Najafian, Behzad

    2017-09-01

    Antibody-mediated rejection (AMR) is a major cause of kidney allograft loss. Currently, AMR diagnosis relies on biopsy which is an invasive procedure. A noninvasive biomarker of acute AMR could lead to early diagnosis and treatment of this condition and improve allograft outcome. Microvesicles are membrane-bound vesicles released from the cell surface after injury. We hypothesized that because AMR is associated with allograft endothelial injury and C4d deposition, plasma microvesicles positive for endothelial (CD144) marker and C4d are increased in this condition. We studied microvesicle concentration in the plasma of 95 kidney transplant patients with allograft dysfunction and compared with 23 healthy volunteers. Biopsy diagnosis and scoring was performed using Banff classification. In the 28 subjects with AMR, the density of C4d+/CD144+ microvesicles was on average 11-fold (P = 0.002) higher than transplant recipients with no AMR and 24-fold (P = 0.008) than healthy volunteers. Densities of C4d+ and C4d+/annexin V+ (C4d+/AVB+) microvesicles were also increased in AMR patients compared with no AMR and healthy subjects. C4d+/AVB+ microvesicles correlated with AMR biopsy severity. Nine patients with acute AMR that received treatment showed a mean 72% decrease (P = 0.01) in C4d+/CD144+ microvesicle concentration compared with pretreatment values. Quantification of plasma C4d+ microvesicles provides information about presence of AMR, its severity and response to treatment in transplant patients.

  12. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.

    Science.gov (United States)

    Fu, Yanfen; Beck, David A C; Lidstrom, Mary E

    2016-07-19

    Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.

  13. FJU-C4, a new 2-pyridone compound, attenuates lipopolysaccharide-induced systemic inflammation via p38MAPK and NF-κB in mice.

    Directory of Open Access Journals (Sweden)

    Jung-Sen Liu

    Full Text Available Despite advances in antibiotic therapy and intensive care, the mortality caused by systemic inflammatory response syndrome and severe sepsis remains high. The use of anti-inflammatory agents to attenuate inflammatory response during acute systemic inflammatory reactions may improve survival rates. Here we show that a newly synthesized 2-pyridone compound (FJU-C4 can suppress the expression of late inflammatory mediators such as iNOS and COX-2 in murine macrophages. The pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, were dose-dependently suppressed by FJU-C4 both in mRNA and protein levels. In addition, the expression of TNFα was inhibited from as early as 2 hours after exposure to LPS stimulation. The production of mature pro-inflammatory cytokines was also suppressed by pretreatment with FJU-C4 in either cell culture medium or mice serum when stimulated by LPS. FJU-C4 prolongs mouse survival and prevents mouse death from LPS-induced systemic inflammation when the dose of FJU-C4 is over 5 mg/kg. The activities of ERK, JNK, and p38MAPK were induced by LPS stimulation on murine macrophage cell line, but only p38MAPK signaling was dramatically suppressed by pretreatment with the FJU-C4 compound in a dose-dependent manner. NF-κB activation also was suppressed by FJU-C4 compound. These findings suggest that the FJU-C4 compound may act as a promising therapeutic agent against inflammatory diseases by inhibiting the p38MAPK and NF-κB signaling pathway.

  14. The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

    Science.gov (United States)

    Goss, Tatjana; Hanke, Guy

    2014-01-01

    At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems. PMID:24678667

  15. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons?

    Science.gov (United States)

    Goss, Tatjana; Hanke, Guy

    2014-01-01

    At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems.

  16. CSF/serum quotient graphs for the evaluation of intrathecal C4 synthesis

    Directory of Open Access Journals (Sweden)

    Rey Alexis

    2009-07-01

    Full Text Available Abstract Background Cerebrospinal fluid (CSF/serum quotient graphs have been used previously to determine local synthesis in brain of immunoglobulins and C3 complement component. The aim of this study was to use the same technique to construct quotient graphs, or Reibergrams, for the beta globulin C4 and to evaluate the method for assessing intrathecal synthesis in neurological disease. Methods The constants in the previously-defined Reibergram for immunoglobulin IgA were used to calculate the CSF/serum quotient for C4. CSF and serum were analyzed for C4, IgA and albumin from a total of 12 patients with meningoencephalitis caused by encapsulated microorganisms and 10 subjects without infections or inflammatory neurological disease, some of which had dysfunction of the blood-CSF barrier, Results The formula and C4 Reibergram with the constants previously found for IgA, determined the intrathecal C4 synthesis in CSF. The intrathecal C4 fraction in CSF (C4 loc in mg/l was compared to the C4-Index (fraction of CSF: serum for C 4/fraction of CSF: serum for albumin. There was a significant correlation between the two formulae. The CSF/Serum quotient graph was superior for detecting intrathecal synthesis of C4 under variable conditions of blood-CSF barrier permeability. Conclusion The C4 Reibergram can be used to quantify the intrathecal synthesis of this component of the complement system in different infectious diseases of the central nervous system and is especially useful for patients with blood-brain barrier dysfunction.

  17. Association of C4d Deposition with Clinical Outcomes in IgA Nephropathy

    Science.gov (United States)

    Ortega, Rosa; Sánchez, Marina; Segarra, Alfons; Salcedo, Maria Teresa; González, Fayna; Camacho, Rafael; Valdivia, Miguel Angel; Cabrera, Rocio; López, Katia; Pinedo, Fernando; Gutierrez, Eduardo; Valera, Alfonso; Leon, Miryam; Cobo, Maria Angeles; Rodriguez, Rosa; Ballarín, Jose; Arce, Yolanda; García, Beatriz; Muñoz, María Dolores; Praga, Manuel

    2014-01-01

    Background and objectives Several studies have suggested that activation of the complement system is a contributing pathogenic mechanism in IgA nephropathy (IgAN). C4d staining is an inexpensive and easy-to-perform method for the analysis of renal biopsies. This study aimed to assess the clinical and prognostic implications of C4d staining in IgAN. Design, setting, participants, & measurements This retrospective cohort study included 283 patients with IgAN in 11 hospitals in Spain who underwent a renal biopsy between 1979 and 2010. The primary predictor was mesangial C4d staining. Secondary predictors included demographic, clinical, and laboratory characteristics, and Oxford pathologic classification criteria. The primary end point was the cumulative percentage of patients who developed ESRD, defined as onset of chronic dialysis or renal transplantation. C4d was analyzed by immunohistochemical staining using a polyclonal antibody. Kaplan–Meier and Cox proportional hazards analyses were performed to evaluate the effect of C4d staining on renal survival. Results There were 109 patients (38.5%) and 174 patients (61.5%) who were classified as C4d positive and C4d negative, respectively. Renal survival at 20 years was 28% in C4d-positive patients versus 85% in C4d-negative patients (P50%; HR, 4.42; 95% CI, 1.40 to 13.88; P=0.01), and C4d-positive staining (HR, 2.45; 95% CI, 1.30 to 4.64; P=0.01). Conclusions C4d-positive staining is an independent risk factor for the development of ESRD in IgAN. This finding is consistent with the possibility that complement activation is involved in the pathogenesis of this disease. PMID:24578331

  18. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  19. Volumetric Properties of the Mixture Butan-2-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4536_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butan-2-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4536_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  20. Volumetric Properties of the Mixture N,N-Dimethylethanamide C4H9NO + C4H10O 2-Methylpropan-2-ol (VMSD1212, LB3723_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture N,N-Dimethylethanamide C4H9NO + C4H10O 2-Methylpropan-2-ol (VMSD1212, LB3723_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  1. Volumetric Properties of the Mixture Butanenitrile C4H7N + C4H10O 2-Methylpropan-2-ol (VMSD1111, LB4087_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butanenitrile C4H7N + C4H10O 2-Methylpropan-2-ol (VMSD1111, LB4087_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture Butan-2-one C4H8O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB3990_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butan-2-one C4H8O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB3990_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  3. Volumetric Properties of the Mixture 2-Methylpropan-1-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4537_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methylpropan-1-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4537_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  4. Heat of Mixing and Solution of Butan-2-one C4H8O + C4H10O 2-Methylpropan-2-ol (HMSD1111, LB4043_H)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Butan-2-one C4H8O + C4H10O 2-Methylpropan-2-ol (HMSD1111, LB4043_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  5. Heat of Mixing and Solution of 2-Methylpropan-2-ol C4H10O + C4H11N tert-Butylamine (HMSD1111, LB4104_H)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of 2-Methylpropan-2-ol C4H10O + C4H11N tert-Butylamine (HMSD1111, LB4104_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  6. Volumetric Properties of the Mixture Butanenitrile C4H7N + C4H10O 2-Methylpropan-2-ol (VMSD1212, LB4090_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butanenitrile C4H7N + C4H10O 2-Methylpropan-2-ol (VMSD1212, LB4090_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  7. Volumetric Properties of the Mixture Butan-1-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4535_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Butan-1-ol C4H10O + C4H10O 2-Methylpropan-2-ol (VMSD1211, LB4535_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  8. Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C4H11N tert-Butylamine (VMSD1211, LB4187_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C4H11N tert-Butylamine (VMSD1211, LB4187_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  9. Volumetric Properties of the Mixture N,N-Dimethylethanamide C4H9NO + C4H10O 2-Methylpropan-2-ol (VMSD1111, LB3726_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture N,N-Dimethylethanamide C4H9NO + C4H10O 2-Methylpropan-2-ol (VMSD1111, LB3726_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  10. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light

    Directory of Open Access Journals (Sweden)

    Lisa B. Wiltbank

    2016-02-01

    Full Text Available The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are just beginning to be understood. One of the best characterized of these functions is the regulation of photosynthetic light-harvesting antenna composition in the cyanobacterium Fremyella diplosiphon by the cyanobacteriochrome RcaE in response to red and green light, a process known as chromatic acclimation. We have identified a new cyanobacteriochrome named DpxA that maximally senses teal (absorption maximum, 494 nm and yellow (absorption maximum, 568 nm light and represses the accumulation of a key light-harvesting protein called phycoerythrin, which is also regulated by RcaE during chromatic acclimation. Like RcaE, DpxA is a two-component system kinase, although these two photoreceptors can influence phycoerythrin expression through different signaling pathways. The peak responsiveness of DpxA to teal and yellow light provides highly refined color discrimination in the green spectral region, which provides important wavelengths for photosynthetic light harvesting in cyanobacteria. These results redefine chromatic acclimation in cyanobacteria and demonstrate that cyanobacteriochromes can coordinately impart sophisticated light color sensing across the visible spectrum to regulate important photosynthetic acclimation processes.

  11. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.

    Science.gov (United States)

    Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari

    2014-08-01

    Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis.

    Science.gov (United States)

    Mackiewicz, Paweł; Bodył, Andrzej; Gagat, Przemysław

    2012-12-01

    The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active organelles of cyanobacterial origin that have been acquired independently of classic primary plastids. Because their acquisition did take place relatively recently, they are expected to provide new insight into the ancient cyanobacterial primary endosymbiosis. During the process of Paulinella endosymbiont-to-organelle transformation, more than 30 genes have been transferred from the organelle to the host nuclear genome via endosymbiotic gene transfer (EGT). The article discusses step-by-step protein import of EGT-derived proteins into Paulinella photosynthetic organelles with the emphasis on the nature of their targeting signals and the final passage of proteins through the inner organelle membrane. The latter most probably involves a simplified Tic translocon composed of Tic21- and Tic32-like proteins as well as a Hsp70-based motor responsible for pulling of imported proteins into the organelle matrix. Our results indicate that although protein translocation across the inner membrane of Paulinella photosynthetic organelles seems to resemble the one in classic primary plastids, the transport through the outer membrane does not. The differences could result from distinct integration pathways of Paulinella photosynthetic organelles and primary plastids with their respective host cells.

  13. Increased complement C4d deposition at the maternal-fetal interface in unexplained recurrent miscarriage

    NARCIS (Netherlands)

    Meuleman, Tess; Cohen, Danielle; Swings, Godelieve M J S; Veraar, Kimberly; Claas, Frans H J; Bloemenkamp, Kitty W M

    2015-01-01

    C4d is a footprint of antibody-mediated classical complement activation, and has evolved as a useful diagnostic marker of antibody-mediated rejection. It is unknown if complement activation, as reflected by C4d deposition plays a role in unexplained recurrent miscarriage. In a case-control study

  14. Data of evolutionary structure change: 1AHPA-2C4MD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1AHPA-2C4MD 1AHP 2C4M A D SQPIFNDKQFQEALSRQWQRYGLNSAAEMTPRQWWLAVSEALAEMLRAQ--PFAKP...1AHP A 1AHPA MLRAQ--PFAKP...1AHP A 1AHPA SLQKE-WANDL ...1AHP A 1AHPA LHSIG----KQGGD...1AHP A 1AHPA DVLYR-DQEAW

  15. Data of evolutionary structure change: 1AHPA-2C4MA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1AHPA-2C4MA 1AHP 2C4M A A SQPIFNDKQFQEALSRQWQRYGLNSAAEMTPRQWWLAVSEALAEM-----------...1AHP A 1AHPA SLQKE-WANDL ...1AHP A 1AHPA LHSIG----KQGGD...1AHP A 1AHPA DVLYR-DQEAW ...1AHP A 1AHPA RQWQRYGLNSAAEM

  16. Data of evolutionary structure change: 1AHPA-2C4MB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1AHPA-2C4MB 1AHP 2C4M A B SQPIFNDKQFQEALSRQWQRYGLNSAAEMTPRQWWLAVSEALAEMLRAQPFAKPV-...1AHP A 1AHPA FAKPV--ANQRH...1AHP A 1AHPA SLQKE-WANDL ...1AHP A 1AHPA LHSIG----KQGGD...1AHP A 1AHPA DVLYR-DQEAW

  17. Germination shifts of C3 and C4 species under simulated global warming scenario.

    Directory of Open Access Journals (Sweden)

    Hongxiang Zhang

    Full Text Available Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night and symmetric warming (+5/+5°C at day/night, simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature, maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  18. Data of evolutionary structure change: 1C4ZD-2ESPA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1C4ZD-2ESPA 1C4Z 2ESP D A ---SRRLMKELEEIRKCGMKNFRNIQVDEANLLTWQGLI...Y-- AMALKRIHKELNDLARDPPAQCSAGPVGD-DMFHWQATIMGPNDSPYQGGVFFLTIHFPTDYPFKPPKVAFTTRIYHPNINSNGSICLDALR-SQWSPA...tryChain> 2ESP A 2ESPA 2ESP A 2ESPA 2 2ESP A 2ESPA

  19. MOLECULAR HETEROGENEITY OF THE 4TH COMPONENT OF COMPLEMENT (C4) AND ITS GENES IN VITILIGO

    NARCIS (Netherlands)

    VENNEKER, GT; WESTERHOF, W; DEVRIES, IJ; DRAYER, NM; WOLTHERS, BG; DEWAAL, LP; BOS, JD; ASGHAR, SS

    1992-01-01

    In view of evidence suggesting vitiligo is an autoimmune disease, we investigated whether vitiligo is associated with inherited deficiencies of the fourth (C4) and second (C2) component of complement and with certain human leukocyte antigens (HLA). Analysis of functional activities of C4 and C2 in

  20. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo

    2014-01-01

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935

  1. 26 CFR 1.381(c)(4)-1 - Method of accounting.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Method of accounting. 1.381(c)(4)-1 Section 1... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(4)-1 Method of accounting. (a... section 381(a) applies, an acquiring corporation shall use the same method of accounting used by the...

  2. Germination shifts of C3 and C4 species under simulated global warming scenario.

    Science.gov (United States)

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  3. Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids

    NARCIS (Netherlands)

    Monreal, J.A.; McLoughlin, F.; Echevarría, C.; García-Mauriño, S.; Testerink, C.

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme playing a crucial role in photosynthesis of C4 plants. Here, we identify anionic phospholipids as novel regulators that inhibit C4 PEPC activity and provide evidence that the enzyme partially localizes to membranes.

  4. Platelet - activating factor induces leukotriene C4 synthesis by purified human eosinophils

    NARCIS (Netherlands)

    Bruijnzeel, P.L.B.; Kok, P.T.M.; Hamelink, M.L.; Kijne, A.M.; Verhagen, J.

    Platelet-activating factor, at a concentration of 10 μM, was capable of inducing leukotriene C4 synthesis by eosinophils of healthy donors, i.e. (3.1 ± 0.3) × 106 molecules leukotriene C4 /cell (n = 31, mean ± SEM, cell purity 87 ± 2%). Reversed-phase high performance liquid chromatography analysis

  5. Variations of Leaf Cuticular Waxes Among C3 and C4 Gramineae Herbs.

    Science.gov (United States)

    He, Yuji; Gao, Jianhua; Guo, Na; Guo, Yanjun

    2016-11-01

    Modern C4 plants are commonly distributed in hot and dry environments whereas C3 plants predominate in cool and shade areas. At the outmost of plant surface, the deposition and chemical composition of cuticular waxes vary under different environmental conditions. However, whether such variation of cuticular wax is related to the distribution of C3 and C4 under different environmental conditions is still not clear. In this study, leaves of six C3 Gramineae herbs distributed in spring, Roegneria kamoji, Polypogon fugax, Poa annua, Avena fatua, Alopecurus aequalis, and Oplismenus undulatifolius, and four C4 and one C3 Gramineae herbs distributed in summer, Digitaria sanguinalis, Eleusine indica, Setaria viridis, S. plicata, and O. undulatifolius, were sampled and analyzed for cuticular wax. Plates were the main epicuticular wax morphology in both C3 and C4 plants except S. plicata. The plates melted in C4 plants but not in C3 plants. The total cuticular wax amounts in C4 plants were significantly lower than those in C3 plants, except for O. undulatifolius. Primary alcohols were the most abundant compounds in C3 plants, whereas n-alkanes were relatively the most abundant compounds in C4 plants. C29 was the most abundant n-alkane in C3 plants except for O. undulatifolius, whereas the most abundant n-alkane was C31 or C33 in C4 plants. The average chain length (ACL) of n-alkanes was higher in C4 than in C3 plants, whereas the ACL of n-alkanoic acids was higher in C3 than C4 plants. The cluster analysis based on the distribution of n-alkanes clearly distinguished C3 and C4 plants into two groups, except for O. undulatifolius which was grouped with C4 plants. These results suggest that the variations of cuticular waxes among C3 and C4 Gramineae herbs are related to the distribution of C3 and C4 plants under different environmental conditions. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  6. Structural analysis and tissue localization of human C4.4A

    DEFF Research Database (Denmark)

    Hansen, Line V.; Gårdsvoll, Henrik; Nielsen, Boye S

    2004-01-01

    C4.4A, a structural homologue of the urokinase-type plasminogen activator receptor (uPAR), was originally identified as a metastasis-associated membrane protein, but little is known about its structural and functional properties. Therefore, we expressed, purified and characterized a soluble...... significant amounts of GPI-anchored C4.4A, we find no evidence for an interaction between C4.4A and uPA, a property suggested previously for rat C4.4A. Collectively these data indicate that C4.4A, although being a structural homologue of uPAR, is unlikely to have a functional overlap with uPAR....

  7. Response to elevated CO 2 from a natural spring in a C 4 ...

    African Journals Online (AJOL)

    ... the late season. CO2-responsiveness in the field generally followed the seasonal phenologies of each species, being greatest during the most active growth period. Keywords: climate change; gas exchange; photosynthetic regulation; stomatal conductance. African Journal of Range & Forage Science: 2002 19(2): 81-91 ...

  8. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2009-01-01

    Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of CO2

  9. Artificial photosynthetic systems for production of hydrogen.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2015-04-01

    The rapid consumption of fossil fuels has caused unacceptable environmental problems such as the greenhouse effect, which may lead to disastrous climatic consequences. Because fossil fuels are the products of long-term photosynthesis, it is highly desirable to develop artificial photosynthetic systems for the production of renewable and clean energy such as hydrogen. This article summarizes recent advances on studies of artificial photosynthetic systems for photocatalytic production of hydrogen with hydrogenases and their functional mimics including hybrids of natural and artificial components. Because it is highly desired to convert gaseous H2 to an easily storable form, recent progress on storage of hydrogen as liquid or solid form has also been described in this article. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Correlated interaction fluctuations in photosynthetic complexes

    CERN Document Server

    Vlaming, Sebastiaan M

    2011-01-01

    The functioning and efficiency of natural photosynthetic complexes is strongly influenced by their embedding in a noisy protein environment, which can even serve to enhance the transport efficiency. Interactions with the environment induce fluctuations of the transition energies of and interactions between the chlorophyll molecules, and due to the fact that different fluctuations will partially be caused by the same environmental factors, correlations between the various fluctuations will occur. We argue that fluctuations of the interactions should in general not be neglected, as these have a considerable impact on population transfer rates, decoherence rates and the efficiency of photosynthetic complexes. Furthermore, while correlations between transition energy fluctuations have been studied, we provide the first quantitative study of the effect of correlations between interaction fluctuations and transition energy fluctuations, and of correlations between the various interaction fluctuations. It is shown t...

  11. Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity.

    Science.gov (United States)

    Mateos-Naranjo, E; Redondo-Gómez, S; Andrades-Moreno, L; Davy, A J

    2010-10-01

    Future climatic scenarios combine increasing concentrations of atmospheric CO(2) and rising sea levels. Spartina maritima is a C(4) halophyte that is an important pioneer and ecosystem engineer in salt marshes of the Atlantic coast of southern Europe. A glasshouse experiment investigated the combined effects on its growth and photosynthetic apparatus of approximately doubling CO(2) concentration (from 380 to 700 μmol mol(-1)) at a range of salinity (0, 171 and 510 mM NaCl). We measured relative growth rates, gas exchange, chlorophyll fluorescence parameters, photosynthetic pigment concentrations, and total ash, Na(+), K(2+), Ca(2+) and N concentrations. Elevated CO(2) stimulated growth of S. maritima by c. 65% at all external salinities; this growth enhancement was associated with greater net photosynthetic rate (A) and improved leaf water relations. A increased despite a drop in stomatal conductance in response to 700 μmol mol(-1) CO(2). CO(2) and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments. Φ(PSII) values at midday decreased significantly with external salinity in plants grown at 380 μmol mol(-1) CO(2); and F(v)/F(m) and Φ(PSII) values were higher at 700 μmol mol(-1) CO(2) in presence of NaCl. Plant nutrient concentrations declined under elevated CO(2), which can be ascribed to the dilution effect caused by an increase in biomass. The results suggest that the productivity S. maritima and the ecosystem services it provides will increase in likely future climatic scenarios. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Nonclassical energy transfer in photosynthetic FMO complex

    Directory of Open Access Journals (Sweden)

    Abramavicius Vytautas

    2013-03-01

    Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.

  13. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/2/2003 through 4/01/2003. As indicated in the list of accomplishments below we are progressing with long-term model scale bioreactor tests and are completing final preparations for pilot scale bioreactor testing. Specific results and accomplishments for the first quarter of 2003 are included.

  14. C4b-binding protein is present in affected areas of myocardial infarction during the acute inflammatory phase and covers a larger area than C3.

    Directory of Open Access Journals (Sweden)

    Leendert A Trouw

    Full Text Available BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP. In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI. This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b.

  15. Drought stress obliterates the preference for ammonium as an N source in the C4 plant Spartina alterniflora.

    Science.gov (United States)

    Hessini, Kamel; Kronzucker, Herbert J; Abdelly, Chedly; Cruz, Cristina

    2017-06-01

    The C4 grass Spartina alterniflora is known for its unique salt tolerance and strong preference for ammonium (NH4+) as a nitrogen (N) source. We here examined whether Spartina's unique preference for NH4+ results in improved performance under drought stress. Manipulative greenhouse experiments were carried out to measure the effects of variable water availability and inorganic N sources on plant performance (growth, photosynthesis, antioxidant, and N metabolism). Drought strongly reduced leaf number and area, plant fresh and dry weight, and photosynthetic activity on all N sources, but the reduction was most pronounced on NH4+. Indeed, the growth advantage seen on NH4+ in the absence of drought, producing nearly double the biomass compared to growth on NO3-, was entirely obliterated under both intermediate and severe drought conditions (50 and 25% field capacity, respectively). Both fresh and dry weight became indistinguishable among N sources under drought. Major markers of the antioxidant capacity of the plant, the activities of the enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, showed higher constitutive levels on NH4+. Catalase and glutathione reductase were specifically upregulated in NH4+-fed plants with increasing drought stress. This upregulation, however, failed to protect the plants from drought stress. Nitrogen metabolism was characterized by lower constitutive levels of glutamine synthetase in NH4+-fed plants, and a rise in glutamate dehydrogenase (GDH) activity under drought, accompanied by elevated proline levels in leaves. Our results support postulates on the important role of GDH induction, and its involvement in the synthesis of compatible solutes, under abiotic stress. We show that, despite this metabolic shift, S. alterniflora's sensitivity to drought does not benefit from growth on NH4+ and that the imposition of drought stress equalizes all N-source-related growth differences observed under non

  16. Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Redondo-Gómez, Susana; Alvarez, Rosario; Cambrollé, Jesús; Gandullo, Jacinto; Figueroa, M Enrique

    2010-06-01

    Spartina densiflora is a C(4) halophytic species that has proved to have a high invasive potential which derives from its clonal growth and its physiological plasticity to environmental factors, such as salinity. A greenhouse experiment was designed to investigate the synergic effect of 380 and 700 ppm CO(2) at 0, 171, and 510 mM NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. PEPC activity and total ash, sodium, potassium, calcium, magnesium, and zinc concentrations were determined, as well as the C/N ratio. Elevated CO(2) stimulated growth of S. densiflora at 0 and 171 mM NaCl external salinity after 90 d of treatment. This growth enhancement was associated with a greater leaf area and improved leaf water relations rather than with variations in net photosynthetic rate (A). Despite the fact that stomatal conductance decreased in response to 700 ppm CO(2) after 30 d of treatment, A was not affected. This response of A to elevated CO(2) concentration might be explained by an enhanced PEPC carboxylation capacity. On the whole, plant nutrient concentrations declined under elevated CO(2), which can be ascribed to the dilution effect caused by an increase in biomass and the higher water content found at 700 ppm CO(2). Finally, CO(2) and salinity had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments.

  17. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda.

    Science.gov (United States)

    Deng, Yun; Beadham, Ian; Wu, Jie; Chen, Xiao-Di; Hu, Lan; Gu, Jun

    2015-09-01

    Chronic effects of the ionic liquid [C4mim][Cl] (mp 73 °C) towards the microalga, Scenedesmus quadricauda were studied by flow cytometry, monitoring multiple endpoints of cell density, esterase activity, membrane integrity, reactive oxygen species and chlorophyll fluorescence. Toxicity was clearly in evidence, and although increased esterase activity indicated hormesis during initial exposure to [C4mim][Cl], inhibition of both esterase activity and chlorophyll fluorescence became apparent after 3 days. Cell density was also decreased by culturing with [C4mim][Cl], but this effect was clearly concentration-dependent and only became significant during the second half of the experiment. In contrast, [C4mim][Cl] had only a modest effect on reactive oxygen species (ROS) and caused little damage to cell membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Inhibition of complement components C3 and C4 by cadralazine and its active metabolite.

    Science.gov (United States)

    Andersson, M; Hanson, A; Englund, G; Dahlbäck, B

    1991-01-01

    The effect of cadralazine and its active metabolite CGP 22639 on the covalent binding reaction of C4 and C3 has been studied. Trypsin-Sepharose was used to activate radio-labelled C3 and C4 and binding of the radio-labelled protein to the trypsin-Sepharose was measured. Cadralazine inhibited 50% of the binding of C3 and C4 at concentrations of 19 mmol/l and 15 mmol/l, respectively. Its active metabolite was more potent and inhibited 50% of the C3 and C4 binding at concentrations of 8 and 3.5 mmol/l, respectively. These concentrations are much higher than those found in plasma during therapy. This is consistent with the clinical observation that in patients with normal kidney function cadralazine is not an inducer of SLE.

  19. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c-4e hypervalent bonds, and rhombic 4c-4e bonds.

    Science.gov (United States)

    Chen, Qiang; Lu, Haigang; Zhai, Hua-Jin; Li, Si-Dian

    2014-04-28

    We explore the structural and bonding properties of the electron-deficient boron oxide clusters, using a series of B3On(-/0/+) (n = 2-4) clusters as examples. Global-minimum structures of these boron oxide clusters are identified via unbiased Coalescence Kick and Basin Hopping searches, which show a remarkable size and charge-state dependence. An array of new bonding elements are revealed: core boronyl groups, dual 3c-4e hypervalent bonds (ω-bonds), and rhombic 4c-4e bonds (o-bonds). In favorable cases, oxygen can exhaust all its 2s/2p electrons to facilitate the formation of B-O bonds. The current findings should help understand the bonding nature of low-dimensional boron oxide nanomaterials and bulk boron oxides.

  20. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene

    Science.gov (United States)

    Zhang, Chunfu; Wang, Yang; Deng, Tao; Wang, Xiaoming; Biasatti, Dana; Xu, Yingfeng; Li, Qiang

    2009-10-01

    The emergence of C4 photosynthesis in plants as a significant component of terrestrial ecosystems is thought to be an adaptive response to changes in atmospheric CO 2 concentration and/or climate during Neogene times and has had a profound effect on the global terrestrial biosphere. Although expansion of C4 grasses in the latest Miocene and Pliocene has been widely documented around the world, the spatial and temporal variations in the C4 expansion are still not well understood and its driving mechanisms remain a contentious issue. Here we present the results of carbon and oxygen isotope analyses of fossil and modern mammalian tooth enamel samples from the central Inner Mongolia. Our samples represent a diverse group of herbivorous mammals including deer, elephants, rhinos, horses and giraffes, ranging in age from the late Oligocene to modern. The δ13C values of 91 tooth enamel samples of early late-Miocene age or older, with the exception of two 13 Ma rhino samples (- 7.8 and - 7.6‰) and one 8.5 Ma suspected rhino sample (- 7.6‰), were all less than - 8.0‰ (VPDB), indicating that there were no C4 grasses present in their diets and thus probably few or no C4 grasses in the ecosystems of the central Inner Mongolia prior to ~ 8 Ma. However, 12 out of 26 tooth enamel samples of younger ages (~ 7.5 Ma to ~ 3.9 Ma) have δ13C values higher than - 8.0‰ (up to - 2.4‰), indicating that herbivores in the area had variable diets ranging from pure C3 to mixed C3-C4 vegetation during that time interval. The presence of C4 grasses in herbivores' diets (up to ~ 76% C4) suggests that C4 grasses were a significant component of the local ecosystems in the latest Miocene and early Pliocene, consistent with the hypothesis of a global factor as the driving mechanism of the late Miocene C4 expansion. Today, C3 grasses dominate grasslands in the central Inner Mongolia area. The retreat of C4 grasses from this area after the early Pliocene may have been driven by regional

  1. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize

    OpenAIRE

    Robaina-Est?vez, Semid?n; Nikoloski, Zoran

    2016-01-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems?mesophyll and bundle sheath cells. Yet, determining the extent to...

  2. Polypeptide Composition of Envelope Membranes Isolated from Chloroplasts of C_3, C_4, and CAM Plants

    OpenAIRE

    Joyce G., Foster; Gerald E, Edwards; Department of Botany, Washington State University:(Present)United States Department of Agriculture, Appalachian Soil and Water Conservation Research Laboratory; Department of Botany, Washington State University

    1983-01-01

    Chloroplast envelopes were isolated from chloroplasts purified from Spinacea oleracea L. (C_3), Panicum miliaceum L. (NAD-malic enzyme-type C_4), Digitaria sanguinalis (L.) Scop. (NADP-malic enzyme-type C_4). Kalanchoe daigremontiana Hamet et Perrier (constitutive CAM), and from Mesembryanthemum crystallinum L. (inducible CAM) performing either C_3 photosynthesis or Crassulacean acid metabolism (CAM). For each species, methods were developed to isolate chloroplast envelopes free of thylakoid ...

  3. Klasifikasi Penerimaan Mahasiswa Baru Menggunakan Algortima C4.5 Dan Adaboost (Studi Kasus : STMIK XYZ

    Directory of Open Access Journals (Sweden)

    Yoga Handoko Agustin

    2017-02-01

    Full Text Available Every college student wants to get a good quality and the quantity corresponding to the quota in charge of the university. The quality of new students can be seen early by recognizing the pattern of student characteristics existing in previous years and noticed a long period of study.C4.5 algorithm is a model for building a decision tree, this algorithm is intended for supervised learning: value attribute in the dataset described by a collection of attributes and including one of a series of interconnected classes. To improve the accuracy in the process of classification and prediction by means generate a combination of a model, then used modeling boosting namely Adaboost. Experiments conducted on 546 datasets using C4.5 algorithms based adaboost to produce accuracy. From the experiments conducted to produce the same accuracy values between algorithm C4.5 and C4.5 algorithm based on Adaboost is equal to 77.33% Precision, Accuracy 90.28%, 45.54% Recall but there is a difference in AUC values for C4.5 Algorithm by 0683 while Adaboost algorithm C4.5 Driven by 0.717. The patterns can help to take the decision of new admissions to graduate on time and graduate students can be predictable late early.

  4. Genome-scale modeling of the evolutionary path to C4 photosynthesis

    Science.gov (United States)

    Myers, Christopher R.; Bogart, Eli

    In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.

  5. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  6. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  7. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance.

    Science.gov (United States)

    Zhang, Chen; Li, Xia; He, Yafei; Zhang, Jinfei; Yan, Ting; Liu, Xiaolong

    2017-06-01

    We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C4PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C4-PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C4 photosynthesis can be used to increase the yield of rice under drought conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Nitric oxide in marine photosynthetic organisms.

    Science.gov (United States)

    Kumar, Amit; Castellano, Immacolata; Patti, Francesco Paolo; Palumbo, Anna; Buia, Maria Cristina

    2015-05-01

    Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms.

    Science.gov (United States)

    Magdaong, Nikki Cecil M; Blankenship, Robert E

    2018-01-03

    Light-harvesting complexes (LHCs) serve a dual role in photosynthesis, depending on the prevailing light conditions. In low light, they ensure photosynthetic efficiency by maximizing the light absorption cross-section and subsequent energy storage. Under excess light conditions, LHCs perform photoprotective quenching functions to prevent harmful chemical species such as triplet chlorophyll and singlet oxygen from forming and damaging the photosynthetic apparatus. In this minireview, various photoprotective quenching mechanisms that have been identified in different photosynthetic organisms are surveyed and summarized, and implications for improving photosynthetic productivity are briefly discussed. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium.

    Science.gov (United States)

    Madigan, M T; Brock, T D

    1975-01-01

    Chloroflexus, a newly described genus of filamentous, photosynthetic, gliding bacteria, oxidizes sulfide anaerobically under photoautotrophic or photoheterotrophic growh conditions and deposits elemental sulfur outside the cell. The formation of sulfur granules outside the cell supports the idea that this organism is related to the green sulfur bacteria (Chlorobiaceae). Images PMID:1092670

  11. Plasma C4d as marker for lupus nephritis in systemic lupus erythematosus.

    Science.gov (United States)

    Martin, Myriam; Smoląg, Karolina I; Björk, Albin; Gullstrand, Birgitta; Okrój, Marcin; Leffler, Jonatan; Jönsen, Andreas; Bengtsson, Anders A; Blom, Anna M

    2017-12-06

    In the present study, we sought to evaluate the complement activation product C4d as a marker for lupus nephritis in systemic lupus erythematosus (SLE). C4d levels were determined by enzyme-linked immunosorbent assay in plasma samples of patients with established SLE using a novel approach based on detection of a short linear cleavage neoepitope. Cross-sectional associations were studied in 98 patients with SLE with samples taken at lower or higher respective disease activity. Temporal associations were investigated in 69 patients with SLE who were followed longitudinally for up to 5 years. Plasma samples from 77 healthy donors were included as controls. C4d levels were negligible in healthy control subjects and significantly increased in patients with SLE in the cross-sectional study (p Lupus Erythematosus Disease Activity Index (p = 0.011) and predominantly with lupus nephritis (p = 0.003), exhibiting a sensitivity of 79% to identify patients with nephritis. High C4d levels together with the presence of anti-dsDNA autoantibodies preceded and thus predicted future lupus nephritis in the longitudinal study (OR 5.4, 95% CI 1.4-21.3). When we considered only patients with renal involvement (19 of 69) during the longitudinal study, we found that high C4d levels alone could forecast recurrence of future lupus nephritis (OR 3.3, 95% CI 1.2-9.6). C4d appears to be a valuable marker for use in monitoring of patients with SLE, particularly for lupus nephritis. Importantly, C4d levels can predict impending flares of lupus nephritis and may thus be useful for informing treatment.

  12. C4/5 foraminal stenosis predicts C5 palsy after expansive open-door laminoplasty.

    Science.gov (United States)

    Lee, Ho-Jin; Ahn, Jae-Sung; Shin, Byungkon; Lee, Hoseok

    2017-04-21

    Laminoplasty is frequently performed in cervical myelopathy patients, but can lead to unexpected postoperative C5 palsy. Although several studies have examined the pathogenesis and prevention of postoperative C5 palsy, many controversies remain and some radiological findings identified as risk factors were not correlated with our outcomes. This study sought reliable radiological findings that predict C5 palsy after laminoplasty and examined why the predictors of C5 palsy did not apply in our series. This study reviewed 116 patients who underwent open-door laminoplasty for cervical spondylotic myelopathy between January 2014 and April 2016, retrospectively. C5 palsy was defined as weakness of the deltoid muscle. We evaluated the incidence of C5 palsy, the preoperative C2-7 Cobb's angle, and Pavlov ratio at the C4/C5 level using simple cervical lateral radiographs. We also evaluated the existence of an ossified posterior longitudinal ligament, the transverse diameter of the C4/5 foramen, and increases in the anteroposterior diameter of the spinal canal at the C4/5 levels after surgery. Furthermore, a high signal intensity on T2-weighted images of the cervical spinal cord preoperatively was noted. Of the 116 patients, 16 cases were excluded and 100 cases were analyzed; postoperative C5 palsy occurred in 8 patients (8%). There were no significant differences between the two groups except the average diameter of the C4/5 foramen. A diameter of the C4/5 foramen of less than 2 mm was significantly related to C5 palsy in the binary logistic regression test. A smaller diameter of the C4/5 foramen was the only factor significantly correlated with C5 palsy after laminoplasty. The results suggest that C4/5 foraminal stenosis is one of the best predictors of C5 palsy, which might be related to ischemic/reperfusion injury of the C5 root nerve after laminoplasty.

  13. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    Science.gov (United States)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  14. Non-photosynthetic pigments as potential biosignatures

    Science.gov (United States)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  15. Mitochondrial haplogroup C4c: a rare lineage entering America through the ice-free corridor?

    Science.gov (United States)

    Hooshiar Kashani, Baharak; Perego, Ugo A; Olivieri, Anna; Angerhofer, Norman; Gandini, Francesca; Carossa, Valeria; Lancioni, Hovirag; Semino, Ornella; Woodward, Scott R; Achilli, Alessandro; Torroni, Antonio

    2012-01-01

    Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America. Copyright © 2011 Wiley Periodicals, Inc.

  16. Sistem Pakar Identifikasi Modalitas Belajar Siswa Dengan Implementasi Algoritma C4.5

    Directory of Open Access Journals (Sweden)

    Rachmawati Soewono

    2016-01-01

    Full Text Available C4.5 Algorithm is one of the classification technique in machine learning which is used in data mining process by build a decision tree which is represent in the rules. The aims of classification technique in data mining is to recognize the regularity of the pattern and the relation in a huge dataset by historical data collection. Students’ modalities measurement which is done by the questionnaire is produce historical data which is potentially to be processed to generate the classification that can be converted in rules. The expert acquisition and the C4.5 algorithm classification rules are used as knowledge base in the expert system. Therefore this research is done to build an expert system of the student’s modalities identification by implementing C4.5 algorithm that can produce seven categories of modalities classification, they are : visual, auditory, kinesthetic, visual-auditory, visual-kinesthetic, auditory-kinesthetic and visual-auditory-kinesthetic which has good in accuracy. The accuracy of the C4.5 algorithm classification and the expert system testing prediction is 80%. Keywords : Expert system; Decision tree; C4.5 Algorithm; Modalities.  

  17. Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna.

    Science.gov (United States)

    Holtum, Joseph A M; Hancock, Lillian P; Edwards, Erika J; Winter, Klaus

    2017-07-01

    Low levels of crassulacean acid metabolism (CAM) are demonstrated in two species with C4 photosynthesis, Portulaca cyclophylla and P. digyna. The expression of CAM in P. cyclophylla and P. digyna is facultative, i.e. optional. Well-watered plants did not accumulate acid at night and exhibited gas-exchange patterns consistent with C4 photosynthesis. CAM-type nocturnal acidification was reversible in that it was induced following drought and lost when droughted plants were rewatered. In P. cyclophylla, droughting was accompanied by a small but discernible net uptake of CO2 during the dark, whereas in P. digyna, net CO2 exchange at night approached the CO2 compensation point but did not transition beyond it. This report brings the number of known C4 species with a capacity for expressing CAM to six. All are species of Portulaca. The observation of CAM in P. cyclophylla and P. digyna is the first for species in the opposite-leaved (OL) Portulacelloid-anatomy lineage of Portulaca and for the Australian clade therein. The other four species are within the alternate-leaved (AL) lineage, in the Atriploid-anatomy Oleracea and the Pilosoid-anatomy Pilosa clades. Studies of the evolutionary origins of C4 and CAM in Portulaca will benefit from a more wide-range survey of CAM across its species, particularly in the C3-C4 intermediate-containing Cryptopetala clade. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants.

    Science.gov (United States)

    Li, Yuanyuan; Heckmann, David; Lercher, Martin J; Maurino, Veronica G

    2017-01-01

    To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C3-C4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C4 anatomy and biochemistry. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Record of C4 Photosynthesis Through the Late Neogene and Pleistocene

    Science.gov (United States)

    Cerling, T. E.

    2016-12-01

    C4 photosynthesis is an adaptation to the low atmospheric carbon dioxide concentrations experienced in the Neogene; it is found principally in tropical to sub-tropical/temperate regions where temperatures are high in the growing season. Although C4 photosynthesis makes up about 50% of Net Primary Productivity in tropical regions, its macroscopic fossil record is extremely sparse. Therefore, inferences to its significance in local ecosystems are based primarily on stable isotopes, with phytoliths become more important as phytolith morphology becomes better associated with plant structure and classification. Stable isotopes have been the principal recorder for understanding the history of C4 photosynthesis; however, different materials record different aspects of the C4 contribution to ecosystem structure and thus are telling different parts of the same story. With the fossil record so poorly known, we often assume similar ecosystem structures and functions as we observe in modern analogues. It is likely that large evolutionary changes have taken place within C4 plants as they went from 50% tropical NPP in the late Neogene.

  20. Al4SiC4 wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    Directory of Open Access Journals (Sweden)

    L. Pedesseau

    2015-12-01

    Full Text Available New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al4SiC4. A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al4SiC4 material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al4SiC4 material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.

  1. The urokinase receptor and its structural homologue C4.4A in human cancer

    DEFF Research Database (Denmark)

    Jacobsen, B; Ploug, M

    2008-01-01

    in the human genome. The structural relationship between the two proteins is, however, not reflected at the functional level. Whereas uPAR has a well-established role in regulating and focalizing uPA-mediated plasminogen activation to the surface of those cells expressing the receptor, the biological function...... of C4.4A remains elusive. Nonetheless, both uPAR and C4.4A have been implicated in human pathologies such as wound healing and cancer. A large body of experimental evidence thus demonstrates that high levels of uPAR in resected tumour tissue as well as in plasma are associated with poor prognosis......The urokinase-type plasminogen activator receptor (uPAR) and its structural homologue C4.4A are multidomain members of the Ly6/uPAR/alpha-neurotoxin protein domain family. Both are glycosylphosphatidylinositol-anchored membrane glycoproteins encoded by neighbouring genes located on chromosome 19q13...

  2. Yield responses of wild C3and C4crop progenitors to subambient CO2: a test for the role of CO2limitation in the origin of agriculture.

    Science.gov (United States)

    Cunniff, Jennifer; Jones, Glynis; Charles, Michael; Osborne, Colin P

    2017-01-01

    Limitation of plant productivity by the low partial pressure of atmospheric CO 2 (C a ) experienced during the last glacial period is hypothesized to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial C a limits vegetative growth in the wild progenitors of both C 3 and C 4 founder crops. Here, we present data showing that glacial C a also reduces grain yield in both crop types. We grew four wild progenitors of C 3 (einkorn wheat and barley) and C 4 crops (foxtail and broomcorn millets) at glacial and postglacial C a , measuring grain yield and the morphological and physiological components contributing to these yield changes. The C 3 species showed a significant increase in unthreshed grain yield of ~50% with the glacial to postglacial increase in C a , which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at subambient levels of C a . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C 4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by C a in only one C 4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C 4 species at glacial C a showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial C a also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C 3 and C 4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture. © 2016

  3. HYDRATION MECHANISMS OF CALCIUM SULPHOALUMINATE C4A3S̄ , C4AS̄ PHASE AND ACTIVE BELITE β-C2S

    Directory of Open Access Journals (Sweden)

    H. EL-DIDAMONY

    2012-12-01

    Full Text Available Highly reactive belite and calcium sulphoaluminate as well as monosulphate mix were prepared from nano-materials at lower temperatures ~1250°C. The crystal size of these materials was 25, 16 and 27 nm as determined from the X-ray analysis. The sulphoaluminate belite cement is a recent type of cement prepared at lower temperature with good properties. The aim of the present work is to synthesize C4A3S̄, monosulphate mix C4AS̄ and active belite β-C2S. The hydration mechanism was studied by XRD and DSC techniques as well as by the determination of chemically combined water contents of cement pastes with curing time. The results reveal that ettringite is first formed hydrates in the monosulphate mix, which then converted into monosulphate hydrates. The results of DSC and XRD are in good agreement with those of combined water contents. On the other side, the rate of hydration of active belite increases linearly from 3 up to 90 days, whereas, the traditional belite hydrates increase with lower rate up to 90 days, due to the thermodynamic stability structure of traditional belite.

  4. Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.

    Science.gov (United States)

    Fukayama, H; Tsuchida, H; Agarie, S; Nomura, M; Onodera, H; Ono, K; Lee, B H; Hirose, S; Toki, S; Ku, M S; Makino, A; Matsuoka, M; Miyao, M

    2001-11-01

    The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly increased, in one line reaching 40-fold over that of wild-type plants. In a homozygous line, the PPDK protein accounted for 35% of total leaf-soluble protein or 16% of total leaf nitrogen. In contrast, introduction of a chimeric gene containing the full-length cDNA of the maize PPDK fused to the maize C(4)-Pdk promoter or the rice Cab promoter only increased PPDK activity and protein level slightly. These observations suggest that the intron(s) or the terminator sequence of the maize gene, or a combination of both, is necessary for high-level expression. In maize and transgenic rice plants carrying the intact maize gene, the level of transcript in the leaves per copy of the maize C(4)-Pdk gene was comparable, and the maize gene was expressed in a similar organ-specific manner. These results suggest that the maize C(4)-Pdk gene behaves in a quantitatively and qualitatively similar way in maize and transgenic rice plants. The activity of the maize PPDK protein expressed in rice leaves was light/dark regulated as it is in maize. This is the first reported evidence for the presence of an endogenous PPDK regulatory protein in a C(3) plant.

  5. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    Science.gov (United States)

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  6. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    conditions and when the temperature was raised again. Therefore, this genotype could be useful for breeding new varieties with an improved cold tolerance vis-a-vis Hornum, and be valuable in broadening the genetic diversity of miscanthus for more widespread cultivation in temperate climates.......Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...

  7. Dynamic and quasi-static measurements of C-4 and primasheet P1000 explosives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; De Luca, Racci [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Cady, Carl M [Los Alamos National Laboratory; Todd, Steven N [SNL

    2010-01-01

    We have measured dynamic and quasi-static mechanical properties of C-4 and Primasheet P1000 explosive materials to provide input data for modeling efforts. Primasheet P1000 is a pentaerythritol tetranitrate-based rubberized explosive. C-4 is a RDX-based moldable explosive. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on load frames and on a dynamic mechanical analyzer. Split-Hopkinson and quasi-static tests were done at five temperatures from -50 C to 50 C. Acoustic velocities were measured at, above, and below room temperature.

  8. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  9. Four-dimensional gravitational backgrounds based on N = 4, $\\widehat{c}$ = 4, superconformal systems

    CERN Document Server

    Kounnas, Costas

    1994-01-01

    We propose two new realizations of the N=4, $\\hat{c}=4$ superconformal system based on the compact and non-compact versions of parafermionic algebras. The target space interpretation of these systems is given in terms of four-dimensional target spaces with non-trivial metric and topology different from the previously known four-dimensional semi-wormhole realization. The proposed $\\hat{c}=4$ systems can be used as a building block to construct perturbatively stable superstring solutions with covariantized target space supersymmetry around non-trivial gravitational and dilaton backgrounds.

  10. A study of immunoglobulins and complements (C3 &C4 in alopecia areata

    Directory of Open Access Journals (Sweden)

    Sharma R

    1995-01-01

    Full Text Available Estimation of serum Immunoglobulins (IgG, IgM and IgA and complements (C3 and C4 was carried out in 100 cases of alopecia areata as per method described by Mancini (1965.[1] Clinically patients were divided in two groups, alopecia areata circumscribed (group I and severe alopecia areata (group II. Significant decrease in levels of one or more Immunoglobulins were observed in most of the patients. However, Serum complements (C3 and C4 were within range of normal control values

  11. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  12. C# 4, ASP.NET 4, and WPF, with Visual Studio 2010 jump start

    CERN Document Server

    Nagel, Christian; Stephens, Rod; Hanselman, Scott; Glynn, Jay; Rader, Devin; Watson, Karli; Skinner, Morgan

    2010-01-01

    This Wrox Blox is a value-packed resource to help experienced .NETdevelopers learn the new .NET release. It is excerpted from theWrox books: Professional C# 4 and .NET 4, Professional ASP.NET4, and WPF Programmer's Reference by Christian Nagel,Bill Evjen, Scott Hanselman, and Rod Stephens, and includes morethan 100 print book pages drawn from these three key titles. It isan excellent resource to help .NET developers get up to speed faston .NET 4, C# 4.0, ASP.NET 4, and WPF, providing all theinformation needed to program with the important new features,including: C# Dynamic Types and Par

  13. Effect of plant density on the characteristics of photosynthetic ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... At such densities, garlic developed a powerful photosynthetic apparatus and the bulbs were large and uniform. Key words: Garlic, plant density, leaf number per plant, leaf area, LAI. INTRODUCTION. The photosynthetic apparatus performs photosynthesis, which involves the production of organic matter.

  14. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  15. Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Photosynthetic characteristics of two cultivars tolerant (c.v. Taipei309 and Wuyujing3), two cultivars sensitive (c.v.CA212 and ... Key words: Rice, chilling tolerance, photosynthetic rate, photo-system, chilling stress, photooxidation, gluthione ...... response to low temperature: an overview.-Lyons JM. Low.

  16. A new perspective on hydrogen production by photosynthetic water-splitting

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.W.; Greenbaum, E.

    1996-05-01

    Present energy systems are heavily dependent on fossil fuels. This will eventually lead to the foreseeable depletion of fossil energy resources and, according to some reports, global climate changes due to the emission of carbon dioxide. In principle, hydrogen production by biophotolysis of water can be an ideal solar energy conversion system for sustainable development of human activities in harmony with the global environment. In photosynthetic hydrogen production research, there are currently two main efforts: (1) Direct photoevolution of hydrogen and oxygen by photosynthetic water splitting using the ferredoxin/hydrogenase pathway; (2) Dark hydrogen production by fermentation of organic reserves such as starch that are generated by photosynthesis during the light period. In this chapter, the advantages and challenges of the two approaches for hydrogen production will be discussed, in relation to a new opportunity brought by our recent discovery of a new photosynthetic water-splitting reaction which, potentially, has twice the energy efficiency of conventional watersplitting via the two light reaction Z-scheme of photosynthesis.

  17. Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density.

    Science.gov (United States)

    Boonman, A; Prinsen, E; Voesenek, L A C J; Pons, T L

    2009-01-01

    The regulation of photosynthetic acclimation to canopy density was investigated in tobacco canopies and in tobacco and Arabidopsis plants with part of their foliage experimentally shaded. Both species acclimated to canopy light gradients and partial shading by allocating photosynthetic capacity to leaves in high light and adjusting chloroplast organization to the local light conditions. An investigation was carried out to determine whether signalling mediated by photoreceptors, sugars, cytokinin, and nitrate is involved in and necessary for proper photosynthetic acclimation. No evidence was found for a role for sugars, or for nitrate. The distribution of cytokinins in tobacco stands of contrasting density could be explained in part by irradiance-dependent delivery of cytokinins through the transpiration stream. Functional studies using a comprehensive selection of Arabidopsis mutants and transgenics showed that normal wild-type responses to partial shading were retained when signalling mediated by photoreceptors or cytokinins was disrupted. This indicates that these pathways probably operate in a redundant manner. However, the reduction of the chlorophyll a/b ratio in response to local shade was completely absent in the Arabidopsis Ws-2 accession mutated in PHYTOCHROME D and in the triple phyAphyCphyD mutant. Moreover, cytokinin receptor mutants also showed a reduced response, suggesting a previously unrecognized function of phyD and cytokinins.

  18. Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions

    Directory of Open Access Journals (Sweden)

    Matthias eHirth

    2013-09-01

    Full Text Available In this study we assessed the ability of the C4 plant maize to perform long-term photosynthetic acclimation in an artificial light quality system previously used for analysing short-term and long-term acclimation responses (LTR in C3 plants. We aimed to test if this light system could be used as a tool for analysing redox-regulated acclimation processes in maize seedlings. Photosynthetic parameters obtained from maize samples harvested in the field were used as control. The results indicated that field grown maize performed a pronounced LTR with significant differences between the top and the bottom levels of the plant stand corresponding to the strong light gradients occurring in it. We compared these data to results obtained from maize seedlings grown under artificial light sources preferentially exciting either photosystem II or photosystem I. In C3 plants, this light system induces redox signals within the photosynthetic electron transport chain which trigger state transitions and differential phosphorylation of light harvesting complexes of photosystem II (LHCII. The LTR to these redox signals induces changes in the accumulation of plastid psaA transcripts, in chlorophyll (Chl fluorescence values Fs/Fm, in Chl a/b ratios and in transient starch accumulation in C3 plants. Maize seedlings grown in this light system exhibited a pronounced ability to perform both short-term and long-term acclimation at the level of psaA transcripts, Chl fluorescence values Fs/Fm and Chl a/b ratios. Interestingly, maize seedlings did not exhibit redox-controlled variations of starch accumulation probably because of its specific differences in energy metabolism. In summary, the artificial laboratory light system was found to be well-suited to mimic field light conditions and provides a physiological tool for studying the molecular regulation of the LTR of maize in more detail.

  19. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  20. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions.

    Science.gov (United States)

    Rivas, Rebeca; Frosi, Gabriella; Ramos, Diego G; Pereira, Silvia; Benko-Iseppon, Ana M; Santos, Mauro G

    2017-09-01

    Calotropis procera is a C3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/Ci analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (Vc,max) and photosynthetic rate (Amax). On the other hand, limitation of stomatal or mesophyll CO2 diffusion did not impair fast recovery, maintaining Vc,max, chloroplast CO2 concentration (Cc) and mesophyll conductance (gm) unchanged while electron flow used for RuBP carboxylation (Jc) and Amax increased. The ability to tolerate drought stress and the fast recovery of this evergreen C3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. C3 and C4 photosynthesis models: an overview from the perspective of crop modelling

    OpenAIRE

    Yin, X; Struik, P.C.

    2009-01-01

    Nearly three decades ago Farquhar, von Caemmerer and Berry published a biochemical model for C3 photosynthetic rates (the FvCB model). The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (Ac) and the electron transport-limited rate of CO2 assimilation (Aj). Given its simplicity and the growing availability of the required enzyme kinetic constants, the FvCB model has been used for a wide range of studies, from analysing underlying C3 leaf bi...

  2. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  3. Antenna organization in green photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E.

    1987-01-01

    This project is concerned with the structure and function of the unique antenna system found in the green photosynthetic bacteria. The antenna system in these organisms is contained within a vesicle known as a chlorosome, which is attached to the cytoplasmic side of the cell membrane. Additional antenna pigments and reaction centers are contained in integral membrane proteins. Energy absorbed by the bacteriochlorophyll c (BChl c) pigments in the chlorosome is transferred via a baseplate'' array of BChl a antenna pigments into the membrane and to the reaction center. A schematic model of chlorosome structure is shown. This project is aimed at increasing our understanding of the organization of the pigments in the chlorosome and how the antenna system functions.

  4. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae.

    Directory of Open Access Journals (Sweden)

    Michal Sorek

    Full Text Available Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL, whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light

  5. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae.

    Science.gov (United States)

    Sorek, Michal; Levy, Oren

    2012-01-01

    Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL), whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light-induced signaling

  6. Modifiable chromatophore proteins in photosynthetic bacteria.

    Science.gov (United States)

    Hui, K M; Hurlbert, R E

    1979-01-01

    The chromatophores of Chromatium vinosum, as well as six other photosynthetic bacteria, contained two or more proteins which were insoluble when heated in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME). When the chromatophores were dissolved at room temperature in SDS-beta-ME, these proteins were present in the SDS-polyacrylamide gel electrophoresis profiles, but when the samples were dissolved at 100 degrees C, they were absent or considerably diminished. When one-dimensional gels of chromatophores solubilized at room temperature were soaked in the SDS-beta-ME solution and heated to 100 degrees C and the gels were run in a second dimension, the proteins became immobilized in the original first-dimension gel, where they could be detected by staining. The two major proteins so affected in C. vinosum had apparent molecular weights of 28,000 and 21,000. The chromatophores of several other photosynthetic bacteria also contained predominant proteins between 30,000 and 19,000 molecular weight, which became insoluble when heated in the presence of SDS and beta-ME. In at least two of the species examined, these appeared to be reaction center proteins. The conditions causing the proteins to become insoluble were complex and involved temperature, SDS concentration, and the presence of sulfhydryl reagents. The chromatophores of four of the Chromatiaceae species and two strains of one of the Rhodospirillaceae species examined had a protein-pigment complex that was visible in SDS-polyacrylamide gel profiles of samples dissolved at room temperature but was absent in samples dissolved at 100 degrees C. Images PMID:438130

  7. A Unique Model Platform for C4 Plant Systems and Synthetic Biology

    Science.gov (United States)

    2015-12-10

    agrobacterium mediated transformation 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...successful agrobacterium mediated transformation 15. SUBJECT TERMS synthetic biology, Systems Biology 16. SECURITY CLASSIFICATION OF...were obtained suggesting successful agrobacterium mediated transformation . Introduction: C4 plants such as sugarcane, maize and sorghum are more

  8. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of ...

  9. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of.

  10. Biochemical Characterization of the C-4-Dicarboxylate Transporter DctA from Bacillus subtilis

    NARCIS (Netherlands)

    Groeneveld, Maarten; Detert Oude Weme, Ruud; Duurkens, Ria H.; Slotboom, Dirk Jan

    Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C-4-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed.

  11. Tomato yellow leaf curl virus C4 protein is a determinant of disease phenotype in tomato

    Science.gov (United States)

    Tomato yellow leaf curl virus (TYLCV) is a monopartite begomovirus. Its genome contains six open reading frames, with V1 and V2 in sense, and C1 to C4 in complementary orientation. The functions of V1 and V2 are for coat protein and pre-coat, respectively. C1 is for virus replication, C2 for trans-a...

  12. Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites

    Science.gov (United States)

    Herndon, J.M.; Rowe, M.W.; Larson, E.E.; Watson, D.E.

    1976-01-01

    Thermomagnetic analysis was made on samples of all known C3 and C4 chondrites in a controlled oxygen atmosphere. Considerable variation was noted in the occurrence of magnetic minerals, comparable to the variation observed earlier in the C2 chondrites. Magnetite was found as the only major magnetic phase in samples of only three C3 chondrites (2-4 wt.%) and the Karoonda C4 chondrite (7.7 wt.%). The magnetite content of these three C3 chondrites is only about one-third that observed in the C1 and C2 chondrites which were found to contain magnetite as the only magnetic phase. Five C3 chondrites were observed to undergo chemical change during heating, producing magnetite: this behavior is characteristic of troilite oxidation. Upper limits on initial magnetite content of about 1-9% were established for these meteorites. Samples of the remaining five C3 chondrites and the Coolidge C4 chondrite were found to contain both magnetite and metallic iron. In two samples, iron containing ???2% Ni was observed, while in the other four, the iron contained 6-8 wt.% Ni. In addition to containing both magnetite and iron metal, three of these samples reacted during heating to form additional magnetite. Variations in the magnetic mineralogy and, hence by inference bulk mineralogy, of C3 and C4 chondrites indicate a more complex genesis than is evident from whole-rock elemental abundance patterns. ?? 1976.

  13. Clinical significance of C4d in SLE and antiphospholipid syndrome

    NARCIS (Netherlands)

    Cohen, Danielle

    2012-01-01

    This thesis describes the clinical significance of thebiomarker C4d, a split product of the complement system, in several manifestations of systemic autoimmunediseases such as SLE and antiphospholipid syndrome. The findings in this thesis suggest that this biomarker might be of use in unraveling

  14. Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Erkelens, Corrie; Galan, L.

    1985-01-01

    The chlorination of terrestrial humic acid was studied at pH 7. 2 with varying chlorine to carbon ratios. The principal products are chloroform, di- and trichloroacetic acid, and chlorinated C-4 diacids. At a high chlorine dose many new chlorination products were detected, among them

  15. Electron swarm parameter measurements of perfluorobut-2-ene (2-C4F8)

    OpenAIRE

    Chachereau, Alise; Franck, Christian M.

    2015-01-01

    In this contribution, the electron swarm parameters of perfluorobut-2-ene (2-C4F8) mixtures with the buffer gases N2, CO2 and Argon are experimentally investigated. The effective ionization rate constant and electron drift velocity are measured in the entire E/N range up to the critical density-reduced electric field.

  16. Serum Complement C3 and C4 Levels in Relation to Diagnosis of ...

    African Journals Online (AJOL)

    Purpose: The main objective of this study was to measure serum complement C3 and C4 concentrations in patients of lupus nephritis to see if these simple measurements would give useful information to the clinician managing such patients.Method: A total of 52 samples were obtained from SLE patients, 17 suffering from ...

  17. PENERAPAN ALGORITMA C4.5 UNTUK PREDIKSI PENGGUNAAN JENIS KONTRASEPSI BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Rusda Wajhillah

    2017-09-01

    Keluarga Berencana (KB merupakan suatu program pemerintah yang dirancang untuk menyeimbangkan antara kebutuhan dan jumlah penduduk dengan menggunakan alat kontrasepsi. Kurangnya pengetahuan tentang kontrasepsi menyebabkan tidak sedikit akseptor lebih memilih menggunakan kontrasepsi berdasarkan coba-coba atau bahkan mengikuti saran dari orang lain yang kurang paham terhadap alat kontrasepsi. Oleh sebab itu, diperlukan adanya tindakan/penanganan khusus untuk mempermudah para akseptor dalam memilih kontrasepsi yang efektif dan sesuai dengan kondisi tubuhnya. Algoritma C4.5 yaitu metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami.Untuk itu, dalam penelitian ini akan dilakukan analisa data penggunaan jenis kontrasepsi menggunakan klasifikasi data mining yakni algoritma C4.5 dengan menggunakan beberapa parameter diantaranya usia, jumlah anak, tekanan darah dan riwayat penyakit yang akan diaplikasikan dalam bentuk web guna mempermudah para akseptor dalam mendapatkan nilai informasi yang lebih cepat dan fleksibel. Dari 130 jumlah kasus yang terdiri dari 104 kasus akseptor pengguna kontrasepsi hormonal dan 26 kasus pengguna kontrasepsi non hormonal yang didapat dari Posyandu Desa Nyangkowek Kecamatan Cicurug, maka didapatkan 14 rule yang dihasilkan dari pohon keputusan algoritma C4.5 dengan jumlah class non hormonal sebanyak 8 rule dan jumlah class hormonal sebanyak 6 rule serta dievaluasi dengan pengujian Cross Validation yangmenghasilkan tingkat akurasi sebesar 85,38%, sehingga dapat disimpulkan bahwa penelitian ini dapat membantu para akseptor KB dalam memilih jenis kontrasepsi yang efektif. Kata Kunci: Akseptor, Algoritma C4.5, Kontrasepsi, Sistem Pakar

  18. A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.

    Science.gov (United States)

    Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph

    2013-05-01

    C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.

  19. Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn16SiC4 and Mn17Si2C4.

    Science.gov (United States)

    Fredrickson, Rie T; Guo, Yiming; Fredrickson, Daniel C

    2016-01-13

    The concept of frustration between competing geometrical or bonding motifs is frequently evoked in explaining complex phenomena in the structures and properties of materials. This idea is of particular importance for metallic systems, where frustration forms the basis for the design of metallic glasses, a source of diverse magnetic phenomena, and a rationale for the existence of intermetallics with giant unit cells containing thousands of atoms. Unlike soft materials, however, where conflicts can be synthetically encoded in the molecular structure, staging frustration in the metallic state is challenging due to the ease of macroscopic segregation of incompatible components. In this Article, we illustrate one approach for inducing the intergrowth of incompatible bonding motifs with the synthesis and characterization of two new intermetallic carbides: Mn16SiC4 (mC42) and Mn17Si2C4 (mP46). Similar to the phases Mn5SiC and Mn8Si2C in the Mn-Si-C system, these compounds appear as intergrowths of Mn3C and tetrahedrally close-packed (TCP) regions reminiscent of Mn-rich Mn-Si phases. The nearly complete spatial segregation of Mn-Si (intermetallic) and Mn-C (carbide) interactions in these structures can be understood from the differing geometrical requirements of C and Si. Rather than macroscopically separating into distinct phases, though, the two bonding types are tightly interwoven, with most Mn atoms being on the interfaces. DFT chemical pressure analysis reveals a driving force stabilizing these interfaces: the major local pressures acting between the Mn atoms in the Mn-Si and Mn-C systems are of opposite signs. Joining the intermetallic and carbide domains together then provides substantial relief to these local pressures, an effect we term epitaxial stabilization.

  20. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS No...

  1. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes

    DEFF Research Database (Denmark)

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette

    2016-01-01

    of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than...

  2. Eliminating false positive C4 sugar tests on New Zealand Manuka honey.

    Science.gov (United States)

    Rogers, Karyne M; Somerton, Kerry; Rogers, Pamela; Cox, Julie

    2010-08-30

    Carbon isotope analyses (delta(13)C) of some New Zealand Manuka honeys show that they often fail the internationally recognised Association of Official Analytical Chemists sugar test (AOAC method 998.12) which detects added C(4) sugar, although these honeys are from unadulterated sources. Failure of these high value products is detrimental to the New Zealand honey industry, not only in lost export revenue, but also in brand and market reputation damage. The standard AOAC test compares the carbon isotope value of the whole honey and corresponding protein isolated from the same honey. Differences between whole honey and protein delta(13)C values should not be greater than +1.0 per thousand, as it indicates the possibility of adulteration with syrups or sugars from C(4) plants such as high fructose corn syrup or cane sugar.We have determined that during the standard AOAC method, pollen and other insoluble components are isolated with the flocculated protein. These non-protein components have isotope values which are considerably different from those of the pure protein, and can shift the apparent delta(13)C value of protein further away from the delta(13)C value of the whole honey, giving a false positive result for added C(4) sugar. To eliminate a false positive C(4) sugar test for Manuka honey, prior removal of pollen and other insoluble material from the honey is necessary to ensure that only the pure protein is isolated. This will enable a true comparison between whole honey and protein delta(13)C isotopes. Furthermore, we strongly suggest this modification to the AOAC method be universally adopted for all honey C(4) sugar tests. 2010 John Wiley & Sons, Ltd.

  3. Facile synthesis [5-(13)C-4-(2)H(2)]-L-glutamine for hyperpolarized MRS imaging of cancer cell metabolism.

    Science.gov (United States)

    Qu, Wenchao; Zha, Zhihao; Lieberman, Brian P; Mancuso, Anthony; Stetz, Mathew; Rizzi, Rahim; Ploessl, Karl; Wise, David; Thompson, Craig; Kung, Hank F

    2011-08-01

    Recent reports suggest that cancer cells may use glutamine, instead of glucose, as an alternative source of metabolic energy. This suggests that hyperpolarized (13)C glutamine may be useful as a magnetic resonance spectroscopy (MRS) imaging agent for detecting changes in glutamine metabolism in cancerous cells or tissues. Synthesis of [5-(13)C-4-(2)H(2)]-L-glutamine was accomplished through a seven-step synthetic pathway with a 44% overall yield. The introduction of two stable isotopes was performed by a NaB(2)H(4)-mixed anhydride reduction and K(13)CN-nuclophilic substitution, respectively. The desired [5-(13)C-4-(2)H(2)]-L-glutamine was successfully obtained by a one-pot reaction of deprotection and controlled cyanide hydrolysis. Hyperpolarized [5-(13)C-4-(2)H(2)]-L-glutamine samples were tested in human glioma cells (myc upregulated glia cells, SF188-Bcl-x(L)). MRS signals were obtained with a 9.4 Tesla 89-mm bore nuclear magnetic resonance spectrometer and a direct-detection multi-nuclear probe. The initial degree of polarization for [5-(13)C-4-(2)H(2)]-L-glutamine was ~5% and the initial (13)C signal to noise ratio was ~100:1. Glutamate was detected within seconds after the injection of hyperpolarized glutamine into the cells. The ratio of glutamate to glutamine was very high, indicating rapid conversion to glutamate. Similar cell uptake studies using [(3)H]-L-glutamine also demonstrated cell uptakes higher than that of [(18)F]fluorodeoxyglucose. We are reporting the first example of using specifically deuterated [5-(13)C-4-(2)H(2)]-L-glutamine in conjunction with hyperpolarized MRS for studying "glutaminolysis" in proliferating tumor cells. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  4. Detecting and monitoring water stress states in maize crops using spectral ratios obtained in the photosynthetic domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.

    2017-07-01

    The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.

  5. Clinical and pathological correlations of C4d immunostaining and its infl uence on the outcome of kidney transplant recipients

    Directory of Open Access Journals (Sweden)

    Virna Nowotny Carpio

    2011-09-01

    Full Text Available INTRODUCTION: C4d is a marker of antibody-mediated rejection (ABMR in kidney allografts, although cellular rejection also have C4d deposits. OBJECTIVE: To correlate C4d expression with clinico-pathological parameters and graft outcomes at three years. METHODS: One hundred forty six renal transplantation recipients with graft biopsies by indication were included. C4d staining was performed by paraffin-immunohistochemistry. Graft function and survival were measured, and predictive variables of the outcome were determined by multivariate Cox regression. RESULTS: C4d staining was detected in 48 (31% biopsies, of which 23 (14.7% had diffuse and 25 (16% focal distribution. Pre-transplantation panel reactive antibodies (%PRA class I and II were significantly higher in C4d positive patients as compared to those C4d negative. Both glomerulitis and pericapillaritis were associated to C4d (p = 0.002 and p < 0.001, respectively. The presence of C4d in biopsies diagnosed as no rejection (NR, acute cellular rejection (ACR or interstitial fibrosis/ tubular atrophy (IF/TA did not impact graft function or survival. Compared to NR, ACR and IF/TA C4d-, patients with ABMR C4d+ had the worst graft survival over 3 years (p = 0.034, but there was no difference between ABMR versus NR, ACR and IF/TA that were C4d positive (p = 0.10. In Cox regression, graft function at biopsy and high %PRA levels were predictors of graft loss. CONCLUSIONS: This study confirmed that C4d staining in kidney graft biopsies is a clinically useful marker of ABMR, with well defined clinical and pathological correlations. The impact of C4d deposition in other histologic diagnoses deserves further investigation.

  6. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.

  7. Long-lived transient anion of c-C4F8O

    Science.gov (United States)

    Kočišek, J.; Janečková, R.; Fedor, J.

    2018-02-01

    We report partial cross sections for electron attachment to c-C4F8O, a gas with promising technological applications in free-electron-rich environments. The dissociative electron attachment leads to a number of anionic fragments resulting from complex bond-breaking and bond-forming processes. However, the anion with the highest abundance is the non-dissociated (transient) parent anion which is formed around 0.9 eV electron energy. Its lifetime reaches tens of microseconds. We discuss the origin of this long lifetime, the anion's strong interactions with other molecules, and the consequences for electron-scavenging properties of c-C4F8O in denser environments, in particular for its use in mixtures with CO2 and N2.

  8. C4.4A as a biomarker in pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Kriegbaum, Mette Camilla; Santoni-Rugiu, Eric

    2014-01-01

    The high prevalence and mortality of lung cancer, together with a poor 5-year survival of only approximately 15%, emphasize the need for prognostic and predictive factors to improve patient treatment. C4.4A, a member of the Ly6/uPAR family of membrane proteins, qualifies as such a potential...... informative biomarker in non-small cell lung cancer. Under normal physiological conditions, it is primarily expressed in suprabasal layers of stratified squamous epithelia. Consequently, it is absent from healthy bronchial and alveolar tissue, but nevertheless appears at early stages in the progression...... to invasive carcinomas of the lung, i.e., in bronchial hyperplasia/metaplasia and atypical adenomatous hyperplasia. In the stages leading to pulmonary squamous cell carcinoma, expression is sustained in dysplasia, carcinoma in situ and invasive carcinomas, and this pertains to the normal presence of C4.4A...

  9. C4BPAL1, a member of the human regulator of complement activation (RCA) gene cluster that resulted from the duplication of the gene coding for the [alpha]-chain of C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Corral, P.; Pardo-Manuel de Villena, F.; Rey-Campos, J.; Rodriguez de Cordoba, S. (Unidad de Immunologia, Madrid (Spain))

    1993-07-01

    The regulator of complement activation (RCA) gene cluster evolved by multiple gene duplications to produce a family of genes coding for proteins that collectively control the activation of the complement system. The authors report here the characterization of C4BPAL1, a member of the human RCA gene cluster that arose from the duplication of the C4BPA gene after the separation of rodent and primate lineages. C4BPAL1 maps 20 kb downstream of the C4BPA gene and is in the same 5[prime] to 3[prime] orientation found for all RCA genes characterized thus far. It includes nine exon-like regions homologous to exons 2-8, 11, and 12 of the C4BPA gene. Analysis of the C4BPAL1 sequence suggests that it is currently a pseudogene in humans. However, comparisons between C4BPAL1 and the human and murine C4BPA genes show sequence conservation, which strongly suggests that, for a long period of time, C4BPAL1 has been a functional gene coding for a protein with structural requirements similar to those of the [alpha]-chain of C4b-binding protein. 50 refs., 5 figs., 1 tab.

  10. Effect of Sodium Nutrition on the Ultrastructure of Chloroplasts of C4 Plants

    Science.gov (United States)

    Grof, Christopher P. L.; Johnston, Mark; Brownell, Peter F.

    1989-01-01

    Mesophyll chloroplasts from sodium-deficient compared to normal plants of the C4 species Kochia childsii and Amaranthus tricolor were found to have significantly less stacking in their grana. On the other hand, no marked difference of thylakoid arrangement between bundle sheath chloroplasts from sodium-deficient and normal plants of A. tricolor were observed. Images Figure 1 Figure 2 Figure 5 PMID:16666579

  11. Electrophile-Integrating Smiles Rearrangement Provides Previously Inaccessible C4?-O-Alkyl Heptamethine Cyanine Fluorophores

    OpenAIRE

    Nani, Roger R.; Shaum, James B.; Gorka, Alexander P.; Schnermann, Martin J.

    2015-01-01

    New synthetic methods to rapidly access useful fluorophores are needed to advance modern molecular imaging techniques. A new variant of the classical Smiles rearrangement is reported that enables the efficient synthesis of previously inaccessible C4?-O-alkyl heptamethine cyanines. The key reaction involves N- to O- transposition with selective electrophile incorporation on nitrogen. A representative fluorophore exhibits excellent resistance to thiol nucleophiles, undergoes productive bioconju...

  12. Electrophile-integrating Smiles rearrangement provides previously inaccessible C4'-O-alkyl heptamethine cyanine fluorophores.

    Science.gov (United States)

    Nani, Roger R; Shaum, James B; Gorka, Alexander P; Schnermann, Martin J

    2015-01-16

    New synthetic methods to rapidly access useful fluorophores are needed to advance modern molecular imaging techniques. A new variant of the classical Smiles rearrangement is reported that enables the efficient synthesis of previously inaccessible C4'-O-alkyl heptamethine cyanines. The key reaction involves N- to O-transposition with selective electrophile incorporation on nitrogen. A representative fluorophore exhibits excellent resistance to thiol nucleophiles, undergoes productive bioconjugation, and can be used in near-IR fluorescence imaging applications.

  13. Polygonumnolides C1-C4; minor dianthrone glycosides from the roots of Polygonum multiflorum Thunb.

    Science.gov (United States)

    Yang, Jian-Bo; Li, Li; Dai, Zhong; Wu, Yu; Geng, Xing-Chao; Li, Bo; Ma, Shuang-Cheng; Wang, Ai-Guo; Su, Ya-Lun

    2016-09-01

    Four new dianthrone glycosides, named polygonumnolides C1-C4 (1-4), were isolated from the dried roots of Polygonum multiflorum Thunb, together with two known emodin dianthrones (5-6). Their hepatotoxicities were evaluated against L-02 cell lines. Compounds 1-4 showed weak hepatotoxicity against L-02 cell lines with IC50 values of 313.05, 205.20, 294.20, and 207.35 μM, respectively.

  14. Silver(I)-Catalyzed C4-H Amination of 1-Naphthylamine Derivatives with Azodicarboxylates.

    Science.gov (United States)

    Zhu, Hongmei; Sun, Suyan; Qiao, Huijie; Yang, Fan; Kang, Jianxun; Wu, Yusheng; Wu, Yangjie

    2018-02-02

    A simple and efficient protocol for silver(I)-catalyzed picolinamide directed C4-H amination of 1-naphthylamine derivatives with readily available azodicarboxylates has been developed, demonstrating a new approach to 1,4-naphthalenediamine derivatives in high yields. Note that this reaction system could proceed under external-oxidant- and additive-free conditions (only requires 5 mol % of AgOAc as the catalyst in acetone).

  15. What is the behavior of a C4 quadriplegic mouth calligrapher constant function of?

    Directory of Open Access Journals (Sweden)

    Nonaka Tetsushi

    2011-12-01

    Full Text Available Motor coordination of a professional C4 quadriplegic calligrapher who trained himself to use his mouth to write with brush and ink by gripping a brush between his teeth was reported. Through the analysis of movement during calligraphy, it was found that the movement variability of the head-neck system was exploited to stabilize certain relations between the brush and the paper surface (e.g., brush pressure.

  16. What is the behavior of a C4 quadriplegic mouth calligrapher constant function of?

    OpenAIRE

    Nonaka Tetsushi

    2011-01-01

    Motor coordination of a professional C4 quadriplegic calligrapher who trained himself to use his mouth to write with brush and ink by gripping a brush between his teeth was reported. Through the analysis of movement during calligraphy, it was found that the movement variability of the head-neck system was exploited to stabilize certain relations between the brush and the paper surface (e.g., brush pressure).

  17. The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276

    Science.gov (United States)

    Cieslak, M. J.; Headley, T. J.; Romig, A. D.

    1986-11-01

    The welding metallurgy (solidification and solid state transformations) of HASTELLOY* Alloys C-4, C-22, and C-276 has been determined. Varestraint hot-cracking tests performed on commercial alloys revealed a weldability ranking as follows: C-4 > C-22 > C-276. All alloys would be expected to have good weldability, with Alloy C-4 having a very low hot-cracking tendency, comparable to 304L stainless steel. Microstructures of gas-tungsten-arc welds of these alloys have been characterized by scanning electron microscopy and analytical electron microscopy. Intermetallic secondary solidification constituents have been found associated with weld metal hot cracks in Alloys C-276 and C-22. In Alloy C-276, this constituent is a combination of P and ώ phases, and in Alloy C-22, this constituent is composed of σ, P, and ώ phases. With phase composition data obtained by AEM techniques and available ternary (Ni-Cr-Mo) phase diagrams, an equivalent chemistry model is proposed to account for the microstructures observed in each alloy's weld metal.

  18. Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice.

    Directory of Open Access Journals (Sweden)

    Aryo B Feldman

    Full Text Available A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines, were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.

  19. Laboratory detection of the C3N an C4H free radicals

    Science.gov (United States)

    Gottlieb, C. A.; Gottlieb, E. W.; Thaddeus, P.; Kawamura, H.

    1983-01-01

    The millimeter-wave spectra of the linear carbon chain free radicals C3N and C4H, first identified in IRC + 10216 and hitherto observed only in a few astronomical sources, have been detected with a Zeeman-modulated spectrometer in laboratory glow discharges through low pressure flowing mixtures of N2 + HC3N and He + HCCH, respectively. Four successive rotational transitions between 168 and 198 GHz have been measured for C3N, and five rotational transitions between 143 and 200 GHz for C4H; each is a well-resolved spin doublet owing to the unpaired electron present in both species. Precise values for the rotational, centrifugal distortion, and spin doubling constants have been obtained, which, with hyperfine constants derived from observations of the lower rotational transitions in the astronomical source TMC 1, allow all the rotational transitions of C3N and C4H at frequencies less than 300 GHz to be calculated to an absolute accuracy exceeding 1 ppm.

  20. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells.

    Science.gov (United States)

    Park, Hae-Jeong; Yoon, Seo-Hyun; Han, Long-Shan; Zheng, Long-Tai; Jung, Kyung-Hee; Uhm, Yoon-Kyung; Lee, Je-Hyun; Jeong, Ji-Seon; Joo, Woo-Sang; Yim, Sung-Vin; Chung, Joo-Ho; Hong, Seon-Pyo

    2005-09-07

    The genes were divided into seven categories according to biological function; apoptosis-related, immune response-related, signal transduction-related, cell cycle-related, cell growth-related, stress response-related and transcription-related genes. We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL, 24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR. Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE11A), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells. These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells, and might be used for therapeutic anticancer drug.

  1. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  2. Serum antibodies and cytokines in C4-deficient mice and their responses to exercise.

    Science.gov (United States)

    Visetnoi, Supawan; Chawengkirttikul, Runglawan; Chaiyaroj, Sansanee C; Kitiyanant, Yindee; Pholpramool, Chumpol

    2009-12-01

    Psychological stress is believed to be one of the predisposing factors for systemic lupus erythematosus (SLE), whereas physical stress such as exercise has never been reported to be related. We measured the circulating levels of antibodies (IgM, IgG, anti-dsDNA IgG), Th1 (IFN-gamma), Th2 (IL-4, IL-6), and of pro-inflammatory (TNF-alpha, IL-1beta) and anti-inflammatory (TGF-beta) cytokines of C4(-l-) female mice at rest, after acute exercise and after exercise training, using an antibody-capture ELISA. Prior to the exercise, the C4(-l-) mice had higher levels of IgG and anti-dsDNA IgG but lower levels of IFN-gamma, IL-1beta, IL-6 and IL-4 than wild-type C57BL/6 (B6) mice. A single bout of exercise to exhaustion increased serum IgG, TNF-alpha, IL-1beta and TGF-beta in the B6 mice but only TGF-beta in the C4(-l-) mice was increased. We conclude that exhaustive or moderate exercise has no effect on the levels of serum antibodies and cytokines and is thus unlikely to promote the onset of SLE.

  3. Temperature Effects on the Growth Rates and Photosynthetic Activities of Symbiodinium Cells

    Directory of Open Access Journals (Sweden)

    Widiastuti Karim

    2015-06-01

    Full Text Available Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp., especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F at elevated temperature (33 °C. We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin. The growth rates and photochemical efficiencies of PSII (Fv/Fm decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name and A-Y106, but not in thermally tolerant strains, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.

  4. Light-associated and processing-dependent protein binding to 5' regions of rbcL mRNA in the chloroplasts of a C4 plant.

    Science.gov (United States)

    McCormac, D J; Litz, H; Wang, J; Gollnick, P D; Berry, J O

    2001-02-02

    In amaranth, a C(4) dicotyledonous plant, the plastid rbcL gene (encoding the large subunit of ribulose-1,5-bisphosphate carboxylase) is regulated post-transcriptionally during many developmental processes, including light-mediated development. To identify post-transcriptional regulators of rbcL expression, three types of analyses (polysome heel printing, gel retardation, and UV cross-linking) were utilized. These approaches revealed that multiple proteins interact with 5' regions of rbcL mRNA in light-grown, but not etiolated, amaranth plants. Light-associated binding of a 47-kDa protein (p47), observed by UV cross-linking, was highly specific for the rbcL 5' RNA. Binding of p47 occurred only with RNAs corresponding to mature processed rbcL transcripts (5'-untranslated region (UTR) terminating at -66); transcripts with longer 5'-UTRs did not associate with p47 in vitro. Variations in the length of the rbcL 5'-UTR were found to occur in vivo, and these different 5' termini may prevent or enhance light-associated p47 binding, possibly affecting rbcL expression as well. p47 binding correlates with light-dependent rbcL polysome association of the fully processed transcripts in photosynthetic leaves and cotyledons but not with cell-specific rbcL mRNA accumulation in bundle sheath and mesophyll chloroplasts.

  5. Relative contribution of C3 and C4 type terrestrial organic matter in the Mahanadi offshore (Bay of Bengal) sediments and climatic implication.

    Science.gov (United States)

    da Silva, Rheane; Mazumdar, Aninda; Naik, Bg

    2017-04-01

    C3 and C4 are dominant vegetation in terrestrial environment. The primary product of photosynthesis of C3 plants is a 3 carbon bearing compound called phosphoglycerate (PGA). In contrast, CO2 is transferred to bundle sheath cells via 4 carbon bearing compound oxaloacetate/mallate and fixed by RuBiSCO in C4 plants. This marked variation in CO2 diffusion across stomata and enzymatic pathways lead to differences in stable carbon isotope ratios. Factors that control relative abundance of these vegetation types are concentration of p-CO2, temperature and humidity. Low p-CO2, air temperature below cross over temperature and aridity are the climatic parameters favoring expansion of C4 type vegetation, whereas higher extreme conditions promote greater C3 type production (Ehleringer, J. R, 2005). In marine sediment n-alkane (lipid fraction) distribution and compound specific isotope ratios are ideal markers to characterize nature of terrestrial organic flux owing to high diagenetic stability and near 100% extraction efficiency. We report here the relative abundance of C3-C4 vegetation over 8 marine isotope stages covering 300kyr. A 39.08 m long core (MD 161-19) was collected onboard ORV Marion Dufresne, at a water depth of 1480 m (Lat: 18 59.1092N Long: 85 41.1669E) (Mazumdar., et. al. 2014) for the study of sediment physico chemical properties and their link to paleoclimatic variation. The carbon isotope ratios of C-27 n-alkane range from -35.3‰ to -23.6‰ VPDB. 13C enrichment trends indicate a greater contribution from C4 vegetation type and 13C depletion trends are attributed to greater flux of C3 type vegetation. Mass balance calculation to reconstruct the temporal variation in C3/ C4 ratios is carried out using the end member values of -34.5‰ and -19.8‰ respectively (Collister.,et. al. 1994). The calculated C3/C4 ratio is 27:73 at LGM and shifts to 71:29 around 6 kyr BP. Based on results, we observe that colder isotope substages characterized by lower pCO2 saw

  6. Pasteurella pneumotropica evades the human complement system by acquisition of the complement regulators factor H and C4BP.

    Directory of Open Access Journals (Sweden)

    Alfredo Sahagún-Ruiz

    Full Text Available Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections.

  7. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  9. Photocurrent of a single photosynthetic protein

    Science.gov (United States)

    Gerster, Daniel; Reichert, Joachim; Bi, Hai; Barth, Johannes V.; Kaniber, Simone M.; Holleitner, Alexander W.; Visoly-Fisher, Iris; Sergani, Shlomi; Carmeli, Itai

    2012-10-01

    Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process--where light is absorbed and energy and electrons are transferred--are mediated by reaction centres composed of chlorophyll and carotenoid complexes. It has been previously shown that single small molecules can be used as functional components in electric and optoelectronic circuits, but it has proved difficult to control and probe individual molecules for photovoltaic and photoelectrochemical applications. Here, we show that the photocurrent generated by a single photosynthetic protein--photosystem I--can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ~10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  11. Antenna organization in green photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E.

    1987-01-01

    This project is concerned with the structure and function of the unique antenna system found in the green photosynthetic bacteria. The antenna system in these organisms is contained within a vesicle known as a chlorosome, which is attached to the cytoplasmic side of the cell membrane. Additional antenna pigments and reaction centers are contained in integral membrane proteins. Energy absorbed by the bacteriochlorophyll c (BChl c) pigments in the chlorosome is transferred via a baseplate'' array of BChl a antenna pigments into the membrane and to the reaction center. This system is similar in some respects to the phycobilisome antenna system found in cyanobacteria and some types of algae, in that a membrane-associated structure absorbs light and transfers it to the membrane where conversion to chemical energy takes place. However, the overall structure, the type of pigments utilized and the nature of the proteins in these two types of membrane-associated antenna bodies are entirely different, and they clearly represent two independent evolutionary solutions to the problem of light collection and excitation transfer.

  12. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  13. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  14. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  15. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light.

    Science.gov (United States)

    Wiltbank, Lisa B; Kehoe, David M

    2016-02-09

    The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are just beginning to be understood. One of the best characterized of these functions is the regulation of photosynthetic light-harvesting antenna composition in the cyanobacterium Fremyella diplosiphon by the cyanobacteriochrome RcaE in response to red and green light, a process known as chromatic acclimation. We have identified a new cyanobacteriochrome named DpxA that maximally senses teal (absorption maximum, 494 nm) and yellow (absorption maximum, 568 nm) light and represses the accumulation of a key light-harvesting protein called phycoerythrin, which is also regulated by RcaE during chromatic acclimation. Like RcaE, DpxA is a two-component system kinase, although these two photoreceptors can influence phycoerythrin expression through different signaling pathways. The peak responsiveness of DpxA to teal and yellow light provides highly refined color discrimination in the green spectral region, which provides important wavelengths for photosynthetic light harvesting in cyanobacteria. These results redefine chromatic acclimation in cyanobacteria and demonstrate that cyanobacteriochromes can coordinately impart sophisticated light color sensing across the visible spectrum to regulate important photosynthetic acclimation processes. The large number of cyanobacteriochrome photoreceptors encoded by cyanobacterial genomes suggests that these organisms are capable of extremely complex light color sensing and responsiveness, yet little is known about their functions and interactions. Our work uncovers previously undescribed cooperation between two photoreceptors with very different light

  16. Identification and characterization of miRNAs in two closely related C4 and C3 species of Cleome by high-throughput sequencing.

    Science.gov (United States)

    Gao, Shuangcheng; Zhao, Wei; Li, Xiang; You, Qingbo; Shen, Xinjie; Guo, Wei; Wang, Shihua; Shi, Guoan; Liu, Zheng; Jiao, Yongqing

    2017-04-19

    Cleome gynandra and Cleome hassleriana, which are C4 and C3 plants, respectively, are two species of Cleome. The close genetic relationship between C. gynandra and C. hassleriana provides advantages for discovering the differences in leaf development and physiological processes between C3 and C4 plants. MicroRNAs (miRNAs) are a class of important regulators of various biological processes. In this study, we investigate the differences in the characteristics of miRNAs between C. gynandra and C. hassleriana using high-throughput sequencing technology. In total, 94 and 102 known miRNAs were identified in C. gynandra and C. hassleriana, respectively, of which 3 were specific for C. gynandra and 10 were specific for C. hassleriana. Ninety-one common miRNAs were identified in both species. In addition, 4 novel miRNAs were detected, including three in C. gynandra and three in C. hassleriana. Of these miRNAs, 67 were significantly differentially expressed between these two species and were involved in extensive biological processes, such as glycol-metabolism and photosynthesis. Our study not only provided resources for C. gynandra and C. hassleriana research but also provided useful clues for the understanding of the roles of miRNAs in the alterations of biological processes in leaf tissues during the evolution of the C4 pathway.

  17. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins.

    Science.gov (United States)

    Huntley, Shannon K; Ellis, Dave; Gilbert, Margarita; Chapple, Clint; Mansfield, Shawn D

    2003-10-08

    The gene encoding ferulate 5-hydroxylase (F5H) was overexpressed in poplar (Populus tremula x Populus alba) using the cinnamate-4-hydroxylase (C4H) promoter to drive expression specifically in cells involved in the lignin biosynthetic pathway and was shown to significantly alter the mole percentage of syringyl subunits in the lignin, as determined by thioacidolysis. Analysis of poplar transformed with a C4H-F5H construct demonstrated significant increases in chemical (kraft) pulping efficiency from greenhouse-grown trees. Compared to wild-type wood, decreases of 23 kappa units and increases of >20 ISO brightness units were observed in trees exhibiting high syringyl monomer concentrations. These changes were associated with no significant modification in total lignin content and no observed phenotypic differences. C4H-F5H-transformed trees could increase pulp throughputs at mills by >60% while concurrently decreasing chemicals employed during processing (chemical pulping and bleaching) and, consequently, the amount of deleterious byproducts released into the environment.

  18. Engineering photosynthetic organisms for the production of biohydrogen

    OpenAIRE

    Dubini, Alexandra; Ghirardi, Maria L.

    2014-01-01

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic conditio...

  19. Variations in Photosynthetic Rates of Fourteen Coleus Cultivars

    Science.gov (United States)

    Rouhani, Iraj; Khosh-Khui, Morteza

    1977-01-01

    Fourteen cultivars of coleus (Coleus blumei Benth) were found to vary in chlorophyll content, photosynthetic rate, anthocyanin content and number of stomates. Cultivars `Gaslight' and `Velvet Rainbow' had 0.17 and 0.92 mg chlorophyll per g of leaves, fresh weight, respectively. Maximum photosynthetic rate (18.7 mg CO2/mg Chl·hr) was found in the leaves of `Pastle Rainbow' and minimum (2.7) in the `Velvet Rainbow.' PMID:16659778

  20. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  1. On the photosynthetic potential in the very Early Archean oceans.

    Science.gov (United States)

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  2. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  3. Low C4 gene copy numbers are associated with superior graft survival in patients transplanted with a deceased donor kidney

    DEFF Research Database (Denmark)

    Bay, Jakob T; Schejbel, Lone; Madsen, Hans O

    2013-01-01

    rejection, but a relationship between graft survival and serum C4 concentration as well as C4 genetic variation has not been established. We evaluated this using a prospective study design of 676 kidney transplant patients and 211 healthy individuals as controls. Increasing C4 gene copy numbers...... significantly correlated with the C4 serum concentration in both patients and controls. Patients with less than four total copies of C4 genes transplanted with a deceased donor kidney experienced a superior 5-year graft survival (hazard ratio 0.46, 95% confidence interval: 0.25-0.84). No significant association...... was observed in patients transplanted with a living donor. Thus, low C4 copy numbers are associated with increased kidney graft survival in patients receiving a kidney from a deceased donor. Hence, the degree of ischemia may influence the clinical impact of complement....

  4. Expression of C4.4A in precursor lesions of pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Santoni-Rugiu, Eric; Illemann, Martin

    2012-01-01

    The protein C4.4A, a structural homologue of the urokinase-type plasminogen activator receptor, is a potential new biomarker in non-small cell lung cancer, with high levels of expression recently shown to correlate to poor survival of adenocarcinoma patients. In this study, C4.4A immunoreactivity...... in precursor lesions of lung squamous cell carcinoma and adenocarcinoma was investigated by stainings with a specific anti-C4.4A antibody. In the transformation from normal bronchial epithelium to squamous cell carcinoma, C4.4A was weakly expressed in basal cell hyperplasia but dramatically increased...... finding that C4.4A expression levels do not provide prognostic information on the survival of squamous cell carcinoma patients. In the progression from normal alveolar epithelium to peripheral adenocarcinoma, we observed an unexpected, distinct cytoplasmic staining for C4.4A in a fraction of atypical...

  5. Relationships between photosynthetic plant types in the diet of herbivore mammals and in the environment in the lower Paraná river basin, Argentina Relación entre los tipos fotosintéticos de plantas presentes en la dieta de mamíferos herbívoros y en el ambiente en la baja cuenca del río Paraná, Argentina

    Directory of Open Access Journals (Sweden)

    NORA MADANES

    2010-06-01

    Full Text Available In the present study we assess the contribution of C3, C4 and intermediate C3-C4 plant species to the diet of both native (Hydrochoerus hydrochaeris, Rhea americana and Logostomus maximus and introduced (cattle herbivore species and the abundance of these photosynthetic plant types in different environments of the lower section of the Paraná Basin, Argentina, with similar climate but different hydrological regimes. Data of current plants species and their photosynthetic pathways, both form vegetation and the diet, were compiled from literature. The analysis of annual diets conducted in terms of photosynthetic types showed that the feeding patterns of native as well introduced herbivores varied both spatially and temporally. At each site, the analysis of vegetation and the diet of herbivores in spring indicated that the feeding patterns may depend not only on vegetation availability, but also on the preferences of herbivores and inter-specific interactions under limited resource conditions. These attributes should be taken into account when interpreting the diet of fossil herbivores from isotopic carbon information. Also, the studies on photosynthetic groups enhance our understanding of the relationship between paleodiets and paleoenvironments.En el presente estudio evaluamos la contribución de especies de plantas C3, C4 e intermedias C3-C4, en la dieta de herbívoros nativos (Hydrochoerus hydrochaeris, Rhea americana y Logostomus maximus y domésticos (reses, y analizamos la abundancia de las plantas presentes que muestran estos tipos foto sintéticos en distintos ambientes, de la sección baja de la Cuenca de Río Paraná, Argentina, con clima similar pero regímenes hidrológicos diferentes. Los datos de la vegetación y de la dieta, así como sus tipos fotosintéticos, fueron obtenidos de datos bibliográficos. El análisis de la dieta anual realizada en términos de tipos fotosintéticos, mostró que los patrones de consumo de los herb

  6. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    Science.gov (United States)

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  7. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  8. Interactive data based on Apriori - AHP - C4.5 results assessment method

    Science.gov (United States)

    Zhao, Quan; Zhang, Li

    2017-05-01

    AHP method for weight calculation method, will introduce the subjective concept of "experts, supposed steps", for the objective result has certain uncertainty, causes the classroom interaction data attribute weights proportion difference is not big, the whole class achievement trend of convergence, introduce the concept of Apriori-AHP. C4.5 is used to calculate the weight of attribute column, and then using the Apriori-AHP algorithm calculate attribute weights, attribute importance weights on judgment performance indicators table overall consideration, with the weight of index table of gifted student achievement, make the class performance trends to fluctuate, have tended to be "standard" real results for teacher reference.

  9. Integrating autonomous distributed control into a human-centric C4ISR environment

    Science.gov (United States)

    Straub, Jeremy

    2017-05-01

    This paper considers incorporating autonomy into human-centric Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) environments. Specifically, it focuses on identifying ways that current autonomy technologies can augment human control and the challenges presented by additive autonomy. Three approaches to this challenge are considered, stemming from prior work in two converging areas. In the first, the problem is approached as augmenting what humans currently do with automation. In the alternate approach, the problem is approached as treating humans as actors within a cyber-physical system-of-systems (stemming from robotic distributed computing). A third approach, combines elements of both of the aforementioned.

  10. Crystal structure of a four-stranded intercalated DNA: d(C4)

    Science.gov (United States)

    Chen, L.; Cai, L.; Zhang, X.; Rich, A.

    1994-01-01

    The crystal structure of d(C4) solved at 2.3-A resolution reveals a four-stranded molecule composed of two interdigitated or intercalated duplexes. The duplexes are held together by hemiprotonated cytosine-cytosine base pairs and are parallel stranded, but the two duplexes point in opposite directions. The molecule has a slow right-handed twist of 12.4 degrees between covalently linked cytosine base pairs, and the base stacking distance is 3.1 A. This is in general agreement with the NMR studies. A biological role for DNA in this conformation is suggested.

  11. Crystal structure features in a new compound C4B25Mg1.42

    Science.gov (United States)

    Konovalikhin, S. V.; Ponomarev, V. I.

    2015-09-01

    The composition of C4B25Mg1.42 crystal obtained by self-propagating high-temperature synthesis was determined using X-ray diffraction. This is the first crystalline structure where all boron atoms in the В12 icosahedron occupy crystallographically independent positions; this circumstance allowed us to analyze the effect of substituents on bond lengths in the icosahedron. The crystal structure features, including the channels filled with disordered Mg atoms and the spread of В—В endo- and exo-bond lengths in the icosahedra, are described. A crystallochemical analysis of pair bonds has been performed for the first time.

  12. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.

    OpenAIRE

    Engelke, T.; Jording, D; Kapp, D.; Pühler, A

    1989-01-01

    Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transpor...

  13. Study of Flowering Pattern in Setaria viridis, a Proposed Model Species for C4 Photosynthesis Research

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    2013-01-01

    Full Text Available Green foxtail millet (Setaria viridis has NADP-ME type of C4 photosynthesis. Because of its short life cycle, small genome size of ~515 Mb, small plant stature, high number of seed set, simple growth requirements, and wide adaptability, this diploid (2n=18 weed is proposed to be a model species for the study of C4 photosynthesis. It is also a representative of bioenergy grasses and a model for genetic study of invasive weeds. Despite having all traits of a model species, it is difficult to cross-pollinate because its flowering behavior is not well studied. We used time lapse digital recording to study the flowering time and pattern along a single panicle. We found that flowering in Setaria was triggered by the darkness of the night and when the temperature was lower than 35°C. The anthesis of all the spikelets in a panicle took up-to three nights flowering from 9:30 pm to 10:00 am in the morning. Each spikelet has three phases of anthesis during which pollination occurs. A spikelet remains open for less than three hours. The pollination time for each spikelet is less than 60 minutes. Information from this study will facilitate the geneticists and plant breeders to plan for efficient crossing of Setaria.

  14. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  15. Electron attachment, ionization and drift in c-C4F8

    Science.gov (United States)

    de Urquijo, J.; Basurto, E.

    2001-05-01

    The pulsed Townsend method has been used to measure the drift velocity ve and the density-normalized effective ionization coefficient (α-η)/N, (α and η are the ionization and attachment coefficients, respectively) in c-C4F8 over the density-normalized electric field strength E/N, 12 Td≤E/N≤43 Td and 330 Td≤E/N≤600 Td (1 Td = 10-17 V cm2), at pressures between 1 and 7.5 Torr (1 Torr = 133.3 Pa). For 12 Td≤E/N≤43 Td, the above parameters were found to be pressure independent, while for the range 330 Td≤E/N≤600 Td an inverse dependence of the above coefficients was found for gas pressures less than 2 Torr. Such dependence is believed to be due to the autodetachment of the originally formed, unstable parent negative ion c-C4F8-*. At low E/N, no previous data for ve or (α-η)/N were found for comparison with the present data. A critical field strength of E/Ncrit = 439.5 Td, for which α = η, was found to be in good agreement with previous data.

  16. Prediksi Ketepatan Waktu Kelulusan Dengan Algoritma Data Mining C4.5

    Directory of Open Access Journals (Sweden)

    Indah Puji Astuti

    2017-11-01

    Full Text Available The student is one of entities in University or Higher Education. The student has a variety of data, such as self-identity information such as address, type of school, work of parents, type of class, etc. In fact many students whose graduation rate is different, on time and not on time. The number of students who graduate is not on time will be a problem not only for university but also for faculty. The number of students graduating each year is one of points of assessment when faculty or study program submits accreditation. C4.5 Algorithm is one of classification algorithm with decision trees. In this study conducted an analysis of student data Engineering Studies Program University of Muhammadiyah Ponorogo 2012/2013. The decision trees in this case is useful for exploring student data, finding the hidden relationship between a number of candidate input attributes with a target attribute. The input attribute consist of, the type of school, address, work of parent, and type of class. The output attribute to classify is status, which consists of "on time" and "not on time". The results from this analysis shown that in this case the C4.5 algorithm can predict with an accuracy value only 82%.

  17. On C4H versus vibrationally excited CO in IRC + 10216

    Science.gov (United States)

    Cummins, S. E.; Morris, M.; Thaddeus, P.

    1980-01-01

    The identification of the 114,221-MHz line in the spectrum of the evolved carbon star IRC +10216 with a blend of the rotational transition of C4H and the first rotational transition of vibrationally excited CO is investigated. A spectrum of the source was obtained using an 11-m telescope in the range covering the N = 12 to 11 and 11 to 10 spin-doublet rotational transitions of C4H. Two peaks of equal intensity and width are found in each band, suggesting a spin rotation constant of 1.06 for the 12 to 11 doublet and 1.09 for the 11 to 10 doublet, and excluding the possibility that vibrationally excited CO made any contribution to the 12 to 11 doublet. An additional survey of the regions from 103.8 to 107.5 and 113.3 to 117.0 GHz has revealed no new lines stronger than 0.1 K in the spectrum of IRC +10216.

  18. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.

    Science.gov (United States)

    Isaksen, Trine; Westereng, Bjørge; Aachmann, Finn L; Agger, Jane W; Kracher, Daniel; Kittl, Roman; Ludwig, Roland; Haltrich, Dietmar; Eijsink, Vincent G H; Horn, Svein J

    2014-01-31

    Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61-3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end.

  19. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.

    Science.gov (United States)

    Byrt, Caitlin S; Grof, Christopher P L; Furbank, Robert T

    2011-02-01

    The main feedstocks for bioethanol are sugarcane (Saccharum officinarum) and maize (Zea mays), both of which are C(4) grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C(4) plants have high light, water and nitrogen use efficiency, as compared with C(3) species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall. © 2011 Institute of Botany, Chinese Academy of Sciences.

  20. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  1. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M.; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  2. C4BPB/C4BPA is a new susceptibility locus for venous thrombosis with unknown protein S-independent mechanism: results from genome-wide association and gene expression analyses followed by case-control studies.

    Science.gov (United States)

    Buil, Alfonso; Trégouët, David-Alexandre; Souto, Juan Carlos; Saut, Noémie; Germain, Marine; Rotival, Maxime; Tiret, Laurence; Cambien, Françcois; Lathrop, Mark; Zeller, Tanja; Alessi, Marie-Christine; Rodriguez de Cordoba, Santiago; Münzel, Thomas; Wild, Philipp; Fontcuberta, Jordi; Gagnon, France; Emmerich, Joseph; Almasy, Laura; Blankenberg, Stefan; Soria, José-Manuel; Morange, Pierre-Emmanuel

    2010-06-10

    Through its binding with protein S (PS), a key element of the coagulation/fibrinolysis cascade, the C4b-binding protein (C4BP) has been hypothesized to be involved in the susceptibility to venous thrombosis (VT). To identify genetic factors that may influence the plasma levels of the 3 C4BP existing isoforms, alpha(7)beta(1), alpha(6)beta(1), and alpha(7)beta(0), we conducted a genome-wide association study by analyzing 283 437 single nucleotide polymorphisms (SNPs) in the Genetic Analysis of Idiopathic Thrombophilia (GAIT) study composed of 352 persons. Three SNPs at the C4BPB/C4BPA locus were found genome-wide significantly associated with alpha(7)beta(0) levels. One of these SNPs was further found to explain approximately 11% of the variability of mRNA C4BPA expression in the Gutenberg Heart Study composed of 1490 persons, with no effect on C4BPB mRNA expression. The allele associated with increased alpha(7)beta(0) plasma levels and increased C4BPA expression was further found associated with increased risk of VT (odds ratio [OR] = 1.24 [1.03-1.53]) in 2 independent case-control studies (MARseille THrombosis Association study [MARTHA] and FActeurs de RIsque et de récidives de la maladie thromboembolique VEineuse [FARIVE]) gathering 1706 cases and 1379 controls. This SNP was not associated with free PS or total PS. In conclusion, we observed strong evidence that the C4BPB/C4BPA locus is a new susceptibility locus for VT through a PS-independent mechanism that remains to be elucidated.

  3. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wasielewski, Michael R. (NWU)

    2017-02-15

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular

  4. Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae).

    Science.gov (United States)

    Yagame, Takahiro; Funabiki, Eriko; Nagasawa, Eiji; Fukiharu, Toshimitsu; Iwase, Koji

    2013-09-01

    Photosynthetic orchids found in highly shaded forests are often mixotrophic, receiving part of their carbon energy via ectomycorrhizal fungi that had originally received carbohydrate from trees. A photosynthetic orchid, Cremastra appendiculata, is also found under highly shaded forest, but our preliminary data suggested that its associated fungi were not ectomycorrhizal. We tested whether their relation is an unusual example of a mixotrophic orchid associating with saprotrophic fungi by direct detection of fungal DNAs in conjunction with isolation of the fungus in pure culture and experimental inoculation of orchid seeds with the fungus. • For isolated mycobionts of C. appendiculata plants, two regions of nuclear ribosomal DNA, the internal transcribed spacer (ITS) and the large subunit (LSU), were sequenced, and fruiting bodies of the one isolate, SI1-1 were induced. In addition, two fungal isolates, SI1-1 and KI1-1, were grown in symbiotic cultures with C. appendiculata to verify their status as mycobionts. • In phylogenetic analyses, all isolates clustered with fungi belonging to Coprinellus in Psathyrellaceae of Agaricales. Phylogenetic analyses of these DNA sequences showed that five fungal isolates from C. appendiculata, including SI1-1 and two mycobionts isolated from the mycoheterotrophic orchid Epipogium roseum, have very similar ITS sequences. Isolate SI1-1 was identified as Coprinellus domesticus based on the morphological characteristics of the fruiting body. Isolates SI1-1 and KI1-1 induced seed germination of C. appendiculata as mycobionts. • This report is the first of a mycorrhizal symbiosis between a fungus in Psathyrellaceae and a photosynthetic orchid, revealing a new pathway to full mycoheterotrophy and contributing to our understanding of the evolution of mycoheterotrophy.

  5. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  6. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    . These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  7. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  8. Gene and genome duplications and the origin fo C4 photosysnthesis: Birth of a trait in the Cleomaceae

    NARCIS (Netherlands)

    Bergh, van den E.; Kulahoglu, C.; Brautigam, A.; Hibberd, J.M.; Weber, A.P.M.; Zhu, X.G.; Schranz, M.E.

    2014-01-01

    C4 photosynthesis is a trait that has evolved in 66 independent plant lineages and increases the efficiency of carbon fixation. The shift from C3 to C4 photosynthesis requires substantial changes to genes and gene functions effecting phenotypic, physiological and enzymatic changes. We investigate

  9. Expression of C4.4A in an in Vitro Human Tissue-Engineered Skin Model

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Larouche, Danielle; Rochette-Drouin, Olivier

    2017-01-01

    , the biological function of C4.4A remains unknown. To enable further studies, we evaluated the expression of C4.4A in monolayer cultures of normal human keratinocytes and in tissue-engineered skin substitutes (TESs) produced by the self-assembly approach, which allow the formation of a fully differentiated...

  10. Growth and photosynthetic responses of wheat plants grown in space

    Science.gov (United States)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  11. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  12. Southeast Atlantic upwelling intensity changes influencing late Miocene C4 plant expansion?

    Science.gov (United States)

    Rommerskirchen, F.; Condon, T.; Mollenhauer, G.; Schefuß, E.

    2009-04-01

    The Late Miocene epoch (about 15 to 5 Myrs BP) is characterised by fundamental changes in Earth's climate system: turnovers in marine and terrestrial biota, sea-level variability, changes in surface- und deep-water circulations, and increase in upwelling intensities along the coasts [1,2]. During the transition period the Antarctic ice sheets expanded and were permanently established, while additionally ice volumes began to fluctuate [1]. Plants acting with the C4 concentrating mechanism of CO2 fixation for photosynthesis expanded nearly simultaneous at different places in the world, whereas the global CO2 levels exhibit no corresponding change [1,3]. However, C4 plants are also known to have a competitive advantage in habitats of higher temperature, light and fire intensities as well as of limited water supply, compared to the almost ubiquitous C3 plants. This study tries to give insights to Miocene climatic conditions in Southwest Africa and how these conditions may be linked to the C4 plant expansion. We focused on data from a sediment core of the Ocean Drilling Program (Leg 175, ODP 1085A), which span about 10 Myrs of the late Miocene. The core is situated in the Cape basin at the south-western African continental margin in the upwelling zone of the Benguela coastal current. The current brings cold, nutrient-rich waters from South Atlantic and the Antarctic circumpolar current to the surface water along the coast of Southwest Africa. Miocene sea surface temperatures (SST) were reconstructed by two indices, tetraether index (TEX86) and an alkenone based index (U37K'). Both trends exhibit a shift to cooler temperatures from around 27 to 18˚ C, but are different in rate and timing. Especially by TEX86 reconstructed SSTs exhibit a similar trend as found for ice volume changes shown by the δ18O curve [4]. These findings may reflect an intensification of the Benguela upwelling current during the late Miocene, probably in association with the formation of West

  13. When did C4 Photosynthesis originate: New evidence from δ13C analysis of single grass-pollen grains

    Science.gov (United States)

    Urban, M. A.; Nelson, D. M.; Pearson, A.; Hu, F.

    2009-12-01

    C4 grasses account for >20% of global primary productivity and dominate tropical, subtropical, and warm-temperate grassland ecosystems. Thus it is vital to understand when and why C4 photosynthesis first evolved in the grass family (Poaceae). However, because of limitations of most proxies, the origin of C4 grasses remains ambiguous. Grass pollen is morphologically indistinct below the family level, making pollen analysis a crude instrument for studying C4-grass evolution. Previous studies have investigated the timing of C4 evolution using molecular tools and δ13C records from n-alkanes, ungulate teeth, and paleosols, but they yield disparate results. Molecular clocks suggest that C4 grasses first evolved between 27 and 36 Ma (million years before present), coincident with the Oligocene decline in pCO2 from >1000 to <500 ppm. In contrast, δ13C-based approaches do not detect the presence of C4 grasses until the middle Miocene, indicating that they were previously uncommon or absent on the landscape. To investigate when C4 photosynthesis first appeared in the grass family, we utilized Single Pollen Isotope Ratio AnaLysis (SPIRAL), a technique that reliably distinguishes C4 from C3 grass pollen via δ13C. We analyzed 837 single grains of grass pollen from eight lacustrine geological samples (~100 grains/sample) from France and Spain spanning the earliest Oligocene to middle Miocene. To distinguish C3/C4 ratios, we used an optimal threshold value of -19.2‰ adjusted for small (~1‰) temporal variations in atmospheric δ13C. Initial results provide unequivocal evidence of C4 grass pollen in all samples (24-57% C4 grass pollen ±9.2% on average) lending further credence to the molecular data, which posits that C4 grasses appeared as early as the Late Eocene, which is a plausible outcome when considering alternate schemes of dating phylogenetic trees. A C4 origin prior to pCO2 reaching its lowest levels of the Cenozoic at the Oligocene/Miocene boundary indicates that

  14. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein.

    Science.gov (United States)

    Buffalo, Cosmo Z; Bahn-Suh, Adrian J; Hirakis, Sophia P; Biswas, Tapan; Amaro, Rommie E; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ∼90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant 'reading head' in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M-C4BP interaction, and also inform a path towards vaccine design.

  15. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  16. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-11-01

    Full Text Available The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging Spectroradiometer and ETM+ (Enhanced Thematic Mapper Plus data. The blended data exhibited a high correlation (R2 = 0.88 with the satellite derived ETM+ data. The time-series NDVI (Normalized Difference Vegetation Index data were then generated using the blended high spatio-temporal resolution data to capture the phenological differences between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 and C4 classification features. Five features were selected from the 18 classification features according to the ground investigation data, and subsequently used for the C3 and C4 classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% with a kappa of 0.725 in our study area.

  17. Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    Science.gov (United States)

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2017-07-01

    Herbivory-induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (A C ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1-5 ribulose-1,5-bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12-oxo-phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen-activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen-activated protein kinase 4 in CO 2 -mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid-mediated defence responses, also elicit 12-oxo-phytodienoic acid-mediated changes in stomatal conductance and A C , an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack. © 2016 John Wiley & Sons Ltd.

  18. Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c(4)

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Jensen, Thomas Jon; Nørgaard, Allan

    2002-01-01

    , and different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c(4) induced thermally and by chemical denaturants Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret. alpha/beta. and 701-nm...... chloride up to 0.4 M is present. This reflects different chemical action in chemical and thermal unfolding. Acid-induced unfolding kinetics was addressed by pH jumps using diode array stopped-flow techniques, Three kinetic phases in the 701 nm Fe-Met marker band. and four phases in the Soret and alpha/beta......F stutzeri cytochrome c. is a di-haem protein, composed of two globular domains each with His-Met coordinated haem. and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination...

  19. Improved tissue culture conditions for the emerging C4 model Panicum hallii.

    Science.gov (United States)

    Grant, Joshua N; Burris, Jason N; Stewart, C Neal; Lenaghan, Scott C

    2017-04-27

    Panicum hallii Vasey (Hall's panicgrass) is a compact, perennial C4 grass in the family Poaceae, which has potential to enable bioenergy research for switchgrass (Panicum virgatum L.). Unlike P. hallii, switchgrass has a large genome, allopolyploidy, self-incompatibility, a long life cycle, and large stature-all suboptimal traits for rapid genetics research. Herein we improved tissue culture methodologies for two inbred P. hallii populations: FIL2 and HAL2, to enable further development of P. hallii as a model C4 plant. The optimal seed-derived callus induction medium was determined to be Murashige and Skoog (MS) medium supplemented with 40 mg L-1 L-cysteine, 300 mg L-1 L-proline, 3% sucrose, 1 g L-1 casein hydrolysate, 3 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D), and 45 μg L-1 6-benzylaminopurine (BAP), which resulted in callus induction of 51 ± 29% for FIL2 and 81 ± 19% for HAL2. The optimal inflorescence-derived callus induction was observed on MP medium (MS medium supplemented with 2 g L-1 L-proline, 3% maltose, 5 mg L-1 2,4-D, and 500 μg L-1 BAP), resulting in callus induction of 100 ± 0.0% for FIL2 and 84 ± 2.4% for HAL2. Shoot regeneration rates of 11.5 ± 0.8 shoots/gram for FIL2 and 11.3 ± 0.6 shoots/gram for HAL2 were achieved using seed-induced callus, whereas shoot regeneration rates of 26.2 ± 2.6 shoots/gram for FIL2 and 29.3 ± 3.6 shoots/gram for HAL2 were achieved from inflorescence-induced callus. Further, cell suspension cultures of P. hallii were established from seed-derived callus, providing faster generation of callus tissue compared with culture using solidified media (1.41-fold increase for FIL2 and 3.00-fold increase for HAL2). Aside from abbreviated tissue culture times from callus induction to plant regeneration for HAL2, we noted no apparent differences between FIL2 and HAL2 populations in tissue culture performance. For both populations, the cell suspension cultures

  20. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data

    DEFF Research Database (Denmark)

    Steffen, Rebekka; Strykowski, Gabriel; Lund, Björn

    2017-01-01

    basins. We also correct for the effect on gravity due to the weight of the ice sheet and the accompanying deflection of the Earth's surface, which has not previously been taken into account in gravity studies of currently glaciated regions. Our final Moho depth model for Greenland has an associated......The crust–mantle boundary (the Moho) is a first order interface in the Earth and the depth to the Moho is therefore well studied in most regions. However, below regions which are covered by large ice sheets, such as Greenland and Antarctica, the Moho is only partly known and seismic data...... are difficult to obtain. Here, we take advantage of the global gravity model EIGEN-6C4, together with the Parker-Oldenburg algorithm, to estimate the depth to the Moho beneath Greenland and surroundings. The available free-air gravity data are corrected for the topographic effect and the effect of sedimentary...

  1. VHMPID RICH prototype using pressurized C4F8O radiator gas and VUV photon detector

    Science.gov (United States)

    Acconcia, T. V.; Agócs, A. G.; Barile, F.; Barnaföldi, G. G.; Bellwied, R.; Bencédi, G.; Bencze, G.; Berényi, D.; Boldizsár, L.; Chattopadhyay, S.; Chinellato, D. D.; Cindolo, F.; Cossyleon, K.; Das, D.; Das, K.; Das-Bose, L.; Dash, A. K.; D`Ambrosio, S.; De Cataldo, G.; De Pasquale, S.; Di Bari, D.; Di Mauro, A.; Futó, E.; Garcia-Solis, E.; Hamar, G.; Harton, A.; Iannone, G.; Jimenez, R. T.; Kim, D. W.; Kim, J. S.; Knospe, A.; Kovács, L.; Lévai, P.; Markert, C.; Martinengo, P.; Molnár, L.; Nappi, E.; Oláh, L.; Paić, G.; Pastore, C.; Patimo, G.; Patino, M. E.; Peskov, V.; Pinsky, L.; Piuz, F.; Pochybová, S.; Sgura, I.; Sinha, T.; Song, J.; Takahashi, J.; Timmins, A.; Van Beelen, J. B.; Varga, D.; Volpe, G.; Weber, M.; Xaplanteris, L.; Yi, J.; Yoo, I.-K.

    2014-12-01

    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown.

  2. C-4 Gem-Dimethylated Oleanes of Gymnema sylvestre and Their Pharmacological Activities

    Directory of Open Access Journals (Sweden)

    Giovanni Di Fabio

    2013-12-01

    Full Text Available Gymnema sylvestre R. Br., one of the most important medicinal plants of the Asclepiadaceae family, is a herb distributed throughout the World, predominantly in tropical countries. The plant, widely used for the treatment of diabetes and as a diuretic in Indian proprietary medicines, possesses beneficial digestive, anti-inflammatory, hypoglycemic and anti-helmentic effects. Furthermore, it is believed to be useful in the treatment of dyspepsia, constipation, jaundice, hemorrhoids, cardiopathy, asthma, bronchitis and leucoderma. A literature survey revealed that some other notable pharmacological activities of the plant such as anti-obesity, hypolipidemic, antimicrobial, free radical scavenging and anti-inflammatory properties have been proven too. This paper aims to summarize the chemical and pharmacological reports on a large group of C-4 gem-dimethylated pentacyclic triterpenoids from Gymnema sylvestre.

  3. C4-alkylthiols with activity against Moraxella catarrhalis and Mycobacterium tuberculosis.

    Science.gov (United States)

    Kostova, Maya B; Myers, Carey J; Beck, Tim N; Plotkin, Balbina J; Green, Jacalyn M; Boshoff, Helena I M; Barry, Clifton E; Deschamps, Jeffrey R; Konaklieva, Monika I

    2011-11-15

    Antimicrobial resistance represents a global threat to healthcare. The ability to adequately treat infectious diseases is increasingly under siege due to the emergence of drug-resistant microorganisms. New approaches to drug development are especially needed to target organisms that exhibit broad antibiotic resistance due to expression of β-lactamases which is the most common mechanism by which bacteria become resistant to β-lactam antibiotics. We designed and synthesized 20 novel monocyclic β-lactams with alkyl- and aryl-thio moieties at C4, and subsequently tested these for antibacterial activity. These compounds demonstrated intrinsic activity against serine β-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=6) β-lactamase producing Moraxella catarrhalis clinical isolates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. [The analysis of C4 and C5 olefins in cracking gasoline].

    Science.gov (United States)

    Zhang, Z; Yang, H; Wang, H

    1997-07-01

    The paper described the analytical method of butenes and pentenes in cracking gasoline with a boiling point range from initial to 210 degrees C. Beside the C3 (propane + protene) and n, i-C4 = (n-butene + i-butene) combine peaks, all C2-C5 components in the sample were separated on the OV-1 column. The proportion of the combined peaks was determined on the Al2O3 column. The quantitative results were calculated on the data determined from the above one-column analytical systems with a relative standard deviation ASTM D2427-87, the simple operation, easy application, good repetition and all component results were characteristic of the method.

  5. Optical spectroscopy study of c(4 x 2) Ge (001)-surfaces, covered with atomic Au wires

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Utz; Meyer, Sebastian; Schaefer, Joerg; Geurts, Jean [Universitaet Wuerzburg, Physikalisches Institut, Am Hubland, 97074 Wuerzburg (Germany); Speiser, Eugen; Esser, Norbert [ISAS, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2011-07-01

    Novel quasi-1D systems like e.g. atomic gold chains on a c(4x2) reconstructed Ge(001)-surfaces enable the investigation of 1D-effects like the possible occurrence of the Luttinger- to Fermi liquid transition. As there is a crucial interplay of the lattice vibrations and the electrical and structural properties on such sensitive systems, phonon dynamics are in the focus of this work. The phonons were addressed by Raman spectroscopy and reveal a clear change from the Ge-oxide layer to the final surface with Au-nano wires. Thermally deoxidizing the Ge-surface under UHV leads to a distinct low-frequency vibration around 65cm-1. Its frequency range and its persistence after Gold deposition in the submonolayer range indicate that this signal is surface related. Additionally, the surface-induced anisotropy of the optical reflectance was complementary investigated by Reflectance-Anisotropy-Spectroscopy (RAS) and IR-ellipsometry.

  6. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    Science.gov (United States)

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  7. Larsen syndrome with C3-C4 spondyloptosis and atlantoaxial dislocation in an adult.

    Science.gov (United States)

    Roopesh Kumar, V R; Madhguiri, Venkatesh S; Sasidharan, Gopalakrishnan M; Gundamaneni, Sudheer Kumar; Yadav, Awdhesh Kumar

    2013-01-01

    This is a clinical case report with a review of relevant literature. To describe a case of Larsen syndrome with C3-C4 spondyloptosis and atlantoaxial dislocation in a middle-aged female patient and to discuss management strategies. Spondyloptosis of the cervical spine is relatively rare and is caused by trauma, destruction of the vertebral bodies by tumors, or tuberculosis. Such gross vertebral displacement is usually associated with significant neurological deficits. Larsen syndrome is characterized by multiple joint displacements and can, very rarely, be associated with nontraumatic spondyloptosis of the cervical vertebra. A single case report of C1-C2 joint laxity causing atlantoaxial dislocation in a patient with Larsen syndrome is available in literature. No reports of any patient (with Larsen syndrome or nonsyndromic) who had both cervical spondyloptosis and atlantoaxial dislocation are available in literature. A 36-year-old female presented with chronic neck pain, bilateral hand deformity, and mild spasticity involving all 4 limbs. Cervical radiograph, computed tomographic scan, and magnetic resonance image revealed C3-C4 spondyloptosis and atlantoaxial dislocation. A combined ventral decompression of subaxial spine and instrumentation from C2 to C5, followed by posterior C1-C2 distraction arthroplasty and lateral mass stabilization of the subaxial spine up to C6, was done. The cervical deformity was corrected, and the patient remains symptom free. Patients with spondyloptosis of the cervical spine can rarely present with chronic neck pain and minimal neurological deficits. An additional pathology, such as atlantoaxial dislocation, can add to the complexity. Circumferential stabilization and fusion would be required in such cases to achieve a good outcome. Larsen syndrome is a rare cause of nontraumatic cervical displacements.

  8. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    Science.gov (United States)

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  9. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.

    Science.gov (United States)

    Mirkovic, Tihana; Ostroumov, Evgeny E; Anna, Jessica M; van Grondelle, Rienk; Govindjee; Scholes, Gregory D

    2017-01-25

    The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

  10. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  11. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    Science.gov (United States)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  12. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  13. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.

    Science.gov (United States)

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-06-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m(-2) s(-1) higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4-8.1 mmol mol(-1)) than C3 averages (0.7-6.8 mmol mol(-1)), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many

  15. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature

  17. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-07-22

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3

  18. Elevated levels of the complement activation product C4d in bronchial fluids for the diagnosis of lung cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Ajona

    Full Text Available Molecular markers in bronchial fluids may contribute to the diagnosis of lung cancer. We previously observed a significant increase of C4d-containing complement degradation fragments in bronchoalveolar lavage (BAL supernatants from lung cancer patients in a cohort of 50 cases and 22 controls (CUN cohort. The present study was designed to determine the diagnostic performance of these complement fragments (hereinafter jointly referred as C4d in bronchial fluids. C4d levels were determined in BAL supernatants from two independent cohorts: the CU cohort (25 cases and 26 controls and the HUVR cohort (60 cases and 98 controls. A series of spontaneous sputum samples from 68 patients with lung cancer and 10 controls was also used (LCCCIO cohort. Total protein content, complement C4, complement C5a, and CYFRA 21-1 were also measured in all cohorts. C4d levels were significantly increased in BAL samples from lung cancer patients. The area under the ROC curve was 0.82 (95%CI = 0.71-0.94 and 0.67 (95%CI = 0.58-0.76 for the CU and HUVR cohorts, respectively. In addition, unlike the other markers, C4d levels in BAL samples were highly consistent across the CUN, CU and HUVR cohorts. Interestingly, C4d test markedly increased the sensitivity of bronchoscopy in the two cohorts in which cytological data were available (CUN and HUVR cohorts. Finally, in the LCCCIO cohort, C4d levels were higher in sputum supernatants from patients with lung cancer (area under the ROC curve: 0.7; 95%CI = 0.56-0.83. In conclusion, C4d is consistently elevated in bronchial fluids from lung cancer patients and may be used to improve the diagnosis of the disease.

  19. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    Science.gov (United States)

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  20. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

    OpenAIRE

    Xiaolong Liu; Yanchen Bo; Jian Zhang; Yaqian He

    2015-01-01

    The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by b...

  1. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    Science.gov (United States)

    Mostame, Sarah; Rebentrost, Patrick; Eisfeld, Alexander; Kerman, Andrew J.; Tsomokos, Dimitris I.; Aspuru-Guzik, Alán

    2012-10-01

    Open quantum system approaches are widely used in the description of physical, chemical and biological systems. A famous example is electronic excitation transfer in the initial stage of photosynthesis, where harvested energy is transferred with remarkably high efficiency to a reaction center. This transport is affected by the motion of a structured vibrational environment, which makes simulations on a classical computer very demanding. Here we propose an analog quantum simulator of complex open system dynamics with a precisely engineered quantum environment. Our setup is based on superconducting circuits, a well established technology. As an example, we demonstrate that it is feasible to simulate exciton transport in the Fenna-Matthews-Olson photosynthetic complex. Our approach allows for a controllable single-molecule simulation and the investigation of energy transfer pathways as well as non-Markovian noise-correlation effects.

  2. Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria.

    Science.gov (United States)

    Yang, Anqi; Zhang, Guangming; Yang, Guang; Wang, Hangyao; Meng, Fan; Wang, Hongchen; Peng, Meng

    2017-05-01

    Huge amount of aging biogas slurry is in urgent need to be treated properly. However, due to high NH 3 -N concentration and low C/N ratio, this aging biogas slurry is refractory for traditional methods. Its denitrification has become a big challenge. In this paper, photosynthetic bacteria (PSB) were employed to handle this problem. The results showed denitrification of aging biogas slurry by PSB treatment was promising. The highest removal efficiency of NH 3 -N reached 99.75%, much higher than all other treatments. The removal of NH 3 -N followed pseudo zero order reaction under dark-aerobic condition. The better inoculation rate for NH 3 -N removal was 30%; and aerobic condition was more beneficial for NH 3 -N removal than anaerobic condition because of different metabolic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    Science.gov (United States)

    Mostame, Sarah; Rebentrost, Patrick; Eisfeld, Alexander; Kerman, Andrew J.; Tsomokos, Dimitris I.; Aspuru-Guzik, Alan

    2012-02-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  4. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-25

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.

  5. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand; Frigaard, Niels-Ulrik

    2014-01-01

    d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically...... produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate...... to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis...

  6. Multiple Roles of Photosynthetic and Sunscreen Pigments in Cyanobacteria Focusing on the Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Seiichi Matsugo

    2013-05-01

    Full Text Available Cyanobacteria have two types of sunscreen pigments, scytonemin and mycosporine-like amino acids (MAAs. These secondary metabolites are thought to play multiple roles against several environmental stresses such as UV radiation and desiccation. Not only the large molar absorption coefficients of these sunscreen pigments, but also their antioxidative properties may be necessary for the protection of biological molecules against the oxidative damages induced by UV radiation. The antioxidant activity and vitrification property of these pigments are thought to be requisite for the desiccation and rehydration processes in anhydrobiotes. In this review, the multiple roles of photosynthetic pigments and sunscreen pigments on stress resistance, especially from the viewpoint of their structures, biosynthetic pathway, and in vitro studies of their antioxidant activity, will be discussed.

  7. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species.

    Science.gov (United States)

    Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo

    2015-02-01

    This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth.

  8. Effects of radiation damping on photorecombination of C4 + ions for the KLL resonance

    Science.gov (United States)

    Li, Chuan-Ying; Wu, Yong; Qu, Yi-Zhi; Wang, Jian-Guo

    2016-10-01

    A numerical method based on Zabaydullin and Dubau's work [O. Zabaydullin and J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 45, 115002 (2012), 10.1088/0953-4075/45/11/115002] has been developed to calculate the Cauchy principal value integral in scattering matrices and obtain photorecombination (PR) cross sections of low-lying resonances according to Davies and Seaton's theory [J. Phys. B 2, 757 (1969), 10.1088/0022-3700/2/7/304], in which radiation damping is included. The Dirac R -matrix method is employed to secure the dipole matrix. Using this method, PR cross sections of C4 + for the KLL resonance are acquired, and compared with available experimental measurements and other close-coupling theoretical results. It is shown that our damped cross sections reproduce the experimental data and are in agreement with other theoretical results. Meanwhile, radiation damping can reduce the PR cross section for the 1 s 2 p22P resonance (corresponding to two levels [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 by three orders of magnitude. The unresolved and underestimated resonances 1 s 2 p24P , 1 s 2 s 2 p 4P , and 1 s 2 p22P in the undamped Breit-Pauli R -matrix calculations [H. L. Zhang et al., J. Phys. B: At. Mol. Opt. Phys. 32, 1459 (1999), 10.1088/0953-4075/32/6/010] are corrected. Besides, dielectronic recombination cross sections of C4 + for the KLL resonance are also presented for comparison using the relativistic configuration-interaction (RCI) method implemented in flexible atomic code (fac), which show radiation damping has pronounced influences on 1 s 2 p22P due to much larger radiative rates compared with autoionization rates. Furthermore, radiative and autoionization rates for the intermediate states [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 of the He-like ions with 6 ≤Z ≤83 are calculated using fac, scaling laws of which are checked. Autoionization rates comply with the Zeff0 scaling law for Z ≥32 , which is caused by relativistic effects.

  9. Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue.

    Directory of Open Access Journals (Sweden)

    Inês M Luís

    Full Text Available Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs, such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer; and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK

  10. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    Science.gov (United States)

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-03

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  11. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301.

    Science.gov (United States)

    Ouyang, Long-Ling; Chen, Si-Hong; Li, Yan; Zhou, Zhi-Gang

    2013-06-13

    Arachidonic acid (ArA) is important for human health because it is one of the major components of mammalian brain membrane phospholipids. The interest in ArA inspired the search for a new sustainable source, and the green microalga Myrmecia incisa Reisigl H4301 has been found a potential ArA-producer due to a high content of intracellular ArA. To gain more molecular information about metabolism pathways, including the biosynthesis of ArA in the non-model microalga, a transcriptomic analysis was performed. The 454 pyrosequencing generated 371,740 high-quality reads, which were assembled into 51,908 unique sequences consisting of 22,749 contigs and 29,159 singletons. A total of 11,873 unique sequences were annotated th