WorldWideScience

Sample records for c4 photosynthetic pathway

  1. Photosynthetic carbon assimilation in C3- and C4-plants

    International Nuclear Information System (INIS)

    The photosynthetic mechanisms of plants have become to be well understood by the use of radioactive and stable isotopes. This review included the distribution of 14C in photosynthetic intermediates by assimilation with 14CO2, resultant CO2 receptors, Calvin cycle, C4 photosynthetic pathway, differences between the photosynthetic pathway for C3-plants and that for C4-plants, photorespiration, glycolate pathway, the yield of photosynthetic quanta and the relationship between assimilation with 14CO2 and 13C values. Reference was made to the photosynthetic mechanism in 13C-NMR follow-up with 13CO2. (Chiba, N.)

  2. Photosynthetic diversity meets biodiversity: the C4 plant example.

    Science.gov (United States)

    Sage, Rowan F; Stata, Matt

    2015-01-01

    Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere. PMID:25264020

  3. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C4 and C3 modes in contrasting environments

    International Nuclear Information System (INIS)

    Eleocharis vivipara Link, a freshwater amphibious leafless plant belonging to the Cyperaceae can grow in both terrestrial and submersed aquatic conditions. Two forms of E. vivipara obtained from these contrasting environments were examined for the characteristics associated with C4 and C3 photosynthesis. In the terrestrial form, the culms, which are photosynthetic organs, possess a Kranz-type anatomy typical of C4 plants, and well-developed bundle-sheath cells contain numerous large chloroplasts. In the submersed form, the culms possess anatomical features characteristic of submersed aquatic plants, and the reduced bundle-sheath cells contain only a few small chloroplasts. 14C pulse-12C chase experiments showed that the terrestrial form and the submersed form fix carbon by way of the C4 pathway, with aspartate (40%) and malate (35%) as the main primary products, and by way of the C3 pathway, with 3-phosphoglyceric acid (53%) and sugar phosphates (14%) as the main primary products, respectively. The terrestrial form showed photosynthetic enzyme activities typical of the NAD-malic enzyme-C4 subtype, whereas the submersed form showed decreased activities of key C4 enzymes and an increased ribulose 1,5-bisphosphate carboxylase activity. These data suggest that this species can differentiate into the C4 mode under terrestrial conditions and into the C3 mode under submersed conditions

  4. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics.

    OpenAIRE

    Reiskind, J B; Bowes, G.

    1991-01-01

    Udotea flabellum is a marine, macroscopic green alga with C4-like photosynthetic characteristics, including little O2 inhibition of photosynthesis, a low CO2 compensation point, and minimal photorespiration; but it lacks anatomical features analogous to the Kranz compartmentation of C4 plants, and phosphoenolpyruvate carboxylase [PEPC; orthophosphate:oxaloacetate carboxy-lyase (phosphorylating), EC 4.1.1.31] activity is negligible. Phosphoenolpyruvate carboxykinase (PEPCK) activity (carboxyla...

  5. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame.

    Science.gov (United States)

    Sage, Rowan F

    2016-07-01

    Fifty years ago, the C4 photosynthetic pathway was first characterized. In the subsequent five decades, much has been learned about C4 plants, such that it is now possible to place nearly all C4 species into their respective evolutionary lineages. Sixty-one independent lineages of C4 photosynthesis are identified, with additional, ancillary C4 origins possible in 12 of these principal lineages. The lineages produced ~8100 C4 species (5044 grasses, 1322 sedges, and 1777 eudicots). Using midpoints of stem and crown node dates in their respective phylogenies, the oldest and most speciose C4 lineage is the grass lineage Chloridoideae, estimated to be near 30 million years old. Most C4 lineages are estimated to be younger than 15 million years. Older C4 lineages tend to be more speciose, while those younger than 7 million years have <43 species each. To further highlight C4 photosynthesis for a 50th anniversary snapshot, a Hall of Fame comprised of the 40 most significant C4 species is presented. Over the next 50 years, preservation of the Earth's C4 diversity is a concern, largely because of habitat loss due to elevated CO2 effects, invasive species, and expanded agricultural activities. Ironically, some members of the C4 Hall of Fame are leading threats to the natural C4 flora due to their association with human activities on landscapes where most C4 plants occur. PMID:27053721

  6. Walking the C4 pathway: past, present, and future.

    Science.gov (United States)

    Furbank, Robert T

    2016-07-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. PMID:27059273

  7. C4 Photosynthetic Gene Expression in Light- and Dark-Grown Amaranth Cotyledons.

    Science.gov (United States)

    Wang, J. L.; Long, J. J.; Hotchkiss, T.; Berry, J. O.

    1993-08-01

    The patterns of expression for genes encoding several C4 photosynthetic enzymes were examined in light-grown and dark-grown (etiolated) cotyledons of amaranth (Amaranthus hypochondriacus), a dicotyledonous C4 plant. The large subunit and small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPCase), phosphoenolpyruvate carboxylase (PEPCase), and pyruvate orthophosphate dikinase (PPdK) were all present in the cotyledons by d 2 after planting when the seedlings first emerged from the seed coat. Kranz anatomy was apparent in light-grown cotyledons throughout development, and the overall patterns of C4 gene expression were similar to those recently described for developing amaranth leaves (J.L. Wang, D.F. Klessig, J.O. Berry [1992] Plant Cell 4: 173-184). RuBPCase mRNA and proteins were present in both bundle sheath and mesophyll cells in a C3-like pattern during early development and became progressively more localized to bundle sheath cells in the C4-type pattern as the cotyledons expanded over 2 to 7 d. PEPCase and PPdK polypeptides were localized to mesophyll cells throughout development, even though PEPCase transcripts were detected in both bundle sheath and mesophyll cells. Kranz anatomy also developed in cotyledons grown in complete darkness. In 7-d-old dark-grown cotyledons, RuBPCase, PPdK, and PEPCase were all localized to the appropriate cell types, although at somewhat lower levels than in light-grown cotyledons. These findings demonstrate that the leaves and postembryonic cotyledons of amaranth undergo common developmental programs of C4 gene expression during maturation. Furthermore, light is not required for the cell-type-specific expression of genes encoding RuBPCase and other photosynthetic enzymes in this dicotyledonous C4 plant. PMID:12231890

  8. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    Science.gov (United States)

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    The succulent, cylindrical leaves of the C(4) dicot Portulaca grandiflora possess three distinct green cell types: bundle sheath cells (BSC) in radial arrangement around the vascular bundles; mesophyll cells (MC) in an outer layer adjacent to the BSC; and water storage cells (WSC) in the leaf center. Unlike typical Kranz leaf anatomy, the MC do not surround the bundle sheath tissue but occur only in the area between the bundle sheath and the epidermis. Intercellular localization of photosynthetic enzymes was characterized using protoplasts isolated enzymatically from all three green cell types.Like other C(4) plants, P. grandiflora has ribulose 1,5-bisphosphate carboxylase and the decarboxylating enzyme, NADP(+)-malic enzyme, in the BSC. Unlike other C(4) plants, however, phosphoenolpyruvate carboxylase, pyruvate, Pi dikinase, and NADP(+)-malate dehydrogenase of the C(4) pathway were present in all three green cell types, indicating that all are capable of fixing CO(2) via phosphoenolpyruvate carboxylase and regenerating phosphoenolpyruvate. Other enzymes were about equally distributed between MC and BSC similar to other C(4) plants. The enzyme profile of the WSC was similar to that of the MC but with reduced activity in most enzymes, except mitochondrion-associated enzymes.Intracellular localization of enzymes was studied in organelles partitioned by differential centrifugation using mechanically ruptured mesophyll and bundle sheath protoplasts. Phosphoenolpyruvate carboxylase was a cytosolic enzyme in both cells; whereas, ribulose 1,5-bisphosphate carboxylase and NADP(+)-malic enzyme were exclusively compartmentalized in the bundle sheath chloroplasts. NADP(+)-malate dehydrogenase, pyruvate, Pi dikinase, aspartate aminotransferase, 3-phosphoglycerate kinase, and NADP(+)-triose-P dehydrogenase were predominantly localized in the chloroplasts while alanine aminotransferase and NAD(+)-malate dehydrogenase were mainly present in the cytosol of both cell types. Based

  9. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. PMID:26286697

  10. Characterization of photosynthesis, photoinhibition and the activities of C4 pathway enzymes in a superhigh-yield rice,Liangyoupeijiu

    Institute of Scientific and Technical Information of China (English)

    WANG; Qiang(王强); LU; Congming(卢从明); ZHANG; Qide(张其德); HAO; Naibin(郝迺斌); GE; Qiaoying(戈巧英); DONG; Fengqin(董凤琴); BAI; Kezhi(白克智); KUANG; Tingyun(匡廷云)

    2002-01-01

    Characteristics of photosynthetic gas exchange, photoinhibition and C4 pathway enzyme activities in both flag leaves and lemma were compared between a superhigh-yield rice (Oryza sativa L.) hybrid, Liangyoupeijiu and a traditional rice hybrid, Shanyou63. Liangyoupeijiu had a similar light saturated assimilation rate (Asat) to Shanyou63, but a much higher apparent quantum yield (AQY), carboxylation efficiency (CE) and quantum yield of CO2 fixation (φCO2). Liangyoupeijiu also showed a higher resistance to photoinhibition and higher non-radiative energy dissipation associated with the xanthophyll cycle than Shanyou63 when subjected to strong light. In addition, Liangyoupeijiu had higher activities of the C4 pathway enzymes in both flag leaves and lemmas than Shanyou63. These results indicate that higher light and CO2 use efficiency, higher resistance to photoinhibition and C4 pathway in both flag leaf and lemma may contribute to the higher yield of the superhigh-yield rice hybrid, Liangyoupeijiu.

  11. Effect of Soil Drought on C4 Photosynthetic Enzyme Activities of Flag Leaf and Ear in Wheat

    Institute of Scientific and Technical Information of China (English)

    WEI Ai-li; WANG Zhi-min; ZHAI Zhi-xi; GONG Yuan-shi

    2003-01-01

    The activities of RuBPC and C4 photosynthetic enzymes in ear and flag leaf blade were examinedin wheat. The results showed that photosynthesis of ear was less sensitive to soil drought than that of flag leaf,and decrease of CO2 assimilation in flag leaf blade with water stress was more than that in ear. Compared withflag leaf, ear organs(awn, glume and lemma) had higher C4 enzyme activities and lower RuBPC activity. Un-der moderate water-stress, the increase of C4 enzyme activities was induced, and the increase was higher in earthan in flag leaf. Under severe water-stress, relatively higher C4 enzyme activities were still maintained in ear,rather than that in flag leaf. It suggests that high activities of C4 enzymes in ear may contribute to its high tol-erance of photosynthesis to water-stress.

  12. Photosynthetic induction in a C4, Flaveria trinervia. I. Initial products of 14CO2 assimilation and levels of whole leaf C4 metabolites

    International Nuclear Information System (INIS)

    Labeling patterns from 14CO2 pulses to leaves and whole leaf metabolite contents were examined during photosynthetic induction in Flaveria trinervia, a C4 dicot of the NADP-malic enzyme subgroup. During the first one to two minutes of illumination, malate was the primary initial product of 14CO2 assimilation (about 77% of total 14C incorporated). After about 5 minutes of illumination, the proportion of initial label to aspartate increased from 16 to 66%, and then gradually declined during the following 7 to 10 minutes of illumination. Nutrition experiments showed that the increase in 14CO2 partitioning to aspartate was delayed about 2.5 minutes in plants grown with limiting N, and was highly dampened in plants previously treated 10 to 12 days with ammonia as the sole N source. Measurements of C4 leaf metabolites revealed several transients in metabolite pools during the first few minutes of illumination, and subsequently, more gradual adjustments in pool sizes. These include a large initial decrease in malate (about 1.6 micromoles per milligram chlorophyll) and a small initial decrease in pyruvate. There was a transient increase in alanine levels after 1 minute of illumination, which was followed by a gradual, prolonged decrease during the remainder of the induction period. Total leaf aspartate decreased initially, but temporarily doubled in amount between 5 and 10 minutes of illumination (after its surge as a primary product). These results are discussed in terms of a plausible sequence of metabolic events which lead to the formation of the intercellular metabolite gradients required in C4 photosynthesis

  13. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    Directory of Open Access Journals (Sweden)

    Silke Christine Weckopp

    2015-01-01

    Full Text Available C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in bundle sheath cells of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in bundle sheath cells of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modelling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory towards C4 photosynthesis.

  14. Influence of photosynthetic pathway on the hydrogen isotopic profile of glucose

    International Nuclear Information System (INIS)

    The SNIF-NMR method (site-specific natural isotope fractionation studied by Nuclear Magnetic Resonance) was used to examine the isotopic profile of glucoses derived from plants with different photosynthetic pathways. It is shown that the type of photosynthetic metabolism, either C3 (beet-root, orange, grape), C4 (maize, sugar-cane) C5 (pineapple), exerts a strong influence on the deuterium distribution in the sugar molecules. The isotope profile also depends, secondarily, on the physiological status of the precursor plant. Consequently, the isotopic fingerprint of glucose may be a rich source of information in mechanistic comparisons of metabolic pathways. Moreover, from an analytical point of view, it may provide complementary criteria with respect to the ethanol probe for origin interface of sugars. (author)

  15. Electron transfer pathway analysis in bacterial photosynthetic reaction center

    CERN Document Server

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    A new computational scheme to analyze electron transfer (ET) pathways in large biomolecules is presented with applications to ETs in bacterial photosynthetic reaction center. It consists of a linear combination of fragment molecular orbitals and an electron tunneling current analysis, which enables an efficient first-principles analysis of ET pathways in large biomolecules. The scheme has been applied to the ET from menaquinone to ubiquinone via nonheme iron complex in bacterial photosynthetic reaction center. It has revealed that not only the central Fe$^{2+}$ ion but also particular histidine ligands are involved in the ET pathways in such a way to mitigate perturbations that can be caused by metal ion substitution and depletion, which elucidates the experimentally observed insensitivity of the ET rate to these perturbations.

  16. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius

    OpenAIRE

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Wei LIU; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation pote...

  17. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Kidmose, Rune Thomas; Petersen, Steen Vang;

    2015-01-01

    for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of...... the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and...... mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features...

  18. A multi-pathway model for photosynthetic reaction center

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  19. Effects of mannitol induced osmotic stress on proline accumulation, pigment degradation, photosynthetic abilities and growth characters in C3 rice and C4 sorghum

    Institute of Scientific and Technical Information of China (English)

    Suriyan CHA-UM; Souvanh THADAVONG; Chalermpol KIRDMANEE

    2009-01-01

    Osmotic stress is one of the most important abiotic factors which inhibit growth and development in both the vegetative and reproductive stages of many plant species. The aim of this investigation was to compare the biochemical and physiological responses in C3 rice and C4 sorghum to water deficit. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TC) and total carotenoid (Cx+c) contents in both rice and sorghum seedlings under osmotic stress were adversely affected, related to increasing osmotic pressure in the culture media. In addition, the chlorophyll's fluorescence parameters and net photosynthetic rate (Pn) decreased, leading to growth reduction. Also, a positive correlation was found between physiological and biochemical data, while proline accumulation showed a negative relationship. The Chlb, Pn and fresh weight were maintained better in osmotic-stressed (-1.205 MPa) C4 sorghum seedlings than those in C3 rice seedlings. The growth and physiological responses of C3 rice and C4 sorghum decreased depending on the plant species, the osmotic pressure in the media and their interactions. Pigment content and Pn ability in C4 sorghum grown under mannitol-induced osmotic stress increased to a greater degree than in C3 rice, resulting in maintenance of growth.

  20. A multi-pathway model for Photosynthetic reaction center

    CERN Document Server

    Qin, M; Yi, X X

    2015-01-01

    Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine (QHE). Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem {\\rm II} reaction center (PS{\\rm II} RC) to describe the charge separation. Our model mainly considers two charge-separation pathways more than that in the published literature. The two pathways can interfere via cross-couplings and work together to enhance the charge-separation yields. We explore how these cross-couplings increase the current and voltage of the charge separation and discuss the advantages of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PS{\\rm II} RC and dephasing induced by environments is also explored, and extension ...

  1. Differences in the Photosynthetic Activity of C3 and C4 Graminoids in Short-Hydroperiod Marl Prairies of the Florida Everglades: Responses to Seasonality and Water Management

    Science.gov (United States)

    Oberbauer, S. F.; Olivas, P. C.; Schedlbauer, J. L.; Moser, J.

    2011-12-01

    Short hydroperiod marsh of the Everglades is dominated by a mix of sawgrass (Cladium jamaicense, a C3 sedge) and Muhly grass (Muhlenbergia capillaris, a C4 grass). Although the Everglades are located in a subtropical region, the climate is classified as tropical with distinct annual rainy and dry seasons during the summer and winter, respectively. Water levels in marl prairies vary greatly over the year driven by seasonality of rainfall, but are modified strongly by water management practices. As a result, the rainy season and period of inundation generally do not completely coincide. Water tables fall as much as 80 cm below the surface for approximately 6-7 months starting about December/January and reach up to 40 cm above the surface during the inundation period. Eddy covariance studies from this habitat revealed strong reductions in CO2 uptake coinciding with water tables inundating the surface. Submersion of macrophyte leaf area accounts for some of the reduction. To test if changes in leaf physiology also contribute to this reduced ecosystem CO2 uptake, we measured maximum assimilation rates (Amax) of the dominant species during both seasons in the marsh and on a nearby levee that remains above water. Typical of C4 plants, Amax of Muhlenbergia were high, > 20 μmol m-2 s-1, during the dry season. However when plant crowns were submerged, photosynthetic rates of emergent leaves of Muhlenbergia were strongly reduced to near compensation in some cases. In contrast, Amax of Muhlenbergia measured from higher terrain within 30 m of the flooded sites maintained high rates. Rates of Cladium were lower overall but did not show strong seasonality at either site. This wetland represents an unusual situation in which one of the codominants is effectively photosynthetically inactive during wet season. Planned changes to increase water flow to the Everglades and predicted changes in rainfall with climate change will strongly affect the carbon balance of this habitat.

  2. Phylogenetic niche conservatism in C4 grasses.

    Science.gov (United States)

    Liu, Hui; Edwards, Erika J; Freckleton, Robert P; Osborne, Colin P

    2012-11-01

    Photosynthetic pathway is used widely to discriminate plant functional types in studies of global change. However, independent evolutionary lineages of C(4) grasses with different variants of C(4) photosynthesis show different biogeographical relationships with mean annual precipitation, suggesting phylogenetic niche conservatism (PNC). To investigate how phylogeny and photosynthetic type differentiate C(4) grasses, we compiled a dataset of morphological and habitat information of 185 genera belonging to two monophyletic subfamilies, Chloridoideae and Panicoideae, which together account for 90 % of the world's C(4) grass species. We evaluated evolutionary variance and covariance of morphological and habitat traits. Strong phylogenetic signals were found in both morphological and habitat traits, arising mainly from the divergence of the two subfamilies. Genera in Chloridoideae had significantly smaller culm heights, leaf widths, 1,000-seed weights and stomata; they also appeared more in dry, open or saline habitats than those of Panicoideae. Controlling for phylogenetic structure showed significant covariation among morphological traits, supporting the hypothesis of phylogenetically independent scaling effects. However, associations between morphological and habitat traits showed limited phylogenetic covariance. Subfamily was a better explanation than photosynthetic type for the variance in most morphological traits. Morphology, habitat water availability, shading, and productivity are therefore all involved in the PNC of C(4) grass lineages. This study emphasized the importance of phylogenetic history in the ecology and biogeography of C(4) grasses, suggesting that divergent lineages need to be considered to fully understand the impacts of global change on plant distributions. PMID:22569558

  3. Photosynthetic Water Use Efficiency in it Sorghastrum nutans (C4) and it Solidago canadensis (C3) in Three Soils Along a CO2 Concentration Gradient

    Science.gov (United States)

    Fay, P. A.; Hui, D.; Procter, A.; Johnson, H. B.; Polley, H. W.; Jackson, R. B.

    2006-12-01

    The water use efficiency (WUE) of leaf photosynthetic carbon uptake is a key regulator of ecosystem carbon cycles and is strongly sensitive to atmospheric carbon dioxide concentrations [CO2]. However WUE responses to [CO2] typically differ between C3 and C4 species and may differ on varying soil types because of differences in soil moisture retention and plant uptake efficiency. We measured leaf-level photosynthesis (ACO2), stomatal conductance (gS), and transpiration (E) with an infrared gas analyzer to estimate WUE for the C4 grass Sorghastrum nutans and the C3 forb Solidago canadensis in constructed grassland species assemblages growing in three soils arrayed along a 200 560 ppm [CO2] gradient in the LYCOG Experiment, in central Texas, USA. LYCOG consists of eighty intact soil monoliths (1 m X 1 m X 1.5 m) representing 3 soil series, Austin (Udorthentic Haplustolls, a mollisol), Bastrop (Udic Paleustalfs, a sandy loam alfisol) and Houston Black (Udic Haplusterts, a vertisol). The monoliths were vegetated by transplanting 8 native perennial prairie species (5 grasses and 3 forbs), including S. nutans and S. canadensis. Both are abundant and widespread; S. nutans is a dominant species throughout much of North American tallgrass prairie, and S. canadensis is one of the most abundant and widespread forbs in North America. ACO2, gS, and E were measured three times during the growing season. Dark-adapted chlorophyll fluorescence (FvFm) was measured concurrently to assess photosynthetic capacity, and leaf water potential (Ψ leaf) and soil water content were measured to assess plant water status and soil moisture availability. WUE increased strongly (pincreasing ACO2 (p = 0.0055). This pattern was the same in both species (species x [CO2] ns). There was a corresponding increase in Ψ leaf (p = 0.01) at higher [CO2], but no [CO2] effect on FvFm. E and gS were lower on Houston than Austin or Bastrop soils (p ≤ 0.03), however there were no differences in the other leaf

  4. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway

    Science.gov (United States)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and ecophysiological functioning of leaves and the structural components of the canopy. These responses have the potential to significantly modify plant carbon uptake and surface energy partitioning, and have been attributed with large-scale changes in surface hydrology over recent decades. While the aggregated effects of vegetation acclimation can be pronounced, they often result from subtle changes in canopy properties that require the resolution of physical, biochemical and ecophysiological processes through the canopy for accurate estimation. In this paper, the first of two, a multilayer canopy-soil-root system model developed to capture the emergent vegetation responses to environmental change is presented. The model incorporates both C3 and C4 photosynthetic pathways, and resolves the vertical radiation, thermal, and environmental regimes within the canopy. The tight coupling between leaf ecophysiological functioning and energy balance determines vegetation responses to climate states and perturbations, which are modulated by soil moisture states through the depth of the root system. The model is validated for three growing seasons each for soybean (C3) and maize (C4) using eddy-covariance fluxes of CO2, latent, and sensible heat collected at the Bondville (Illinois) Ameriflux tower site. The data set provides an opportunity to examine the role of important environmental drivers and model skill in capturing variability in canopy-atmosphere exchange. Vertical variation in radiative states and scalar fluxes over a mean diurnal cycle are examined to understand the role of canopy structure on the patterns of absorbed radiation and scalar flux magnitudes and the consequent differences in sunlit and shaded source/sink locations through the canopies. An analysis is made of the impact of

  5. New evidence for grain specific C4 photosynthesis in wheat.

    Science.gov (United States)

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2016-01-01

    The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security. PMID:27530078

  6. Electron transfer pathways induced in photosynthetic chain upon intensive illumination

    International Nuclear Information System (INIS)

    The changes in the redox state of cytochromes f, b559 and b0 from isolated pean cloroplasts upon intensive (200 Wt/m2) illuminatioon of dark- or light-adapted plastids (pH 6.0) were studied. In the latter case, the illuminating light was switched on 2 min after 1 min illumination with intensive light. It was found that in preilluminated chloroplasts a steady redox state of the cytochromes was induced earlier than in dark-adapted ones. The kinetics of the cytochrome b6 transition during intensive illumination of dark-adapted plastids is suggestive of a slow formation of an oxidation pathway, whereas upon illumination of light-adapted plastids, this pathway comes into operation very quickly. Upon weak illumination, such an oxidation takes place in preliminary plastids. The kinetics of cytochrome b559 transition in preilluminated plastids suggest that upon intensive illumination the oxidation pathway of cytochrome b559 is formed in the photosystem II reaction center. It is assumed that the formation of specific pathways of oxidation and reduction of the cytochomes under effects of intensive illumination is a result of conformational changes in tylakoid memebranes and their slow recovery in the dark at weakly acidic values of pH

  7. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    Science.gov (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265

  8. Photorespiration connects C3 and C4 photosynthesis.

    Science.gov (United States)

    Bräutigam, Andrea; Gowik, Udo

    2016-05-01

    C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C4 pathway is more efficient than C3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C4 evolution that not only includes the avoidance of photorespiration as the major driving force for C4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C3 to C4. PMID:26912798

  9. C4 photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    International Nuclear Information System (INIS)

    Based on analysis of 14CO2 fixation kinetics and assays of enzymes related to C4 metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO2 to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO2 into RPP-cycle intermediates and sucrose, as well as malate and aspartate. 14CO2 pulse/chase kinetics show no significant loss of label from C4 acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ [PEP] = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C4 photosynthesis does not occur in callus derived from this C4 dicot but is regenerated concomitant with shoot regeneration, and β-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C4 acids that are not involved in the CO2 shuttle mechanism characteristic of C4 photosynthesis. 161 references, 19 figures, 12 tables

  10. The Paleo-ecology of C4 Evolution

    Science.gov (United States)

    Sage, R. F.; Khoshravesh, R.

    2014-12-01

    Molecular clock analysis of extant plant lineages consistently place the earliest appearance of the C4 photosynthetic pathway in the mid-to-late Oligocene, coincident with a decline in atmospheric CO2 and a spread of dry environments. Most of the approximately 70 known lineages of C4 photosynthesis, however, evolved over the subsequent 23 million years since the Oligocene. Examination of living C3-C4 intermediate species, and close C3 relatives of modern C4 lineages, indicate that the C4 pathway evolved in regions of high heat and episodic drought and/or salinity, usually in the drier ends of the monsoon belts of the subtropics. Soils associated with transitional species are typically sandy, rocky, or salinized, and have low vegetation density, which in combination with high air temperature allows for high surface heat loads that warm leaves to near 45°C. Under such conditions in low CO2 atmospheres, the rate of photorespiration is very high and would greatly impair C3 photosynthesis and establish conditions favoring C4 evolution. However, studies with modern taxa do not address whether the extreme habitats proposed to facilitate C4 evolution were actually present at the time when the C4 pathway evolved in any given lineage. Here, we examine the paleo-record to evaluate the environmental conditions present in the C4 centres of origin when the respective transitions from C3 to C4 photosynthesis are estimated to have occurred.

  11. Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases.

    Science.gov (United States)

    Mortensen, Sofia; Jensen, Jan K; Andersen, Gregers R

    2016-08-01

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5. PMID:27252379

  12. Solution Structures of Complement C2 and its C4 Complexes Propose Pathway Specific Mechanisms for Control and Activation of the Complement Proconvertases

    DEFF Research Database (Denmark)

    Mortensen, Sofia; Jensen, Jan Kristian; Andersen, Gregers Rom

    2016-01-01

    , formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by...... small-angle X-ray scattering (SAXS) analysis. We analysed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The SAXS derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared to...... that established for the alternative pathway (AP) proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar...

  13. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  14. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  15. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel

    OpenAIRE

    Leakey, Andrew D.B.

    2009-01-01

    Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from fr...

  16. Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants

    OpenAIRE

    Hibberd, J.M.; Quick, W.P.

    2002-01-01

    Most plants are known as C-3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C-4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C-4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical ...

  17. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. PMID:21376011

  18. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    Science.gov (United States)

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  19. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-04-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  20. 干旱胁迫下调节ATP的含量对提高转玉米C4型pepc水稻光合速率的影响%Effect of regulating ATP on improving photosynthetic rate of transgenic rice with overexpressing maize C4 pepc under drought stress

    Institute of Scientific and Technical Information of China (English)

    霍垲; 陆巍; 李霞

    2015-01-01

    C4-phosphoenolpyruvate carboxylase (PEPC) gene (C4-pepc) plays a key role in C4 photosynthesis by catalyzing initial fixation of CO2 in C4 plants. To determine whether adenosine triphosphate (ATP) limits photosynthetic rate of transgenic rice plant with over-expressing maize C4-pepc, the second upper leaves of non-transgenic rice (WT) and transgenic rice with over-expressing maize C4-pepc (PC) were sprayed with 2 mmol·L−1 NaHSO3, 100 µmol·L−1 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and 10 µmol·L−1 oligomycin at 5−6 leaf blade seedling stage under 20%(m/v) polyethylene glycol 6000 (PEG-6000) treatment. Then the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), PEPC activity, ATP content andΦPS∐of PC and WT rice plants measured in the next morning. The results showed that 2 mmol·L−1 NaHSO3 enhanced Pn of the upper leaves of PC and WT rice seedlings without PEG-6000 treatment. However, the 100 µmol·L−1 DCMU and 10 µmol·L−1 oligomycin decreased Pn of the upper leaves of PC and WT rice seedlings without PEG-6000 treatment. Treatment with 2 mmol·L−1 NaHSO3 increased Gs and Ci of WT rice leaves but decreased Gs and Ci of PC rice leaves. While treatment with 100 µmol·L−1 DCMU increased Ci of PC and WT rice leaves, it decreased Gs of PC and WT rice leaves. PEG-6000 treatment decreased Pn of the upper leaves in PC and WT plants under different treatments. However, PEG-6000 treatment combined with 2 mmol·L−1 NaHSO3 solution spray retarded the decrease in Pn. Then PEG-6000 treatment combined with DCMU and oligomycin sprays increased the rate of Pn decline. After 8 hours of 20% PEG-6000 treatment combined with different solutions, Gs of PC rice leaves remained unchanged while Pn of PC rice leaves changed obviously. The results further showed that ATP content, PEPC activity andΦPS∐ content in rice leaves changed obviously under different treatments. While DCMU treatment accelerated

  1. The Roles of Organic Acids in C4 Photosynthesis

    Science.gov (United States)

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  2. Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae)

    Science.gov (United States)

    Eleocharis contains many amphibious species, and displays diversity of photosynthetic mechanism (C3, C4 or C3-C4 intermediates). A unique feature of Eleocharis is the plasticity in the photosynthetic mechanism of some species in response to the environment. In this study, we have examined the culm a...

  3. Evolutionary implications of C3 -C4 intermediates in the grass Alloteropsis semialata.

    Science.gov (United States)

    Lundgren, Marjorie R; Christin, Pascal-Antoine; Escobar, Emmanuel Gonzalez; Ripley, Brad S; Besnard, Guillaume; Long, Christine M; Hattersley, Paul W; Ellis, Roger P; Leegood, Richard C; Osborne, Colin P

    2016-09-01

    C4 photosynthesis is a complex trait resulting from a series of anatomical and biochemical modifications to the ancestral C3 pathway. It is thought to evolve in a stepwise manner, creating intermediates with different combinations of C4 -like components. Determining the adaptive value of these components is key to understanding how C4 photosynthesis can gradually assemble through natural selection. Here, we decompose the photosynthetic phenotypes of numerous individuals of the grass Alloteropsis semialata, the only species known to include both C3 and C4 genotypes. Analyses of δ(13) C, physiology and leaf anatomy demonstrate for the first time the existence of physiological C3 -C4 intermediate individuals in the species. Based on previous phylogenetic analyses, the C3 -C4 individuals are not hybrids between the C3 and C4 genotypes analysed, but instead belong to a distinct genetic lineage, and might have given rise to C4 descendants. C3 A. semialata, present in colder climates, likely represents a reversal from a C3 -C4 intermediate state, indicating that, unlike C4 photosynthesis, evolution of the C3 -C4 phenotype is not irreversible. PMID:26524631

  4. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides.

    OpenAIRE

    Hunter, C N; Hundle, B S; Hearst, J E; Lang, H.P.; Gardiner, A.T.; Takaichi, S; Cogdell, R. J.

    1994-01-01

    Carotenoids have two major functions in bacterial photosynthesis, photoprotection and accessory light harvesting. The genes encoding many carotenoid biosynthetic pathways have now been mapped and cloned in several different species, and the availability of cloned genes which encode the biosynthesis of carotenoids not found in the photosynthetic genus Rhodobacter opens up the possibility of introducing a wider range of foreign carotenoids into the bacterial photosynthetic apparatus than would ...

  5. Impact of global climate change on ecosystem-level interactions among sympatric plants from all three photosynthetic pathways. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1997-12-17

    The proposed research will determine biochemical and physiological responses to variations in environmental factors for plants of all three photosynthetic pathways under competitive situations in the field. These responses will be used to predict the effects of global climatic change on an ecosystem in the northwestern Sonoran Desert where the C{sub 3} subshrub Encelia farinosa, the C{sub 4} bunchgrass Hilaria rigida, and the CAM succulent Agave deserti are co-dominants. These perennials are relatively short with overlapping shallow roots facilitating the experimental measurements as well as leading to competition for soil water. Net CO{sub 2} uptake over 24-h periods measured in the laboratory will be analyzed using an environmental productivity index (EPI) that can incorporate simultaneous effects of soil water, air temperature, and light. Based on EPI, net CO{sub 2} uptake and hence plant productivity will be predicted for the three species in the field under various treatments. Activity of the two CO{sub 2} fixation enzymes, Rubisco and PEPCase, will be determined for these various environmental conditions; also, partitioning of carbon to various organs will be measured based on {sup 14}CO{sub 2} labeling and dry weight analysis. Thus, enzymatic and partitioning controls on competition among sympatric model plants representing all three photosynthetic pathways will be investigated.

  6. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    OpenAIRE

    Mohammad-Zaman Nouri; Ali Moumeni; Setsuko Komatsu

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, accordi...

  7. Microaerophilic Cooperation of Reductive and Oxidative Pathways Allows Maximal Photosynthetic Membrane Biosynthesis in Rhodospirillum rubrum

    OpenAIRE

    Grammel, Hartmut; Gilles, Ernst-Dieter; Ghosh, Robin

    2003-01-01

    The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O2 pressure (pO2) control strategy to reliably adjust the ...

  8. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  9. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. PMID:27080742

  10. Diurnal variations in pathways of photosynthetic carbon fixation in a freshwater cyanobacterium

    Science.gov (United States)

    Labiosa, R. G.; Arrigo, K. R.; Grossman, A.; Reddy, T. E.; Shrager, J.

    2003-04-01

    Understanding phytoplankton photosynthesis is critical to several fields including ecology and global biogeochemistry. The efficiency with which phytoplankton fix carbon depends upon the ambient light field, which is in turn dependent upon sun angle and the depth of mixing in the water column. In this pilot project, Synechocystis PCC 6803 was chosen as a model organism with which to study the molecular and physiological responses of phytoplankton to diurnal changes in light levels. Advantages of using this organism include that its genome has been sequenced, allowing the use of microarray technology, that it is readily grown as single colonies on plates and in liquid cultures, and that it is easy to manipulate genetically (generate and complement mutants). Axenic cultures of Synechocystis were grown under precisely controlled conditions in a "cyclodyne", a chemostat in which the light intensity cycles to mimic diurnal changes in light level, where the light consisted of sinusoidal daylight (400 μ mol photons m-2 s-1 at noon) followed by 12 hours of darkness for several weeks. After one week to allow the cells to acclimate to the light conditions, the cultures were sampled and extracted for RNA analysis every two hours over the course of several days. At these time points, absorption spectra, light scattering and chlorophyll a concentrations were determined. Initial results from Northern Blot hybridizations (examining RNA levels for individual genes) indicate that, the transcripts encoding photosynthetic proteins (i.e., PsbA2, PsaA and CpcB, in photosystem II, photosystem I, and phycobilisomes, respectively) are highest during the light. Initial results show that in the middle of the night, the psbA2 transcripts are 2-fold less while the psaA and cpcB are greater than 4-fold less than in the middle of the day. For the most part, the transcripts encoding photosynthetic proteins track the light cycle, although with different trends at daybreak and after night falls

  11. A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra.

    Science.gov (United States)

    Aubry, Sylvain; Aresheva, Olga; Reyna-Llorens, Ivan; Smith-Unna, Richard D; Hibberd, Julian M; Genty, Bernard

    2016-03-01

    C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf. PMID:26818731

  12. A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra1[OPEN

    Science.gov (United States)

    Aresheva, Olga; Reyna-Llorens, Ivan; Genty, Bernard

    2016-01-01

    C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf. PMID:26818731

  13. Heritability and expression of C4 photosynthesis in hybrids between C3-C4 and C4 Flaveria

    International Nuclear Information System (INIS)

    In general, leaves of C4 plants are considered to be more efficient at fixing atmospheric CO2 than those of C3 plants. Such efficiency in carbon assimilation is attributed to unique C4 features in anatomy, physiology and biochemistry of leaves. In these studies I investigated whether these C4 characteristics can be inherited and expressed in C3-C4 species through artificial hybridization with C4 species in genus Flaveria. The expression of C4 photosynthesis in the parent C4 parent F. brownii is influenced by the light intensity during growth. Characterization of these F1 hybrids demonstrates that several C4 traits are heritable. The expression of Kranz leaf anatomy, and the activities and/or quantities of key C4 enzymes in the F1 hybrids are intermediate between levels in the parents. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts indicated that these hybrids lack a complete compartmentation of major photosynthetic enzymes, but they do exhibit a differential distribution of these enzymes between the two cell types. Furthermore, 14CO2 labeling experiments showed that they all possess a high degree of functional C4 photosynthesis, which may in part contribute to the reduced photorespiration observed in the F1 hybrids

  14. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism.

    Science.gov (United States)

    Christin, Pascal-Antoine; Arakaki, Monica; Osborne, Colin P; Bräutigam, Andrea; Sage, Rowan F; Hibberd, Julian M; Kelly, Steven; Covshoff, Sarah; Wong, Gane Ka-Shu; Hancock, Lillian; Edwards, Erika J

    2014-07-01

    CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes. PMID:24638902

  15. Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America

    International Nuclear Information System (INIS)

    The halophytic genus Suaeda (Chenopodiaceae) includes species with the C3 and C4 photosynthetic pathways. North American species of this genus were investigated to determine whether C3 and C4 leaf anatomy are consistent within the two sections of Suaeda, Chenopodina and Limbogermen, present on this continent. All species from section Chenopodina were found to possess C3 anatomy, whereas all species from section Limbogermen were found to be C4 species. Characteristics of leaf anatomy and chloroplast ultrastructure are similar to those reported from C3 and C4 species, respectively, from the Eastern Hemisphere. All species from section Limbogermen have the suaedoid type of leaf anatomy, characterized by differentiation of the mesophyll into palisade parenchyma and a chlorenchymatous sheath surrounding central water-storage tissue, as well as leaf carbon isotope ratios of above -20. All species from section Chenopodina have austrobassioid leaf anatomy without a chlorenchymatous sheath and leaf carbon isotope ratio values of below -20. According to our literature review, the photosynthetic pathway has now been reported for about half (44) of the Suaeda species worldwide. The C3 and C4 photosynthetic syndromes are with few exceptions distributed along sectional or subsectional lines. These findings throw new light on the infrageneric taxonomy of this genus

  16. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics

    OpenAIRE

    Osborne, Colin P.; Sack, Lawren

    2012-01-01

    C4 photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C3 photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C4 than C3 type under atmospheric CO2 depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However,...

  17. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    Science.gov (United States)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  18. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  19. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.

    Science.gov (United States)

    Schuler, Mara L; Mantegazza, Otho; Weber, Andreas P M

    2016-07-01

    C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution. PMID:26945781

  20. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Janouškovec, J.; Keeling, P. J.; Oborník, Miroslav

    2011-01-01

    Roč. 23, č. 9 (2011), s. 3454-3462. ISSN 1040-4651 R&D Projects: GA ČR GA206/08/1423; GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : YEAST SACCHAROMYCES-CEREVISIAE * HEME-BIOSYNTHESIS PATHWAY * PLASMODIUM-FALCIPARUM * MALARIA PARASITE * 5-AMINOLEVULINATE SYNTHASE * SECONDARY PLASTIDS * TOXOPLASMA-GONDII * PROTEIN-TRANSPORT * EUGLENA-GRACILIS * METABOLIC MAPS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  1. Inheritance of photosynthetic rate and its selection for crop improvement

    International Nuclear Information System (INIS)

    Photosynthesis is the fundamental process of using solar energy as the basis for life. Although there is disagreement about whether photosynthesis under prevailing environmental conditions limits plant growth, it is worth examining if the efficiency of the process can be improved by genetic manipulation. Mutants appear to be most suitable for such studies. The paper reviews research concerning genetic control of C3/C4 pathways, photorespiration, photosynthetic rate, light intensity reaction, and CO2 concentration response. (author)

  2. Panicum milioides, a Graminease plant having Kranz leaf anatomy without C4-photosynthesis

    International Nuclear Information System (INIS)

    Light and electron microscopic observations of the leaf tissue of Panicum milioides showed that bundle sheath cell contained a substanital number of chloroplasts and other organelles. The radial arrangement of chlorenchymatous bundle sheath cells, designated as Kranz leaf anatomy, has been considered to be specific to C4 plants. However, photosynthetic 14CO2 fixation and 14CO2 pulse-and-chase experiments revealed that the reductive pentosephosphate pathway was the main route operating in leaves of p. milioides. The interveinal distance of the leaves was intermediate between C3 and C4 Gramineae species. These results indicate that P. milioides is a natural plant species having characteristics intermediate between C3 and C4 types. (auth.)

  3. Plasticity of metabolic networks and the evolution of C4 photosynthesis

    Science.gov (United States)

    Bogart, Eli; Myers, Chris

    2012-02-01

    Over 50 groups of plants have independently developed a common mechanism (C4 photosynthesis) for increasing the efficiency of photosynthetic carbon dioxide assimilation. Understanding the high degree of evolvability of the C4 system could offer useful guidance for attempts to introduce it artificially to other plants. Previously, the nonlinear relationship between carbon dioxide levels and rates of carbon assimilation and photorespiration has prevented the application of genome-scale metabolic models to the problem of the evolution of the pathway. We apply a nonlinear optimization method to find feasible flux distributions in a plant metabolic model, allowing us to explore the plasticity of the metabolic network and characterize the fitness landscape of the transition from C3 to C4 photosynthesis.

  4. Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses.

    Science.gov (United States)

    Liu, Mei-Zhen; Osborne, Colin P

    2013-05-01

    Globally, C4 plants dominate hot, open environments, but this general pattern is underpinned by important differences in the biogeography of C4 lineages. In particular, the species richness of C4 Poaceae (grasses) increases strongly with increasing temperature, whereas that of the major C4 eudicot group Chenopodiaceae correlates positively with aridity. Freezing tolerance is a crucial determinant of biogeographical relationships with temperature and is mediated by photodamage and cellular disruption by desiccation, but little is known about differences between C4 families. This study hypothesized that there is a greater risk of freezing damage via these mechanisms in C4 Poaceae than Chenopodiaceae, that freezing protection differs between the taxonomic groups, and that freezing tolerance of species is linked to arid habitat preference. Chlorophyll fluorescence, water relations, and freezing injury were compared in four C3 and six C4 species of Poaceae and Chenopodiaceae from the same Mongolian flora. Contrary to expectations, freezing-induced leaf mortality and photodamage were lower in Poaceae than Chenopodiaceae species, and unrelated to photosynthetic pathway. The freezing resistance of Poaceae species resulted from constitutive protection and cold acclimation and an ability to protect the photosynthetic apparatus from photodamage. Freezing protection was associated with low osmotic potential and low tissue elasticity, and freezing damage was accompanied by electrolyte leakage, consistent with cell-membrane disruption by ice. Both Chenopodiaceae and Poaceae had the potential to develop cold acclimation and withstand freezing during the growing season, which conflicted with the hypothesis. Instead, freezing tolerance was more closely associated with life history and ecological preference in these Mongolian species. PMID:23599273

  5. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    Science.gov (United States)

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of

  6. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry

    Science.gov (United States)

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula; Whitney, Spencer M.

    2016-01-01

    Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg2+, 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn2+, no Mg2+) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45–60% activation) relative to C3 monocots (55–90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (<5min) was faster than in C3 plant samples (<10min), with addition of Rubisco activase not required for full activation. We conclude that Rubisco inactivation in illuminated leaves primarily stems from RuBP binding to non-carbamylated enzyme, a state readily reversible by dilution during cellular protein extraction. PMID:27122573

  7. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry.

    Science.gov (United States)

    Sharwood, Robert E; Sonawane, Balasaheb V; Ghannoum, Oula; Whitney, Spencer M

    2016-05-01

    Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg(2+), 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn(2+), no Mg(2+)) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45-60% activation) relative to C3 monocots (55-90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (plant samples (extraction. PMID:27122573

  8. The Metabolic Pathway of 4-Aminophenol in Burkholderia sp. Strain AK-5 Differs from That of Aniline and Aniline with C-4 Substituents

    OpenAIRE

    Takenaka, Shinji; Okugawa, Susumu; Kadowaki, Maho; Murakami, Shuichiro; Aoki, Kenji

    2003-01-01

    Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showe...

  9. iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate.

    Science.gov (United States)

    Qin, Jun; Zhang, Jianan; Liu, Duan; Yin, Changcheng; Wang, Fengmin; Chen, Pengyin; Chen, Hao; Ma, Jinbing; Zhang, Bo; Xu, Jin; Zhang, Mengchen

    2016-08-01

    Photosynthetic rate which acts as a vital limiting factor largely affects the potential of soybean production, especially during the senescence phase. However, the physiological and molecular mechanisms that underlying the change of photosynthetic rate during the developmental process of soybean leaves remain unclear. In this study, we compared the protein dynamics during the developmental process of leaves between the soybean cultivar Hobbit and the high-photosynthetic rate cultivar JD 17 using the iTRAQ (isobaric tags for relative and absolute quantification) method. A total number of 1269 proteins were detected in the leaves of these two cultivars at three different developmental stages. These proteins were classified into nine expression patterns depending on the expression levels at different developmental stages, and the proteins in each pattern were also further classified into three large groups and 20 small groups depending on the protein functions. Only 3.05-6.53 % of the detected proteins presented a differential expression pattern between these two cultivars. Enrichment factor analysis indicated that proteins involved in photosynthesis composed an important category. The expressions of photosynthesis-related proteins were also further confirmed by western blotting. Together, our results suggested that the reduction in photosynthetic rate as well as chloroplast activity and composition during the developmental process was a highly regulated and complex process which involved a serial of proteins that function as potential candidates to be targeted by biotechnological approaches for the improvement of photosynthetic rate and production. PMID:27048574

  10. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor

    Science.gov (United States)

    Döring, Florian; Streubel, Monika; Bräutigam, Andrea; Gowik, Udo

    2016-01-01

    One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor. It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath. PMID:26976818

  11. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor.

    Science.gov (United States)

    Döring, Florian; Streubel, Monika; Bräutigam, Andrea; Gowik, Udo

    2016-05-01

    One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath. PMID:26976818

  12. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians.

    Science.gov (United States)

    Roberty, Stéphane; Bailleul, Benjamin; Berne, Nicolas; Franck, Fabrice; Cardol, Pierre

    2014-10-01

    Photosynthetic organisms have developed various photoprotective mechanisms to cope with exposure to high light intensities. In photosynthetic dinoflagellates that live in symbiosis with cnidarians, the nature and relative amplitude of these regulatory mechanisms are a matter of debate. In our study, the amplitude of photosynthetic alternative electron flows (AEF) to oxygen (chlororespiration, Mehler reaction), the mitochondrial respiration and the Photosystem I (PSI) cyclic electron flow were investigated in strains belonging to three clades (A1, B1 and F1) of Symbiodinium. Cultured Symbiodinium strains were maintained under identical environmental conditions, and measurements of oxygen evolution, fluorescence emission and absorption changes at specific wavelengths were used to evaluate PSI and PSII electron transfer rates (ETR). A light- and O2 -dependent ETR was observed in all strains. This electron transfer chain involves PSII and PSI and is insensitive to inhibitors of mitochondrial activity and carbon fixation. We demonstrate that in all strains, the Mehler reaction responsible for photoreduction of oxygen by the PSI under high light, is the main AEF at the onset and at the steady state of photosynthesis. This sustained photosynthetic AEF under high light intensities acts as a photoprotective mechanism and leads to an increase of the ATP/NADPH ratio. PMID:24975027

  13. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K.; Chauhan, Bhagirath S.; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant’s functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be

  14. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  15. 超高产杂交稻剑叶中C4途径酶活性和稳定碳同位素分异作用的变化%Changes in the Activities of C4 Pathway Enzymes and Stable Carbon Isotope Discrimination in Flag Leaves of Super High-yield Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    阳成伟; 林桂珠; 彭长连; 陈贻竹; 欧志英

    2003-01-01

    以超高产杂交水稻(Oryza sativa L.)"培矮64S/E32"和多年来大面积推广的杂交稻"汕优63"为材料,研究孕穗后剑叶中C4途径酶和对稳定碳同位素分异作用的变化.结果表明,籽粒灌浆期(移栽后68~75 d)的两个品种剑叶中NADP-MDH活性最高,随后下降;超高产杂交水稻"培矮64S/E32"的NADP-MDH的活性明显高于"汕优63";PEPCase和NADP-ME活性在黄熟期之前的叶片中持续上升.不同生育期的叶片与籽粒的△1aC值相近(19.49‰~19.82‰),在成熟期时较高.超高产水稻"培矮64S/E32"叶片的平均△13C值比"汕优63"高0.43‰.%Activities of several key enzymes of C4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (△13C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average △13C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43‰ more than that in cv. Shanyou 63.

  16. Responses of carbon isotope discrimination in C4 plant to variable N and water supply

    Science.gov (United States)

    Yang, Hao; Li, Shenggong

    2016-04-01

    Understanding variations and underlying mechanisms of carbon isotope discrimination (Δ) in C4 species is critical for predicting the effects of change in C3/C4 ratio of plant community on ecosystem processes and functionning. However, little is known about the effects of soil resource gradients on Δ of C4 plants. To address Δ responses to drought and nitrogen supply, the leaf carbon isotope composition, bundle sheath leakiness (BLS), and leaf gas exchange (A, gs, Ci/Ca) were measured on Cleistogenes squarrosa, a dominant C4 species in the Inner Mongolia grassland. C. squarrosa were grown in controlled-environment pots from seed under a combination of water and N supply. High N availability and drought stimulated photosynthetic rate (A) and further decreased the ratio of internal and ambient CO2 concentrations (Ci/Ca) through increasing leaf N content. BLS was higher under high N supply and was unchanged by drought. There was significant interaction between N and water supply to affect BLS and Ci/Ca. Δ was negatively related to Ci/Ca and was positively related to BLS. Tradeoff between the responses of BLS and Ci/Ca to changing environmental conditions kept leaf Δ relatively stable, which was also supported by a field N addition experiment. Our results suggested leaf Δ of C4 plant was unchanged under variable water and N environment conditions although the operating efficiency of C4 pathway and CO2 concentration in photosynthesis were changed. Our findings have implications for predicting the change of C3/C4 ratio of plant community and understanding ecosystem processes and functionning.

  17. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    Science.gov (United States)

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals. PMID:26879003

  18. Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza.

    Science.gov (United States)

    Nokelainen, Ossi; Ripley, Brad S; van Bergen, Erik; Osborne, Colin P; Brakefield, Paul M

    2016-08-01

    The Miocene radiation of C4 grasses under high-temperature and low ambient CO 2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant-herbivore interaction with the grass-feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field-sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant-herbivore interactions can influence the direction of selection in a grass-feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches. PMID:27551380

  19. Indecomposable optimal entanglement witnesses in C4 {\\otimes} C4

    CERN Document Server

    Chruściński, Dariusz

    2012-01-01

    We provide two 1-parameter families of indecomposable entanglement witnesses in C4 {\\otimes} C4. Following recent paper by Ha and Kye [Phys. Rev. A 84, 024302 (2011)] we show that these EWs are optimal and hence provide the strongest tool in entanglement theory to discriminate between separable and entangled states. As a byproduct we show that these EWs detect quantum entanglement within a family of generalized Horodecki states.

  20. Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake1[W][OA

    Science.gov (United States)

    Kromdijk, Johannes; Schepers, Hans E.; Albanito, Fabrizio; Fitton, Nuala; Carroll, Faye; Jones, Michael B.; Finnan, John; Lanigan, Gary J.; Griffiths, Howard

    2008-01-01

    Perennial species with the C4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C4 pathway is the leakiness (φ) of bundle sheath tissues, whereby a variable proportion of the CO2, concentrated in bundle sheath cells, retrodiffuses back to the mesophyll. In this study, we scale φ from leaf to canopy level of a Miscanthus crop (Miscanthus × giganteus hybrid) under field conditions and model the likely limitations to CO2 fixation. At the leaf level, measurements of photosynthesis coupled to online carbon isotope discrimination showed that leaves within a 3.3-m canopy (leaf area index = 8.3) show a progressive increase in both carbon isotope discrimination and φ as light decreases. A similar increase was observed at the ecosystem scale when we used eddy covariance net ecosystem CO2 fluxes, together with isotopic profiles, to partition photosynthetic and respiratory isotopic flux densities (isofluxes) and derive canopy carbon isotope discrimination as an integrated proxy for φ at the canopy level. Modeled values of canopy CO2 fixation using leaf-level measurements of φ suggest that around 32% of potential photosynthetic carbon gain is lost due to light limitation, whereas using φ determined independently from isofluxes at the canopy level the reduction in canopy CO2 uptake is estimated at 14%. Based on these results, we identify φ as an important limitation to CO2 uptake of crops with the C4 pathway. PMID:18971428

  1. Progress on photosynthetic carbon metabolism types in marine macroalgae%大型海藻光合碳代谢类型的研究进展

    Institute of Scientific and Technical Information of China (English)

    芦笛

    2013-01-01

    As a part of marine algae, marine macroalgae, whose edible and medicinal values are widely applied, participate in global CO2 and O2 turnover through photosynthesis. Therefore, when viewed from ecology as well as economics, the process of photosynthetic CO2 fixation and metabolism in marine macroalgae is of great significance. Up to the present, metabonomics and enzymology researches on photosynthetic carbon metabolism in marine macroalgae have proved the existence of the PEPCK-or PEPC-type C4 pathway as well as the CAM pathway in addition to the C3 pathway, although the integrality of the pathways is still unknown. Moreover, the results of photosynthetic gas exchange indicate that the photosynthetic carbon metabolism pathway in macroalgae performs the C4-like type on the whole. This situation resembles some terrestrial C3 plants with additional C4 pathway. Therefore, researches on photosynthetic carbon metabolism pathways in macroalgae remain to be explored in depth in the future.%作为海洋藻类的一部分,大型海藻通过光合作用参与了海洋对全球CO2和O2的周转,其食用和药用价值也得到了广泛应用。因此无论从生态还是经济角度来看,研究大型海藻通过光合作用对CO2进行固定和代谢的过程都具有重要意义。到目前为止,世界上对大型海藻光合碳代谢途径的研究从代谢组学和酶学角度证明了大型海藻体内除了C3途径外,还同时存在不能确定完整与否的PEPCK或PEPC类型的C4途径或CAM途径;光合气体交换的结果显示其光合碳代谢途径从整体上表现出类似C4(C4-like)类型。这种情况与一些体内存在C4途径的陆生C3植物相似。因此大型海藻光合碳代谢途径仍然有待深入研究。

  2. C4 photosynthesis evolution: the conditional Mt. Fuji.

    Science.gov (United States)

    Heckmann, David

    2016-06-01

    C4 photosynthesis implements a biochemical carbon pump to suppress photorespiration. While this mechanism allows for increased photosynthetic efficiency, it requires the ancestral C3 state to be modified in terms of leaf anatomy, expression of metabolic genes, and enzyme kinetics. Despite the complexity of the C4 syndrome, it evolved in more than 60 independent lineages. Because the phylogenetic distribution of these origins appears to be non-random, enabling factors that are initially unrelated to C4 photosynthesis are assumed to be acting in certain C3 lineages. In recent years, substantial progress has been made on firstly, the nature of enabling events and finally, quantitative models of C4 evolution that are based on C3-C4 intermediate species. I discuss the synthesis of these approaches as a consensus trajectory towards C4 photosynthesis and hypothesize on the effect of enabling factors on the fitness landscape of C4 evolution. A complete understanding of these mechanisms will require both further experimental studies and improved quantitative models of leaf physiology. PMID:27153468

  3. Balanced {C_4, C_5}-Quatrefoil Systems

    OpenAIRE

    Ushio, Kazuhiko

    2004-01-01

    In graph theory, the decomposition problems of graphs are very important topics. Various types of decompositions of many graphs can be seen in the literature of gaph theory. We give the necessary and sufficient condition for the existence of a balanced {C_4, C_5}-quatrefoil decomposition of K_n for each of (C_4, C_4, C_4, C_4)-quatrefoil, (C_4, C_4, C_4, C_5)-quatrefoil, (C_4, C_4, C_5, C_5)-quatrefoil, (C_4, C_5, C_5, C_5)-quatrefoil, and (C_5, C_5, C_5, C_5)-quatrefoil. These decompositions...

  4. Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves

    OpenAIRE

    Hasunuma, Tomohisa; Harada, Kazuo; Miyazawa, Shin-Ichi; Kondo, Akihiko; Fukusaki, Eiichiro; Miyake, Chikahiro

    2009-01-01

    Understanding of the control of metabolic pathways in plants requires direct measurement of the metabolic turnover rate. Sugar phosphate metabolism, including the Calvin cycle, is the primary pathway in C3 photosynthesis, the dynamic status of which has not been assessed quantitatively in the leaves of higher plants. Since the flux of photosynthetic carbon metabolism is affected by the CO2 fixation rate in leaves, a novel in vivo 13C-labelling system was developed with 13CO2 for the kinetic d...

  5. Finding the genes to build C4 rice.

    Science.gov (United States)

    Wang, Peng; Vlad, Daniela; Langdale, Jane A

    2016-06-01

    Rice, a C3 crop, is a staple food for more than half of the world's population, with most consumers living in developing countries. Engineering C4 photosynthetic traits into rice is increasingly suggested as a way to meet the 50% yield increase that is predicted to be needed by 2050. Advances in genome-wide deep-sequencing, gene discovery and genome editing platforms have brought the possibility of engineering a C3 to C4 conversion closer than ever before. Because C4 plants have evolved independently multiple times from C3 origins, it is probably that key genes and gene regulatory networks that regulate C4 were recruited from C3 ancestors. In the past five years there have been over 20 comparative transcriptomic studies published that aimed to identify these recruited C4 genes and regulatory mechanisms. Here we present an overview of what we have learned so far and preview the efforts still needed to provide a practical blueprint for building C4 rice. PMID:27055266

  6. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  7. Variations in carbon isotope ratios of C3 plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were discussed. It is shown that plants with C4 photosynthetic pathway mainly occur at altitudes below 2100 m a.s.l., suggesting that the low summer temperature is responsible for the distributional pattern. In addition, δ 13C of C3 plants increases with elevation at the region above 2000 m a.s.l. with the characteristics of humid climate, and the increase rate in δ 13C for C3 plants is about 1.3‰ per kilometer. Temperature determines the altitudinal trend of δ 13C.

  8. Variations in carbon isotope ratios of C_3 plants and distribution of C_4 plants along an altitudinal transect on the eastern slope of Mount Gongga

    Institute of Scientific and Technical Information of China (English)

    LI JiaZhu; WANG GuoAn; LIU XianZhao; HAN JiaMao; LIU Min; LIU XiaoJuan

    2009-01-01

    Variations in carbon isotopic ratios (δ~(13)C) of C_3 plants and distribution of C_4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga,and the environmental effects on them were discussed,it is shown that plants with C_4 photosynthetic pathway mainly occur at altitudes below 2100 m a.a.l.,suggesting that the low summer temperature is responsible for the distributional pattern.In addition,δ~(13)C of C_3 plants increases with elevation at the region above 2000 m a.s.l,with the characteristics of humid climate,and the increase rate in δ~(13)C for C_3 plants is about 1.3‰ per kilometer.Temperature determines the altitudinal trend of δ~(13)C.

  9. Interactive Effects of Elevated CO2 and Growth Temperature on the Tolerance of Photosynthesis to Acute Heat Stress in C3 and C4 Species

    Institute of Scientific and Technical Information of China (English)

    E. William Hamilton Ⅲ; Scott A. Heckathorn; Puneet Joshi; Dan Wang; Deepak Barua

    2008-01-01

    Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.

  10. Mathematical review of the energy transduction stoichiometries of C4 leaf photosynthesis under limiting light

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2012-01-01

    A generalized model for electron (e-) transport limited C4 photosynthesis of NAD–malic enzyme and NADP–malic enzyme subtypes is presented. The model is used to review the thylakoid stoichiometries in vivo under strictly limiting light conditions, using published data on photosynthetic quantum yield

  11. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    Science.gov (United States)

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  12. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species

    OpenAIRE

    Zehong Ding; Sarit Weissmann; Minghui Wang; Baijuan Du; Lei Huang; Lin Wang; Xiaoyu Tu; Silin Zhong; Christopher Myers; Brutnell, Thomas P.; Qi Sun; Pinghua Li

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, ...

  13. The evolutionary ecology of C-4 plants

    OpenAIRE

    Christin, P-A; Osborne, C. P.

    2014-01-01

    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the event...

  14. Bundle Sheath Leakiness and Light Limitation during C-4 Leaf and Canopy CO2 Uptake

    NARCIS (Netherlands)

    Kromdijk, J.; Schepers, H.E.; Albanito, F.; Fitton, N.; Carroll, F.; Jones, M.B.; Finnan, J.; Lanigan, G.J.; Griffiths, H.

    2008-01-01

    Perennial species with the C-4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C-4 pathway is the leakiness (phi) of bundle sheath tissues, whereby a variable

  15. Using vegetation model-to-data comparisons to test the role of abiotic factors in the Neogene and Quaternary origins of modern C4 grasslands

    Science.gov (United States)

    Fox, D. L.; Strömberg, C.; Pau, S.; Taylor, L.; Lehmann, C.; Osborne, C.; Beerling, D. J.; Still, C. J.

    2014-12-01

    Grasslands dominated by taxa using the C4 photosynthetic pathway evolved on several continents during the Neogene and Quaternary, long after C4 photosynthesis first evolved among grasses. The histories of these ecosystems are relatively well documented in the geological record from stable carbon isotopes (fossil vertebrate herbivores, paleosols) and the plant microfossil record (pollen, phytoliths). The distinct biogeography and ecophysiology of modern C3 and C4 grasses have led to hypotheses explaining the origins of C4 grasslands in terms of long term changes in the Earth system such as increased aridity and decreasing atmospheric pCO2. However, proxies for key parameters of these hypotheses (e.g., temperature, precipitation, pCO2) are still in development, not yet widely applied, or remain contentious, so testing the hypotheses globally remains difficult. To understand better possible links between changes in the Earth system and the origin of C4 grasslands on different continents, we are undertaking a global scale comparison between observational records of C4 grass abundances in Miocene and Pliocene localities compiled from the literature, and three increasingly complex models of C4 dominance and abundance. The literature compilation comprises >2,600 δ13C values of both fossil vertebrates and of paleosol carbonates and >6,700 paleobotanical records. We are using paleoclimate output from the HadCM3L GCM over a range of pCO2 values for each epoch to model C4 dominance or abundance in grid cells as (Model 1) months per year exceeding the temperature at which net assimilation is greater for C4 than C3 photosynthesis (crossover temperature); (Model 2) the number of months per year exceeding the crossover temperature and having sufficient precipitation for growth (≥25 cm/yr; Collatz model); and (Model 3) the Sheffield Dynamic Global Vegetation Model (SDGVM), output from which includes biomass (g C/m2/yr) for distinct structural components (roots, stems, leaves

  16. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Science.gov (United States)

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops. PMID:26465154

  17. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.

    Directory of Open Access Journals (Sweden)

    Zehong Ding

    Full Text Available Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops.

  18. C4 photosynthesis boosts growth by altering physiology, allocation and size.

    Science.gov (United States)

    Atkinson, Rebecca R L; Mockford, Emily J; Bennett, Christopher; Christin, Pascal-Antoine; Spriggs, Elizabeth L; Freckleton, Robert P; Thompson, Ken; Rees, Mark; Osborne, Colin P

    2016-01-01

    C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications. PMID:27243645

  19. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs.

    Science.gov (United States)

    Llorente, Briardo

    2016-01-01

    A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants. PMID:27485221

  20. Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways.

    Science.gov (United States)

    Skillman, John B; Garcia, Milton; Virgo, Aurelio; Winter, Klaus

    2005-11-01

    Dieffenbachia longispatha (C3) and Aechmea magdalenae (Crassulacean acid metabolism, CAM) are syntopic, neotropical forest perennials in central Panama that are restricted to shaded habitats. This is of particular interest for A. magdalenae because, like other understory CAM bromeliad species, it appears functionally and structurally to be better suited to life in full sun. Growth irradiance (GI) effects on photosynthesis and growth in both species were explored in the context of sun/shade trade-off concepts largely derived from studies of C3 plants. Potted plants were grown outdoors in 1, 55, and 100% full sun for 5 mo under well-watered conditions. While both species grew faster in high compared to low light, maximum relative growth rates (RGR) in full sun were still extremely slow with A. magdalenae showing a RGR approximately half that of D. longispatha. Photosynthetic capacity increased with GI in D. longispatha but not in A. magdalenae. Aechmea magdalenae responded to GI with shifts in the activity of the different CAM phases. Both species were photoinhibited in full sun, but more so in A. magdalenae. Despite possessing many traits considered adaptive in high light, these results suggest that A. magdalenae is unlikely to attain sufficient growth rates to thrive in productive, high-light habitats. PMID:21646098

  1. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Sørensen, Kirsten Kørup; Andersen, Mathias Neumann;

    2016-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common and...... each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  2. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

    OpenAIRE

    Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Akhani, Hossein; Roalson, Eric H; Edwards, Gerald E.

    2013-01-01

    In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species of Salsola which are not performing C4 based on leaf carbon isotope composition. The results infer ...

  3. Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants

    OpenAIRE

    Wang, Peng; Fouracre, Jim; Kelly, Steven; Karki, Shanta; Gowik, Udo; Aubry, Sylvain; Shaw, Michael K.; Westhoff, Peter; Slamet-Loedin, Inez H.; Quick, W. Paul; Hibberd, Julian M.; Langdale, Jane A.

    2012-01-01

    A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C4 plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C3 plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific functi...

  4. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  5. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    Science.gov (United States)

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  6. Expression of the peptide C4b‐binding protein β in the arthritic joint

    Science.gov (United States)

    Sánchez‐Pernaute, O; Esparza‐Gordillo, J; Largo, R; Calvo, E; Alvarez‐Soria, M A; Marcos, M E; Herrero‐Beaumont, G; de Córdoba, S R

    2006-01-01

    Background C4b‐binding protein (C4BP) is a plasma oligomeric glycoprotein that participates in the regulation of complement and haemostasis. Complement‐regulatory activity depends on the C4BPα‐polypeptide, whereas the C4BPβ‐polypeptide inactivates protein S, interfering with the anti‐coagulatory protein C‐dependent pathway. Objective To investigate the expression of C4BPβ in the rheumatoid joint. Methods Expression of C4BP was studied in synovial explants from patients with rheumatoid arthritis, osteoarthritis and healthy controls, using immunohistochemistry and in situ hybridisation. C4BP isoforms and free C4BPβ were studied in synovial effusions from patients with rheumatoid arthritis, osteoarthritis and microcrystalline arthritis (MCA) by immunoblotting; total and free protein S levels were studied by enzyme immunoassay. Results C4BPβ was overexpressed in the synovial membranes of patients with rheumatoid arthritis, in close association with the severity of synovitis and the extension of interstitial fibrin deposits. As many as 85% fluids from patients with rheumatoid arthritis contained free C4BPβ, whereas this unusual polypeptide was present in 50% fluids from patients with MCA and 40% fluids from patients with osteoarthritis. Free protein S at the effusions was pathologically reduced in patients with rheumatoid arthrits and MCA, and remained normal in patients with osteoarthritis. Conclusion C4BPβ is expressed by the inflamed synovial tissue, where it can participate in processes of tissue remodelling associated with invasive growth. PMID:16679431

  7. Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic.

    Science.gov (United States)

    Mantlana, K B; Arneth, A; Veenendaal, E M; Wohland, P; Wolski, P; Kolle, O; Wagner, M; Lloyd, J

    2008-01-01

    Photosynthesis rates and photosynthesis-leaf nutrient relationships were analysed in nine tropical grass and sedge species growing in three different ecosystems: a rain-fed grassland, a seasonal floodplain, and a permanent swamp, located along a hydrological gradient in the Okavango Delta, Botswana. These investigations were conducted during the rainy season, at a time of the year when differences in growth conditions between the sites were relatively uniform. At the permanent swamp, the largest variations were found for area-based leaf nitrogen contents, from 20 mmol m(-2) to 140 mmol m(-2), nitrogen use efficiencies (NUE), from 0.2 mmol (C) mol(-1) (N) s(-1) to 2.0 mmol (C) mol(-1) (N) s(-1), and specific leaf areas (SLA), from 50 cm(2) g(-1) to 400 cm(2) g(-1). For the vegetation growing at the rain-fed grassland, the highest leaf gas exchange rates, high leaf nutrient levels, a low ratio of intercellular to ambient CO(2) concentration, and high carboxylation efficiency were found. Taken together, these observations indicate a very efficient growth strategy that is required for survival and reproduction during the relatively brief period of water availability. The overall lowest values of light-saturated photosynthesis (A(sat)) were observed at the seasonal floodplain; around 25 micromol m(-2) s(-1) and 30 micromol m(-2) s(-1). To place these observations into the broader context of functional leaf trait analysis, relationships of photosynthesis rates, specific leaf area, and foliar nutrient levels were plotted, in the same way as was done for previously published 'scaling relationships' that are based largely on C(3) plants, noting the differences in the analyses between this study and the previous study. The within- and across-species variation in both A(sat) and SLA appeared better predicted by foliar phosphorus content (dry mass or area basis) rather than by foliar nitrogen concentrations, possibly because the availability of phosphorus is even more critical than the availability of nitrogen in the studied relatively oligotrophic ecosystems. PMID:18977748

  8. Oxygen isotope composition of evapotranspiration and its relation to C4 photosynthetic discrimination

    Science.gov (United States)

    The oxygen isotope ratio of water (18 O-H2O) and carbon dioxide (18 O-CO2) is an important signal of global change and can provide constraints on the coupled carbon-water cycle. Here, simultaneous observations of 18O-H2O (liquid and vapor phases) and 18 O-CO2 were used to investigate the relation be...

  9. C# 4.0 in a Nutshell

    CERN Document Server

    Albahari, Joseph

    2010-01-01

    What people are saying about C# 4.0 in a Nutshell "C# 4.0 in a Nutshell is one of the few books I keep on my desk as a quick reference. It is a book I recommend."--Scott Guthrie, Corporate Vice President, .NET Developer Platform, Microsoft Corporation "A must-read for a concise but thorough examination of the parallel programming features in the .NET Framework 4."--Stephen Toub, Parallel Computing Platform Program Manager, Microsoft "This wonderful book is a great reference for developers of all levels."-- Chris Burrows, C# Compiler Team, Microsoft When you have questions about how to u

  10. Correlation of the activation of the fourth component of complement (C4) with disease activity in systemic lupus erythematosus.

    OpenAIRE

    Senaldi, G; Makinde, V A; Vergani, D; Isenberg, D. A.

    1988-01-01

    Levels of C4d, a fragment of C4 generated during activation of the classical complement pathway, were measured in the plasma of 48 patients with systemic lupus erythematosus, 11 with inactive (group 1), 23 with mildly active (group 2), 14 with moderately/severely active disease (group 3), and 30 healthy subjects. Levels of C3d, C4, and C3 were also measured and the C4d/C4 and C3d/C3 ratios calculated. C4d levels correlated with the degree of disease activity, being higher in group 3 than in g...

  11. 14CO2 pulse-12CO2 chase analyses of C4-acid metabolism in C3-C4 intermediate species of Flaveria at the CO2 compensation concentration (r)

    International Nuclear Information System (INIS)

    Photosynthetic C4-acid metabolism in leaves of C3-C4 intermediate Flaveria species was examined by 14CO2 pulse-12CO2 chase experiments conducted at external CO2-levels approximating air and γ. Analysis of the percent distribution of 14C after a 10-s pulse showed an enhanced labeling of malate and aspartate at γ in the C3-C4 species. This stimulation of 14CO2 fixation by PEP carboxylase ranged from 1.7-(F. floridana) to 3.6-fold (F. anomala). A 12CO2-chase at γ revealed a significant turnover of C4 acids for only F. floridana. C4-acid labeling in C3 and C4 Flaveria species was relatively unresponsive to changes in pCO2. These data imply that the C3-C4 intermediate Flaveria species with less advanced C4 attributes have a greater capacity for increased CO2 fixation via PEP carboxylase at γ versus air. Thus, labeling of C3-C4 leaves at Σ may be an effective tool for assessing the degree of true C4-photosynthesis as well as the potential mechanism involved in reducing photorespiration

  12. Photosynthetic flexibility in maize exposed to salinity and shade

    OpenAIRE

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula

    2014-01-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxyl...

  13. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants

    Science.gov (United States)

    C4 photosynthesis is an elaborate set of metabolic pathways that utilize specialized anatomical and biochemical adaptations to concentrate CO2 around RuBisCO. The activities of the C4 pathways are coordinated between two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), and rely hea...

  14. Photorespiratory properties of protoplasts from C3-C4intermediate species of moricandia

    International Nuclear Information System (INIS)

    Protoplasts were isolated from leaves of the C3-C4 intermediate species, Moricandia arvensis (L.) DC. and Moricandia spinosa Pomel. Analysis by light and transmission electron microscopy indicated that these purified preparations contained both mesophyll protoplasts (MP) and bundle-sheath protoplasts (BSP). Conventional density gradient centrifugation procedures failed to yield separations of pure protoplasts from each cell-type. With these heterogeneous suspensions of MP and BSP, values measured for (i) the percentage inhibition of photosynthetic CO2 fixation by O2, (ii) the apparent K (CO2) of photosynthesis, and (iii) dark/light ratios of the rate of 14CO2 evolution during decarboxylation of exogenous [1-14C]glycine were not significantly different from those determined for protoplasts preparations from related or representative C3 plants, including M. foetida, Nicotiana tavacum, and Triticum aestivum. In contrast, previous comparisons with C3 species, using intact leaf tissue from M, arvensis, have shown a reduced sensitivity of new photosynethic to inhibition by O2 [Holaday et al., Plant Sci. Lett., 27 (1982) 181] and an enhanced capacity for the photosynthetic refixation of CO2 evolved during decarboxylation of exogenous photorespiratory substrates [Holbrook et al., Plant Physiol., 77 (1985) 578]. We conclude that these photosynthetic properties, associated with reduced photorespiration by M. arvensis and M. spinosa, are dependent upon the integrity of the anatomical and ultrastructural arrangement of bundle-sheath and mesophyll cells in these C3-C4intermediate species. (author)

  15. Leptospira interrogans Lsa23 protein recruits plasminogen, factor H and C4BP from normal human serum and mediates C3b and C4b degradation.

    Science.gov (United States)

    Siqueira, Gabriela H; Atzingen, Marina V; de Souza, Gisele O; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2016-02-01

    It has been reported that pathogenic Leptospira are resistant to normal human serum (NHS) due to their ability to evade the complement immune system by interacting with factor H (FH) and C4b-binding protein (C4BP) regulators. Moreover, plasmin generation on the leptospiral surface diminishes C3b and IgG deposition, decreasing opsonophagocytosis by immune competent cells. We have previously reported that Lsa23 (LIC11360) is a multipurpose protein capable of binding purified extracellular matrix molecules, FH, C4BP and plasminogen (PLG)/plasmin in the presence of PLG activators. In this work, we provide further evidence that Lsa23 is located at the bacterial surface by using immunofluorescence microscopy. We show that Lsa23 has the ability to acquire FH, C4BP and PLG from NHS, and use these interactions to evade innate immunity. The binding with the complement regulators FH and C4BP preserves factor I (FI) activity, leading to C3b and C4b degradation products, respectively. C3b and C4b alpha-chain cleavage was also observed when Lsa23 bound to PLG generating plasmin, an effect blocked by the protease inhibitor aprotinin. Lsa23 also inhibited lytic activity by NHS mediated by both classical and alternative complement pathways. Thus, Lsa23 has the ability to block both pathways of the complement system, and may help pathogenic Leptospira to escape complement-mediated clearance in human hosts. Indeed, NHS treated with Lsa23 confers a partial serum resistance phenotype to Leptospira biflexa, whereas blocking this protein with anti-Lsa23 renders pathogenic L. interrogans more susceptible to complement-mediated killing. Thus, Lsa23 is a multifunctional protein involved in many pathways, featuring C4b cleavage by plasmin, knowledge that may help in the development of preventive approaches to intervene with human complement escape by this versatile pathogen. PMID:26614523

  16. The C-4 Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bonicalzi, Ricco M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Colaresi, J. [CANBERRA Industries, Meriden, CT (United States); Fast, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fields, N. [Univ. of Chicago, IL (United States); Fuller, Erin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hai, M. [Univ. of Chicago, IL (United States); Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kos, Marek S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orrell, John L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Overman, Cory T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reid, Douglas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); VanDevender, Brent A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wiseman, Clinton G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yocum, K. M. [CANBERRA Industries, Meriden, CT (United States)

    2013-02-18

    Abstract We describe the experimental design of C-4, an expansion of the CoGeNT dark matter search to four identical detectors each approximately three times the mass of the p-type point contact (PPC) germanium diode presently taking data at the Soudan Underground Laboratory. Expected reductions of radioactive backgrounds and energy threshold are discussed, including an estimate of the additional sensitivity to low-mass dark matter candidates to be obtained with this search.

  17. Análisis estructural del aparato fotosintético en plantas C4 y CAM mediante microscopía de fluorescencia/confocal

    OpenAIRE

    Alché Ramírez, Juan de Dios; Olmedilla, Adela; Rodríguez García, María I.

    2010-01-01

    [EN]: A histological study of leaves from several C4 and CAM species has been carried out by using epifluorescence and confocal laser scanning microscopy. The analysis of the autofluorescence emitted by leaf tissues, represents a rapid, easy and non-disruptive method to determine the basic histological structure of both photosynthetic and non-photosynthetic tissues. The present study allowed us to classify the plants analyzed into several categories on the basis of the...

  18. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  19. Molecular cloning of C4-specific Ppc gene of sorghum and its high level expression in transgenic rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang; CHI Wei; WANG Qiang; ZHANG Qide; WU Naihu

    2003-01-01

    In order to improve the carbon-assimilation ability of C3 plants, we isolated a C4-specific photosynthetic enzyme gene, Ppc (encode phosphoenolpyruvate carboxylase, PEPCase) from the genome of the C4 plant, sorghum, and transformed rice with it. As shown by sequence analysis, the gene is composed of 10 exons and 9 introns, and the full-length transcript is 5989 bp long. A recombinant expression vector, p1301PEPC, was constructed by inserting the gene into a plasmid vector, pCAMBIA1301, which was then transformed into two japonica rice varieties, Nongken 58 and Zhonghua 10, using an Agrobacterium-mediated transformation system. PCR analysis, activity measurement of PEPCase, and protein-, RNA- and DNA-based hybridization all confirmed the successful integration of the C4-specific Ppc gene into the nuclear genome of rice and its high level expression. Physiological studies revealed the photosynthetic features characterizing C4 plants such as marked lowering of CO2 compensation point and photorespiration rate, and improved carboxylation efficiency. This study provides useful experimental materialsand opens up new avenues for further studies on improving photosynthetic efficiency of elite varieties of rice.

  20. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    Science.gov (United States)

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara. PMID:21739352

  1. Quantum yields of photosystem II electron transport and carbon dioxide fixation in C4 plants

    International Nuclear Information System (INIS)

    The quantum yields of non-cyclic electron transport from photosystem II (determined from chlorophyll a fluorescence) and carbon dioxide assimilation were measured in vivo in representative species of the three subgroups of C4 plants (NADP-malic enzyme, NAD-malic enzyme and PEP-carboxykinase) over a series of intercellular CO2 concentrations (Ci) at both 21% and 2% O2. The CO2 assimilation rate was independent of O2 concentration over the entire range of Ci (up to 500 μbar) in all three C4 subgroups. The relationship of the quantum yield of PS II electron transport to the quantum yield of CO2 fixation is linear suggesting that photochemical use of energy absorbed by PS II is tightly linked to CO2 fixation in C4 plants. This relationship is nearly identical in all three subgroups and may allow estimates of photosynthetic rates of C4 plants based on measurements of PS II photochemical efficiency. It is suggested that in the C4 plants both the photoreduction of O2 and photorespiration are low, even at very limiting CO2 concentrations. 31 refs., 4 figs

  2. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value. PMID:17729660

  3. Photosynthetic Diurnal Variation of Soybean Cultivars with High Photosynthetic Efficiency

    Institute of Scientific and Technical Information of China (English)

    MAN Wei-qun; DU Wei-guang; ZHANG Gui-ru; LUAN Xiao-yan; GE Qiao-ying; HAO Nai-bin; CHEN Yi

    2002-01-01

    The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Ph) and dark respiration rate (DR) under saturation light intensity and appropriate temperature.2) There were a little difference in light compensation point among them. Photo flux density (PFD) were mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.

  4. Renal AA amyloidosis in a patient with hereditary complete complement C4 deficiency

    Directory of Open Access Journals (Sweden)

    Imed Helal

    2011-01-01

    Full Text Available Hereditary complete C4 deficiency has until now been reported in 30 cases only. A disturbed clearance of immune- complexes probably predisposes these individuals to systemic lupus erythematosus, other immune- complex diseases and recurrent microbial infections. We present here a 20- year- old female with hereditary complete C4 deficiency. Renal biopsy demonstrated renal AA amyloidosis. This unique case further substantiates that deficiency of classical pathway components predisposes to the development of recurrent microbial infections and that the patients may develop AA amyloidosis. Furthermore, in clinical practice, the nephrotic syndrome occurring in a patient with hereditary complete complement C4 deficiency should lead to the suspicion of renal AA amyloidosis.

  5. Synthesis of [8,9,10,11-13C4]leukotriene C4

    International Nuclear Information System (INIS)

    A ''one pot'' reduction of ethyl [1,2-13C2]bromoacetate with diisobutylaluminium hydride in dichloromethane, followed by reaction with triphenylphosphine, then triethylamine, yields [1,2-13C2]formylmethylenetriphenylphosphorane. Consecutive Wittig reactions of [1,2-13C2]formylmethylenetriphenylphosphorane with methyl 5(S),6(R)-epoxy-6-formylhexanoate and subsequent Wittig reactions with Z-3-nonen-1-triphenylphosphorane yields [8,9,10,11-13C4]LTA4 methyl ester, which is readily converted to [8,9,10,11-13C4]LTC4. (author)

  6. Deficiency of C4 from Donor or Recipient Mouse Fails to Prevent Renal Allograft Rejection

    OpenAIRE

    Lin, Tao; Zhou, Wuding; Farrar, Conrad A.; Hargreaves, Roseanna E.G.; Sheerin, Neil S.; Sacks, Steven H.

    2006-01-01

    Complement effector products generated in the transplanted kidney are known to mediate transplant rejection, but which of the three main activation pathways of complement trigger this response is unclear. Here we assessed the role of the classical and lectin pathways by studying the common component C4 in mouse kidney transplant rejection. We transplanted wild-type or C4-null H-2b donor kidneys into H-2k or H-2d recipients, or vice-versa, to assess the roles of donor kidney and recipient expr...

  7. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.

    Science.gov (United States)

    Takahashi, Fumio

    2016-03-01

    During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles. PMID:26781435

  8. Tracking the evolutionary rise of C4 metabolism

    Science.gov (United States)

    2016-01-01

    Upregulation of the C4 metabolic cycle is a major step in the evolution of C4 photosynthesis. Why this happened remains unclear, in part because of difficulties measuring the C4 cycle in situ in C3-C4 intermediate species. Now, Alonso-Cantabrana and von Caemmerer (2016) have described a new approach for quantifying C4 cycle activity, thereby providing the means to analyze its upregulation in an evolutionary context. PMID:27085185

  9. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  10. An increase in expression of Pyruvate Pi Dikinase and its high activation energy correspond to cold-tolerant C4 photosynthesis of Miscanthus x giganteus

    Science.gov (United States)

    Miscanthus x giganteus is exceptional among C4 plants in its ability to produce leaves and photosynthesize at low temperature. While the most cold-adapted Zea mays lines show loss of photosynthetic capacity when transferred to 14 deg C, M. x giganteus shows no loss and can continue photosynthesis do...

  11. Cool C4 Photosynthesis - Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus

    Science.gov (United States)

    The biofuel feedstock grass Miscanthus x giganteus is exceptional among C4 species in its high productivity in cold climates. It can maintain photosynthetically active leaves at temperatures 6°C below the minimum for Zea mays (maize), which allows it a longer growing season in cool climates. Underst...

  12. An increase in expression of Pyruvate Pi Dikinase and its high activation energy correspond to cold-tolerant C4 photosynthesis of Miscanthus x giganteus

    Science.gov (United States)

    Miscanthus x giganteus is exceptional among C4 plants in its ability to produce leaves and photosynthesize at low temperature. While the most cold-adapted Zea mays lines show loss of photosynthetic capacity when transferred to 14 oC, M. x giganteus shows no loss and can continue photosynthesis down ...

  13. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  14. Hydraulic basis for the evolution of photosynthetic productivity.

    Science.gov (United States)

    Scoffoni, Christine; Chatelet, David S; Pasquet-Kok, Jessica; Rawls, Michael; Donoghue, Michael J; Edwards, Erika J; Sack, Lawren

    2016-01-01

    Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate. PMID:27255836

  15. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

    Science.gov (United States)

    Hori, Koichi; Nobusawa, Takashi; Watanabe, Tei; Madoka, Yuka; Suzuki, Hideyuki; Shibata, Daisuke; Shimojima, Mie; Ohta, Hiroyuki

    2016-09-01

    In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27108062

  16. Endoreduplication is not involved in bundle-sheath formation in the C4 species Cleome gynandra.

    Science.gov (United States)

    Aubry, Sylvain; Kneřová, Jana; Hibberd, Julian M

    2014-07-01

    There is currently significant interest in engineering the two-celled C4 photosynthesis pathway into crops such as rice in order to increase yield. This will require alterations to the biochemistry of photosynthesis in both mesophyll (M) and bundle-sheath (BS) cells, but also alterations to leaf anatomy. For example, the BS of C4 species is enlarged compared with that in C3 species. Because cell and nucleus size are often correlated, this study investigated whether nuclear endoreduplication is associated with increased differentiation and expansion of BS cells. Nuclei in the BS of C4 Cleome gynandra were tagged with green fluorescent protein. Confocal laser-scanning microscopy and flow cytometry of isolated nuclei were used to quantify size and DNA content in BS cells. The results showed a significant endoreduplication in BS cells of C. gynandra but not in additional C4 lineages from both the monocotyledonous and dicotyledenous plants. Furthermore, in the C3 species Arabidopsis thaliana, BS cells undergo endoreduplication. Due to this significant endoreduplication in the small BS cells of C3 A. thaliana, it was concluded that endoreduplication of BS nuclei in C4 plants is not linked to expansion and differentiation of BS cells, and therefore that alternative strategies to increase this compartment need to be sought in order to engineer C4 traits into C3 crops such as rice. PMID:24220652

  17. Multiscale photosynthetic exciton transfer

    CERN Document Server

    Ringsmuth, A K; Stace, T M; 10.1038/nphys2332

    2012-01-01

    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...

  18. Oxygen Requirement and Inhibition of C4 Photosynthesis . An Analysis of C4 Plants Deficient in the C3 and C4 Cycles

    OpenAIRE

    Maroco, J.P.; Ku, M.S.B.; Lea, P J; Dever, L.V.; Leegood, R C; Furbank, R.T.; Edwards, G. E.

    1998-01-01

    The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cycle-limited transformant of Flaveria bidentis (an antisense ribulose-1,5-bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a result of higher levels ...

  19. The functional significance of C3-C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives.

    Science.gov (United States)

    Vogan, Patrick J; Frohlich, Michael W; Sage, Rowan F

    2007-10-01

    We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis. PMID:17727423

  20. Vibrational Properties of Body-Centered Tetragonal C4

    International Nuclear Information System (INIS)

    Body-centered tetragonal C4 (bct C4) is a new form of crystalline sp3 carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa. Symmetry analysis of the vibrational modes of bct C4 at Brillouin zone center is performed, Raman and infrared active modes are identified. The analysis results show that, different from cubic diamond and hexagonal diamond, there is an infrared active mode in bct C4. Based on first-principle method within the local density approximation, vibrational frequencies, Born effective charge tensors, and infrared absorption intensity of bct C4 are obtained. The vibrational modes of bct C4 are presented and compared with those of cubic diamond and hexagonal diamond in detail. (condensed matter: structural, mechanical, and thermal properties)

  1. Evaluation of Serum Complement C3 and C4 Levels as biomarkers for Systemic Lupus Erythromatosus

    Directory of Open Access Journals (Sweden)

    Fayez Muhammad Shaldoum*, Yousra Refaey Abdo Mohammed, Naglaa Mohamed El Wakeel and Abeer Saad Gawish

    2012-10-01

    .Conclusions: Patients showed different degrees of oral and systemic manifestations, which exacerbate and become acute with decreased level of complement C4 and instability of C3 level. Accordingly, the low level of C4 was associated with the development and exacerbation of SLE. Increased C3 levels is solely due to activity through the alternative pathway in SLE patients

  2. Effect of sodium chloride on photosynthetic 14CO2 assimilation in Portulaca oleracea Linn

    International Nuclear Information System (INIS)

    Effect of NaCl on ion uptake, photosynthetic rate and photosynthetic products in a C4 non-CAM succulent, P. oleracea has been investigated. NaCl causes accumulation of Na as well as Cl ions with decrease in K and Ca contents. Chlorophylls and photosynthetic 14CO2 fixation rates are adversely affected due to sodium chloride salinity. Plants grown in the presence of NaCl show increase in C4 acid percentage with increase in labelling of organic acids in light. Labelling of amino acids (particularly alanine) and sugars (sucrose) is affected by NaCl. Enzyme studies reveal that PEP-carboxylase is stimulated at all concentrations of NaCl but higher concentrations affected the activity of RuBP-Carboxylase. (author)

  3. Carbon and oxygen isotope working standards from C3 and C4 photosynthates.

    Science.gov (United States)

    Spangenberg, Jorge E

    2006-09-01

    A preparation of organic working standards for the online measurement of 13C/12C and 18O/16O ratios in biological material is presented. The organic working standards are simple and inexpensive C3 and C4 carbohydrates (sugars or cellulose) from distinct geographic origin, including white sugar, toilet and XEROX papers from Switzerland, maize from Ivory Coast, cane sugar from Brazil, papyrus from Egypt, and the core of the stem of a Cyperus papyrus plant from Kenya. These photosynthetic products were compared with International Atomic Energy standards CH-3 and CH-6 and other calibration materials. The presented working standards cover a 15% range of 13C/12C ratios and 9% for 18O/16O, with a precision10. PMID:16870558

  4. Oxygen requirement and inhibition of C4 photosynthesis

    OpenAIRE

    Maroco, João; Ku, Maurice S. B.; Peter J. Lea; Dever, Louisa V.; Leegood, Richard C.; Furbank, Robert T.; Edwards, Gerald E.

    1998-01-01

    The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cyclelimited transformant of Flaveria bidentis (an antisense ribulose-1,5- bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a res...

  5. On graphs without a C4 or a diamond

    CERN Document Server

    Eschen, Elaine M; Spinrad, Jeremy P; Sritharan, R

    2009-01-01

    We consider the class of (C4, diamond)-free graphs; graphs in this class do not contain a C4 or a diamond as an induced subgraph. We provide an efficient recognition algorithm for this class. We count the number of maximal cliques in a (C4, diamond)-free graph and the number of n-vertex, labeled (C4, diamond)-free graphs. We also give an efficient algorithm for finding a largest clique in the more general class of (house, diamond)-free graphs.

  6. Pros and cons for C4d as a biomarker

    OpenAIRE

    Cohen, Danielle; Colvin, Robert B.; Mohamed R. Daha; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E.; Sis, Banu; ZHAO, Ming-Hui; Bruijn, Jan A.; Bajema, Ingeborg M.

    2012-01-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations...

  7. Pros and cons for C4d as a biomarker.

    Science.gov (United States)

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  8. Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene

    Science.gov (United States)

    Walch, Stephen P.

    1995-01-01

    The ring closure reaction of C4H3 with acetylene to give phenyl radical is one proposed mechanism for the formation of the first aromatic ring in hydrocarbon combustion. There are two low-lying isomers of C4H3; 1-dehydro-buta-l-ene-3-yne (n-C4H3) and 2-dehydro-buta-l-ene-3-yne (iso-C4H3). It has been proposed that only n-C4H3 reacts with acetylene to give phenyl radical, and since iso-C4H3 is more stable than n-C4H3, formation of phenyl radical by this mechanism is unlikely. We report restricted Hartree-Fock (RHF) plus singles and doubles configuration interaction calculations with a Davidson's correction (RHF+1+2+Q) using the Dunning correlation consistent polarized valence double zeta basis set (cc-pVDZ) for stationary point structures along the reaction pathway for the reactions of n-C4H3 and iso-C4H3 with acetylene. n-C4H3 plus acetylene (9.4) has a small entrance channel barrier (17.7) (all energetics in parentheses are in kcal/mol with respect to iso-C4H3 plus acetylene) and the subsequent closure steps leading to phenyl radical (-91.9) are downhill with respect to the entrance channel barrier. Iso-C4H3 Plus acetylene also has an entrance channel barrier (14.9) and there is a downhill pathway to 1-dehydro-fulvene (-55.0). 1-dehydro-fulvene can rearrange to 6-dehydro-fulvene (-60.3) by a 1,3-hydrogen shift over a barrier (4.0), which is still below the entrance channel barrier, from which rearrangement to phenyl radical can occur by a downhill pathway. Thus, both n-C4H3 and iso-C4H3 can react with acetylene to give phenyl radical with small barriers.

  9. Graphs with forbidden $C_4$, $\\overline{C_4}$, chair and $\\overline{chair}$ and the second neighborhood conjecture

    OpenAIRE

    Ghazal, Salman

    2016-01-01

    Seymour's Second Neighborhood Conjecture asserts that every oriented graph has a vertex whose first out-neighborhood is at most as large as its second out-neighborhood. Combs are the graphs having no induced $C_4$, $\\overline{C_4}$, $C_5$, chair or $\\overline{chair}$. We characterize combs using dependency digraphs. We find the structure of the graphs having no induced $C_4$, $\\overline{C_4}$, chair or $\\overline{chair}$ and characterize them using dependency digraphs. We also find the struct...

  10. Molecular analysis of the murine C4b-binding protein gene. Chromosome assignment and partial gene organization

    DEFF Research Database (Denmark)

    Barum, Scott B; Kristensen, Torsten; Chaplin, David D; Seldin, Michal F; Tack, Brian F

    1989-01-01

    Murine C4b-binding protein (C4BP) is a regulatory molecule in the classical pathway of complement. C4BP is composed predominantly of short consensus repeats (SCRs) approximately 60 amino acids in length, which contain a framework of conserved residues. The SCRs are found in many complement...... molecules and a growing number of noncomplement molecules as well and are a major structural feature of some of these molecules. To characterize the structure of the murine C4BP gene, a cosmid library constructed from Balb/c liver DNA was screened. Several nearly identical, overlapping clones were...... identified; however, none of the clones, alone or in combination, covered the entire C4BP gene. One clone (D26) was chosen for detailed analysis and found to contain all but the leader region, the first SCR, and the first half of the second SCR. The SCRs three through six were each encoded by single exons...

  11. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  12. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-01-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems—mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. PMID:26903529

  13. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. PMID:26903529

  14. Patterns and determinants of potential carbon gain in the C3 evergreen Yucca glauca (Liliaceae) in a C4 grassland.

    Science.gov (United States)

    Maragni, L A; Knapp, A K; McAllister, C A

    2000-02-01

    Yucca glauca is a C(3) evergreen rosette species locally common in the C(4)-dominated grasslands of the central Great Plains. Most congeners of Y. glauca are found in deserts, and Y. glauca's morphological similarities to desert species (steeply angled leaves, evergreen habit) may be critical to its success in grasslands. We hypothesized that the evergreen habit of Y. glauca, coupled with its ability to remain physiologically active at cool temperatures, would allow this species to gain a substantial portion of its annual carbon budget when the C(4) grasses are dormant. Leaf-level gas exchange was measured over an 18-mo period at Konza Prairie in northeast Kansas to assess the annual pattern of potential C gain. Two short-term experiments also were conducted in which nighttime temperatures were manipulated to assess the cold tolerance of this species. The annual pattern of C gain in Y. glauca was bimodal, with a spring productive period (maximum monthly photosynthetic rate = 21.1 ± 1.97 μmol·m·s) in March through June, a period of midseason photosynthetic depression, and a fall productive period in October (15.6 ± 1.25 μmol·m·s). The steeply angled leaves resulted in interception of photon flux density at levels above photosynthetic saturation throughout the year. Reduced photosynthetic rates in the summer may have been caused by low soil moisture, but temperature was strongly related (r = 0.37) to annual variations in photosynthesis, with nocturnal air temperatures below -5°C in the late fall and early spring, and high air temperatures (>32°C) in the summer, limiting gas exchange. Overall, 31% of the potential annual carbon gain in Y. glauca occurred outside the "frost-free" period (April-October) at Konza Prairie and 43% occurred when the dominant C(4) grasses were dormant. Future climates that include warmer minimum temperatures in the spring and fall may enhance the success of Y. glauca relative to the C(4) dominants in these grasslands. PMID:10675310

  15. Diurnal and Seasonal Variation in the Carbon Isotope Composition of Leaf- and Root- respired CO2 in C3 and C4 Species

    Science.gov (United States)

    Sun, W.; Resco, V.; Chen, S.; Williams, D. G.

    2008-12-01

    The carbon isotope signature of leaf (δ13Cl) and root (δ13Cr) dark- respired CO2 records and integrates short-term metabolic changes. Plants with C3 and C4 photosynthetic metabolism are expected to differ in diurnal and seasonal patterns in δ13Cl and δ13Cr because of differences in photorespiration, isotopic fractionation at metabolic branch points and allocation patterns. A thorough understanding of the environmental and metabolic controls on δ13Cl and δ13Cr is necessary to interpret the δ13C of ecosystem respired CO2 and partition the CO2 efflux into autotrophic and heterotrophic respiration sources. We measured δ13Cl in two C3 tree species (Prosopis velutina and Celtis reticulata), a C3 herb (Viguiera dentata) and a C4 grass (Sporobolus wrightii), and δ13Cr in P. velutina and S. wrightii in a semiarid savanna in southeastern Arizona, USA. δ13Cl during the dry pre-monsoon period was relatively enriched in 13C during daytime periods and became depleted in 13C at night relative to daytime values for all species with the exception of S. wrightii, the C4 grass. δ13Cl in S. wrightii was strongly influenced by seasonal differences in water availability with a larger diurnal amplitude in δ13Cl (8.2 +/- 0.6‰) during the wet monsoon period compared to that in the dry pre-monsoon period (4.4 +/- 0.4‰). The δ13C values of starch and lipid fractions remained constant over diurnal periods within the pre-monsoon and monsoon seasons. For C3 species, δ13Cl and δ13C of the cumulative, flux-weighted photosynthate pool estimated from gas exchange were strongly positively correlated, suggesting that progressive 13C-enrichment of leaf-respired CO2 during the daytime period resulted from changes in the δ13C signature of respiratory substrates associated with short-term changes in photosynthetic 13C discrimination. Rapid decreases in δ13Cl following the daytime period was likely caused by decreases in the ratio of PDH:acetyl-CoA oxidation rather than by a shift in

  16. A high throughput gas exchange screen for determining rates of photorespiration or regulation of C-4 activity

    OpenAIRE

    Bellasio, C.; Burgess, S.J.; GRIFFITHS, H.; Hibberd, J.M.

    2014-01-01

    Large-scale research programmes seeking to characterize the C4 pathway have a requirement for a simple, high throughput screen that quantifies photorespiratory activity in C3 and C4 model systems. At present, approaches rely on model-fitting to assimilatory responses (A/C i curves, PSII quantum yield) or real-time carbon isotope discrimination, which are complicated and time-consuming. Here we present a method, and the associated theory, to determine the effectiveness of the C4 carboxylation,...

  17. Photorespiratory properties of total leaf protoplasts isolated from C3-C4 intermediate species of MORICANDIA

    International Nuclear Information System (INIS)

    In comparison to C3 species, intact leaf tissue of M. arvensis (C3-C4) exhibits a reduced sensitivity of photosynthesis to inhibition by O2 and an enhanced capacity for the refixation of 14CO2 evolved during decarboxylation of exogenous [1-14C]glycine. In contrast, purified protoplast preparations from leaves of M. arvensis and M. spinosa (C3-C4), containing 8.4 +/- 0.6% (S.E) bundle-sheath protoplasts and approx. 90% mesophyll protoplasts, showed no significant differences from protoplasts of the C3 species, M. foetida and Triticum aestivum with respect to the following parameters: (a) percentage O2-inhibition of photosynthetic 14CO2 fixation; (b) apparent Km(CO2) of photosynthesis; and (c) dark/light ratios of 14CO2 evolution during metabolism of exogenous [1-14C]glycine. It was concluded that the structural arrangement of mesophyll and bundle-sheath cells and organelles in situ in leaf tissue of M. arvensis and M. spinosa is of importance in facilitating reduced apparent photorespiration in these intermediate species by enhanced recycling of CO2

  18. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species

    Science.gov (United States)

    Alonso-Cantabrana, Hugo; von Caemmerer, Susanne

    2016-01-01

    The presence and activity of the C4 cycle in C3-C4 intermediate species have proven difficult to analyze, especially when such activity is low. This study proposes a strategy to detect C4 activity and estimate its contribution to overall photosynthesis in intermediate plants, by using tunable diode laser absorption spectroscopy (TDLAS) coupled to gas exchange systems to simultaneously measure the CO2 responses of CO2 assimilation (A) and carbon isotope discrimination (Δ) under low O2 partial pressure. Mathematical models of C3-C4 photosynthesis and Δ are then fitted concurrently to both responses using the same set of constants. This strategy was applied to the intermediate species Flaveria floridana and F. brownii, and to F. pringlei and F. bidentis as C3 and C4 controls, respectively. Our results support the presence of a functional C4 cycle in F. floridana, that can fix 12–21% of carbon. In F. brownii, 75–100% of carbon is fixed via the C4 cycle, and the contribution of mesophyll Rubisco to overall carbon assimilation increases with CO2 partial pressure in both intermediate plants. Combined gas exchange and Δ measurement and modeling is a powerful diagnostic tool for C4 photosynthesis. PMID:26862154

  19. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species.

    Science.gov (United States)

    Alonso-Cantabrana, Hugo; von Caemmerer, Susanne

    2016-05-01

    The presence and activity of the C4 cycle in C3-C4 intermediate species have proven difficult to analyze, especially when such activity is low. This study proposes a strategy to detect C4 activity and estimate its contribution to overall photosynthesis in intermediate plants, by using tunable diode laser absorption spectroscopy (TDLAS) coupled to gas exchange systems to simultaneously measure the CO2 responses of CO2 assimilation (A) and carbon isotope discrimination (Δ) under low O2 partial pressure. Mathematical models of C3-C4 photosynthesis and Δ are then fitted concurrently to both responses using the same set of constants. This strategy was applied to the intermediate species Flaveria floridana and F. brownii, and to F. pringlei and F. bidentis as C3 and C4 controls, respectively. Our results support the presence of a functional C4 cycle in F. floridana, that can fix 12-21% of carbon. In F. brownii, 75-100% of carbon is fixed via the C4 cycle, and the contribution of mesophyll Rubisco to overall carbon assimilation increases with CO2 partial pressure in both intermediate plants. Combined gas exchange and Δ measurement and modeling is a powerful diagnostic tool for C4 photosynthesis. PMID:26862154

  20. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to isomerization of C4-C6 aldoses to their corresponding C4-C6 ketoses. In particular, the invention concerns isomerization of C4-C6 aldoses over solid zeolite catalysts free of any metals other than aluminum, in the presence of suitable solvent(s) at suitable elevat...... the catalyst. The ketoses obtained are used as sweeteners in the food and/or brewery industry, or treated to obtain downstream platform chemicals such as lactic acid, HMF, levulinic acid, furfural, MMHB, and the like....

  1. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  2. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Institute of Scientific and Technical Information of China (English)

    Jun-Fei; Gu; Ming; Qiu; Jian-Chang; Yang

    2013-01-01

    Maize-specific pyruvate orthophosphate dikinase(PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase(PCK). The wild-type(WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments,well-watered(WW), moderate drought(MD) and severe drought(SD), were imposed from 9d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities,biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines(PPDK and PCK) were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%,20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments,respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase(PEPC) and carbonic anhydrase(CA) in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to droughttolerance breeding via overexpression of C4enzymes in rice.

  3. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Directory of Open Access Journals (Sweden)

    Jun-Fei Gu

    2013-12-01

    Full Text Available Maize-specific pyruvate orthophosphate dikinase (PPDK was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase (PCK. The wild-type (WT cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments, well-watered (WW, moderate drought (MD and severe drought (SD, were imposed from 9 d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities, biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines (PPDK and PCK were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by 45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%, 20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments, respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase (PEPC and carbonic anhydrase (CA in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4 photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to drought-tolerance breeding via overexpression of C4 enzymes in rice.

  4. Photosynthetic flexibility in maize exposed to salinity and shade.

    Science.gov (United States)

    Sharwood, Robert E; Sonawane, Balasaheb V; Ghannoum, Oula

    2014-07-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δp) and reduced leaf dry-matter carbon isotope composition ((13)δ) due to changes in p i/p a (intercellular to ambient CO2 partial pressure), while CO2 leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced Δp and ɸ without significantly affecting leaf (13)δ or p i/p a relative to control plants. Accordingly, shade perturbed the balance between the C3 and C4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C4 acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf (13)δ and photosynthetic Δp, and

  5. Adaptive evolvement of information age C4ISR structure

    Institute of Scientific and Technical Information of China (English)

    Yushi Lan; Kebo Deng; Shaojie Mao; Heng Wang; Kan Yi; Ming Lei

    2015-01-01

    Command, control, communication, computing, intel-ligence, surveil ance and reconnaissance (C4ISR) in information age is a complex system whose structure always changes ac-tively or passively during the warfare. Therefore, it is important to optimize the structure, especial y in ambiguous and quick-tempo modern warfare. This paper proposes an adaptive evolvement mechanism for the C4ISR structure to survive the changeable warfare. Firstly, the information age C4ISR structure is defined and modeled based on the complex network theory. Secondly, taking the observe, orient, decide and act (OODA) model into consideration, four kinds of loops in the C4ISR structure are pro-posed and their coefficient of networked effects (CNE) is further defined. Then, the adaptive evolvement mechanisms of the four kinds of loops are presented respectively. Final y, taking the joint air-defense C4ISR as an example, simulation experiments are im-plemented, which validate the evolvement mechanism and show that the information age C4ISR structure has some characteristics of smal-world network and scale-free network.

  6. Soil Organic Matter \\delta 13C across the Great Plains grasslands: both rainfall and temperature control C3 vs. C4 productivity

    Science.gov (United States)

    von Fischer, J. C.; Tieszen, L. L.

    2004-12-01

    Grass species that dominate the Great Plains grasslands assimilate CO2 by one of two photosynthetic systems, C3 or C4, with the proportions of these types largely controlled by climate. Because C3 and C4 plants differ in their magnitudes of carbon isotope fractionation, regional and global scale biogeochemical analyses (e.g., isotopic inversion studies of CO2) depend on knowing the relative activity of these groups and how they vary with climate. However, regional analyses of C3/C4 proportions, such as Teeri and Stowe (1979), have measured species composition but not relative production. To quantify the relationship between climate and relative production, we have analyzed the carbon isotope composition of soil organic matter (SOM) from 75 native prairie relicts across the Great Plains and compared these values to long-term (30-year mean) climate data. Although temperature has long been recognized as a key determinant of C3 vs. C4 success because of its effects on photorespiration, we find that the timing of rainfall is an additional important predictor; increased rainfall in summer months leads to increased relative production of C4 species. This finding adds complexity to the dominant view that temperature alone controls C3/C4 balance, and suggests that regional scale biogeochemical studies should evaluate the degree to which rainfall is included as a predictor of C3 vs. C4 productivity.

  7. Density Functional Exploration of C4H3N Isomers.

    Science.gov (United States)

    Custer, Thomas; Szczepaniak, Urszula; Gronowski, Marcin; Fabisiewicz, Emilia; Couturier-Tamburelli, Isabelle; Kołos, Robert

    2016-07-28

    Molecules having C4H3N stoichiometry are of astrophysical interest. Two of these, methylcyanoacetylene (CH3C3N) and its structural isomer allenyl cyanide (H2CCCHN), have been observed in interstellar space, while several more have been examined in laboratories. Here we describe, for a broad range of C4H3N isomers, density functional calculations (B3LYP/aug-cc-pVTZ) of molecular parameters including the energetics, geometries, rotational constants, electric dipole moments, polarizabilities, vibrational IR frequencies, IR absorption intensities, and Raman activities. Singlet-triplet splittings as well as singlet vertical electronic excitation energies are given for selected species. The identification of less stable C4H3N molecules, generated in ongoing spectroscopic experiments, relies heavily on these quantum chemical predictions. PMID:27341606

  8. Regulation of Rubisco gene expression in C4 plants.

    Science.gov (United States)

    Berry, James O; Mure, Christopher M; Yerramsetty, Pradeep

    2016-06-01

    Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes. PMID:27026038

  9. Hydrogen isotopic profile in the characterization of sugars. Influence of the metabolic pathway.

    Science.gov (United States)

    Zhang, Ben-Li; Billault, Isabelle; Li, Xiaobao; Mabon, Françoise; Remaud, Gérald; Martin, Maryvonne L

    2002-03-13

    The site-specific natural hydrogen isotope ratios of plant metabolites determined by 2H nuclear magnetic resonance (SNIF-NMR method) can provide powerful criteria for inferring mechanistic and environmental effects on biosynthetic pathways. This work examines the potential of isotopic profiles for the main constituents of carbohydrates, glucose and fructose, to distinguish different photosynthetic pathways. An appropriate analytical strategy, involving three suitable isotopic probes, has been elaborated with a view to measuring simultaneously, in conditions devoid of isotopic perturbations, all (or nearly all) of the carbon-bound hydrogen isotope ratios. It is shown that the type of photosynthetic metabolism, either C3 (sugar beet, orange, and grape), C4 (maize and sugar cane), or CAM (pineapple), and the physiological status of the precursor plant exert strong influences on the deuterium distribution in the sugar molecules. Consequently, this isotopic fingerprint may be a rich source of information for the comparison of mechanisms in metabolic pathways. In addition, it can provide complementary criteria to ethanol as a probe for the origin of sugars. PMID:11879039

  10. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  11. Morphisms from P2 to Gr(2,C4)

    CERN Document Server

    Mazouni, A El; Nagaraj, D S

    2009-01-01

    In this note we study morphisms from P2 to Gr(2,C4) from the point of view of the cohomology class they represent in the Grassmannian. This leads to some new result about projection of d-uple imbedding of P2 to P5.

  12. 26 CFR 1.642(c)-4 - Nonexempt private foundations.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Nonexempt private foundations. 1.642(c)-4... foundations. In the case of a trust which is, or is treated under section 4947(a)(1) as though it were, a private foundation (as defined in section 509(a) and the regulations thereunder) that is not exempt...

  13. Cytohistopathological correlation of C3 and C4 breast lesions

    International Nuclear Information System (INIS)

    Objective: To conduct an audit of smears in cytological categories C3 and C4 of fine-needle aspirates from breast lesions in comparison with histopathological diagnoses. Patients and Methods: Out of all patients referred to AFIP, Rawalpindi for aspiration of breast masses, those adjudged C3 and C4 were chosen for this study. History, clinical details and mammographic findings were noted. Aspirated smears were stained with hematoxyline and eosin as well as a Romanovsky dye. On excision or incision biopsy of these lesions, the cytological findings were compared with those on paraffin-embedded histological sections. Results: The total number of patients in these two categories was 54. Surgical specimens of 3 cases were found inadequate for assessment. Of the remaining 51 cases, 13 were categorised C3 and 38 C4. Sensitivity of 92%, specificity of 83% and accuracy of 90% were attained. Positive and negative predictive values were 95% and 77% respectively. Conclusion: Categories C3 and C4 are areas where the cytopathologist is in doubt as to the benign or malignant nature of a breast mass. High sensitivity, positive predictive value and accuracy, being the hallmarks of a good screening procedure, underscore the validity of the technique. (author)

  14. 26 CFR 1.1092(c)-4 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... CFR 12.3, 12 CFR 208.34, or 12 CFR 344.4. (d) Single fixed strike price means a strike price that is... Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Wash Sales of Stock Or Securities § 1.1092(c)-4 Definitions. The following definitions...

  15. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    Science.gov (United States)

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  16. Quantitative light microscopic autoradiographic study on [3H]leukotriene C4 binding to nonpregnant bovine uterine tissue

    International Nuclear Information System (INIS)

    Mammalian uteri contain both lipoxygenase and cyclooxygenase pathways of arachidonic acid metabolism. Sulfidopeptidyl leukotrienes formed by the lipoxygenase pathway can stimulate uterine contractions and play a role in uterine preparation for implantation. These actions of leukotrienes are perhaps mediated by binding to specific receptors. To understand the cellular basis of leukotriene C4 action, the present quantitative light microscopic autoradiographic study was undertaken on nonpregnant bovine uterine tissue. The results demonstrated that the circular and elongated myometrial smooth muscle, uterine vascular smooth muscle, stromal cells of endometrium, and fibroblasts of perimetrium, but not the endometrial glands, vascular endothelium, and erythrocytes in lumen of arterioles, contained specific silver grains after incubation with [3H]leukotriene C4. The number of grains per 100-micron2 areas were similar in circular and elongated myometrial smooth muscle (P greater than 0.05), which was higher than in other uterine cells (P less than 0.05-0.01). The grains in all cells were greatly reduced after coincubation with excess unlabeled leukotriene C4, but not with leukotriene A4, leukotriene B4, leukotriene D4, leukotriene E4, prostaglandin E2, prostaglandin F2 alpha, or prostacyclin. In conclusion, leukotriene C4 may regulate both uterine cells and uterine vasculature and exert contractile and noncontractile actions via the specific leukotriene C4-binding sites present in different cell types

  17. Bio-saline research: the use of photosynthetic marine organisms in food and feed production

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, A.

    1979-01-01

    Possibilities for new research development in the utilization of the oceans and coastal areas for food and feed production are discussed. The advantages of marine resource utilization are presented. The state-of-art in the cultivation and harvesting of marine photosynthetic organisms is described. Research in enhancing solar energy conversion is in the following areas: biochemical and physiological regulation of major pathways; finding ways to reduce photorespiration; achieving more efficient photosynthetic processes through genetic engineering; and creating cell-free technologies. In the use of marine photosynthetic products as food and feed, research into the chemical and nutrient values is continuing. Future directions in developing new technologies for food production are discussed. Marketability, environmental aspects, and economic aspects are considered. The possibilities of using photosynthetic organisms in hydrogen gas production, methane production, medicine, and chemistry are also discussed. (DC)

  18. Regulation of Electron Transport in Photosystems I and II in C3, C3-C4, and C4 Species of Panicum in Response to Changing Irradiance and O2 Levels.

    Science.gov (United States)

    Peterson, R. B.

    1994-05-01

    Regulation of the quantum yields of linear electron transport and photosystem II photochemistry ([phi]II) with changing irradiance and gas-phase O2 concentration was studied in leaf tissue from Panicum bisulcatum (C3), Panicum milioides (C3-C4), and Panicum antidotale (C4) at 200 [mu]bars of CO2 and 25[deg]C using infrared gas analysis and chlorophyll fluorescence yield measurements. When the O2 level was increased from 14 to 213 mbars at high irradiance, [phi]II increased by as much as 115% in P. bisulcatum but by no more than 17% in P. antidotale. Under the same conditions [phi]II increased to an intermediate degree in P. milioides. Measurements of accumulation of the photooxidized form of the photosystem I reaction center (P700+) based on the light-dependent in vivo absorbance change at 830 nm indicate that the steady-state concentration of P700+ varied in an antiparallel manner with [phi]II when either the irradiance or O2 concentration was changed. Hence, O2-dependent changes in [phi]II were indicative of variations in linear photosynthetic electron transport. These experiments revealed, however, that a significant capacity was retained for in vivo regulation of the apparent quantum yield of photosystem I ([phi]I) independently of [phi]II+ Coordinate regulation of quantum yields of photosystems I and II (expressed as [phi]I:[phi]II in response to changing irradiance and O2 level differed markedly for the C3 and C4 species, and the response for the C3-C4 species most closely resembled that observed for the C4 species. The fraction of total linear electron transport supporting photorespiration at 213 mbars of O2 was negligible in the C4 species and was 13% lower in the C3-C4 species relative to the C3 species as calculated from fluorescence and gas-exchange determinations. At high photon-flux rates and high O2 concentration, the potential benefit to light use for net CO2 uptake arising from lower photorespiration in P. milioides was offset by a reduced capacity

  19. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    Institute of Scientific and Technical Information of China (English)

    Youn-Jung Kim; Hae-Jeong Park; Seo-Hyun Yoon; Mi-Ja Kim; Kang-Hyun Leem; Joo-Ho Chung; Hye-Kyung Kim

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining,terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed.RESULTS: In this study, cytotoxic effect of OPC on SNUC4 cells appeared in a dose-dependent manner. OPC treatment (100 μg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 μg/mL)increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 μg/mL) compared with control.CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4.

  20. Wild Manihot Species Do Not Possess C4 Photosynthesis

    OpenAIRE

    CALATAYUD, P.‐A.; BARÓN, C. H.; VELÁSQUEZ, H.; ARROYAVE, J. A.; LAMAZE, T.

    2002-01-01

    Cultivated cassava (Manihot esculenta) has a higher rate of photosynthesis than is usual for C3 plants and photosynthesis is not light saturated. For these reasons it has been suggested that cultivated cassava could be derived from wild species possessing C4 photosynthesis. The natural abundance of 13C and activities of phosphoenolpyruvate carboxylase and phosphoglycolate phosphatase were measured in leaves of 20 wild cassava species to test this hypothesis. All the species studied, including...

  1. 现代画家 GRAND C4 PICASSO

    Institute of Scientific and Technical Information of China (English)

    小米

    2009-01-01

    为自己的家添置一辆MPV。在现阶段也许并不能成为主流。但这类车所代表的一种生活态度,却已经令很多家庭神往。不过大C4毕加索告诉我们:这种生活其实离我们并不遥远。

  2. Cometary coma chemical composition (C4) mission. [Abstract only

    Science.gov (United States)

    Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.

    1994-01-01

    Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.

  3. Theoretical study of radiative electron attachment to CN, C2H, and C4H radicals

    International Nuclear Information System (INIS)

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN−, C4H−, and C2H−. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN− is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10−16 cm3/s for CN−, 7 × 10−17 cm3/s for C2H−, and 2 × 10−16 cm3/s for C4H−. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments

  4. Photosynthetic carbon assimilation in C/sub 3/- and C/sub 4/-plants. Tracer experiments using /sup 3/H, /sup 14/C, /sup 13/C and /sup 18/O

    Energy Technology Data Exchange (ETDEWEB)

    Ohhama, Tamiko (Tokyo Univ. (Japan). Inst. of Applied Microbiology)

    1982-09-01

    The photosynthetic mechanisms of plants have become to be well understood by the use of radioactive and stable isotopes. This review included the distribution of /sup 14/C in photosynthetic intermediates by assimilation with /sup 14/CO/sub 2/, resultant CO/sub 2/ receptors, Calvin cycle, C/sub 4/ photosynthetic pathway, differences between the photosynthetic pathway for C/sub 3/-plants and that for C/sub 4/-plants, photorespiration, glycolate pathway, the yield of photosynthetic quanta and the relationship between assimilation with /sup 14/CO/sub 2/ and /sup 13/C values. Reference was made to the photosynthetic mechanism in /sup 13/C-NMR follow-up with /sup 13/CO/sub 2/.

  5. The potential of C4 grasses for cellulosic biofuel production.

    Science.gov (United States)

    van der Weijde, Tim; Alvim Kamei, Claire L; Torres, Andres F; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G F; Trindade, Luisa M

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops-maize, sugarcane and sorghum-and two undomesticated perennial energy grasses-miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  6. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  7. Volatile/mobile trace elements in Karoonda /C4/ chondrite

    Science.gov (United States)

    Matza, S. D.; Lipschutz, M. E.

    1977-01-01

    Concentrations of ten volatile/mobile trace elements and of nonvolatile Co in the Karoonda (C4) meteorite were determined, and the atomic abundances relative to C1 are compared with values for the Murchison (C2) and Allende (C3) meteorites. Empirical Bi, In, and Tl data for Karoonda and heated Allende and Murchison are compared with theoretical curves for condensation from a gas of cosmic composition at low pressures. It is suggested that Karoonda might derive from low-temperature open-system metamorphism of pristine C3-like material.

  8. Structural differences between the two human complement C4 isotypes affect the humoral immune response

    OpenAIRE

    1992-01-01

    An animal model has been used to address the question of the biological importance of the known structural difference between the two isotypes of human C4, i.e., C4A and C4B. Guinea pigs deficient in C4 were reconstituted transiently with either human C4A or C4B protein and immunized with the bacteriophage phi X174. Results from this study showed that C4A-reconstituted animals made a secondary response, i.e., switch from IgM to IgG; whereas the C4B-reconstituted animals did not.

  9. 118-C-4 Horizontal Rod Cave characterization plan

    International Nuclear Information System (INIS)

    This characterization plan provides instructions for obtaining and analyzing samples for waste designation and disposal. The 118-C-4 Horizontal Rod Cave is located in the 100-C Area about 328 ft (100 m) southeast of the 105-C Reactor (Figure 1). The 118-C-4 Horizontal Rod Cave (Figure 2) is a reinforced concrete bunker approximately 70- ft (21.3-m) long, 7-ft (2.1-m) high, and 12-ft (3.6-m) wide, with triangular-shaped concrete ends 3-ft (0.9-m) high. The rod cave was used to store radiologically contaminated control-rod tips. If control rod tips are present, release of control rod activation products will not change expectations with respect to principal contaminants. The north portion of the cave is empty and the south portion contains two aluminum tubes that may contain rod tips (Figure 3). The caves are contaminated with activation and fission products (e.g., 60Co and 137Cs) common to the 100 Areas (see Appendix for data). Dose rates up to 0.7 mR/hr were measured in the south cave and 0.5 mR/hr in the north cave during an inspection of the facility in December 1996

  10. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  11. Light-enhanced dark respiration in leaves, isolated cells and protoplasts of various types of C4 plants.

    Science.gov (United States)

    Parys, Eugeniusz; Jastrzebski, Hubert

    2006-04-01

    The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but

  12. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    Science.gov (United States)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  13. C2- and C4-position 17β-estradiol metabolites and their relation to breast cancer

    Directory of Open Access Journals (Sweden)

    Annie Joubert

    2009-12-01

    Full Text Available C2- and C4-position 17β-estradiol metabolites play an important role in breast carcinogenesis. 2-Hydroxyestradiol and 4-hydroxyestradiol are implicated in tumorigenesis via two pathways. These pathways entail increased cell proliferation and the formation of reactive oxygen species that trigger an increase in the likelihood of deoxyribonucleic acid mutations. 2-Methoxyestradiol, a 17β-estradiol metabolite, however, causes induction of apoptosis in transformed and tumor cells; thus exhibiting an antiproliferative effect on tumor growth. The 4-hydroxyestradiol:2-methoxyestradiol and 2-hydroxyestradiol:2-methoxyestradiol ratios therefore ought to be taken into account as possible indicators of carcinogenesis.

  14. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.

    Science.gov (United States)

    McQualter, Richard B; Bellasio, Chandra; Gebbie, Leigh K; Petrasovits, Lars A; Palfreyman, Robin W; Hodson, Mark P; Plan, Manuel R; Blackman, Deborah M; Brumbley, Stevens M; Nielsen, Lars K

    2016-02-01

    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes. PMID:26015295

  15. Sequential excitation energy transfer from naphthalene cascading through titan yellow to fluorescein sodium mediated by (C16Naph(2,6)C4N+) vesicles

    International Nuclear Information System (INIS)

    The sequential excitation energy transfer has been studied in a C16Naph(2,6)C4N+, titan yellow (TY) and fluorescein sodium (FS) ternary aqueous covesicle system. The sequential arrays of chromophores with regulated distance, orders, and orientations were constructed on a non-covalent self-organization system through amphiphilic and electrostatic interaction in aqueous media. The naphthalene group, embedded in the interior of the vesicles, TY and FS anchored on surface of the covesicles through electrostatic interaction, which were employed as donor, mediator and acceptor, respectively, based on overlapping absorption and emission spectra. The sequential energy transfer from naphthalene cascading through TY mediator to FS has been studied in the C16Naph(2,6)C4N+, TY and FS ternary aqueous covesicle system. This sequential excitation energy transfer offers a good model for photoenergy transmission system mimicking photosynthetic systems

  16. Leukotriene C4 biosynthesis in isolated August rat peritoneal leukocytes

    Directory of Open Access Journals (Sweden)

    J. M. Huebner

    1996-01-01

    Full Text Available The mixed leukocyte population obtained from the peritoneum of the August rat is a potentially important experimental model of inherent eosinophilia that has not been well characterized. In the present study, isolated cell preparations generated a concentration-dependent release of leukotriene (LT C4 when exposed to the Ca2+ ionophore A23187, reaching maximal stimulation at 5.0 μM. This response was inhibited by the 5-lipoxygenase activating protein antagonist MK-886 (0.1 μM, nominally Ca2+ and Mg2+-free incubation media and by activation of protein kinase C via phorbol 12-myristate 13-acetate (50 nM. These findings establish a model system for investigating LTC4 profiles contingent with innate peritoneal eosinophilia and are consistent with the hypothesis that cellular LTC4 biosynthesis is phosphoregulated.

  17. Leukotriene C4 elimination and metabolism in man

    International Nuclear Information System (INIS)

    Three doses of radiolabeled leukotriene C4 (0.2 to 15 muCi) were infused into three subjects to investigate its metabolism and routes of elimination during 4 days. Between 12% and 20% of the infused dose was recovered in the urine within 24 hours, of which a substantial and relatively constant proportion (4.1% to 6.3% total dose) appeared as leukotriene E4 (LTE4), mainly in the first 4 hours. Polar omega-oxidation products, N-acetyl LTE4, and tritiated water were also present. Fecal elimination accounted for a further 30% to 40% of the infused dose. In the absence of altered metabolism or biliary excretion, urinary LTE4 may be a useful measure of whole body production of the cysteinyl leukotrienes

  18. Oligomerization of C4 Fraction from FCCU on ZSM-5

    Institute of Scientific and Technical Information of China (English)

    Wu Zhiguo; Zhang Jiushun

    2004-01-01

    In order to make more liquid products like gasoline, the oligomerition of a C4 feedstock taking place on catalyst containing ZSM-5 was studied in a pressurized reactor. The products were C5- gas, liquid hydrocarbons and coke. During the reaction on the catalyst BO-l, when the WHSV was 0.71h-1 and total pressure was 4.0MPa, the C5+ product yield reached a maximum at a temperature around 320℃. As oligomerization reaction was the dominating one, there were minor C9 hydrocarbons in liquid products and the main products were C7 and C8 olefins and n- C10 paraffins. When the temperature was higher than 286C, a small amount of C9hydrocarbons was formed and more normal and isomeric paraffins other than olefins were formed in products.Gasoline yield increased linearly with a rising total pressure under the same operating conditions.

  19. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.

    Science.gov (United States)

    Wang, Minjuan; Xie, Beizhen; Fu, Yuming; Dong, Chen; Hui, Liu; Guanghui, Liu; Liu, Hong

    2015-12-01

    Although terrestrial CO2 concentrations [CO2] are not expected to reach 1000 μmol mol(-1) (or ppm) for many decades, CO2 levels in closed systems such as growth chambers and greenhouses can easily exceed this concentration. CO2 levels in life support systems (LSS) in space can exceed 10,000 ppm (1 %). In order to understand how photosynthesis in C4 plants may respond to elevated CO2, it is necessary to determine if leaves of closed artificial ecosystem grown plants have a fully developed C4 photosynthetic apparatus, and whether or not photosynthesis in these leaves is more responsive to elevated [CO2] than leaves of C3 plants. To address this issue, we evaluated the response of gas exchange, water use efficiency, and photosynthetic efficiency of PSII by soybean (Glycine max (L.) Merr., 'Heihe35') of a typical C3 plant and maize (Zea mays L., 'Susheng') of C4 plant under four CO2 concentrations (500, 1000, 3000, and 5000 ppm), which were grown under controlled environmental conditions of Lunar Palace 1. The results showed that photosynthetic pigment by the C3 plants of soybean was more sensitive to elevated [CO2] below 3000 ppm than the C4 plants of maize. Elevated [CO2] to 1000 ppm induced a higher initial photosynthetic rate, while super-elevated [CO2] appeared to negate such initial growth promotion for C3 plants. The C4 plant had the highest ETR, φPSII, and qP under 500-3000 ppm [CO2], but then decreased substantially at 5000 ppm [CO2] for both species. Therefore, photosynthetic down-regulation and a decrease in photosynthetic electron transport occurred by both species in response to super-elevated [CO2] at 3000 and 5000 ppm. Accordingly, plants can be selected for and adapt to the efficient use of elevated CO2 concentration in LSS. PMID:25869633

  20. Ethanol stimulates formation of leukotriene C4 in rat gastric mucosa

    International Nuclear Information System (INIS)

    Ethanol-induced gastric mucosal damage is characterized by microcirculatory changes such as stasis and plasma leakage. Sluggish blood flow and stasis have also been observed after administration of exogenous leukotriene (LT) C4. The effect of ethanol on the release of LTC4 from rat gastric mucosa was therefore investigated. It was found that intragastric instillation of ethanol increases gastric mucosal release of LTC4 in a dose- and time-dependent manner parallel to the production of gastric lesions. The lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the anti-ulcer drug carbenoxolone (CX) inhibited mucosal release of LTC4 and simultaneously protected against gastric damage caused by ethanol. It is concluded that increased formation of LTC4 and/or other 5-lipoxygenase-derived products of arachidonate metabolism may be involved in ethanol-induced gastric damage. Furthermore, inhibition of the 5-lipoxygenase pathway may be an important mechanism of action of gastric protective drugs

  1. Control of photosynthesis by the carbohydrate level in leaves of the C4 plant Amaranthus edulis L.

    Science.gov (United States)

    Blechschmidt-Schneider, S; Ferrar, P; Osmond, C B

    1989-04-01

    Photosynthesis was studied in relation to the carbohydrate status in intact leaves of the C4 plant Amaranthus edulis. The rate of leaf net CO2 assimilation, stomatal conductance and intercellular partial pressure of CO2 remained constant or showed little decline towards the end of an 8-h period of illumination in ambient air (340 μbar CO2, 21% O2). When sucrose export from the leaf was inhibited by applying a 4-h cold-block treatment (1°C) to the petiole, the rate of photosynthesis rapidly decreased with time. After the removal of the cold block from the petiole, further reduction in photosynthetic rate occurred, and there was no recovery in the subsequent light period. Although stomatal conductance declined with time, intercellular CO2 partial pressure remained relatively constant, indicating that the inhibition of photosynthesis was not primarily caused by changes in stomatal aperture. Analysis of the leaf carbohydrate status showed a five- to sixfold increase in the soluble sugar fraction (mainly sucrose) in comparison with the untreated controls, whereas the starch content was the same. Leaf osmotic potential increased significantly with the accumulation of soluble sugars upon petiole chilling, and leaf water potential became slightly more negative. After 14 h recovery in the dark, photosynthesis returned to its initial maximum value within 1 h of illumination, and this was associated with a decline in leaf carbohydrate levels overnight. These data show that, in Amaranthus edulis, depression in photosynthesis when translocation is impaired is closely related to the accumulation of soluble sugars (sucrose) in source leaves, indicating feedback control of C4 photosynthesis. Possible mechanisms by which sucrose accumulation in the leaf may affect the rate of photosynthesis are discussed with regard to the leaf anatomy of C4 plants. PMID:24212494

  2. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  3. Effects of water stress on the photosynthetic assimilation and distribution of 14C-photosynthate in maize (Zea mays L.) and bean (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    The relationship between photosynthesis and distribution of 14C-photosinthate as affected by water stress was evaluated. Corn (Zea mays L.) during the grain filling period and bean (Phaseolus vulgaris L.) during flowering, representing a C-4 and a C-3 photosynthetic type, respectively, were studied. (M.A.C.)

  4. Carbon Assimilation Pathways, Water Relationships and Plant Ecology.

    Science.gov (United States)

    Etherington, John R.

    1988-01-01

    Discusses between-species variation in adaptation of the photosynthetic mechanism to cope with wide fluctuations of environmental water regime. Describes models for water conservation in plants and the role of photorespiration in the evolution of the different pathways. (CW)

  5. Electronic excitation of C4F6 isomers by electron impact

    International Nuclear Information System (INIS)

    We have measured electronic excitation differential cross sections for C4F6 molecules isomers by electron impact. In the case of hexafluoro-1,3-butadiene we observed an optical forbidden transition at around 5 eV. The spectra of the three C4F6 isomers show the most intense band clearly shifted to lower energies when going from 2-C4F6, to c-C4F6 and to 1,3-C4F6.

  6. C4 Photosynthesis (The CO2-Concentrating Mechanism and Photorespiration).

    Science.gov (United States)

    Dai, Z.; Ku, MSB.; Edwards, G. E.

    1993-09-01

    Despite previous reports of no apparent photorespiration in C4 plants based on measurements of gas exchange under 2 versus 21% O2 at varying [CO2], photosynthesis in maize (Zea mays) shows a dual response to varying [O2]. The maximum rate of photosynthesis in maize is dependent on O2 (approximately 10%). This O2 dependence is not related to stomatal conductance, because measurements were made at constant intercellular CO2 concentration (Ci); it may be linked to respiration or pseudocyclic electron flow. At a given Ci, increasing [O2] above 10% inhibits both the rate of photosynthesis, measured under high light, and the maximum quantum yield, measured under limiting light ([phi]CO2). The dual effect of O2 is masked if measurements are made under only 2 versus 21% O2. The inhibition of both photosynthesis and [phi]CO2 by O2 (measured above 10% O2) with decreasing Ci increases in a very similar manner, characteristically of O2 inhibition due to photorespiration. There is a sharp increase in O2 inhibition when the Ci decreases below 50 [mu]bar of CO2. Also, increasing temperature, which favors photorespiration, causes a decrease in [phi]CO2 under limiting CO2 and 40% O2. By comparing the degree of inhibition of photosynthesis in maize with that in the C3 species wheat (Triticum aestivum) at varying Ci, the effectiveness of C4 photosynthesis in concentrating CO2 in the leaf was evaluated. Under high light, 30[deg]C, and atmospheric levels of CO2 (340 [mu]bar), where there is little inhibition of photosynthesis in maize by O2, the estimated level of CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the bundle sheath compartment was 900 [mu]bar, which is about 3 times higher than the value around Rubisco in mesophyll cells of wheat. A high [CO2] is maintained in the bundle sheath compartment in maize until Ci decreases below approximately 100 [mu]bar. The results from these gas exchange measurements indicate that photorespiration occurs in maize but

  7. Structural and Metabolic Transitions of C4 Leaf Development and Differentiation Defined by Microscopy and Quantitative Proteomics in Maize[W

    Science.gov (United States)

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H.; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J.

    2010-01-01

    C4 grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C4 photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C4 differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C4 specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database. PMID:21081695

  8. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody

    DEFF Research Database (Denmark)

    Pilely, Katrine; Skjoedt, Mikkel-Ole; Nielsen, Christian; Andersen, Thomas Emil; Åbom, Anne; Vitved, Lars; Koch, Claus; Skjødt, Karsten; Palarasah, Yaseelan

    2014-01-01

    The increasing evidence of the implication of the complement system in the pathogenesis of several diseases has emphasized the need for the development of specific and valid assays, optimized for quantitative detection of complement activation in vivo. In the present study, we have developed a...... and samples from factor I deficient patients. The specificity of the mAb was further evaluated by immunoprecipitation techniques and by analysis of eluted fragments of C4 after immunoaffinity chromatography. The anti-C4c mAb was confirmed to be C4c specific, as it showed no cross-reactivity with...... native (un-cleaved) C4, C4b, iC4b, or C4d. Also, no reaction was observed with C4 fragments in factor I deficient plasma or serum samples. We established and validated a sandwich ELISA based on this C4c specific antibody. The normal range of C4c in EDTA/futhan plasma collected from 100 Danish blood...

  9. Electron interactions with c-C4F8

    International Nuclear Information System (INIS)

    The limited electron collision cross-section and transport-coefficient data for the plasma processing gas perfluorocyclobutane (c-C4F8) are synthesized, assessed, and discussed. These include cross sections for total electron scattering, differential elastic electron scattering, partial and total ionization, dissociation into neutral fragments, and electron attachment, as well as data on electron transport, ionization, and attachment coefficients. The available data on both the electron collision cross sections and the electron transport coefficients require confirmation. Also, measurements are needed of the momentum transfer and elastic integral cross sections, and of the cross sections for other significant low-energy electron collision processes such as vibrational and electronic excitation. In addition, electron transport data over a wider range of values of the density-reduced electric field are needed. The present assessment of data on electron affinity, attachment, and scattering suggests the existence of negative ion states near -0.6, 4.9, 6.9, 9.0, and 10.5 eV

  10. The intricate role of complement component C4 in human systemic lupus erythematosus.

    Science.gov (United States)

    Yang, Yan; Chung, Erwin K; Zhou, Bi; Lhotta, Karl; Hebert, Lee A; Birmingham, Daniel J; Rovin, Brad H; Yu, C Yung

    2004-01-01

    It was observed about 50 years ago that low serum complement activity or low protein concentrations of complement C4 concurred with disease activities of systemic lupus erythematosus (SLE). Complete deficiencies of complement components C4A and C4B, albeit rare in human populations, are among the strongest genetic risk factors for SLE or lupus-like disease, across HLA haplotypes and racial backgrounds. However, whether heterozygous or partial deficiency of C4A (C4AQ0) or C4B (C4BQ0) is a predisposing factor for SLE has been a highly controversial topic. In this review we critically analyzed past epidemiologic studies on deficiency of C4A or C4B in human SLE. Cumulative results from more than 35 different studies revealed that heterozygous and homozygous deficiencies of C4A were present in 40-60% of SLE patients from almost all ethnic groups or races investigated, which included northern and central Europeans, Anglo-Saxons, Caucasians in the US, African Americans, Asian Chinese, Koreans and Japanese. In addition, French SLE and control populations had relatively low frequencies of C4AQ0, but the difference between the patient and control groups was statistically significant. The relative risk of C4AQ0 in SLE varied between 2.3 and 5.3 among different ethnic groups. In Caucasian and African SLE patients, the two major causes for C4AQ0 are (1) the presence of a mono-S RCCX (RP-C4-CYP21-TNX) module with a single, short C4B gene in the major histocompatibility complex; and (2) a 2-bp insertion into the sequence for codon 1213 at exon 29 of the mutant C4A gene. Both mono-S structures and 2-bp insertion in exon 29 are absent or extremely rare in the C4AQ0 of Oriental SLE patients. The highly significant association of C4AQ0 with SLE across multiple HLA haplotypes and ethnic groups, and the presence of different mechanisms leading to a C4A protein deficiency among SLE patients suggested that deficiency or low expression level of C4A protein is a primary risk factor for SLE

  11. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  12. Hybrid system of semiconductor and photosynthetic protein.

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. PMID:25091409

  13. Anatomía del tejido fotosintético de diez taxa de Opuntia establecidos en el secano árido mediterráneo de Chile Anatomy of the photosynthetic tissue in ten taxa of Opuntia established to the mediterranean arid zone of Chile

    Directory of Open Access Journals (Sweden)

    SILVA HERMAN

    2001-06-01

    Full Text Available Se evaluó el efecto de la exposición de cladodios a la radiación en la anatomía del tejido fotosintético de 10 taxa de Opuntia, (plantas con metabolismo ácido crasuláceo, CAM establecidos en al secano árido de la IV Región de Chile. A nivel del tejido epidérmico se evaluó el grosor de la cutícula, la densidad de estomas y las dimensiones de células oclusivas. En el tejido fotosintetico, se evaluo las dimensiones celulares con el objeto de estimar la superficie de paredes celulares expuestas al intercambio gaseoso por unidad de tejido fotosintético, relación conocida como Ames/A. Los resultados señalan grandes dimensiones celulares y baja densidad estomática, lo que determina un número reducido de estomas por unidad de superficie en relación a especies de otras vías metabólicas (C3 y C4. La comparación entre taxones, muestra diferencias significativas en la relación de áreas Ames/A, parámetro estrechamente relacionado a la capacidad fotosintética. Estas características anatómicas y sus modificaciones en combinación con el metabolismo CAM, contribuyen a su adaptación a condiciones de pluviometría limitadaThe anatomy of the photosynthetic tissue and the effect of cladode exposure to radiation was studied in ten taxa of Opuntia, plants with crassulacean acid metabolism (CAM, established in the dry lands of the IV Region of Chile. At the epidermic level the cuticle thickness, stomatal frequency, and dimension of guard cells were evaluated. In the photosynthetic tissue, cell dimensions were determined in order to estimate the area of cell walls exposed to gaseous exchange per unit of photosynthetic tissue (A mes/ A. The results indicate large cell dimensions and low stomata frequency which results in a reduced number of stomata per unit area in relation to species with other metabolic pathways (C3 and C4, The comparison between taxa shows significant differences in the relation of Ames/A areas, a parameter closely

  14. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae)

    OpenAIRE

    Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Ocampo, Gilberto

    2010-01-01

    Portulacaceae is one of 19 families of terrestrial plants in which species having C4 photosynthesis have been found. Representative species from major clades of the genus Portulaca were studied to characterize the forms of photosynthesis structurally and biochemically. The species P. amilis, P. grandiflora, P. molokiniensis, P. oleracea, P. pilosa, and P. umbraticola belong to the subgenus Portulaca and are C4 plants based on leaf carbon isotope values, Kranz anatomy, and expression of key C4...

  15. Comparative Genomics of Aeschynomene Symbionts: Insights into the Ecological Lifestyle of Nod-Independent Photosynthetic Bradyrhizobia

    Science.gov (United States)

    Mornico, Damien; Miché, Lucie; Béna, Gilles; Nouwen, Nico; Verméglio, André; Vallenet, David; Smith, Alexander A.T.; Giraud, Eric; Médigue, Claudine; Moulin, Lionel

    2011-01-01

    Tropical aquatic species of the legume genus Aeschynomene are stem- and root-nodulated by bradyrhizobia strains that exhibit atypical features such as photosynthetic capacities or the use of a nod gene-dependent (ND) or a nod gene-independent (NI) pathway to enter into symbiosis with legumes. In this study we used a comparative genomics approach on nine Aeschynomene symbionts representative of their phylogenetic diversity. We produced draft genomes of bradyrhizobial strains representing different phenotypes: five NI photosynthetic strains (STM3809, ORS375, STM3847, STM4509 and STM4523) in addition to the previously sequenced ORS278 and BTAi1 genomes, one photosynthetic strain ORS285 hosting both ND and NI symbiotic systems, and one NI non-photosynthetic strain (STM3843). Comparative genomics allowed us to infer the core, pan and dispensable genomes of Aeschynomene bradyrhizobia, and to detect specific genes and their location in Genomic Islands (GI). Specific gene sets linked to photosynthetic and NI/ND abilities were identified, and are currently being studied in functional analyses. PMID:24704842

  16. Ear of durum wheat under water stress: water relations and photosynthetic metabolism.

    Science.gov (United States)

    Tambussi, Eduardo A; Nogués, Salvador; Araus, José Luis

    2005-06-01

    The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible. PMID:15645303

  17. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  18. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  19. Structural homologies of component C5 of human complement with components C3 and C4 by neutron scattering

    International Nuclear Information System (INIS)

    The complement component C5 is one of a family of structurally related plasma proteins that includes components C3 and C4. Activation of C5 is the initial step in the formation of the membrane attack complex of complement. Analysis of the solution structure of C5 and comparisons with similar analyses of the structures of C3 and C4 are reported here. Neutron solution scattering gave an Mr for C5 of 201,000, which demonstrates that C5 is monomeric in solution. The radius of gyration RG of C5 at infinite contrast is 4.87 nm and corresponds to an elongated structure. The longest length of C5 was determined to be at least 15-16 nm from three calculations on the basis of the RG, the scattering intensity at zero angle I(0), and the indirect transformation of the scattering curve into real space. Comparison of the RG and contrast variation data and indirect transformations of the scattering curves for C3, C4, and C5 show that these have very similar structures. Comparisons of the C5 scattering curve with Debye small-sphere models previously employed for C4 and C3 show that good curve fits could be obtained. Unlike previous studies that have suggested significant differences, these experiments indicate that, while C5 differs from C3 and C4 in its activation and inactivation pathways, significant structural homology exists between the native proteins, as might be predicted from their high (and similar) sequence homology

  20. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A

    International Nuclear Information System (INIS)

    The C4B isotype of the fourth component of human complement (C4) displays 3- to 4-fold greater hemolytic activity than does its other isotype C4A. This correlates with differences in their covalent binding efficiencies to erythrocytes coated with antibody and complement C1. C4A binds to a greater extent when C1 is on IgG immune aggregates. The differences in covalent binding properties correlate only with amino acid changes between residues 1101 and 1106 (pro-C4 numbering)-namely, Pro-1101, Cys-1102, Leu-1105, and Asp-1106 in C4A and Leu-1101, Ser-1102, Ile-1105, and His-1106 in C4B, which are located in the C4d region of the α chain. To more precisely identify the residues that are important for the functional differences, C4A-C4B hybrid proteins were constructed by using recombinant DNA techniques. Comparison of these by hemolytic assay and binding to IgG aggregates showed that the single substitution of aspartic acid for histidine at position 1106 largely accounted for the change in functional activity and nature of theformed. Surprisingly, substitution of a neutral residue, alanine, for histidine at position 1106 resulted in an increase in binding to immune aggregates without subsequent reduction in the hemolytic activity. This result strongly suggests that position 1106 is not catalytic as previously proposed but interacts sterically/electrostatically with potential acceptor sites and serves to select binding sites on potential acceptor molecules

  1. SysML对C4ISR系统建模的支持研究%Supporting Study on Modeling C4ISR Systems Based on SysML

    Institute of Scientific and Technical Information of China (English)

    张炜钟; 王智学; 朱卫星; 陈剑

    2011-01-01

    To solve the problems of accuracy and integrality of semantic specification for C4ISR modeling, a modeling method of analysis and design of C4 ISR based on the system modeling language (SysML) is proposed.Considering the mechanism of SysML, the supporting effect of the new requirement diagrams, parameter diagrams, extended block diagrams and activity diagrams of SysML in modeling C4ISR is researched.The superiority of rigor description and quantitative analysis of SysML for C4ISR modeling is discussed.With an example of aerial defence system, the modeling process based on SysML is researched.The results show that this method is feasible and effective for precise semantic modeling of C4ISR.%为解决C4ISR建模中的语义表达精确性和完整性问题,提出了基于系统建模语言(SysML)的C4ISR分析与设计建模方法.通过分析SysML的机制,研究了SysML新增的需求图、参数图和扩展的块图、活动图等模型对C4ISR建模的支持作用,探讨了其对C4ISR建模的精确描述和定量分析优势.以某区域防空系统为例,研究了基于SysML的系统建模分析过程,结果表明该文方法对于C4ISR的精确语义建模合理可行.

  2. Copper Causes Regiospecific Formation of C4F8-Containing Six-Membered Rings and their Defluorination/Aromatization to C4F4-Containing Rings in Triphenylene/1,4-C4F8I2 Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rippy, Kerry C.; Bukovsky, Eric V.; Clikeman, Tyler T.; Chen, Yu-Sheng; Hou, Gao-Lei; Wang, Xue B.; Popov, Alexey; Boltalina, Olga V.; Strauss, Steven H.

    2016-01-18

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4F8I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4F8-containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4F4- containing aromatic rings. Without Cu, the reactions of TRPH and 1,4- C4F8I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cupromoted (i) regiospecific perfluoroannulation, (ii) preparative C–F activation, and (iii) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and 1H/19F NMR.

  3. Africa's wild C4 plant foods and possible early hominid diets.

    Science.gov (United States)

    Peters, Charles R; Vogel, John C

    2005-03-01

    A small minority of Africa's wild plant foods are C4. These are primarily the seeds of some of the C4 grasses, the rootstocks and stem/leaf bases of some of the C4 sedges (especially papyrus), and the leaves of some of the C4 herbaceous dicots (forbs). These wild food plants are commonly found in disturbed ground and wetlands (particularly the grasses and sedges). Multiple lines of evidence indicate that C4 grasses were present in Africa by at least the late Miocene. It is a reasonable hypothesis that the prehistory of the C4 sedges parallels that of the C4 grasses, but the C4 forbs may not have become common until the late Pleistocene. CAM plants may have a more ancient history, but offer few opportunities for an additional C4-like dietary signal. The environmental reconstructions available for the early South African hominid sites do not indicate the presence of large wetlands, and therefore probably the absence of a strong potential for a C4 plant food diet. However, carbon isotope analyses of tooth enamel from three species of early South African hominids have shown that there was a significant but not dominant contribution of C4 biomass in their diets. Since it appears unlikely that this C4 component could have come predominantly from C4 plant foods, a broad range of potential animal contributors is briefly considered, namely invertebrates, reptiles, birds, and small mammals. It is concluded that the similar average C4 dietary intake seen in the three South African hominid species could have been acquired by differing contributions from the various sources, without the need to assume scavenging or hunting of medium to large grazing ungulates. Effectively similar dominantly dryland paleo-environments may also be part of the explanation. Theoretically, elsewhere in southern and eastern Africa, large wetlands would have offered early hominids greater opportunities for a C4 plant diet. PMID:15737391

  4. The relationship of CO2 assimilation pathways and photorespiration to the physiological quantum requirement of green plant photosynthesis.

    Science.gov (United States)

    Campbell, W H; Black, C C

    1978-08-01

    The quantum requirement of green cells for CO2 fixation has been evaluated and discussed in view of the recent discovery of photorespiration and of multiple biochemical pathways for photosynthetic CO2 fixation. The reported quantum requirement of algae generally is near 9 quanta per CO2 fixed. It is suggested that the high CO2 concentrations and low O2 concentrations used for these algae experiments would have completely suppressed photorespiration and, therefore, the minimum number of quanta required to fix 1 CO2 molecule was correctly determined in these experiments. With higher plant leaves, when measurements are made under physiological environments, quantum requirements range from about 12 to 20 quanta per CO2 fixed. It is suggested that these physiological quantum requirements are higher because photorespiration is functional in these leaves and that photorespiration requires energy. The energy requirement of photorespiration was derived using biochemical models of leaf photosynthesis combining photorespiration with specific biochemical pathways for CO2 fixation. The calculated physiological quantum requirements for C3, C4 and CAM plant photosynthesis are 13, 15 and 17 respectively. The literature values on quantum requirements correspond well with these biochemical models of net photosynthesis. However, it was concluded that the biochemical models fail to give a complete description of photosynthesis in plants using the C4-dicarboxylic acid cycle. PMID:719139

  5. THE C2 OXIDATIVE PHOTOSYNTHETIC CARBON CYCLE.

    Science.gov (United States)

    Tolbert, N. E.

    1997-06-01

    The C2 oxidative photosynthetic carbon cycle plus the C3 reductive photosynthetic carbon cycle coexist. Both are initiated by Rubisco, use about equal amounts of energy, must regenerate RuBP, and result in exchanges of CO2 and O2 to establish rates of net photosynthesis, CO2 and O2 compensation points, and the ratio of CO2 and O2 in the atmosphere. These concepts evolved from research on O2 inhibition, glycolate metabolism, leaf peroxisomes, photorespiration, 18O2/16O2 exchange, CO2 concentrating processes, and a requirement for the oxygenase activity of Rubisco. Nearly 80 years of research on these topics are unified under the one process of photosynthetic carbon metabolism and its self-regulation. PMID:15012254

  6. Photosynthetic acclimation in the context of structural constraints to carbon export from leaves.

    Science.gov (United States)

    Adams, William W; Watson, Amy M; Mueh, Kristine E; Amiard, Véronique; Turgeon, Robert; Ebbert, Volker; Logan, Barry A; Combs, Andrew F; Demmig-Adams, Barbara

    2007-01-01

    The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly

  7. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.

    Science.gov (United States)

    Koteyeva, Nuria K; Voznesenskaya, Elena V; Edwards, Gerald E

    2015-06-01

    Three C4 acid decarboxylases, phosphoenolpyruvate carboxykinase (PEPCK), NADP-malic enzyme (NADP-ME), and NAD-malic enzyme (NAD-ME) were recruited from C3 plants to support C4 photosynthesis. In Poaceae, there are established lineages having PEPCK type species, and some NADP-ME lineages in which PEPCK contributes to C4. Besides family Poaceae, recently PEPCK has been reported to function in C4 photosynthesis in eudicot species including Cleome gynandra (Cleomaceae), Trianthema portulacastrum and Zaleya pentandra (Aizoaceae). We evaluated PEPCK by enzyme assay and western blots in representatives of Poaceae, Aizoaceae, Cleomaceae, and Chenopodiaceae compared to that in the PEPCK type C4 grass Spartina anglica. Eragrostis nutans was identified as the first NAD-ME type C4 grass having substantial amounts of PEPCK. In the eudicots, including C. gynandra, Cleome angustifolia, T. portulacastrum, Z. pentandra, and nine C4 members of family Chenopodiaceae (which has the most C4 species and diversity in forms among eudicot families), amounts of PEPCK were generally very low (barely detectable up to 4% of that in S. anglica). Based on these results, C4 species can be classified biochemically according to the dominant decarboxylase recruited for C4 function; and, Poaceae remains the only family in which PEPCK is known to have a significant role in C4 photosynthesis. PMID:25900567

  8. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  9. Vibration-assisted resonance in photosynthetic excitation energy transfer

    CERN Document Server

    Irish, E K; Lovett, B W

    2013-01-01

    Coherent quantum energy transfer, as observed in photosynthetic pigment-protein complexes, is inhibited by energetic disorder. While this difficulty can be overcome to some extent by the addition of environmental noise, it has recently has begun to be appreciated that discrete intra- and/or intermolecular vibrational modes may play an important role in quantum dynamics. We present a microscopic mechanism by which intramolecular vibrational modes create resonant energy transfer pathways, enhancing the efficiency of both coherent and dephasing-assisted transfer. The principles of this vibration-assisted resonance are illustrated in a simple model based on one energy-transfer branch of the well-characterised Fenna-Matthews-Olson complex. Despite its simplicity, this model captures the interplay between strong electronic coupling that produces delocalised exciton states and resonance-enhanced weak coupling to local vibrational modes. Analytical and numerical results show that intramolecular vibrations can enhance...

  10. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    OpenAIRE

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a c...

  11. 萃取精馏分离C4的过程设计%Process Design for Separating C4 Mixtures by Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    雷志刚; 陈标华; 李建伟

    2003-01-01

    C4 components are useful in industry and should be separated as individuals. A new process wasproposed to separate them by extractive distillation, with the advantages of low equipment investment, energyconsumption and liquid load in the columns. One principle to improve the extractive distillation process was putforward. Moreover, the analysis of operation state of the new process was done. There were eight operation statesfound for the whole process, but only one operation state was desirable. This work provides a way to effectivelyseparate C4 mixtures and helps the reasonable utilization of C4 resource.

  12. Testing the Activity of Complement Convertases in Serum/Plasma for Diagnosis of C4NeF-Mediated C3 Glomerulonephritis.

    Science.gov (United States)

    Blom, Anna M; Corvillo, Fernando; Magda, Michal; Stasiłojć, Grzegorz; Nozal, Pilar; Pérez-Valdivia, Miguel Ángel; Cabello-Chaves, Virginia; Rodríguez de Córdoba, Santiago; López-Trascasa, Margarita; Okrój, Marcin

    2016-07-01

    Autoantibodies termed C3-nephritic factor (C3NeF), which stabilize convertases of the alternative complement pathway, often stimulate autoinflammatory diseases. However, knowledge about analogous autoantibodies acting on the classical pathway (C4NeF) is limited to a few reports, which indicate association with kidney dysfunction, systemic lupus erythematous, and infections. C4NeF may appear independently from C3NeF, but the lack of a routine diagnostic method predisposes C4NeF for being an underestimated player in autoinflammatory episodes. We tested the activity of classical convertases directly in serum/plasma to screen samples from 13 patients with C3 glomerulopathies and identified one patient showing significantly prolonged half-life of these enzymes. Observed effect was reproduced by immunoglobulins purified from patient's plasma and additionally confirmed on classical convertase built from purified components. Isolated immunoglobulins protected classical convertases from both spontaneous and inhibitor-driven decay but not from C4b proteolysis. The patient had a decreased serum level of C3, elevated sC5b-9, and normal concentrations of factor B and C4. Neither C3NeF nor other autoantibodies directed against alternative pathway proteins (factor H, factor B, factor I, C3, and properdin) were found. Genetic analysis showed no mutations in C3, CFB, CFH, CFI, MCP, THBD, and DGKE genes. Renal biopsy revealed a membranoproliferative pattern with intense C3 deposits. Our results underline the importance of C4NeF as an independent pathogenic factor and a need for the implementation of routine examination of classical convertase activity. Proposed method may enable robust inspection of such atypical cases. PMID:27146825

  13. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these prote

  14. Molecular characterization of novel photosynthetic protozoan phylum from corals

    OpenAIRE

    Cihlář, Jaromír

    2010-01-01

    Novel photosynthetic protozoan phylum from caorals eas investigated using molecular biology tools to infer phylogenetic position. According to the data, isolates RM11-26 are also photosynthetic relatives of apicomplexan parasites representing an independent lineage from Chromera velia

  15. FJU-C4, a new 2-pyridone compound, attenuates lipopolysaccharide-induced systemic inflammation via p38MAPK and NF-κB in mice.

    Directory of Open Access Journals (Sweden)

    Jung-Sen Liu

    Full Text Available Despite advances in antibiotic therapy and intensive care, the mortality caused by systemic inflammatory response syndrome and severe sepsis remains high. The use of anti-inflammatory agents to attenuate inflammatory response during acute systemic inflammatory reactions may improve survival rates. Here we show that a newly synthesized 2-pyridone compound (FJU-C4 can suppress the expression of late inflammatory mediators such as iNOS and COX-2 in murine macrophages. The pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, were dose-dependently suppressed by FJU-C4 both in mRNA and protein levels. In addition, the expression of TNFα was inhibited from as early as 2 hours after exposure to LPS stimulation. The production of mature pro-inflammatory cytokines was also suppressed by pretreatment with FJU-C4 in either cell culture medium or mice serum when stimulated by LPS. FJU-C4 prolongs mouse survival and prevents mouse death from LPS-induced systemic inflammation when the dose of FJU-C4 is over 5 mg/kg. The activities of ERK, JNK, and p38MAPK were induced by LPS stimulation on murine macrophage cell line, but only p38MAPK signaling was dramatically suppressed by pretreatment with the FJU-C4 compound in a dose-dependent manner. NF-κB activation also was suppressed by FJU-C4 compound. These findings suggest that the FJU-C4 compound may act as a promising therapeutic agent against inflammatory diseases by inhibiting the p38MAPK and NF-κB signaling pathway.

  16. Analysis of C4 Oligmer and Its Hydrogenated Product%C4齐聚物及其加氢产物的分析

    Institute of Scientific and Technical Information of China (English)

    薛慧峰; 笪敏峰; 赵家林

    2004-01-01

    The components in C4 oligmer and its hydrogenated product were separated on capillary columns. The methods including retention time, chemical reaction, gas chromatography-mass spectrometry and gas chromatography-infrared spectrmetry were used to identify the components. The content of component was calculated by area normalization.The comparative analysis of C8 hydrocarbons in C4 oligmer and its hydrogenated product shows that the results are obviously different due to different conditions of hydrogenation.

  17. Study on the Relationship between Delayed Fluorescence and Photosynthetic Capability at Elevated Temperature in Higher Plants

    International Nuclear Information System (INIS)

    With the continuous elevation of the global temperature, high-temperature stress has been a major environmental factor that affects plant growth and productivity. Effects of short-term heat temperature stress on light-induced delayed fluorescence (DF) decay kinetic curve, intensity and emission spectrum have been investigated in C3 soybean (Jing Huang No.3) and C4 maize (Yun Xi No.5081) species. The temperature responses of DF decay kinetic curve from two different species show that decay rate characteristics are affected by high temperature. The spectroscopy measurements indicate that heat stress influence the shape of DF emission spectra of two species, especially the peak intensities at 685nm and 730nm. Moreover, our results clearly demonstrate that DF intensity of each plant positively correlated with F730/F685 of DF emission spectra at elevated temperatures. In addition, the net photosynthetic rate (Pn) of samples has the same temperature response with DF intensity and F730/F685. Based on these results, we can conclude that there is an excellent correlation between F730/F685 of DF emission spectra, DF intensity and Pn in both C3 and C4 plants. Therefore, we proposed that the F730/F685 of DF emission spectrum can be used to measure the photosynthetic capability of higher plants to heat stress.

  18. Topological Analysis of Electron Density on the Halogen-bonding Interactions Between C_4H_6O,C_4H_6S and XF(X=F,Cl,Br)%C_4H_6O,C_4H_6S与XF(X=F,Cl,Br)分子间卤键的电子密度拓扑研究

    Institute of Scientific and Technical Information of China (English)

    曾艳丽; 吉丽婷; 郑世钧; 孟令鹏

    2011-01-01

    Theoretical studies on the halogen-bonding interactions of 2,5-dihydrofuran,2,5-dihydro-thiophene and XF(X=F,Cl,Br) were investigated at the MP2/aug-cc-pVDZ level.Results show that both n-type and π-type halogen-bonded complexes can be formed between C4H6O,C4H6S and XF.For C4H6O…XF(n),C4H6O…XF(π) and C4H6S…XF(π),the interaction energies,electron densities at the halogen bond critical point,and the charge transfer amount from donor to acceptor are all in sequence of B…F2B…ClFB…BrF(B=C4H6O and C4H6S).The halogen-bonding interactions of C4H6O…BrF(n),C4H6O…BrF(π),C4H6S…F2(n),C4H6S…ClF(n),C4H6S…BrF(n) and C4H6S…BrF(π) are stronger,with bond character between covalent and ionic.The other halogen-bonding interactions are weaker,with bond character "closed-shell" electrostatic interactions.%运用MP2/aug-cc-pVDZ方法对2,5-二氢呋喃,2,5-二氢噻吩与XF(X=F,Cl,Br)之间的卤键作用进行了理论研究.研究发现:C4H6O,C4H6S与XF之间不仅存在O(S)…XF n型卤键,C=C双键与XF分子亦可形成π型卤键;对于C4H6O与XF之间的n型和π型卤键以及C4H6S与XF之间的π型卤键,卤键键能ΔE、键鞍点处的电子密度ρ(rc)以及电子给体到受体之间的电子转移数Δq(XF)均按B…F2〈B…ClF〈B…BrF(B=C4H6O,C4H6S)的顺序依次增大;对于卤键键能较大的体系C4H6O…BrF(n),C4H6O…BrF(π),C4H6S…F2(n),C4H6S…ClF(n),C4H6S…BrF(n),C4H6S…BrF(π),卤键作用介于离子键和共价键之间;而对于其它的卤键键能较小的体系,卤键作用为闭壳层静电作用.

  19. Photosynthetic production of hydrogen by algae

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.

    1978-09-01

    Because hydrogen as a fuel is very attractive both in energy and ecological terms, the photosynthetic production of hydrogen by some algae is attracting considerable attention. In addition to the ordinary photosynthetic mechanisms, many algae have enzymes which can produce hydrogen: hydrogenation enzymes and nitrogen-fixation enzymes. Certain enzymes with the former begin to produce hydrogen after several hours in an anaerobic envirionment; the reason for the delay is that the hydrogen-producing enzymes must adjust to the anaerobic conditions. Eventually the production of hydrogen ceases because production of oxygen by the ordinary photosynthetic mechanism suppresses activity of the hydrogen-producing enzymes. Any use of these algae to produce hydrogen must involve alternating hydrogen production and rest. Nitrogen-fixing enzymes are found especially in the blue-green algae. These seem to produce hydrogen from organic compounds produced by the ordinary photosynthetic process. The nitrogen-fixation type of hydrogen-producing photosynthesis seems the more promising type for future exploitation.

  20. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  1. A New Mechanism for Photosynthetic Energy Transfer

    Directory of Open Access Journals (Sweden)

    Jonas D. M.

    2013-03-01

    Full Text Available Calculations reveal a new kind of non-adiabatic funnel that electronically enhances anti-correlated vibrational wavepackets on the ground state. These wavepackets replicate all observed 2D signatures of photosynthetic energy transfer, including one not previously explained.

  2. Toward understanding the molecular mechanism of a geminivirus C4 protein

    Science.gov (United States)

    Deom, C Michael; Mills-Lujan, Katherine

    2015-01-01

    Geminiviruses are ssDNA plant viruses that cause significant agricultural losses worldwide. The viruses do not encode a polymerase protein and must reprogram differentiated host cells to re-enter the S-phase of the cell cycle for the virus to gain access to the host-replication machinery for propagation. To date, 3 Beet curly top virus (BCTV) encoded proteins have been shown to restore DNA replication competency: the replication-initiator protein (Rep), the C2 protein, and the C4 protein. Ectopic expression of the BCTV C4 protein leads to a severe developmental phenotype characterized by extensive hyperplasia. We recently demonstrated that C4 interacts with 7 of the 10 members of the Arabidopsis thaliana SHAGGY-like protein kinase gene family and characterized the interactions of C4 and C4 mutants with AtSKs. Herein, we propose a model of how C4 functions. PMID:26492168

  3. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    International Nuclear Information System (INIS)

    The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4) are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model

  4. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  5. Potential Hazards Relating to Pyrolysis of c-C4F8O, n-C4F10 and c-C4F8 in selected gaseous diffusion plant operations

    International Nuclear Information System (INIS)

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes is under way. This report summarizes studies directed at estimating the chemical and thermal stability of three candidate coolants, c-C4F8O, n-C4F10 and c-C44F8, in a few specific environments to be found in gaseous diffusion plant operations

  6. Virulence of Streptococcus mutans: Restoration of Pathogenesis of a Glucosyltransferase-Defective Mutant (C4)

    OpenAIRE

    Hirasawa, Masatomo; Kiyono, Hiroshi; Shiota, Tetsuo; HULL, RICHARD A.; Curtiss, Roy; Michalek, Suzanne M.; Mcghee, Jerry R

    1980-01-01

    Previous studies have shown that a mutant (designated C4) of Streptococcus mutans 6715 wild type (WT) is defective in glucosyltransferase (GTF)-synthesized insoluble glucan and is avirulent in gnotobiotic rats. This study investigated the factors which would render this mutant virulent in gnotobiotic rats. Microbial analysis of plaque from gnotobiotic rats (45 days old) infected with a mixture of C4 and virulent S. mutans PS-14 (approximately 15,000 C4 organisms to each S. mutans PS-14) yield...

  7. Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    OpenAIRE

    Lone Aagesen; Fernando Biganzoli; Julia Bena; Godoy-Bürki, Ana C.; Renata Reinheimer; Fernando O. Zuloaga

    2016-01-01

    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distribu...

  8. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses

    OpenAIRE

    Cardoso, Juan Andrés; Pineda, Marcela; Jiménez, Juan de la Cruz; Vergara, Manuel Fernando; Rao, Idupulapati M.

    2015-01-01

    Drought severely limits forage productivity of C4 grasses across the tropics. The avoidance of water deficit by increasing the capacity for water uptake or by controlling water loss are common responses in forage C4 grasses. Napier grass (Pennisetum purpureum) and Brachiaria hybrid cv. Mulato II are tropical C4 grasses used for livestock production due to their reputed resistance to drought conditions. However, there is scant information on the mechanisms used by these grasses to overcome wat...

  9. Variation in the Activity of Some Enzymes of Photorespiratory Metabolism in C4 Grasses

    OpenAIRE

    UENO, OSAMU; YOSHIMURA, YASUYUKI; SENTOKU, NAOKI

    2005-01-01

    • Background and Aims Photorespiration occurs in C4 plants, although rates are small compared with C3 plants. The amount of glycine decarboxylase in the bundle sheath (BS) varies among C4 grasses and is positively correlated with the granal index (ratio of the length of appressed thylakoid membranes to the total length of all thylakoid membranes) of the BS chloroplasts: C4 grasses with high granal index contained more glycine decarboxylase per unit leaf area than those with low granal index, ...

  10. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    Science.gov (United States)

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  11. The Importance of C4d in Biopsies of Kidney Transplant Recipients

    OpenAIRE

    Marlene Antônia dos Reis; Laura Penna Rocha; Ana Carolina Guimarães Faleiros; Camila Souza de Oliveira Guimarães; Fernanda Rodrigues Helmo; Juliana Reis Machado; Marcos Vinícius da Silva; Rosana Rosa Miranda Corrêa

    2013-01-01

    Antibody-mediated rejection (AMR) is highly detrimental to the prolonged survival of transplanted kidneys. C4d has been regarded as a footprint of AMR tissue damage, and the introduction of C4d staining in daily clinical practice aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. Despite the general acceptance of the usefulness of C4d in the identification of acute AMR, the data for C4d staining in chronic AMR is variable. The presence of C...

  12. Photosynthetic characteristics of PEPC transgenic rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ With the rapid development of molecular biological technology,transfering foreign genes into crops has become an increasing routine,and making it possible to induce the genes encoding C4 photosynthesis enzyme into C3 plants.

  13. Identification and characterization of leukotriene C4 receptors in isolated rat renal glomeruli

    International Nuclear Information System (INIS)

    The immediate reduction of renal blood flow and glomerular filtration rate in response to intravenous infusion of leukotriene C4 in the rat prompted an analysis of isolated rat renal glomeruli for the presence of specific receptors for leukotriene C4. Specific binding of [3H]leukotriene C4 to glomeruli increased in a time-dependent manner, reached equilibrium after 60 minutes of incubation at 4 degrees C, and was 80% reversible upon addition of excess unlabeled leukotriene C4 at equilibrium. Specific binding of [3H]leukotriene C4 to glomeruli increased in a dose-dependent manner, approaching saturation at concentrations of 40-60 nM. Inhibition of binding of [3H]leukotriene C4 with increasing concentrations of unlabeled leukotriene C4 was dose dependent. The equilibrium dissociation constant for [3H]leukotriene C4 binding to glomeruli, calculated from saturation and competitive binding-inhibition studies, was 25 +/- 7 nM and 35 +/- 16 nM, respectively, and glomerular leukotriene C4 receptor density was 8.5 +/- 1.5 and 9.0 +/- 3.0 pmol/mg protein, respectively. The other natural vasoactive sulfidopeptide leukotrienes, leukotriene D4 and leukotriene E4, the chemotactic agent, leukotriene B4, and the sulfidopeptide leukotriene antagonist, FPL 55712, competed for the receptor at concentrations 2-3 orders of magnitude higher than the homoligand, leukotriene C4. The binding and specificity characteristics of the glomerular leukotriene C4 receptor are similar to those previously reported for the DDT1 nonvascular smooth muscle cell line derived from hamster vas deferens, for guinea pig ileum smooth muscle, and for a subcellular fraction of rat lung homogenate, and represent the first characterization of such a receptor in a vascular tissue

  14. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  15. Photosynthetic 14CO2 fixation in the leaves of rice and some other species

    International Nuclear Information System (INIS)

    The activity of CO2-fixing enzymes and the initial products of photosynthetic 14CO2 fixation in two rice varieties, the one japonica and the other indica, were examined, comparing with those in several C3 and C4 crop species. Corn and barnyard grass as C4 plants and barley and wheat as C3 plants were used as comparison materials. The plants were cultured at 25 deg. C in daytime and 20 deg. C in night under natural light in a phytotron. After about a month from sowing, the fully expanded leaf blades were subjected to the experiments. The fresh leaf blades of one gram were homogenized in 5 ml of 50 mM Tris-H2SO4 buffer (pH 7.7) containing 4 mM EDTA, 10 mM dithiothreitol and 50 mg of polyamide powder. After filtration, the supernatant was used as the crude enzyme extract for assaying the activity of RuDP carboxylase and PEP carboxylase. The experiments revealed that (1) in C3 plants, the RuDP carboxylase activity was higher, and the PEP carboxylase activity was lower than those in C4 plants; (2) the initial products of photosynthetic 14CO2 fixation in the japonica rice variety were mainly PGA and other sugar phosphates as in barley, whereas in corn, they were malic and aspartic acids; (3) the 14C incorporation into glycine and serine was high in the japonica rice and barley, whereas low in corn. From these results, rice could be regarded as C3 plant. (Iwakiri, K.)

  16. C4b-binding protein is present in affected areas of myocardial infarction during the acute inflammatory phase and covers a larger area than C3.

    Directory of Open Access Journals (Sweden)

    Leendert A Trouw

    Full Text Available BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP. In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI. This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b.

  17. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T;

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commenci...

  18. 26 CFR 1.381(c)(4)-1 - Method of accounting.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Method of accounting. 1.381(c)(4)-1 Section 1... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(4)-1 Method of accounting. (a... section 381(a) applies, an acquiring corporation shall use the same method of accounting used by...

  19. New Introductions of Enterovirus 71 Subgenogroup C4 Strains, France, 2012

    OpenAIRE

    Schuffenecker, Isabelle; Henquell, Cécile; Mirand, Audrey; Coste-Burel, Marianne; Marque-Juillet, Stéphanie; Desbois, Delphine; Lagathu, Gisèle; Bornebusch, Laure; Bailly, Jean-Luc; Lina, Bruno

    2014-01-01

    In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe.

  20. Low-energy electron capture by C4+ ions from atomic hydrogen

    NARCIS (Netherlands)

    Bliek, FW; Hoekstra, R; Bannister, ME; Havener, CC

    1997-01-01

    The total-electron-capture cross section for collisions of C4+ with ground-state hydrogen (deuterium) is measured in the energy range 6-1000 eV/u using the merged-beam technique. The fraction of C4+ metastable ions present in the ion beam is measured to be 5%, which results in a correction to the cr

  1. Molecular Design of Separating C4 by Extractive Distillation with ACN%ACN萃取精馏分离C4的分子设计

    Institute of Scientific and Technical Information of China (English)

    雷志刚; 王洪有; 段占庭; 周荣琪

    2000-01-01

    ACN萃取精馏分离C4的助溶剂进行分子设计,以代替原有的水.将设计分子分为有机物和盐类分别进行,设计结果经过比较后认为ACN加盐能够有效地提高C4的相对挥发度,在此基础上与实验值对照吻合一致.萃取精馏的分子设计能够减少实验工作量.

  2. Correlated interaction fluctuations in photosynthetic complexes

    CERN Document Server

    Vlaming, Sebastiaan M

    2011-01-01

    The functioning and efficiency of natural photosynthetic complexes is strongly influenced by their embedding in a noisy protein environment, which can even serve to enhance the transport efficiency. Interactions with the environment induce fluctuations of the transition energies of and interactions between the chlorophyll molecules, and due to the fact that different fluctuations will partially be caused by the same environmental factors, correlations between the various fluctuations will occur. We argue that fluctuations of the interactions should in general not be neglected, as these have a considerable impact on population transfer rates, decoherence rates and the efficiency of photosynthetic complexes. Furthermore, while correlations between transition energy fluctuations have been studied, we provide the first quantitative study of the effect of correlations between interaction fluctuations and transition energy fluctuations, and of correlations between the various interaction fluctuations. It is shown t...

  3. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  4. Photosynthetic hydrogen and oxygen production - Kinetic studies

    Science.gov (United States)

    Greenbaum, E.

    1982-01-01

    The simultaneous photoproduction of hydrogen and oxygen was measured in a study of the steady-state turnover times of two biological systems, by driving them into the steady state with repetitive, single-turnover flash illumination. The systems were: (1) in vitro, isolated chloroplasts, ferredoxin and hydrogenase; and (2) the anaerobically-adapted green alga Chlamydomonas reinhardtii. It is found that the turnover times for production of both oxygen and hydrogen in photosynthetic water splitting are in milliseconds, and either equal to, or less than, the turnover time for carbon dioxide reduction in intact algal cells. There is therefore mutual compatibility between hydrogen and oxygen turnover times, and partial compatibility with the excitation rate of the photosynthetic reaction centers under solar irradiation conditions.

  5. Molecular modeling of human complement component C4 and its fragments by X-ray and neutron solution scattering

    International Nuclear Information System (INIS)

    The solution structures of human complement component C4 and five derived fragments, C4u, C4(a + b), C4b, C4c, and C4d, were analyzed by synchrotron X-ray and neutron scattering. The X-ray radii of gyration RG for C4, C4u, and C4(a + b) in H2O buffers are similar at 5.23-5.28 nm. Molecular mass calculations using X-rays and neutrons show unexpectedly that C4c is dimeric; however, all the other forms are monomeric. C4c2 has an X-ray RG of 5.18 nm and an RXS of 2.89 nm. Neutron contrast variation gives RG values at infinite contrast of 4.87-4.93 nm for C4 and C4u, 4.79 nm for C4b, 4.94 nm for C4c2, and 2.69 nm for C4d. The RXS values at infinite contrast are 2.23-2.25 nm for C4 and C4u, 1.89 nm for C4b, and 2.62 nm for C4c2. These data show that a large conformational change occurs on going from C4 to C4b, but not on going from C4 to C4u, and this is attributed to the presence of the C4a moiety in C4u. Comparisons of the C4 and C4u scattering curves show that these are very similar out to a nominal resolution of 4 nm. Scattering-curve models were developed to account for the neutron scattering curves of C4, C4c2, and C4d in 2H2O buffers. The C4c monomer could be represented by a lamellar ellipsoid of size 8 nm x 2 nm x 18 nm. C4d was found to be 4 nm x 2 nm x 9 nm. The combination of these structures gave good accounts of the neutron data for C4, C4b, and C4c2 to resolutions of 5-6 nm. The C4 model was obtained by placing the long axis of C4d parallel to that of C4c such that the cross section is extended. C4b was best modeled by repositioning C4d relative to C4c such that this cross section becomes more compact. The C4 and C4b models are compared with possible structures for the C1 component of complement to show the importance of the surface accessibility of the protease domains and short consensus repeat domains in C1 for C4 activation

  6. Complement activation in astrocytomas: deposition of C4d and patient outcome

    Directory of Open Access Journals (Sweden)

    Mäkelä Katri

    2012-12-01

    Full Text Available Abstract Background C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Methods Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. Results The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test. However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test. There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p  Conclusion The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement.

  7. Photosynthetic acclimation to high temperatures in wheat

    OpenAIRE

    Sayed, O. H.

    1992-01-01

    Growth and photosynthetic performance were assessed for the Finnish wheat Triticum aestivum L. var. APU under a cool (13/10�C day/night) and a warm (30/25�C day/night) regime. Plants exhibited a certain degree of acclimation to warm growth conditions. This acclimation appeared to involve enhanced performance of both photosystem II and whole-chain electron transport. Enhanced thermal stability of photophosphorylation was also observed in warm-grown plants.

  8. Nonclassical energy transfer in photosynthetic FMO complex

    Directory of Open Access Journals (Sweden)

    Abramavicius Vytautas

    2013-03-01

    Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.

  9. Ionizing radiation and photosynthetic ability of cyanobacteria

    International Nuclear Information System (INIS)

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60Co γ- radiation (D10= 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  10. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However, this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.

  11. Development and characterization of a hemolytic assay for mouse C4

    International Nuclear Information System (INIS)

    The previously described one-step hemolytic assay for the fourth component of complement (C4) that employs C4-deficient (C4D) guinea pig serum was modified to allow assessment of mouse C4. Of a number of variables evaluated including the class and quantity of sensitizing antibody, concentration of C4D serum and metals, ionic strength of the buffer, and the duration and temperature of incubation, substitution of IgG anti-sheep red blood cell antibodies for the standard IgM hemolysin and the use of C4D serum at relatively high concentrations (1 : 20) were necessary to obtain an accurate, reproducible and sensitive hemolytic assay. The sensitivity of the assay could be increased approximately 2-fold by the addition of human C2 and approximately 30% by employing 51Cr labeled sheep red blood cells. Employing this assay, C4 activity was determined in H2-congenics and recombinants and the effect of age, sex, and methods of procuring and preserving mouse serum and plasma evaluated. (Auth.)

  12. Plasma kinetics of complement component C4: comparison of three models

    International Nuclear Information System (INIS)

    Plasma C4 kinetics were studied in members of a kindred with hereditary incomplete C4 deficiency and in control subjects. Test subjects received iodine 125-labeled C4 intravenously, and plasma disappearance curves for 125I-C4 were plotted. By nonlinear least-squares analysis, we fit two-, three-, and four-exponential models of plasma disappearance to the plasma curves of each subject. Goodness of fit was significantly better for all subjects with the three-exponential versus the two-exponential model (p less than 0.0005). No further improvement in curve fit was accomplished by using a four-exponential model (p greater than 0.5). Metabolic rates and extravascular/plasma ratios calculated from the two- and three-exponential models were significantly different. As judged by extravascular/plasma ratio, the two-exponential model underestimated the amount of extravascular C4. Furthermore, the two-exponential model significantly over-estimated catabolic and synthetic rates. Hence, our results show that C4 kinetics are not optimally described by a conventional, two-exponential model. A possible explanation for our findings is that in previous studies of C4 metabolism, the analysis of plasma radioactivity disappearance curves was done by inspection, whereas we used least-squares analysis, a method that determines the number of exponentials with greater reliability

  13. Measurement of bubble velocity using Capacitively Coupled Contactless Conductivity Detection (C4D) technique

    Institute of Scientific and Technical Information of China (English)

    Baoliang Wang; Ying Zhou; Haifeng Ji; Zhiyao Huang; Haiqing Li

    2013-01-01

    The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated.And,a new method,which combines the C4D technique and the principle of cross-correlation velocity measurement,is proposed for the measurement of bubble velocity.This research includes two parts.First,based on the principle of C4D,a new five-electrode C4D sensor is developed.Then,with two conductivity signals obtained by the C4D sensor,the velocity measurement of bubble is implemented according to the principle of cross-correlation.The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow.Experimental results show that the fiveelectrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.

  14. Evidence of shift in C4 species range in central Argentina during the late Holocene

    Science.gov (United States)

    Silva, L.C.R.; Giorgis, M.A.; Anand, M.; Enrico, L.; Perez-Harguindeguy, N.; Falczuk, V.; Tieszen, L.L.; Cabido, M.

    2011-01-01

    Aim: Millennial-scale biogeographic changes are well understood in many parts of the world, but little is known about long-term vegetation dynamics in subtropical regions. Here we investigate shifts in C3/C4 plant abundance occurred in central Argentina during the past few millenniaMethods: We determined present day soil organic matter ??13C signatures of grasslands, shrublands and woodlands, containing different mixtures of C3 and C4 plants. We measured past changes in the relative cover of C3/C4 plants by comparing ??13C values in soil profiles with present day ??13C signatures. We analyzed 14C activity in soil depths that showed major changes in vegetation. Results: Present day relative cover of C3/C4 plants determines whole ecosystem ??13C signatures integrated as litter and superficial soil organic matter (R2 = 0. 78; p C4 by C3 plants since 3,870 (??210) YBP. During this period, the relative abundance of C3 plants increased 32% (average across sites) with significant changes being observed in all studied ecosystems. Conclusions: Our results show that C4 species were more abundant in the past, but C3 species became dominant during the late Holocene. We identified increases in the relative C3/C4 cover in grasslands, shrublands and woodlands, suggesting a physiological basis for changes in vegetation. The replacement of C4 by C3 plants coincided with changes in climate towards colder and wetter conditions and could represent a climatically driven shift in the C4 species optimum range. ?? 2011 Springer Science+Business Media B.V.

  15. Mutants of complement component C3 cleaved by the C4-specific C1-s protease.

    OpenAIRE

    Mathias, P; Carrillo, C J; Zepf, N E; Cooper, N R; Ogata, R T

    1992-01-01

    To identify some of the structural features determining specific protease recognition of complement components C3 and C4, we used site-specific mutagenesis to construct mutants of murine C3 that are cleaved by the C4-specific C1-s protease. Insertion of three amino acid residues corresponding to residues at the C1-s cleavage site of human C4 into murine C3 at the analogous C3 convertase cleavage site was adequate to render the mutant protein susceptible to C1-s cleavage. In addition, insertio...

  16. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  17. Detection of the photosynthesis protective mechanisms of C3 and C4 Crops from hyper spectral data%C3、C4作物的光保护机制差异的光谱探测研究

    Institute of Scientific and Technical Information of China (English)

    刘良云; 关琳琳; 彭代亮; 胡勇; 刘玲玲

    2012-01-01

    this did not appear in maize; (3) the midday photosynthetic depression occurred in C3 crops owing to the stressed light and temperature, with a rapid increase in PRI. However, there was no apparent noon depression in C4 crops. Based on the different characteristics between the responses of C3 and C4 crops to high irradiance and temperature stressws, we proposed a potential method to discriminate C3 and C4 plants by multitemporal and hyper spectral remote sensing data.

  18. Commercial Practice on Technology for High- Temperature Cracking of C4 Fraction to Increase Propylene Yield

    Institute of Scientific and Technical Information of China (English)

    Yu Darong; Zhang Zhigang

    2003-01-01

    This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.

  19. Multiscale Analysis and Optimisation of Photosynthetic Solar Energy Systems

    CERN Document Server

    Ringsmuth, Andrew K

    2014-01-01

    This work asks how light harvesting in photosynthetic systems can be optimised for economically scalable, sustainable energy production. Hierarchy theory is introduced as a system-analysis and optimisation tool better able to handle multiscale, multiprocess complexities in photosynthetic energetics compared with standard linear-process analysis. Within this framework, new insights are given into relationships between composition, structure and energetics at the scale of the thylakoid membrane, and also into how components at different scales cooperate under functional objectives of the whole photosynthetic system. Combining these reductionistic and holistic analyses creates a platform for modelling multiscale-optimal, idealised photosynthetic systems in silico.

  20. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene

    Science.gov (United States)

    Zhang, Chunfu; Wang, Yang; Deng, Tao; Wang, Xiaoming; Biasatti, Dana; Xu, Yingfeng; Li, Qiang

    2009-10-01

    The emergence of C4 photosynthesis in plants as a significant component of terrestrial ecosystems is thought to be an adaptive response to changes in atmospheric CO 2 concentration and/or climate during Neogene times and has had a profound effect on the global terrestrial biosphere. Although expansion of C4 grasses in the latest Miocene and Pliocene has been widely documented around the world, the spatial and temporal variations in the C4 expansion are still not well understood and its driving mechanisms remain a contentious issue. Here we present the results of carbon and oxygen isotope analyses of fossil and modern mammalian tooth enamel samples from the central Inner Mongolia. Our samples represent a diverse group of herbivorous mammals including deer, elephants, rhinos, horses and giraffes, ranging in age from the late Oligocene to modern. The δ13C values of 91 tooth enamel samples of early late-Miocene age or older, with the exception of two 13 Ma rhino samples (- 7.8 and - 7.6‰) and one 8.5 Ma suspected rhino sample (- 7.6‰), were all less than - 8.0‰ (VPDB), indicating that there were no C4 grasses present in their diets and thus probably few or no C4 grasses in the ecosystems of the central Inner Mongolia prior to ~ 8 Ma. However, 12 out of 26 tooth enamel samples of younger ages (~ 7.5 Ma to ~ 3.9 Ma) have δ13C values higher than - 8.0‰ (up to - 2.4‰), indicating that herbivores in the area had variable diets ranging from pure C3 to mixed C3-C4 vegetation during that time interval. The presence of C4 grasses in herbivores' diets (up to ~ 76% C4) suggests that C4 grasses were a significant component of the local ecosystems in the latest Miocene and early Pliocene, consistent with the hypothesis of a global factor as the driving mechanism of the late Miocene C4 expansion. Today, C3 grasses dominate grasslands in the central Inner Mongolia area. The retreat of C4 grasses from this area after the early Pliocene may have been driven by regional

  1. Promotor polymorphisms in leukotriene C4 synthase and risk of ischemic cerebrovascular disease

    DEFF Research Database (Denmark)

    Freiberg, J.J.; Tybjaerg-Hansen, A.; Sillesen, H.; Jensen, Gorm Boje; Nordestgaard, Børge; Freiberg, Jacob J; Tybjærg-Hansen, Anne; Sillesen, Henrik; Jensen, Gorm B; Nordestgaard, Børge G

    2008-01-01

    OBJECTIVE: Cysteinyl leukotrienes are involved in inflammation and possibly in early carotid atherosclerosis. We tested the hypothesis that the -444 A/C and -1072 G/A polymorphisms of the leukotriene C(4) synthase associate with risk of ischemic cerebrovascular disease. METHODS AND RESULTS: We...... atherosclerosis, or with levels of platelets and coagulation factors. CONCLUSIONS: Leukotriene C(4) synthase -1072 AA genotype predict increased risk, whereas -444 CC genotype predict decreased risk of ischemic cerebrovascular disease....

  2. C4齐聚物及其加氢产物的分析

    Institute of Scientific and Technical Information of China (English)

    薛慧峰; 笪敏峰; 赵家林

    2004-01-01

    The components in C4 oligmer and its hydrogenated product were separated on capillary columns. The methods including retention time, chemical reaction, gas chromatography-mass spectrometry and gas chromatography-infrared spectrmetry were used to identify the components. The content of component was calculated by area normalization.The comparative analysis of C8 hydrocarbons in C4 oligmer and its hydrogenated product shows that the results are obviously different due to different conditions of hydrogenation.

  3. d_c=4 is the upper critical dimension for the Bak-Sneppen model

    OpenAIRE

    Boettcher, S.; Paczuski, M.

    1999-01-01

    Numerical results are presented indicating d_c=4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746-5749 (1998)] that placed d_c as high as d=8. In particular, we find that avalanches are compact for all dimensions d4. Under those conditions, scaling arguments predict a d_c=4, where hyperscaling relations hold for d

  4. Divergent evolutionary histories of C4 grasses shape global grassland ecology

    Science.gov (United States)

    Lehmann, C.; Griffith, D.; Osborne, C.

    2014-12-01

    C4 photosynthesis has evolved in more than 23 independent lineages of grasses as an adaptation to hot, sunny conditions. Geological records demonstrate that C4 grasses abruptly became ecologically dominant during the late Cenozoic across the tropical and temperate regions, transforming the Earth System and facilitating major faunal and floral radiations. However, although each C4 grass lineage originated and specialised in different environments, the importance of these divergent evolutionary histories for global ecology remains largely unknown. Here, we address this problem by compiling the first global map of grassy biomes based entirely upon ground-based vegetation surveys of dominant species. Our analysis shows that grasses dominate the ground layer across 40% of the vegetated land surface, with C4 grasses accounting for 60% of this area, and grassy biomes occurring under almost all climatic conditions. More than 98% of C3 grassy vegetation is dominated by the cold tolerant Pooideae lineage, which is replaced by C4 lineages at mean annual temperatures exceeding 15oC. The world's C4 grassy vegetation is largely dominated by only four of the 23 independent C4 grass lineages, and these segregate strongly along global environmental gradients and across continents. The Chloridoideae lineage is globally important in dominating semi-arid environments with a long fire return interval. In contrast, although the Andropogoneae lineage dominates extremely wet regions with frequent fire in the Paleotropics and North America, the same niche space is dominated by Paspaleae in South America. Sorting of lineages along precipitation and fire gradients is strongly predicted by plant height. Our results demonstrate that the divergent histories of independent C4 grass lineages have constrained the assembly and functional traits of grassy biomes, with important implications for understanding how biome boundaries may shift in past and future environments.

  5. New introductions of enterovirus 71 subgenogroup C4 strains, France, 2012.

    Science.gov (United States)

    Schuffenecker, Isabelle; Henquell, Cécile; Mirand, Audrey; Coste-Burel, Marianne; Marque-Juillet, Stéphanie; Desbois, Delphine; Lagathu, Gisèle; Bornebusch, Laure; Bailly, Jean-Luc; Lina, Bruno

    2014-08-01

    In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe. PMID:25061698

  6. Genome-scale modeling of the evolutionary path to C4 photosynthesis

    Science.gov (United States)

    Myers, Christopher R.; Bogart, Eli

    In C4 photosynthesis, plants maintain a high carbon dioxide level in specialized bundle sheath cells surrounding leaf veins and restrict CO2 assimilation to those cells, favoring CO2 over O2 in competition for Rubisco active sites. In C3 plants, which do not possess such a carbon concentrating mechanism, CO2 fixation is reduced due to this competition. Despite the complexity of the C4 system, it has evolved convergently from more than 60 independent origins in diverse families of plants around the world over the last 30 million years. We study the evolution of the C4 system in a genome-scale model of plant metabolism that describes interacting mesophyll and bundle sheath cells and enforces key nonlinear kinetic relationships. Adapting the zero-temperature string method for simulating transition paths in physics and chemistry, we find the highest-fitness paths connecting C3 and C4 positions in the model's high-dimensional parameter space, and show that they reproduce known aspects of the C3-C4 transition while making additional predictions about metabolic changes along the path. We explore the relationship between evolutionary history and C4 biochemical subtype, and the effects of atmospheric carbon dioxide levels.

  7. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, T M; Kristensen, Torsten;

    1985-01-01

    A comparison of the sequence of the subunit of human alpha 2-macroglobulin (alpha 2M; 1451 amino acid residues) with that of murine complement component pro-C3 (1639 amino acid residues) reveals eight extended regions of sequence similarity. These regions contain between 19% and 31% identically...... placed residues and account for 75% and 67%, respectively, of the polypeptide chains of alpha 2M and pro-C3. Published sequence data for complement component C4 show that segments of this protein match well with corresponding stretches in alpha 2M and pro-C3. It is proposed that alpha 2M, C3 and C4...... common gross structure. The quartets of basic residues in pro-C3 and pro-C4, at which cleavage takes place to produce the mature subunits of these proteins, and most of the residues forming the anaphylatoxin peptides of C3 and C4 (C3a and C4a) are absent in alpha 2M. In addition, C3 and C4 contain large...

  8. Differential resource utilization by extant great apes and australopithecines: towards solving the C4 conundrum.

    Science.gov (United States)

    Sponheimer, Matt; Lee-Thorp, Julia A

    2003-09-01

    Morphological and biogeochemical evidence suggest that australopithecines had diets markedly different from those of extant great apes. Stable carbon isotope analysis, for example, has shown that significant amounts of the carbon consumed by australopithecines were derived from C(4) photosynthesis in plants. This means that australopithecines were eating large quantities of C(4) plants such as tropical grasses and sedges, or were eating animals that were themselves eating C(4) plants. In contrast, there is no evidence that modern apes consume appreciable amounts of any of these foods, even in the most arid extents of their ranges where these foods are most prevalent. Environmental reconstructions of early australopithecine environments overlap with modern chimpanzee habitats. This, in conjunction with the stable isotope evidence, suggests that australopithecines and great apes, even in similar environments, would utilize available resources differently. Thus, the desire or capacity to use C(4) foods may be a basal character of our lineage. We do not know, however, which of the nutritionally disparate C(4) foods were utilized by hominids. Here we discuss which C(4) resources were most likely consumed by australopithecines, as well as the potential nutritional, physiological, and social consequences of eating these foods. PMID:14527627

  9. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L;

    2001-01-01

    ). When bound to microorganisms, the MBL complex activates the complement components C4 and C2, thereby generating the C3 convertase and leading to opsonisation by the deposition of C4b and C3b fragments. This C4/C2 cleaving activity is shared with the C1 complex of the classical pathway of complement...

  10. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  11. Photosynthetic water oxidation: insights from manganese model chemistry.

    Science.gov (United States)

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  12. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink.

    Science.gov (United States)

    Dahal, Keshav; Martyn, Greg D; Vanlerberghe, Greg C

    2015-10-01

    Chloroplasts have means to manage excess reducing power but these mechanisms may become restricted by rates of ATP turnover. Alternative oxidase (AOX) is a mitochondrial terminal oxidase that uncouples the consumption of reducing power from ATP synthesis. Physiological and biochemical analyses were used to compare respiration and photosynthesis of Nicotiana tabacum wild-type (WT) plants with that of transgenic lines overexpressing AOX, under both well-watered and drought stress conditions. With increasing drought severity, AOX overexpression acted to increase respiration in the light (RL ) relative to WT. CO2 and light response curves indicated that overexpression also improved photosynthetic performance relative to WT, as drought severity increased. This was not due to an effect of AOX amount on leaf water status or the development of the diffusive limitations that occur due to drought. Rather, AOX overexpression dampened photosystem stoichiometry adjustments and losses of key photosynthetic components that occurred in WT. The results indicate that AOX amount influences RL , particularly during severe drought, when cytochrome pathway respiration may become increasingly restricted. This impacts the chloroplast redox state, influencing how the photosynthetic apparatus responds to increasing drought severity. In particular, the development of biochemical limitations to photosynthesis are dampened in plants with increased nonenergy conserving RL . PMID:26032897

  13. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    Science.gov (United States)

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-01-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed. PMID:27502051

  14. How to harvest solar energy with the photosynthetic reaction center

    Science.gov (United States)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  15. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program

    Science.gov (United States)

    Packer, L.; Fry, I.; Belkin, S.

    1986-01-01

    Commercially available air lift fermentors were used to simultaneously monitor biomass production, N2-fixation, photosynthesis, respiration, and sensitivity to oxidative damage during growth under various nutritional and light regimes, to establish a data base for the integration of these organisms into a Closed Ecological Life Support System (CELSS) program. Certain cyanobacterial species have the unique ability to reduce atmospheric N2 to organic nitrogen. These organisms combine the ease of cultivation characteristics of prokaryotes with the fully developed photosynthetic apparatus of higher plants. This, along with their ability to adapt to changes in their environment by modulation of certain biochemical pathways, make them attractive candidates for incorporation into the CELSS program.

  16. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  17. Path of carbon flow during NO3--induced photosynthetic suppression in N-limited Selenastrum minutum

    International Nuclear Information System (INIS)

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In 14CO2 pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 μmoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 μmoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation

  18. Photosynthetic isotope fractionation: oxygen and carbon

    International Nuclear Information System (INIS)

    Isotopic carbon analyses of plant tissue and carbon dioxide from air samples and plant and soil respiration were made. Soil respiratory CO2 is about 150/00 lighter than atmospheric CO2. Plant isotopic ratios were found to be influenced by (1) plant photosynthetic efficiency, (2) source CO2, (3) airflow, and (4) CO2 concentrations. Etiolated bean plants have nearly the same delta13C value as seed carbon and seed dark respiratory CO2. Mature leaves from greenhouse grown beans, however, are some 5 0/00 lighter than seed carbon. This is a result of CO2 source, i.e., plant or soil respiratory CO2. Leaves which are generally lighter than other plant organs becomes still lighter during the growing season. As a consequence of increasingly light leaf carbon, photorespired CO2 also becomes lighter during the growing season. Oxygen isotopic values were measured for (1) photorespiratory CO2, which reflects equilibration with leaf water, and (2) photosynthetic O2, which is enriched in 18O, perhaps due to respiratory or photorespiratory 16O preference

  19. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    Science.gov (United States)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  20. Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG

    OpenAIRE

    Arora, Pankaj Kumar; Mohanta, Tapan Kumar; Srivastava, Alok; Bae, Hanhong; Singh, Vijay Pal

    2014-01-01

    A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investiga...

  1. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae.

    Directory of Open Access Journals (Sweden)

    Michal Sorek

    Full Text Available Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and quality of light were found to be the most influential factors governing the endogenous clock for plants and algae. Unicellular dinoflagellate algae are among the best examples of organisms that exhibit circadian clocks using light as the dominant signal. This study is the first to examine the effects of light intensity and quality on the rhythmicity of photosynthesis in the symbiotic dinoflagellate Symbiodinium sp., both as a free-living organism and in symbiosis with the coral Stylophora pistillata. Oxygen production measurements in Symbiodinium cultures exhibited rhythmicity with a periodicity of approximately 24 h under constant high light (LL, whereas under medium and low light, the cycle time increased. Exposing Symbiodinium cultures and corals to spectral light revealed different effects of blue and red light on the photosynthetic rhythm, specifically shortening or increasing the cycle time respectively. These findings suggest that the photosynthetic rhythm is entrained by different light cues, which are wired to an endogenous circadian clock. Furthermore, we provide evidence that mRNA expression was higher under blue light for two potential cryptochrome genes and higher under red light for a phytochrome gene isolated from Symbiodinium. These results offer the first evidence of the impact of the intensity and quality of light on the photosynthetic rhythm in algal cells living freely or as part of a symbiotic association. Our results indicate the presence of a circadian oscillator in Symbiodinium governing the photosynthetic apparatus through a light

  2. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability.

    Science.gov (United States)

    Thamatrakoln, Kimberlee; Bailleul, Benjamin; Brown, Christopher M; Gorbunov, Maxim Y; Kustka, Adam B; Frada, Miguel; Joliot, Pierre A; Falkowski, Paul G; Bidle, Kay D

    2013-12-10

    Diatoms, unicellular phytoplankton that account for ∼40% of marine primary productivity, often dominate coastal and open-ocean upwelling zones. Limitation of growth and productivity by iron at low light is attributed to an elevated cellular Fe requirement for the synthesis of Fe-rich photosynthetic proteins. In the dynamic coastal environment, Fe concentrations and daily surface irradiance levels can vary by two to three orders of magnitude on short spatial and temporal scales. Although genome-wide studies are beginning to provide insight into the molecular mechanisms used by diatoms to rapidly respond to such fluxes, their functional role in mediating the Fe stress response remains uncharacterized. Here, we show, using reverse genetics, that a death-specific protein (DSP; previously named for its apparent association with cell death) in the coastal diatom Thalassiosira pseudonana (TpDSP1) localizes to the plastid and enhances growth during acute Fe limitation at subsaturating light by increasing the photosynthetic efficiency of carbon fixation. Clone lines overexpressing TpDSP1 had a lower quantum requirement for growth, increased levels of photosynthetic and carbon fixation proteins, and increased cyclic electron flow around photosystem I. Cyclic electron flow is an ATP-producing pathway essential in higher plants and chlorophytes with a heretofore unappreciated role in diatoms. However, cells under replete conditions were characterized as having markedly reduced growth and photosynthetic rates at saturating light, thereby constraining the benefits afforded by overexpression. Widespread distribution of DSP-like sequences in environmental metagenomic and metatranscriptomic datasets highlights the presence and relevance of this protein in natural phytoplankton populations in diverse oceanic regimes. PMID:24277817

  3. Differential Diagnosis Knowledge Building by Using CUC-C4.5 Framework

    Directory of Open Access Journals (Sweden)

    Kusrini

    2010-01-01

    Full Text Available Problem statement: The Case Based Reasoning (CBR method can be implemented in differential diagnosis analysis. C4.5 algorithm has been commonly used to help the method's knowledge building process. This process is completed by constructing decision tree from previously handled cases data. The C4.5 algorithm itself can be used with an assumption that all the cases has an exact and equal truth value thus have an exact contribution in decision tree building process. However, the decision makers sometimes not sure about the truth of the cases in the cases database, therefore the confidence value can be different for case by case. Besides that, the C4.5 algorithm can only handle cases that are stored in a flat table with data in form of categorized text or in discrete class. This algorithm has not yet explained about how is decision tree building mechanism in situation when the data are stored in relational tables. It also has not yet explained about the process of knowledge building when the data are in the form of number in continuous class. Meanwhile, the observed objects in this research, that is medical record data, are mostly stored in a complex relational database and have common form of categorized text, discrete number, continuous number and image. Therefore, the C4.5 is needed to be improved so it can handle decision building for cases database of medical record. Approach: We develop a knowledge building framework that can handle confidence level difference of cases in cases database. The framework we build also allows the data are stored in relational database. Moreover, our framework can process data in the form of categorized text, discrete number, continuous number and image. This framework is named CUC-C4.5, abbreviated from Complex Uncertain Case C4.5 as it is the improvement from C4.5 algorithm. Results: The CUC-C4.5 framework has been applied on the case of differential diagnosis knowledge building in a group decision support system

  4. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Chronic effects of the ionic liquid [C4mim][Cl] (mp 73 °C) towards the microalga, Scenedesmus quadricauda were studied by flow cytometry, monitoring multiple endpoints of cell density, esterase activity, membrane integrity, reactive oxygen species and chlorophyll fluorescence. Toxicity was clearly in evidence, and although increased esterase activity indicated hormesis during initial exposure to [C4mim][Cl], inhibition of both esterase activity and chlorophyll fluorescence became apparent after 3 days. Cell density was also decreased by culturing with [C4mim][Cl], but this effect was clearly concentration-dependent and only became significant during the second half of the experiment. In contrast, [C4mim][Cl] had only a modest effect on reactive oxygen species (ROS) and caused little damage to cell membranes. - Highlights: • Use of an advanced biological technique, flow cytometry, to elucidate ionic liquid toxicity. • Chronic effects of ionic liquid. • Membrane integrity and ROS studied. • Mechanism of ionic liquid toxicity. - [C4mim][Cl] significantly inhibited esterase activity, chlorophyll fluorescence and cell density, having only a modest effect on reactive oxygen species and cell membranes

  5. Silicon etch using SF6/C4F8/Ar gas mixtures

    International Nuclear Information System (INIS)

    While plasmas using mixtures of SF6, C4F8, and Ar are widely used in deep silicon etching, very few studies have linked the discharge parameters to etching results. The authors form such linkages in this report. The authors measured the optical emission intensities of lines from Ar, F, S, SFx, CF2, C2, C3, and CS as a function of the percentage C4F8 in the gas flow, the total gas flow rate, and the bias power. In addition, the ion current density and electron temperature were measured using a floating Langmuir probe. For comparison, trenches were etched of various widths and the trench profiles (etch depth, undercut) were measured. The addition of C4F8 to an SF6/Ar plasma acts to reduce the availability of F as well as increase the deposition of passivation film. Sulfur combines with carbon in the plasma efficiently to create a large optical emission of CS and suppress optical emissions from C2 and C3. At low fractional flows of C4F8, the etch process appears to be controlled by the ion flux more so than by the F density. At large C4F8 fractional flows, the etch process appears to be controlled more by the F density than by the ion flux or deposition rate of passivation film. CF2 and C2 do not appear to cause deposition from the plasma, but CS and other carbon containing molecules as well as ions do

  6. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    Science.gov (United States)

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  7. Quantitation of human complement fragment C4asub(i) in physiological fluids by competitive inhibition radioimmune assay

    International Nuclear Information System (INIS)

    A method is described to quantitate complement fragment C4asub(i) in human plasma, synovial fluid, and urine. Samples are first precipitated with 50% saturated (NH4)2SO4 to remove cross-reactive macromolecules C4 and pro-C4. Whereas greater than 97% of C4 is removed by this precipitation step, 88% C4asub(i) remains in solution. Second, the concentration of C4asub(i) in supernatant fractions is determined by double antibody competitive inhibition radioimmunoassay. C4a was recently completely sequenced (Moon et al., 1981) and is readily available as a pure standard. Examination of the specificity of this method confirmed it was indeed specific for C4a antigenicity. Immunochemically depleted C4-deficient plasma and inulin-activated reconstituted C4-deficient plasma exhibited less than 0.1% of the immunoreactivity of untreated plasma. In addition, good agreement was observed in analyses of aggregated IgG activated serum between the experimentally determined concentration of C4asub(i) and that expected from the initial concentration of C4. As a result, recovery and measurement of C4asub(i) in physiological fluids with this method appear both quantitative and specific. Based on results from 17 adult volunteers, the average concentration of C4asub(i) in normal plasma is 488 ng/ml. Interestingly, significant correlation could not be demonstrated between the levels of C4 and C4asub(i) in normal plasma. The mean concentration of C4asub(i) in human urine is 0.5 ng/ml. (Auth.)

  8. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  9. The effect of C3 and C4 plants for the magneticsusceptibility signal in soils

    Institute of Scientific and Technical Information of China (English)

    吕厚远; 刘东生

    2001-01-01

    To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we examine the effect of the natural fires on the MS signal of both plants and modern soils and in particular the MS difference between C3 and C4 plant ashes and their influence on magnetic susceptibility. We also proved the influence of the different floral root systems on the MS signal of modern soils. We find that the C3 and C4 plants are different in their ability to enhance MS signal of modern soils. Increased MS signal of modern soils by C4 plants was much greater than that by C3 plants.

  10. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri

    DEFF Research Database (Denmark)

    Raffalt, Anders Christer; Schmidt, L.; Christensen, Hans Erik Mølager;

    2009-01-01

    We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c(4) by [Co(bipy)(3)](2- 3-) (bipy = 2,2'-bipyridine). Following earlier reports, the data accord with both bi- and tri......-exponential kinetics. A complete kinetic scheme includes both "cooperative" intermolecular ET between each heme group and the external reaction partner, and intramolecular ET between the two heme groups. A now data analysis scheme shows unequivocally that two-ET oxidation and reduction of P. stutzeri cyt c(4) is...... entirely dominated by intermolecular ET between the heme groups and the external reaction partner in the ms time range, with virtually no contribution from intramolecular interheme ET in this time range. This is in striking contrast to two-ET electrochemical oxidation or reduction of P. stutzeri cyt c(4...

  11. C4.4A as a biomarker in pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Kriegbaum, Mette Camilla; Santoni-Rugiu, Eric; Ploug, Michael

    2014-01-01

    The high prevalence and mortality of lung cancer, together with a poor 5-year survival of only approximately 15%, emphasize the need for prognostic and predictive factors to improve patient treatment. C4.4A, a member of the Ly6/uPAR family of membrane proteins, qualifies as such a potential...... growth pattern. Circumstantial evidence suggests an inverse relationship between C4.4A and the tumor suppressor LKB1. This might provide a link to the prognostic impact of C4.4A in patients with adenocarcinomas of the lung and could potentially be exploited for predicting the efficacy of treatment...... informative biomarker in non-small cell lung cancer. Under normal physiological conditions, it is primarily expressed in suprabasal layers of stratified squamous epithelia. Consequently, it is absent from healthy bronchial and alveolar tissue, but nevertheless appears at early stages in the progression to...

  12. SF6 and C4F8 global kinetic models coupled to sheath models

    International Nuclear Information System (INIS)

    Global kinetic models combined with Monte Carlo sheath models are developed for SF6 and C4F8 plasma discharges for silicon etching under the Bosch process. In SF6 plasma, the dominant positive ions are SF5+, SF4+, SF3+ and F+ while in C4F8 the dominant positive ions are CF3+ and C2F3+. The simulation results show that the electrical parameters, such as the electron density and electron temperature, clearly affect the sheath dynamics and consequently the ion energy distribution function evolutions. In this context, we showed the effects of the operating conditions, such as the pressure and the radiofrequency power, on the electron density and electron temperature evolutions as well as the reactive particle fluxes (neutral and positive ions) involved in the plasma surface interactions for etching/deposition under the Bosch process. Ion energy distribution functions obtained from SF6 and C4F8 plasmas are compared with each other as regards the electrical properties of their associated plasmas. The simulation results show that the bimodal peaks of ion energy distribution functions are wider for SF6 plasma than for C4F8 plasma due to the high sheath thickness of SF6 compared to that of C4F8. This is explained by the low electron density due to the high electronegativity of SF6 in comparison to that of C4F8. The simulations also reveal that the bimodal peak of the ion energy distribution function is wider when the ion mass is low. (paper)

  13. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Science.gov (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  14. Thermomagnetic analysis of meteorites. 3: C3 and C4 chondrites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.; Larson, E. E.; Watson, D. E.

    1974-01-01

    Thermomagnetic analysis on all of the C3 and C4 chondrites, conducted under conditions of controlled oxygen fugacity, indicates the presence of a thermally unstable component in at least 5 of the C3 chondrites which upon heating results in magnetite production. This unstable component is most likely troilite (FeS). The presence of the unstable substance may affect the estimation of paleointensities in meteorites which contain it. Our results indicate that Grosnaja, Ornans, Kainsaz, Felix, and Warrenton are likely to be less complicated for paleointensity determinations than the other C3 chondrites. Both C4 chondrites should lead to reliable results.

  15. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose

    International Nuclear Information System (INIS)

    The isotopic composition of atmospheric carbon dioxide provides an important constraint for models of the global carbon cycle. It is shown that carbon in C4 plants preserves an isotopic record of the CO2 used in photosynthesis. Data for the maize plant Zea mays yield results for the isotopic composition of atmospheric CO2 consistent with measurements of modern air and air trapped in polar ice. Data from C4 plants may thus be used to extend the isotopic record of atmospheric CO2 into the past, complementing data from other sources. (author)

  16. Arquitectura de un sistema C4ISR para pequeñas unidades.

    OpenAIRE

    Pérez Llopis, Israel

    2009-01-01

    La presente tesis doctoral aborda el problema de los sistemas de mando y control, y en concreto los sistemas C4ISR. Los sistemas C4ISr (Command Control, Computers and Communications Information Surveillance and Reconaissance) engloban un amplio número de arquitecturas y sistemas informáticos y de comunicaciones. Su principal finalidad, tanto en aplicaciones civiles como militares, es la de obtener información sobre el estado del teatro de operaciones para entregársela, convenientemente format...

  17. C# 4, ASPNET 4, and WPF, with Visual Studio 2010 Jump Start

    CERN Document Server

    Nagel, Christian; Stephens, Rod; Hanselman, Scott; Glynn, Jay; Rader, Devin; Watson, Karli; Skinner, Morgan

    2010-01-01

    This Wrox Blox is a value-packed resource to help experienced .NET developers learn the new .NET release. It is excerpted from the Wrox books: Professional C# 4 and .NET 4, Professional ASP.NET 4, and WPF Programmer's Reference by Christian Nagel, Bill Evjen, Scott Hanselman, and Rod Stephens, and includes more than 100 print book pages drawn from these three key titles. It is an excellent resource to help .NET developers get up to speed fast on .NET 4, C# 4.0, ASP.NET 4, and WPF, providing all the information needed to program with the important new features, including: C# Dynamic Types and P

  18. Dynamic and quasi-static measurements of C-4 and primasheet P1000 explosives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; De Luca, Racci [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Cady, Carl M [Los Alamos National Laboratory; Todd, Steven N [SNL

    2010-01-01

    We have measured dynamic and quasi-static mechanical properties of C-4 and Primasheet P1000 explosive materials to provide input data for modeling efforts. Primasheet P1000 is a pentaerythritol tetranitrate-based rubberized explosive. C-4 is a RDX-based moldable explosive. Dynamic measurements included acoustic and split-Hopkinson pressure bar tests. Quasi-static testing was done in compression on load frames and on a dynamic mechanical analyzer. Split-Hopkinson and quasi-static tests were done at five temperatures from -50 C to 50 C. Acoustic velocities were measured at, above, and below room temperature.

  19. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  20. A study of immunoglobulins and complements (C3 &C4 in alopecia areata

    Directory of Open Access Journals (Sweden)

    Sharma R

    1995-01-01

    Full Text Available Estimation of serum Immunoglobulins (IgG, IgM and IgA and complements (C3 and C4 was carried out in 100 cases of alopecia areata as per method described by Mancini (1965.[1] Clinically patients were divided in two groups, alopecia areata circumscribed (group I and severe alopecia areata (group II. Significant decrease in levels of one or more Immunoglobulins were observed in most of the patients. However, Serum complements (C3 and C4 were within range of normal control values

  1. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  2. Structure, phase transitions and molecular motions in ferroelastic (C4H8NH2)SbCl6.(C4H8NH2)Cl

    Science.gov (United States)

    Bednarska-Bolek, B.; Jakubas, R.; Medycki, W.; Nowak, D.; Zaleski, J.

    2002-04-01

    The crystal structure at 293 K of the new pyrrolidinium chloroantimonate (V) analogue, (C4H8NH2)SbCl6.(C4H8NH2)Cl, has been determined by x-ray diffraction as monoclinic, space group P21/c, Z = 8. The crystal is built up of isolated SbCl6- anions, two types of inequivalent pyrrolidinium cation and isolated Cl- ions. It undergoes five solid-solid phase transitions: at 351/374 K of first-order type (cooling/heating, respectively), at 356 and 152 K second order and at 135/141 and 105/134 K first order, detected by differential scanning calorimetry, dilatometric and dielectric measurements. The ferroelastic domain structure appears between 152 and 135 K. The proton nuclear magnetic resonance second moment and spin-lattice relaxation time of polycrystalline samples were studied over the temperature range 27-410 K. The order-disorder mechanism of the phase transitions at 105 and 374 K connected with the reorientational motion of the pyrrolidinium cations has been confirmed.

  3. Structure, phase transitions and molecular motions in ferroelastic (C4H8NH2)SbCl6·(C4H8NH2)Cl

    International Nuclear Information System (INIS)

    The crystal structure at 293 K of the new pyrrolidinium chloroantimonate (V) analogue, (C4H8NH2)SbCl6·(C4H8NH2)Cl, has been determined by x-ray diffraction as monoclinic, space group P21/c, Z=8. The crystal is built up of isolated SbCl6- anions, two types of inequivalent pyrrolidinium cation and isolated Cl- ions. It undergoes five solid-solid phase transitions: at 351/374 K of first-order type (cooling/heating, respectively), at 356 and 152 K second order and at 135/141 and 105/134 K first order, detected by differential scanning calorimetry, dilatometric and dielectric measurements. The ferroelastic domain structure appears between 152 and 135 K. The proton nuclear magnetic resonance second moment and spin-lattice relaxation time of polycrystalline samples were studied over the temperature range 27-410 K. The order-disorder mechanism of the phase transitions at 105 and 374 K connected with the reorientational motion of the pyrrolidinium cations has been confirmed. (author)

  4. HYDRATION MECHANISMS OF CALCIUM SULPHOALUMINATE C4A3S̄ , C4AS̄ PHASE AND ACTIVE BELITE β-C2S

    Directory of Open Access Journals (Sweden)

    H. EL-DIDAMONY

    2012-12-01

    Full Text Available Highly reactive belite and calcium sulphoaluminate as well as monosulphate mix were prepared from nano-materials at lower temperatures ~1250°C. The crystal size of these materials was 25, 16 and 27 nm as determined from the X-ray analysis. The sulphoaluminate belite cement is a recent type of cement prepared at lower temperature with good properties. The aim of the present work is to synthesize C4A3S̄, monosulphate mix C4AS̄ and active belite β-C2S. The hydration mechanism was studied by XRD and DSC techniques as well as by the determination of chemically combined water contents of cement pastes with curing time. The results reveal that ettringite is first formed hydrates in the monosulphate mix, which then converted into monosulphate hydrates. The results of DSC and XRD are in good agreement with those of combined water contents. On the other side, the rate of hydration of active belite increases linearly from 3 up to 90 days, whereas, the traditional belite hydrates increase with lower rate up to 90 days, due to the thermodynamic stability structure of traditional belite.

  5. Optimal number of pigments in photosynthetic complexes

    CERN Document Server

    Jesenko, Simon

    2012-01-01

    We study excitation energy transfer in a simple model of photosynthetic complex. The model, described by Lindblad equation, consists of pigments interacting via dipole-dipole interaction. Overlapping of pigments induces an on-site energy disorder, providing a mechanism for blocking the excitation transfer. Based on the average efficiency as well as robustness of random configurations of pigments, we calculate the optimal number of pigments that should be enclosed in a pigment-protein complex of a given size. The results suggest that a large fraction of pigment configurations are efficient as well as robust if the number of pigments is properly chosen. We compare optimal results of the model to the structure of pigment-protein complexes as found in nature, finding good agreement.

  6. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria.

    Directory of Open Access Journals (Sweden)

    Qiang Zheng

    Full Text Available BACKGROUND: Aerobic anoxygenic photototrophic (AAP bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC. In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria.

  7. Precise identification of photosynthetic glycerolipids in microalga Tetraselmis chuii by UPLC-ESI-Q-TOF-MS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography–Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the char-acteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidyl-glycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this mi-croalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be de-tected by the traditional GC-MS method were found this time, providing novel information for the pho-tosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitor-ing their individual changes.

  8. Evidence for linkage between the loci coding for the binding protein for the fourth component of human complement (C4BP) and for the C3b/C4b receptor.

    OpenAIRE

    Rodriguez de Cordoba, S; Dykman, T R; Ginsberg-Fellner, F; Ercilla, G; Aqua, M; Atkinson, J P; Rubinstein, P

    1984-01-01

    Three pedigrees informative for the segregation of genetic variants of the binding protein for the fourth component of complement (C4BP) and C3b/C4b receptor (C3bR) have been identified. There were 10 informative meioses with no recombinants, indicating a close linkage between the loci encoding C4BP and C3bR, C4BP and C3bR [maximum lod (logarithm of odds of linkage) score: 2.4 at recombinant fraction = 0.0]. In addition, in the four unrelated individuals who were doubly heterozygous (C4BP*1, ...

  9. 关于Stn∪ I=1 mi-C4的优美性%On the Gracefulness of Graph St∪n i=1 mi-C4

    Institute of Scientific and Technical Information of China (English)

    李长春; 韩兆红; 张国阳

    2007-01-01

    本文就星形树与m-C4并图的优美性进行探讨,证明了当m≥2这类图StpUm-C4是优美图.并对星形树St与n∪ i=1 mi-C4并图Stn∪ i=1 mi-C4的优美性进行探讨.证明了当max mi≥3 i=1,2…,n这类图Stn∪ i=1 mi-C4是优美图.

  10. Growth Properties and Biomass Production in the Hybrid C4 Crop Sorghum bicolor.

    Science.gov (United States)

    Tazoe, Youshi; Sazuka, Takashi; Yamaguchi, Miki; Saito, Chieko; Ikeuchi, Masahiro; Kanno, Keiichi; Kojima, Soichi; Hirano, Ko; Kitano, Hideki; Kasuga, Shigemitsu; Endo, Tsuyoshi; Fukuda, Hiroo; Makino, Amane

    2016-05-01

    Hybrid vigor (heterosis) has been used as a breeding technique for crop improvement to achieve enhanced biomass production, but the physiological mechanisms underlying heterosis remain poorly understood. In this study, to find a clue to the enhancement of biomass production by heterosis, we systemically evaluated the effect of heterosis on the growth rate and photosynthetic efficiency in sorghum hybrid [Sorghum bicolor (L.) Moench cv. Tentaka] and its parental lines (restorer line and maintainer line). The final biomass of Tentaka was 10-14 times greater than that of the parental lines grown in an experimental field, but the relative growth rate during the vegetative growth stage did not differ. Tentaka exhibited a relatively enlarged leaf area with lower leaf nitrogen content per leaf area (Narea). When the plants were grown hydroponically at different N levels, daily CO2 assimilation per leaf area (A) increased with Narea, and the ratio of A to Narea (N-use efficiency) was higher in the plants grown at low N levels but not different between Tentaka and the parental lines. The relationships between the CO2 assimilation rate, the amounts of photosynthetic enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase, Chl and Narea did not differ between Tentaka and the parental lines. Thus, Tentaka tended to exhibit enlargement of leaf area with lower N content, leading to a higher N-use efficiency for CO2 assimilation, but the photosynthetic properties did not differ. The greater biomass in Tentaka was mainly due to the prolonged vegetative growth period. PMID:26508521

  11. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Activities of key enzymes of the Calvin cycle and C4 metabolism, rates of CO2 fixation, and the initial products of photosynthetic 14CO2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period

  12. Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane?

    Science.gov (United States)

    The goal of this study was to investigate if chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II ('PSII) were measured in warm conditions (25 °C/20 °C), and then during and following ...

  13. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    International Nuclear Information System (INIS)

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model

  14. Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c(4)

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Jensen, Thomas Jon; Nørgaard, Allan; Ulstrup, Jens

    different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c(4) induced thermally and by chemical denaturants Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret. alpha/beta. and 701-nm...

  15. Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites

    Science.gov (United States)

    Herndon, J.M.; Rowe, M.W.; Larson, E.E.; Watson, D.E.

    1976-01-01

    Thermomagnetic analysis was made on samples of all known C3 and C4 chondrites in a controlled oxygen atmosphere. Considerable variation was noted in the occurrence of magnetic minerals, comparable to the variation observed earlier in the C2 chondrites. Magnetite was found as the only major magnetic phase in samples of only three C3 chondrites (2-4 wt.%) and the Karoonda C4 chondrite (7.7 wt.%). The magnetite content of these three C3 chondrites is only about one-third that observed in the C1 and C2 chondrites which were found to contain magnetite as the only magnetic phase. Five C3 chondrites were observed to undergo chemical change during heating, producing magnetite: this behavior is characteristic of troilite oxidation. Upper limits on initial magnetite content of about 1-9% were established for these meteorites. Samples of the remaining five C3 chondrites and the Coolidge C4 chondrite were found to contain both magnetite and metallic iron. In two samples, iron containing ???2% Ni was observed, while in the other four, the iron contained 6-8 wt.% Ni. In addition to containing both magnetite and iron metal, three of these samples reacted during heating to form additional magnetite. Variations in the magnetic mineralogy and, hence by inference bulk mineralogy, of C3 and C4 chondrites indicate a more complex genesis than is evident from whole-rock elemental abundance patterns. ?? 1976.

  16. Deuterium contents in water of various tissues from different subtypes of C4 plants

    International Nuclear Information System (INIS)

    The work summarized here is concerned with the use of deuterium in evaluating the position of the NADP-malate enzyme subtype in the C4 plant maize (Zea mays). The results show a higher deuterium concentration in the biomass, resulting from the use in the Calvin cycle of intercostal water enriched in deuterium by evapotranspiration. 2 refs, 1 tab

  17. Evaluating Defense Architecture Frameworks for C4I System Using Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Abdullah S. Alghamdi

    2009-01-01

    Full Text Available Problem statement: The Command, Control, Communications, Computers and Intelligence (C4I Systems provided situational awareness about operational environment and supported in decision making and directed to operative environment. These systems had been used by various agencies like defense, police, investigation, road, rail, airports, oil and gas related department. However, the increase use of C4I system had made it more important and attractive. Consequently interest in design and development of C4I system had increased among the researchers. Many defense industry frameworks were available but the problem was a suitable selection of a framework in design and development of C4I system. Approach: This study described the concepts, tool and methodology being used for evaluation analysis of different frameworks by Analytic Hierarchy Process (AHP. Results: We had compared different defense industry frameworks like Department of Defense Architecture Framework (DODAF, Ministry of Defense Architecture Framework (MODAF and NATO Architecture Framework (NAF and found that AHP is fairly good tool in terms of analysis. Conclusion: Different defense industry frameworks such as DODAF, MODAF and NAF had been evaluated and compared using AHP.

  18. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    OpenAIRE

    Kim, Youn-Jung; Park, Hae-Jeong; Yoon, Seo-Hyun; Kim, Mi-Ja; Leem, Kang-hyun; Chung, Joo-Ho; Kim, Hye-Kyung

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.

  19. Mild and rational synthesis of palladium complexes comprising C(4)-bound N-heterocyclic carbenes

    OpenAIRE

    Kluser, Evelyne; Neels, Antonia; Albrecht, Martin

    2007-01-01

    Oxidative addition of pyridyl-functionalised 4-iodoimidazolium salts to palladium(0) gives catalytically active complexes in which the N-heterocyclic carbene is bound to the palladium(II) centre in a non-classical bonding mode via C(4).

  20. Temperature Effects on the Growth Rates and Photosynthetic Activities of Symbiodinium Cells

    Directory of Open Access Journals (Sweden)

    Widiastuti Karim

    2015-06-01

    Full Text Available Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp., especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F at elevated temperature (33 °C. We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin. The growth rates and photochemical efficiencies of PSII (Fv/Fm decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name and A-Y106, but not in thermally tolerant strains, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.

  1. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].

    Science.gov (United States)

    Ruiz-Vera, Ursula M; Siebers, Matthew H; Drag, David W; Ort, Donald R; Bernacchi, Carl J

    2015-11-01

    Rising atmospheric CO2 concentration ([CO2 ]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2 ] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2 ] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO2 enrichment (FACE) technology was used to target atmospheric [CO2 ] to 200 μmol mol(-1) above ambient [CO2 ] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2 ] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2 ] unless appropriate adaptation traits can be introduced

  2. Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae

    Science.gov (United States)

    Richards, G. H.; Wilk, K. E.; Curmi, P. M. G.; Quiney, H. M.; Davis, J. A.

    2012-08-01

    We explore coherence dynamics in light-harvesting complexes and their interactions with other electronic states and vibrational modes. This is achieved by utilizing a two-colour four-wave mixing spectroscopy to excite and analyse a specific coherence pathway in the phycocyanin-645 (PC645) light-harvesting complex. We observe the dephasing rate increase as a function of temperature and oscillations in the signal intensity as a function of waiting time which reveals coherent excitation of pathways not directly resonant with the laser pulses. This coherent excitation of non-resonant electronic states implies strong coupling to phonon modes, which is necessary if coherent energy transfer between non-resonant states is to play any role in photosynthetic energy transfer.

  3. Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae

    International Nuclear Information System (INIS)

    We explore coherence dynamics in light-harvesting complexes and their interactions with other electronic states and vibrational modes. This is achieved by utilizing a two-colour four-wave mixing spectroscopy to excite and analyse a specific coherence pathway in the phycocyanin-645 (PC645) light-harvesting complex. We observe the dephasing rate increase as a function of temperature and oscillations in the signal intensity as a function of waiting time which reveals coherent excitation of pathways not directly resonant with the laser pulses. This coherent excitation of non-resonant electronic states implies strong coupling to phonon modes, which is necessary if coherent energy transfer between non-resonant states is to play any role in photosynthetic energy transfer. (paper)

  4. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  5. Small mammal tooth enamel carbon isotope record of C4 grasses in late Neogene China

    Science.gov (United States)

    Arppe, Laura; Kaakinen, Anu; Passey, Benjamin H.; Zhang, Zhaoqun; Fortelius, Mikael

    2015-10-01

    The spatiotemporal pattern of the late Cenozoic spread of C4 vegetation is an important indicator of environmental change that is intertwined with the uplift of the Himalaya and Tibetan Plateau, and the development of the East Asian monsoons. To explore the spread of C4 vegetation in China and shed new light on regional climatic evolution, we measured δ13C values of more than 200 small mammal teeth (primarily rodents and lagomorphs) using a laser ablation isotope ratio mass spectrometry approach. Small mammals are highly sensitive indicators of their environment because they have limited spatial ranges and because they have minimal time-averaging of carbon isotope signatures of dietary components. The specimens originate from four classic Late Miocene fossil localities, Lufeng, Yuanmou, Lingtai, and Ertemte, along a southwest-northeast transect from Yunnan Province to Inner Mongolia. In Yunnan (Lufeng, Yuanmou) and on the Loess Plateau (Lingtai), the small mammal δ13C values record nearly pure C3 ecosystems, and mixed but C3-based ecosystems, respectively, in agreement with previous studies based on carbon isotopes of large herbivores and soil carbonates. In Inner Mongolia, the micromammalian tooth enamel δ13C record picks up the presence of C4 vegetation where large mammal samples do not, indicating a mixed yet C3-dominated ecosystem at ~ 6 Ma. As a whole, the results support a scenario of northward increasing C4 grass abundance in a pattern that mirrors northward decreasing precipitation of the summer monsoon system. The results highlight differences between large and small mammals as indicators of C4 vegetation in ancient ecosystems, particularly the ability of small mammal δ13C values to detect the presence of minor components of the vegetation structure.

  6. Eliminating false positive C4 sugar tests on New Zealand Manuka honey.

    Science.gov (United States)

    Rogers, Karyne M; Somerton, Kerry; Rogers, Pamela; Cox, Julie

    2010-08-30

    Carbon isotope analyses (delta(13)C) of some New Zealand Manuka honeys show that they often fail the internationally recognised Association of Official Analytical Chemists sugar test (AOAC method 998.12) which detects added C(4) sugar, although these honeys are from unadulterated sources. Failure of these high value products is detrimental to the New Zealand honey industry, not only in lost export revenue, but also in brand and market reputation damage. The standard AOAC test compares the carbon isotope value of the whole honey and corresponding protein isolated from the same honey. Differences between whole honey and protein delta(13)C values should not be greater than +1.0 per thousand, as it indicates the possibility of adulteration with syrups or sugars from C(4) plants such as high fructose corn syrup or cane sugar.We have determined that during the standard AOAC method, pollen and other insoluble components are isolated with the flocculated protein. These non-protein components have isotope values which are considerably different from those of the pure protein, and can shift the apparent delta(13)C value of protein further away from the delta(13)C value of the whole honey, giving a false positive result for added C(4) sugar. To eliminate a false positive C(4) sugar test for Manuka honey, prior removal of pollen and other insoluble material from the honey is necessary to ensure that only the pure protein is isolated. This will enable a true comparison between whole honey and protein delta(13)C isotopes. Furthermore, we strongly suggest this modification to the AOAC method be universally adopted for all honey C(4) sugar tests. PMID:20635333

  7. Differential Mobility of Pigment-Protein Complexes in Granal and Agranal Thylakoid Membranes of C-3 and C-4 Plants

    Czech Academy of Sciences Publication Activity Database

    Kirchhoff, H.; Sharpe, R.M.; Herbstová, Miroslava; Yarbrough, R.; Edwards, G.E.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 497-507. ISSN 0032-0889 Institutional support: RVO:60077344 Keywords : Photosystem-II * Photosynthetic membranes * Electron tomography Subject RIV: ED - Physiology Impact factor: 7.394, year: 2013

  8. 哈氏合金C4材料焊接工艺%Research on Welding Process of Hastelloy C4

    Institute of Scientific and Technical Information of China (English)

    赵瑞辉

    2014-01-01

    To prevent from the corrosion of the medium,hastelloy C4 material belonging nickel -based corrosion resistant alloy of Ni-Cr-Mo type with single-phase austenite was selected and adapt as the bottom of residual liquid tanks.With TIG welding method and ERNiCrMo -7 welding filler,the tech-niques were adapt such as groove design,pre-weld cleaning,temperature control between channels and lower welding heat.welding procedure qualification test has been passed and the metallographic micro-structures analysis of welded joints were conducted.The results show that the welding process can ensure the mechanical properties and corrosion resistance of welded joints.%为防止介质腐蚀,残液罐产品底部选用了哈氏合金C4材料,该材料属于Ni-Cr-Mo类型镍基耐蚀合金、单相奥氏体组织,具有镍基耐蚀合金的焊接特性。采用氩弧焊方法,选用ERNiCrMo-7焊丝,通过设计坡口、焊前清理、控制道间温度、选择较小焊接热输入等工艺措施,经焊接工艺评定试验和焊接接头金相组织分析,结果表明所制定的焊接工艺可以保证焊接接头的力学性能和耐蚀性能。

  9. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes.

    Science.gov (United States)

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette; Hansen, Gert Helge; Christensen, Ib Jarle; Rundsten, Carsten Friis; Persson, Morten; Engelholm, Lars Henning; Madsen, Andreas Nygaard; Di Meo, Ivano; Lund, Ida Katrine; Holst, Birgitte; Kjaer, Andreas; Lærum, Ole Didrik; Füchtbauer, Ernst-Martin; Ploug, Michael

    2016-01-01

    C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis. Circumstantial evidence suggests a role for C4.4A in cell adhesion, migration, and invasion, but a well-defined biological function is currently unknown. In the present study, we have generated and characterized the first C4.4A-deficient mouse line to gain insight into the functional significance of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than littermate controls predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden. This new C4.4A-deficient mouse line provides a useful platform for future studies on functional aspects of C4.4A in tumour cell invasion in vivo. PMID:27169360

  10. Clinical and pathological correlations of C4d immunostaining and its infl uence on the outcome of kidney transplant recipients

    Directory of Open Access Journals (Sweden)

    Virna Nowotny Carpio

    2011-09-01

    Full Text Available INTRODUCTION: C4d is a marker of antibody-mediated rejection (ABMR in kidney allografts, although cellular rejection also have C4d deposits. OBJECTIVE: To correlate C4d expression with clinico-pathological parameters and graft outcomes at three years. METHODS: One hundred forty six renal transplantation recipients with graft biopsies by indication were included. C4d staining was performed by paraffin-immunohistochemistry. Graft function and survival were measured, and predictive variables of the outcome were determined by multivariate Cox regression. RESULTS: C4d staining was detected in 48 (31% biopsies, of which 23 (14.7% had diffuse and 25 (16% focal distribution. Pre-transplantation panel reactive antibodies (%PRA class I and II were significantly higher in C4d positive patients as compared to those C4d negative. Both glomerulitis and pericapillaritis were associated to C4d (p = 0.002 and p < 0.001, respectively. The presence of C4d in biopsies diagnosed as no rejection (NR, acute cellular rejection (ACR or interstitial fibrosis/ tubular atrophy (IF/TA did not impact graft function or survival. Compared to NR, ACR and IF/TA C4d-, patients with ABMR C4d+ had the worst graft survival over 3 years (p = 0.034, but there was no difference between ABMR versus NR, ACR and IF/TA that were C4d positive (p = 0.10. In Cox regression, graft function at biopsy and high %PRA levels were predictors of graft loss. CONCLUSIONS: This study confirmed that C4d staining in kidney graft biopsies is a clinically useful marker of ABMR, with well defined clinical and pathological correlations. The impact of C4d deposition in other histologic diagnoses deserves further investigation.

  11. Full quantum dynamics of the electronic coupling between photosynthetic pigments

    CERN Document Server

    Oviedo, María Belén

    2015-01-01

    From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we study in a fully atomistic picture the electronic excitation transfer between two photosynthetic pigments in real time. This time-dependent quantum dynamics is based on fully atomistic structural models of the photosynthetic pigment. We analyze the dependence of the electronic excitation transfer with distance and orientation between photosynthetic pigments. We compare the results obtained from full quantum dynamics with analytical ones, based on a two level system model were the interaction between the pigments is dipolar. We observed that even when the distance of the photosynthetic pigment is about $30$ \\AA\\ the deviation of the dipolarity is of about $15$ percent.

  12. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic efficienc

  13. Photoelectrochemical cells based on photosynthetic systems: a review

    OpenAIRE

    Voloshin, Roman A.; Kreslavski, Vladimir D.; Zharmukhamedov, Sergey K.; Vladimir S. Bedbenov; Seeram Ramakrishna; Allakhverdiev, Suleyman I.

    2015-01-01

    Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f) or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy...

  14. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, W.J.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  15. Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8.

    Science.gov (United States)

    Cobos, C J; Hintzer, K; Sölter, L; Tellbach, E; Thaler, A; Troe, J

    2015-12-28

    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 10(15.97) exp(-310.5 kJ mol(-1)/RT) s(-1) in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction. PMID:26577435

  16. Juvenile elastic arteries after 28 years of renal replacement therapy in a patient with complete complement C4 deficiency

    Directory of Open Access Journals (Sweden)

    Knoll Florian

    2012-12-01

    Full Text Available Abstract Background Complement activation products are present in atherosclerotic plaques. Recently, binding of complement to elastin and collagen in the aortic wall has been demonstrated, suggesting a role of complement in the development aortic stiffness and atherosclerosis. The definitive role of complement in atherosclerosis and arteriosclerosis, however, remains unclear. Case presentation We here describe a patient with hereditary complete deficiency of complement C4 suffering from Henoch-Schoenlein purpura and on renal replacement therapy for twenty-eight years. The patient had the full range of risk factors for vascular damage such as hypertension, volume overload, hyperphosphatemia and hyperparathyroidism. Despite that, his carotid artery intima media thickness was below the normal range and his pulse wave velocity was normal. In contrast, the patient’s coronary and peripheral muscular arteries were heavily calcified. Conclusion This case supports the hypothesis that complement plays an important role in the development of stiffness of elastic arteries. We speculate that inability to activate complement by the classical or lectin pathways protected the patient from atherosclerosis, arteriosclerosis, stiffening and calcification of the aorta and carotid arteries. Inhibition of complement activation may be a potential target for prophylactic and therapeutic interventions.

  17. Pasteurella pneumotropica evades the human complement system by acquisition of the complement regulators factor H and C4BP.

    Directory of Open Access Journals (Sweden)

    Alfredo Sahagún-Ruiz

    Full Text Available Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections.

  18. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.

  19. Excitation function of elastic scattering on 12C + 4He system, at low energies

    International Nuclear Information System (INIS)

    Interactions in the 12C + 4He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180o. In this work we obtain excitation functions of elastic scattering of 12C + 4He system with angular and energy dependence; ECM = 0.5 - 4 MeV and θCM 100o -170o.Using inverse kinematics method with thick white gas and energy loss tables. (Author)

  20. A review on biomass production from C4 grasses: yield and quality for end-use.

    Science.gov (United States)

    Tubeileh, Ashraf; Rennie, Timothy J; Goss, Michael J

    2016-06-01

    With a dry biomass production exceeding 40Mgha(-1) in many environments, Miscanthus spp. is the most productive perennial C4 grass species thanks to five advantages over North American prairie tallgrasses. However, miscanthus has a slower nutrient remobilization system, resulting in higher nutrient concentrations at harvest. Perennial C4 grasses benefit from soil microbial associations, reducing their nutrient needs. For combustion purposes, grasses with low moisture content, high lignin and low nutrients are desired. For ethanol, preferred feedstock will have lower lignin, higher sugars, starch, or cellulose/hemicellulose depending on the conversion method. Species with high stem-to-leaf ratio provide better biofuel conversion efficiency and quality. Recently-developed transgenic switchgrass lines have much higher ethanol yields and lower transformation costs. Further selection and breeding are needed to optimize biomass quality and nutrient cycling. PMID:27258573

  1. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  2. Photosynthetically active sunlight at high southern latitudes.

    Science.gov (United States)

    Frederick, John E; Liao, Yixiang

    2005-01-01

    A network of scanning spectroradiometers has acquired a multiyear database of visible solar irradiance, covering wavelengths from 400 to 600 nm, at four sites in the high-latitude Southern Hemisphere, from 55 degrees S to 90 degrees S. Monthly irradiations computed from the hourly measurements reveal the character of the seasonal cycle and illustrate the role of cloudiness as functions of latitude. Near summer solstice, the combined influences of solar elevation and the duration of daylight would produce a monthly irradiation with little latitude dependence under clear skies. However, the attenuation associated with local cloudiness varies geographically, with the greatest effect at the most northern locations, Ushuaia, Argentina and Palmer Station on the Antarctic Peninsula. Near summer solstice, the South Pole experiences the largest monthly irradiation of the sites studied, where relatively clear skies contribute to this result. Scaling factors derived from radiative-transfer calculations combined with the measured 400-600 nm irradiances allow estimating irradiances integrated over the wavelength band 400-700 nm. This produces a climatology of photosynthetically active radiation for each month of the year at each site. PMID:15689179

  3. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  4. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  5. Electrochemical and optical studies of model photosynthetic systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  6. Properties and nucleotide se- quence of linear plasmid-like DNA pC4 from mitochondria of Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four kinds of mitochondrial plasmid-like DNAs, designated pC1, pC2, pC3 and pC4, were detected in Cucumis sativus Jinyan No. 4. The electron microscopy ob- servation showed that pC4 was linear conformation. Complete sequence of pC4 was cloned into pUC19 with E. coli JM109 as host. Sequence analysis revealed that pC4 was 370 bp long, the shortest one among all the reported mitochondrial plasmid-like DNAs. pC4 was AT rich. It contained terminal direct repeat sequence (35 bp in length) as well as many short direct and inverted repeats. ORFs in pC4 were short. pC4 was found to be homologous to nuclear DNAs, but lack homology with main mitochondrial and chloroplast DNAs. pC4-homologous sequence also occurred in nuclear genome of Jinyan No. 7 which contained no mito- chondrial plasmid-like DNAs. The hybridization pattern of Jinyan No. 7 was slightly different from that of Jinyan No. 4. This suggested that pC4 occurred at the forepart of Cucumis sativus species divergence and integrated into the nuclear genome, and the pC4-homologous sequence in nucleus varied during species diverging.

  7. C4d Presence in Kidney Allograft Biopsy: Sensitivity and Specifity of Immunoperoxidase vs Immunofluorescence

    OpenAIRE

    Viana, H; Carvalho, F.; Santos, A.; Galvão, MJ; Nolasco, F.

    2009-01-01

    OBJECTIVES: Evaluate the sensitivity/specificity of immunoperoxidase method in comparison with the standard immunofluorescence. MATERIAL AND METHODS: Retrospective review of 87 biopsies made for allograft dysfunction. Immunofluorescence (IF) was performed in frozen allograft biopsies using monoclonal antibody anti-C4d from Quidel®. The indirect immunoperoxidase (IP) technique was performed in paraffin-embebbed tissue with polyclonal antiserum from Serotec®. Biopsies were independen...

  8. Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    OpenAIRE

    Torelli, Tommaso; Mitas, Lubos

    2000-01-01

    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mec...

  9. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    OpenAIRE

    Jun-Fei Gu; Ming Qiu; Jian-Chang Yang

    2013-01-01

    Maize-specific pyruvate orthophosphate dikinase (PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase (PCK). The wild-type (WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments, well-watered (WW), moderate drought (MD) and severe drought (SD), were imposed from 9 d post-anthesis till maturity. Leaf physiological and biochemical traits, root activ...

  10. 温馨空间——Citroen C4 Picasso

    Institute of Scientific and Technical Information of China (English)

    Juin

    2006-01-01

    雪铁龙全新C4毕加索成为欧洲多功能车的买家们一个新的选择,长4590毫米,宽1830毫米,高2100毫米的车厢内布置了三排座椅,最多可以搭乘7人,它扩宽了紧凑型MPV的使用定义。

  11. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-07-01

    Full Text Available Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (-C4F8 or PFC-318. c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP of 10 300 (100 yr time horizon, making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr−1. It is the third most abundant perfluorocarbon (PFC in the present day atmosphere, behind CF4 (~75 ppt and C2F6 (~4 ppt. The origin of c-C4F8 is unclear. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007 emission rate of around 1.1 Gg yr−1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986–2005 represent less than 1 % of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  12. C4b-binding protein protects coagulation factor Va from inactivation by activated protein C

    NARCIS (Netherlands)

    van de Poel, RHL; Meijers, JCM; Rosing, J; Tans, G; Bouma, Bonno N.

    2000-01-01

    We investigated the effect of C4BP on APC-mediated inactivation of factor Va (FVa) in the absence and presence of protein S. FVa inactivation was biphasic (k(506) = 4.4 x 10(8) M-1 s(-1), k(306) = 2.7 x 10(7) M-1 s(-1)), and protein S accelerated Arg(306) cleavage approximately 10-fold. Preincubatio

  13. Contribution of the Federal Republic of Germany to chapter C.3/C.4

    International Nuclear Information System (INIS)

    The paper refers to chapters C.3 and C.4 of the WG 5C report. Different modes of international FBR activities are examined according to the aspects such as ownership, operation, electricity supply, and safeguards. Examples of realization of international FBR development are given. Three aspects are examined as the main potential incentives for internationalization i.e. environment, economics, non-proliferation; some problems are revealed. Aspects of collocation and internationalization in connection with FBRs are investigated based on 3 concepts

  14. Percutaneous vertebroplasty via anterolateral approach for the treatment of C4 to C7 vertebral tumor

    International Nuclear Information System (INIS)

    Objective To investigate the feasibility and clinical efficacy of percutaneous vertebroplasty via anterolateral approach in treating the middle and lower cervical (C4-C7) vertebral tumor. Methods: During the past four years, percutaneous vertebroplasty via anterolateral approach was performed in 16 patients with middle or lower cervical tumor, including metastases (n=12), myeloma (n=3) and eosinophilic granuloma (n=1). Under fluoroscopic guidance, needle puncture was operated via the anterolateral approach, bone cement was injected into the target cervical body when the needle was in place. A follow-up of three months was made. Results: Twenty-one cervical bodies in the range of C4 to C7 were successfully punctured and injected with bone cement. Marked pain relief was obtained in all 16 patients. The average score of visual analogue scale (VAS) was dramatically decreased from 7 before the procedure to 1.7 after the procedure. The cervical motor function returned to good condition. Conclusion: Percutaneous vertebroplasty via anterolateral approach is a safe, effective and minimally-invasive technique in treating the middle and lower cervical (C4-C7) vertebral tumor. (authors)

  15. 雪铁龙Grand C4 Picasso上市倒计时

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    在全球屡创佳绩的雪铁龙全新车型Grand C4 Picasso进入中国上市倒计时,预计将于12月正式登陆中国。10月8日,雪铁龙进口车部门确认了这一消息。即将在中国上市的雪铁龙Grand C4 Picasso,基于C4平台开发,有着纯正的法兰西血统——优雅时尚、设计精湛,众多先进技术和理念的运用诠释了雪铁龙人性化的造车哲学。宽大舒适的驾乘空间、标志性的全景天窗、全新的Visiospace理念让这款高端MPV与众不同。

  16. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses.

    Science.gov (United States)

    Cardoso, Juan Andrés; Pineda, Marcela; Jiménez, Juan de la Cruz; Vergara, Manuel Fernando; Rao, Idupulapati M

    2015-01-01

    Drought severely limits forage productivity of C4 grasses across the tropics. The avoidance of water deficit by increasing the capacity for water uptake or by controlling water loss are common responses in forage C4 grasses. Napier grass (Pennisetum purpureum) and Brachiaria hybrid cv. Mulato II are tropical C4 grasses used for livestock production due to their reputed resistance to drought conditions. However, there is scant information on the mechanisms used by these grasses to overcome water-limited conditions. Therefore, assessments of cumulative transpired water, shoot growth, leaf rolling, leaf gas exchange, dry mass production and a number of morpho-physiological traits were recorded over a period of 21 days under well-watered or drought conditions. Drought reduced shoot dry mass of both grasses by 35 %, yet each grass exhibited contrasting strategies to cope with water shortage. Napier grass transpired most available water by the end of the drought treatment, whereas a significant amount of water was still available for Mulato II. Napier grass maintained carbon assimilation until the soil was fairly dry, whereas Mulato II restricted water loss by early stomatal closure at relatively wet soil conditions. Our results suggest that Napier grass exhibits a 'water-spending' behaviour that might be targeted to areas with intermittent drought stress, whereas Mulato II displays a 'water-saving' nature that could be directed to areas with longer dry periods. PMID:26333827

  17. Laboratory detection of the C3N an C4H free radicals

    Science.gov (United States)

    Gottlieb, C. A.; Gottlieb, E. W.; Thaddeus, P.; Kawamura, H.

    1983-01-01

    The millimeter-wave spectra of the linear carbon chain free radicals C3N and C4H, first identified in IRC + 10216 and hitherto observed only in a few astronomical sources, have been detected with a Zeeman-modulated spectrometer in laboratory glow discharges through low pressure flowing mixtures of N2 + HC3N and He + HCCH, respectively. Four successive rotational transitions between 168 and 198 GHz have been measured for C3N, and five rotational transitions between 143 and 200 GHz for C4H; each is a well-resolved spin doublet owing to the unpaired electron present in both species. Precise values for the rotational, centrifugal distortion, and spin doubling constants have been obtained, which, with hyperfine constants derived from observations of the lower rotational transitions in the astronomical source TMC 1, allow all the rotational transitions of C3N and C4H at frequencies less than 300 GHz to be calculated to an absolute accuracy exceeding 1 ppm.

  18. Ionothermal synthesis and structural characterization of [Cu(C4H6N2)4]Br2 and [Ni(C4H6N2)4]Br2

    Indian Academy of Sciences (India)

    Hong Wang; Bin Lu; Jingxiang Zhao; Qinghai Cai

    2015-07-01

    The ionothermal synthesis and spectroscopic, thermal and structural characterization of two new compounds [Cu(C4H6N2)4]Br2 (1) and [Ni(C4H6N2)4]Br2 (2) [(C4H6N2) = N-methylimidazole] are reported. In both 1 and 2, the central metal Cu (or Ni) ion adopts a square planar geometry and is bonded to the N-atoms of four terminal N-methylimidazole ligands.

  19. Low C4 gene copy numbers are associated with superior graft survival in patients transplanted with a deceased donor kidney

    DEFF Research Database (Denmark)

    Bay, Jakob T; Schejbel, Lone; Madsen, Hans O; Sørensen, Søren S; Hansen, Jesper M; Garred, Peter

    2013-01-01

    rejection, but a relationship between graft survival and serum C4 concentration as well as C4 genetic variation has not been established. We evaluated this using a prospective study design of 676 kidney transplant patients and 211 healthy individuals as controls. Increasing C4 gene copy numbers...... significantly correlated with the C4 serum concentration in both patients and controls. Patients with less than four total copies of C4 genes transplanted with a deceased donor kidney experienced a superior 5-year graft survival (hazard ratio 0.46, 95% confidence interval: 0.25-0.84). No significant association...... was observed in patients transplanted with a living donor. Thus, low C4 copy numbers are associated with increased kidney graft survival in patients receiving a kidney from a deceased donor. Hence, the degree of ischemia may influence the clinical impact of complement....

  20. Photosynthetic and Molecular Markers of CO2-mediated Photosynthetic Downregulation in Nodulated Alfalfa

    Institute of Scientific and Technical Information of China (English)

    (A)lvaro Sanz-Sáez; Gorka Erice; Iker Aranjuelo; Ricardo Aroca; Juan Manuel Ruíz-Lozano; Jone Aguirreolea; Juan José Irigoyen

    2013-01-01

    Elevated CO2 leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth.This process is known as photosynthetic downregulation.There is no agreement on the definition of which parameters are the most sensitive for detecting CO2 acclimation.In order to investigate the most sensitive photosynthetic and molecular markers of CO2 acclimation,the effects of elevated CO2,and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains.Plants (Medicago sativa L.cv.Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG).At the end of the experiment,all plants showed acclimation in both seasons,especially under elevated summer temperatures.This was probably due to the lower nitrogen (N) availability caused by decreased N2-fixation under higher temperatures.Photosynthesis measured at growth CO2 concentration,rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation.Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis.Despite the sensitivity of rubisco content as a marker of acclimation,it was not coordinated with gene expression,possibly due to a lag between gene transcription and protein translation.

  1. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  2. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 10/01/2002. This report marks the end of year 2 of a three-year project as well as the milestone date for completion of Phase I activities. This report includes our current status and defines the steps being taken to ensure that we meet the project goals by the end of year 3. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the third quarter of 2002 include: Organisms and Growth Surfaces: (1) Test results continue to indicate that thermophilic cyanobacteria have significant advantages as agents for practical photosynthetic CO{sub 2} mitigation before mesophilic forms. (2) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in YNP. (3) Back to back tests show that there is no detectable difference in the growth of isolate 1.2 s.c. (2) in standard and Ca-modified BG-11 medium. The doubling time for both cases was about 12 hours. (4) The cultivation of cyanobacteria in Ca-BG medium should proceed in the pH range between 7 and 7.4, but this suggestion requires additional experiments. (5) Cyanobacteria can be grown in media where sodium is present at trace levels. (6) Ca{sup 2+} enriched medium can be used as a sink for CO{sub 2} under alkaline conditions. (7) Cyanobacteria are able to generate cones of filaments on travertine surfaces. [Travertine is a mixture of CaCO{sub 3} and CaSO{sub 4}]. We hypothesize that SO{sub 4}{sup 2-} stimulates the generation of such cones, because they are not almost generated on CaCO3 surface. On the other hand, we know that plant gas contains elevated

  3. When did C4 Photosynthesis originate: New evidence from δ13C analysis of single grass-pollen grains

    Science.gov (United States)

    Urban, M. A.; Nelson, D. M.; Pearson, A.; Hu, F.

    2009-12-01

    C4 grasses account for >20% of global primary productivity and dominate tropical, subtropical, and warm-temperate grassland ecosystems. Thus it is vital to understand when and why C4 photosynthesis first evolved in the grass family (Poaceae). However, because of limitations of most proxies, the origin of C4 grasses remains ambiguous. Grass pollen is morphologically indistinct below the family level, making pollen analysis a crude instrument for studying C4-grass evolution. Previous studies have investigated the timing of C4 evolution using molecular tools and δ13C records from n-alkanes, ungulate teeth, and paleosols, but they yield disparate results. Molecular clocks suggest that C4 grasses first evolved between 27 and 36 Ma (million years before present), coincident with the Oligocene decline in pCO2 from >1000 to herbarium specimens. New results should help pinpoint the timing of C4 evolution. Comparison of the timing of C4 evolution with independent pCO2, paleoclimate and paleoecological records will be used to assess the factor(s) that drove the evolution and eventual dominance of C4 grasses.

  4. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes

    DEFF Research Database (Denmark)

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette C.;

    2016-01-01

    C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis...... predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden...

  5. APRIL stimulates NF-κB-mediated HoxC4 induction for AID expression in mouse B cells.

    Science.gov (United States)

    Park, Seok-Rae; Kim, Pyeung-Hyeun; Lee, Kyu-Seon; Lee, Sang-Hoon; Seo, Goo-Young; Yoo, Yung-Choon; Lee, Junglim; Casali, Paolo

    2013-02-01

    Activation-induced cytidine deaminase (AID) plays a key role in B cell immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM). We have previously reported that the highly conserved homeodomain HoxC4 transcription factor binds to the Aicda (AID gene) promoter to induce AID expression. Here, we investigated the regulation of HoxC4 transcription by a proliferation-inducing ligand (APRIL) and B cell-activating factor belonging to the TNF family (BAFF) in mouse B cells. APRIL substantially increased both HoxC4 and AID expression, whereas BAFF induced the expression of AID but not HoxC4. To elucidate the underlying mechanisms, we constructed a HoxC4 gene promoter reporter vector and analyzed the promoter induction after APRIL stimulation. APRIL enhanced the HoxC4 promoter activity by 2.3-fold, and this increase disappeared when the second putative NF-κB-binding promoter element (NBE2) was mutated. Based on ChIP assays, we found that NF-κB bound to the HoxC4 promoter NBE2 region. Furthermore, the overexpression of NF-κB augmented the APRIL-induced HoxC4 promoter activity, while the expression of dominant negative-IκBα suppressed it. Taken together, our findings suggest that NF-κB mediates APRIL-induced HoxC4 transcription. PMID:23178148

  6. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  7. Indus-wide C4 expansion between 7-6 Ma: an IODP Expedition 355 discovery

    Science.gov (United States)

    Liddy, H.; Feakins, S. J.; Tauxe, L.; Scardia, G.; Andò, S.; Bendle, J. A.; Clift, P. D.

    2015-12-01

    In April-May 2015, International Ocean Discovery Program Expedition 355 cored sediments from the Indus Fan (Site U1457, 67°55'E, 17°09'N, 3523 m water depth). Sediment recovery includes coarse silt to fine sand turbidite deposits spanning the late Miocene with a mineralogical composition indicating provenance predominantly from the Indus River catchment. We analyzed the carbon isotopic composition (δ13C values) of plant waxes and found a +9‰ shift in δ13C values of C28, C30 and C32 n-alkanoic acids. We infer that this carbon isotopic shift is the regional, offshore expression of the C4 expansion previously reported from the Siwalik Formation at the foreland of the Himalaya. Fortuitously the C4 expansion occurs at a time with frequent magnetic reversals into and out of Chrons C3B to C3A. Based on the shipboard age model for U1457, the isotopic shift occurs in C3Ar, an interval of 0.4 Myr with a sediment accumulation rate of 50 m/Myr. This allows us to securely date the Indus Fan transition to within 7-6 Ma on the geomagnetic polarity timescale. Independent of absolute age uncertainties, magnetostratigraphy allows us to report that the shifts were coincident in the Siwaliks and the broader region sampled by the Indus Fan. Based on the δ13C values of plant waxes at and after 6Ma (ca. -21‰) in the Indus Fan, the lowland Indus catchment must have been dominated by C4 grasslands.

  8. Disorder-promoted C4-symmetric magnetic order in iron-based superconductors

    Science.gov (United States)

    Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg

    2016-04-01

    In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.

  9. Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting

    International Nuclear Information System (INIS)

    Graphical abstract: 2D electronic spectroscopy, when combined with theoretical approaches, can investigate structure-function relationships in photosynthetic complexes by probing electronic energy transfer and excited state orientations. Display Omitted Highlights: → We review theoretical principles and experimental implementation of 2D spectroscopy. → 2DES monitors energy transfer, observes coherence, determines excited state geometry, and compares to homology models. → 2DES reveals structure-function relationships in the Photosystem II supercomplex. - Abstract: In natural light harvesting systems, pigment-protein complexes are able to harvest sunlight with near unity quantum efficiency. These complexes exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this perspective, we focus on how two-dimensional electronic spectroscopy (2DES) can provide an incisive tool to probe the electronic, energetic, and spatial landscapes that must be understood to describe photosynthetic light-harvesting. We review the theoretical and experimental principles of 2DES, and demonstrate its application to the study of the Photosystem II supercomplex of green plants. We illustrate several capabilities of 2DES, including monitoring energy transfer pathways, observing excitonic coherence, determining excitonic geometry, and informing on the atomic structure.

  10. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants.

    Science.gov (United States)

    Vojta, Lea; Fulgosi, Hrvoje

    2016-06-01

    In photosynthesis, the flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR) catalyses the final electron transfer from ferredoxin to NADP(+), which is considered as the main pathway of high-energy electron partitioning in chloroplasts (DOI: 10.1111/j.1365-313X.2009.03999.x[1], DOI: 10.1038/srep10085[2]). Different detergents and pH treatments of photosynthetic membranes isolated from the Arabidopsis wild-type (WT) and the loss-of-function mutants of the thylakoid rhodanase-like protein TROL (trol), pre-acclimated to either dark, growth-light, or high-light conditions, were used to probe the strength of FNR-membrane associations. Detergents β-DM (decyl-β-D-maltopyranoside) or β-DDM (n-dodecyl-β-D-maltopyranoside) were used to test the stability of FNR binding to the thylakoid membranes, and to assess different membrane domains containing FNR. Further, the extraction conditions mimicked pH status of chloroplast stroma during changing light regimes. Plants without TROL are incapable of the dynamic FNR recruitment to the photosynthetic membranes. PMID:26977444

  11. C4.5 Classifier for Solving the Problem of Water Resources Engineering

    OpenAIRE

    Chih-Chiang Wei; Jiing-Yun You

    2011-01-01

    The conventional decision-tree algorithm, such as ID3 and C5.0, executes rapidly and can easily be translated into if-thenelse rules.  This paper introduces popular classifier C4.5 for dealing with water resources engineering  problem. The  proposed approach was applied to the Shihmen Reservoir, which is one of the largest reservoirs, located upstream of the Tahan River Basin of northern Taiwan. The existing rules, namely M5-C rules, include two main flood stages: the peak-flow-preceding stag...

  12. Crystal structure of a four-stranded intercalated DNA: d(C4)

    Science.gov (United States)

    Chen, L.; Cai, L.; Zhang, X.; Rich, A.

    1994-01-01

    The crystal structure of d(C4) solved at 2.3-A resolution reveals a four-stranded molecule composed of two interdigitated or intercalated duplexes. The duplexes are held together by hemiprotonated cytosine-cytosine base pairs and are parallel stranded, but the two duplexes point in opposite directions. The molecule has a slow right-handed twist of 12.4 degrees between covalently linked cytosine base pairs, and the base stacking distance is 3.1 A. This is in general agreement with the NMR studies. A biological role for DNA in this conformation is suggested.

  13. The chemistry and evolutionary status of HD 62910 (WN6-C4)

    International Nuclear Information System (INIS)

    An analysis of the IUE and optical spectra of the WN-C star HD 62910 confirms the classification as WN6-C4, and shows that both the WN and WC lines arise in the same stellar wind. A Sobolev analysis of the observed line strengths gives the following mass abundance ratios: C/N = 0.26, C/He = 0.0024, N/He = 0.01, and H/He = 0.0, consistent with predictions of stellar evolutionary models for the short-lived phase between the WNE and WC stages. 20 refs

  14. Competition among warm season C4-cereals influence water use efficiency and competition ratios

    OpenAIRE

    Amanullah

    2015-01-01

    Water use efficiency (WUE) and competition ratio (CR) response of three warm season C4-cereals (grasses) viz. corn (Zea mays L., cv. Hybrid-5393 VT3), grain sorghum (Sorghum bicolor L. Moench, cv. Hybrid-84G62 PAT), and foxtail millets (Setaria italic, cv. German Strain R) in pure and mixed stands under low and high water levels was investigated. The experiment was conducted in pot experiment at Dryland Agriculture Institute, West Texas A&M University, Canyon, Texas, USA, during spring 2010. ...

  15. Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c(4)

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Jensen, Thomas Jon; Nørgaard, Allan; Ulstrup, Jens

    F stutzeri cytochrome c. is a di-haem protein, composed of two globular domains each with His-Met coordinated haem. and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination, and...... different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c(4) induced thermally and by chemical denaturants Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret. alpha/beta. and 701-nm...

  16. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  17. Electronic structure and magnetism in g-C4N3 controlled by strain engineering

    International Nuclear Information System (INIS)

    Regulation of magnetism and half-metallicity has attracted much attention because of its potential in spintronics. The magnetic properties and electronic structure of graphitic carbon nitride (g-C4N3) with external strain are determined theoretically based on the density function theory and many-body perturbation theory (G0W0). Asymmetric deformation induced by uniaxial strain not only regulates the magnetic characteristics but also leads to a transformation from half-metallicity to metallicity. However, this transition cannot occur in the structure with symmetric deformation induced by biaxial strain. Our results suggest the use of strain engineering in metal-free spintronics applications

  18. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  19. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M.; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  20. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.

    Science.gov (United States)

    Westereng, Bjørge; Arntzen, Magnus Ø; Aachmann, Finn L; Várnai, Anikó; Eijsink, Vincent G H; Agger, Jane Wittrup

    2016-05-01

    Lytic polysaccharide monooxygenases play a pivotal role in enzymatic deconstruction of plant cell wall material due to their ability to catalyze oxidative cleavage of glycosidic bonds. LPMOs may release different products, often in small amounts, with various oxidation patterns (C1 or C4) and with varying stabilities, making accurate analysis of product profiles a major challenge. So far, HPAEC has been the method of choice but it has limitations with respect to analysis of C4-oxidized products. Here, we compare various HPLC methods and present procedures that allow efficient separation of intact C1- and C4-oxidized products. We demonstrate that both PGC and HILIC (in WAX-mode) can separate C1- and C4-oxidized products and that PGC gives superior chromatographic performance. In contrast to HPAEC, these methods are directly compatible with mass spectroscopy and charged aerosol detection (CAD), which enables online peak validation and quantification with LOD levels in the low ng range. While the novel methods show lower resolution than HPAEC, this is compensated by easy peak identification, allowing, for example, discrimination between chromatographically highly similar native and C4-oxidized cello-oligomers. HPAEC-MS studies revealed chemical oxidation of C4-geminal diol products, which implies that peaks commonly believed to be C4-oxidized cello-oligomers, in fact are on-column generated derivatives. Non-destructive separation of C4-oxidized cello-oligosaccharides on the PGC column allowed us, for the first time, to isolate C4-oxidized standards. HPAEC fractionation of a purified C4-oxidized tetramer revealed that on-column decomposition leads to formation of the native trimer, which may explain why product mixtures generated by C4-oxidizing LPMOs seem to be rich in native oligosaccharides when analyzed by HPAEC. The findings and methods described here will aid in future studies in the emerging LPMO field. PMID:27059395

  1. Tandem mass spectrometry-based detection of c4'-oxidized abasic sites at specific positions in DNA fragments.

    Science.gov (United States)

    Chowdhury, Goutam; Guengerich, F Peter

    2009-07-01

    Oxidative damage to DNA has been linked to aging, cancer, and other biological processes. Reactive oxygen species and various antitumor agents including bleomycin and ionizing radiation have been shown to cause oxidative DNA sugar damage. Detection of DNA lesions is important for understanding the toxicological or therapeutic consequences associated with such agents. C4'-oxidized abasic sites (C4-AP) are produced by the antitumor drug bleomycin and ionizing radiation. The currently available methods for the detection of C4-AP cannot provide both structural and sequence information. We have developed an LC-ESI-MS-based approach for specific detection and mapping of C4-AP from a mixture of lesions. We show using Fe-bleomycin-damaged DNA that C4-AP can be detected at cytosine and thymine sites by direct MS analysis. Our results reveal that collision-induced dissociation of C4-AP-containing oligonucleotides results in preferential fragmentation at C4-AP sites with the formation of the unique a* ions (18 amu more than the a-B ions) that allow mapping of the C4-AP sites. Various chemical modification strategies (e.g., reduction with NaBH4 and NaBD4 and derivatization with methoxyamine and hydrazine, followed by LC-MS analysis) were also used for unambiguous detection of C4-AP sites. Finally, we show that the methods described here can detect the presence of C4-AP at specific sites in a complex sample such as hydroxyl radical-damaged DNA. The LC-MS approach was also used for the simultaneous detection of the other C4'-oxidation end product, 3'-phosphoglycolate, at a specific site in hydroxyl radical-damaged DNA. Thus, LC-MS provides a rapid and direct approach for the detection and mapping of oxidative DNA lesions. PMID:19496605

  2. Climate and CO2 modulate the C3/C4 balance and δ13C signal in simulated vegetation

    Directory of Open Access Journals (Sweden)

    D. Jolly

    2009-08-01

    Full Text Available Climate and atmospheric CO2 effects on the balance between C3 and C4 plants have received conflicting interpretations based on the analysis of carbon isotopic fractionation (δ13C in sediments. But, climate and CO2 effects on the C3/C4 balance and δ13C signal are rarely addressed together. Here, we use a process-based model (BIOME4 to disentangle these effects. We simulated the vegetation response to climate and CO2 atmospheric concentration (pCO2 in two sites in which vegetation changed oppositely, with respect to C3 and C4 plants abundance, during the Last Glacial Maximum to Holocene transition. The C3/C4 balance and δ13C signal were primarily sensitive to temperature and CO2 atmospheric partial pressure. The simulated variations were in agreement with patterns observed in palaeorecords. Water limitation favoured C4 plants in case of large negative deviation in rainfall. Although a global parameter, pCO2 affected the δ13C signal differently from one site to the other because of its effects on the C3/C4 balance and on carbon isotopic fractionation in C3 and C4 plants. Simulated Plant functional types (PFT also differed in their composition and response from one site to the other. The C3/C4 balance involved different competing C3 and C4 PFT, and not homogeneous C3 and C4 poles as often assumed. Process-based vegetation modelling emphasizes the need to account for multiple factors when a palaeo-δ13C signal is used to reconstruct the C3/C4 balance.

  3. Diel Shifts in Carboxylation Pathway and Metabolite Dynamics in the CAM Bromeliad Aechmea ‘Maya’ in Response to Elevated CO2

    Science.gov (United States)

    Ceusters, J.; Borland, A. M.; Londers, E.; Verdoodt, V.; Godts, C.; De Proft, M. P.

    2008-01-01

    Background and Aims The deployment of temporally separated carboxylation pathways for net CO2 uptake in CAM plants provides plasticity and thus uncertainty on how species with this photosynthetic pathway will respond to life in a higher-CO2 world. The present study examined how long-term exposure to elevated CO2 influences the relative contributions that C3 and C4 carboxylation make to net carbon gain and to establish how this impacts on the availability of carbohydrates for export and growth and on water use efficiency over the day/night cycle. Methods Integrated measurements of leaf gas exchange and diel metabolite dynamics (e.g. malate, soluble sugars, starch) were made in leaves of the CAM bromeliad Aechmea ‘Maya’ after exposure to 700 µmol mol−1 CO2 for 5 months. Key Results There was a 60 % increase in 24-h carbon gain under elevated CO2 due to a stimulation of daytime C3 and C4 carboxylation in phases II and IV where water use efficiency was comparable with that measured at night. The extra CO2 taken up under elevated CO2 was largely accumulated as hexose sugars during phase IV and net daytime export of carbohydrate was abolished. Under elevated CO2 there was no stimulation of dark carboxylation and nocturnal export and respiration appeared to be the stronger sinks for carbohydrate. Conclusions Despite the increased size of the soluble sugar storage pool under elevated CO2, there was no change in the net allocation of carbohydrates between provision of substrates for CAM and export/respiration in A. ‘Maya’. The data imply the existence of discrete pools of carbohydrate that provide substrate for CAM or sugars for export/respiration. The 2-fold increase in water-use efficiency could be a major physiological advantage to growth under elevated CO2 in this CAM bromeliad. PMID:18593689

  4. Principles of light harvesting from single photosynthetic complexes.

    Science.gov (United States)

    Schlau-Cohen, G S

    2015-06-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  5. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  6. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    . These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  7. Measurement of Swarm Parameters of c-C4F8/CO2 and Its Insulation Characteristics Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liu-chun; XIAO Deng-ming; ZHANG Dong; WU Bian-tao

    2008-01-01

    In c-C4F8 and c-C4F8/CO2 mixtures, the swarm parameters including ionization coefficient, attachment coefficient and effective ionization coefficient were obtained at the ratio of the electric field strength to the gas density between 150-550 Td by the steady-state Townsend (SST) method. Static breakdown voltages at each ratio were also measured at the SST condition. The limiting field strengths were obtained by two methods:computing the density-normalized effective ionization coefficient as a function of the overall density-reduced electric field strength; and measuring static breakdown voltages as a function of the product of gas density and electrode separation. Good agreement was obtained by these two methods, which ensures the correctness of the former method. The limiting field strengths of c-C4F8 and c-C4F8/CO2 mixtures were compared with those ofpure SF6, SF6/CO2 mixtures and pure c-C4Fs. It is found that buffer gas CO2 does not reduce the limiting field strengths of c-C4F8 greatly, the limiting field strengths of c-C4F8/CO2 mixtures are higher than those of SF6/CO2 mixtures or even pure SF6, and so c-C4F8/CO2 mixtures are suggested to be possible substitutes for SF6.

  8. Histopathological Correlation of Atypical (C3 and Suspicious (C4 Categories in Fine Needle Aspiration Cytology of the Breast

    Directory of Open Access Journals (Sweden)

    Prashant Goyal

    2013-01-01

    Full Text Available Introduction. According to the National Cancer Institute (NCI guidelines in 1996, breast lesions are categorized as C1 to C5 on fine needle aspiration (FNA cytology. Very few studies are available in the English literature analyzing histopathology outcome of C3 (atypical, probably benign and C4 (suspicious, probably malignant lesions. Our study aims to correlate FNA cytology of breast lump diagnosed as C3 and C4 lesion with histopathological examination. Methods. During a period of 2 years, 59 cases of C3 and 26 cases of C4 were retrieved from total 1093 cases of breast FNA. All the cases were reviewed by two cytopathologists independently. The final 24 cases of C3 and 16 cases of C4 categories were correlated with histopathological diagnosis. Result. Among C3 category, 37.5% revealed malignant findings, whereas of C4 category, 87.5% were malignant on histopathology. This difference was statistically significant (P=0.0017. Sensitivity, specificity, positive predictive values, and negative predictive value of C4 category in diagnosing breast malignancy were 60.8%, 88.2%, 87.5%, and 62.5%, respectively. Conclusion. Although FNAC is simple, safe, cost-effective and accurate method for diagnosis of breast masses, one must be aware of its limitations particularly in C3 and C4 categories. Also, since both these categories carry different probabilities of malignancy and thus different management, we therefore, support maintaining C3 and C4 categories.

  9. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  10. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  11. Studying the morphology of the magnetic C4 phase in the 122 superconductors

    Science.gov (United States)

    Taddei, Keith; Allred, Jared; Bugaris, Daniel; Krogstad, Matthew; Lapidus, Saul; Stadel, Ryan; Chung, Duck; Claus, Helmut; Kanatzidis, Mercouri; Brown, Dennis; Rosenkranz, Stephan; Osborn, Raymond; Chmaissem, Omar

    The iron based superconductors continue to prove an exciting system for the study of superconductivity: the recent discovery of a reentrant tetragonal phase with SDW magnetic ordering has opened new avenues to study the competition between microscopically coexistent superconductivity and magnetism. This intriguing new phase is not only an exceedingly rare example of a magnetic structure with two ordering vectors, and consequently a confirmation of itinerate magnetism, but has also allowed for the determination of spin fluctuations as the driving mechanism behind the phase evolution in these materials. Evidence has been mounting of the universality of C4 in the hole doped iron pnictides providing a useful playground for the comparison of how this phase behaves as it is stabilized out of different parent compounds and through different dopant atoms. Here all members of the hole doped family which show the C4 phase will be compared and the parameters which appear to tune the phase's extent in temperature and phase space will be discussed.

  12. SHOCK INITIATION OF COMPOSITION B AND C-4 EXPLOSIVES; EXPERIMENTS AND MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W

    2006-08-18

    Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of providing the Ignition and Growth reactive flow model with proper modeling parameters. A 100 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity--particle velocity relationship for each of the investigated material in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. This model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.

  13. SHOCK INITIATION EXPERIMENTS AND MODELING OF COMPOSITION B AND C-4

    Energy Technology Data Exchange (ETDEWEB)

    Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W

    2006-06-13

    Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of determining the Ignition and Growth reactive flow model with proper modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity versus particle velocity relationship for each of the investigated materials in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. These experimental data were used to determine Ignition and Growth reactive flow model parameters for these explosives. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. The Composition B model was then tested on existing short pulse duration, gap test, and projectile impact shock initiation with good results. This Composition B model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.

  14. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.

    Science.gov (United States)

    Isaksen, Trine; Westereng, Bjørge; Aachmann, Finn L; Agger, Jane W; Kracher, Daniel; Kittl, Roman; Ludwig, Roland; Haltrich, Dietmar; Eijsink, Vincent G H; Horn, Svein J

    2014-01-31

    Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61-3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end. PMID:24324265

  15. A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides*

    Science.gov (United States)

    Isaksen, Trine; Westereng, Bjørge; Aachmann, Finn L.; Agger, Jane W.; Kracher, Daniel; Kittl, Roman; Ludwig, Roland; Haltrich, Dietmar; Eijsink, Vincent G. H.; Horn, Svein J.

    2014-01-01

    Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61–3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end. PMID:24324265

  16. INFLUENCE OF POZZOLANA ON THE HYDRATION OF C4AF RICH CEMENT IN CHLORIDE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    IRMANTAS BARAUSKAS

    2013-03-01

    Full Text Available This study investigated the influence of natural pozzolana - opoka additive on the hydration of C4AF rich cement and the effects of chloride ions on the hydrates formed. In the samples, 25 % (by weight of the sintered C4AF rich cement and OPC was replaced with pozzolana. The mixtures were hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months at 20°C. It was estimated that under normal conditions, pozzolana additive accelerates the hydration of calcium silicates and initiates the formation of CO32- - AFm in the Brownmillerite rich cement. However, the hydration of Brownmillerite cement with opoka additive is still slower to compare with hydration of Portland cement. Also, opoka decreases total porosity and threshold pore diameter of Brownmillerite cement paste after two days of hydration. After 28 days of hydration threshold pore diameter became smaller even to compare with threshold pore diameter of Portland cement. Opoka additive promotes the formation of Friedel’s salt in Brownmillerite samples treated in saturated NaCl solution, because CO32-–AFm affected by saturated NaCl solution become unstable and takes part in reactions producing Friedel’s salt.

  17. Reduced apparent photorespiration by the C3-C4 intermediate species, Moricandia arvensis and Panicum milioides

    International Nuclear Information System (INIS)

    The CO2/O2 specificity factor of sucrose gradient purified ribulose 1,5-bisphosphate carboxylase/oxygenase from the C3-C4 intermediate plants Moricandia arvensis and Panicum milioides was similar to the respective values of the enzyme from the closely related C3 species, Moricandia foetida and Panicum laxum. Thus, the kinetic properties of this bifunctional enzyme do not explain the reduced rates of photorespiration exhibited by either of these intermediate species. Dark/light ratios for aminoacetonitrile-sensitive 14CO2 evolution during decarboxylation of exogenous [1-14C] glycine by leaf discs had values of 9.0 with M. arvensis and 11.8 with P. milioides. Similar results were obtained using [1-14C] glycolate as the exogenous photorespiratory substrate, with dark/light 14CO2 evolution ratios for the C3-C4 and C3 leaf discs averaging 6.6 and 2.0, respectively. The data suggest that P. milioides and M. arvensis are capable of a more efficient internal recycling of photorespiratory CO2 via ribulose bisphosphate carboxylase/oxygenase than closely related C3 plants, and that this may partially account for the reduced rates of apparent photorespiration by these intermediate species

  18. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    Science.gov (United States)

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. PMID:27131319

  19. Expression of C4.4A in precursor lesions of pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Santoni-Rugiu, Eric; Illemann, Martin;

    2012-01-01

    in precursor lesions of lung squamous cell carcinoma and adenocarcinoma was investigated by stainings with a specific anti-C4.4A antibody. In the transformation from normal bronchial epithelium to squamous cell carcinoma, C4.4A was weakly expressed in basal cell hyperplasia but dramatically increased...... in squamous metaplasia. This was confined to the cell membrane and sustained in dysplasia, carcinoma in situ, and the invasive carcinoma. The induction of C4.4A already at the stage of hyperplasia could indicate that it is a marker of very early squamous differentiation, which aligns well with our...... earlier finding that C4.4A expression levels do not provide prognostic information on the survival of squamous cell carcinoma patients. In the progression from normal alveolar epithelium to peripheral adenocarcinoma, we observed an unexpected, distinct cytoplasmic staining for C4.4A in a fraction of...

  20. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  1. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO2 concentration (Ci) and stomatal resistance (Rs) from SP1 to SP4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP2 >SP3 >SP4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  2. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    Science.gov (United States)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  3. Quantum population and entanglement evolution in photosynthetic process

    Science.gov (United States)

    Zhu, Jing

    Applications of the concepts of quantum information theory are usually related to the powerful and counter-intuitive quantum mechanical effects of superposition, interference and entanglement. In this thesis, I examine the role of coherence and entanglement in complex chemical systems. The research has focused mainly on two related projects: The first project is developing a theoretical model to explain the recent ultrafast experiments on excitonic migration in photosynthetic complexes that show long-lived coherence of the order of hundreds of femtoseconds and the second project developing the Grover algorithm for global optimization of complex systems. The first part can be divided into two sections. The first section is investigating the theoretical frame about the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex. The new developed modified scaled hierarchical equation of motion (HEOM) approach is employed for simulating the open quantum system. The second section is investigating the evolution of entanglement in the FMO complex based on the simulation result via scaled HEOM approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of different measures, including pairwise, triplet, quadruple and quintuple sites entanglement. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pathways. The second part of this thesis can be separated into two sections. The first section demonstrated that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The second section is implementing the basic

  4. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-25

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.

  5. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    CERN Document Server

    Mostame, Sarah; Tsomokos, Dimitris I; Aspuru-Guzik, Alán

    2011-01-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  6. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand; Frigaard, Niels-Ulrik

    2014-01-01

    d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically...... operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen...... produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to...

  7. Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms.

    Science.gov (United States)

    Salvucci, M E; Bowes, G

    1983-10-01

    The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the (14)C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, (14)C incorporation was via the Calvin cycle, and less than 10% was in C(4) acids.Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O(2) increased the per cent [(14)C]glycine and the O(2) inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O(2) inhibition of photosynthesis were independent of the CO(2) level, but in high photorespiration plants the O(2) inhibition was competitively decreased by CO(2). Thus, in low but not high photorespiration plants, glycine labeling and O(2) inhibition appeared to be uncoupled from the external [O(2)]/[CO(2)] ratio.These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C(4)-like, while the latter resembles that of low CO(2)-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for

  8. Energy transfer in real and artificial photosynthetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  9. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol

    Directory of Open Access Journals (Sweden)

    Li Han

    2013-01-01

    Full Text Available Abstract Background The modern society primarily relies on petroleum and natural gas for the production of fuels and chemicals. One of the major commodity chemicals 1,2-propanediol (1,2-PDO, which has an annual production of more than 0.5 million tons in the United States, is currently produced by chemical processes from petroleum derived propylene oxide, which is energy intensive and not sustainable. In this study, we sought to achieve photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Compared to the previously reported biological 1,2-PDO production processes which used sugar or glycerol as the substrates, direct chemical production from CO2 in photosynthetic organisms recycles the atmospheric CO2 and will not compete with food crops for arable land. Results In this study, we reported photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Introduction of the genes encoding methylglyoxal synthase (mgsA, glycerol dehydrogenase (gldA, and aldehyde reductase (yqhD resulted in the production of ~22mg/L 1,2-PDO from CO2. However, a comparable amount of the pathway intermediate acetol was also produced, especially during the stationary phase. The production of 1,2-PDO requires a robust input of reducing equivalents from cellular metabolism. To take advantage of cyanobacteria’s NADPH pool, the synthetic pathway of 1,2-PDO was engineered to be NADPH-dependent by exploiting the NADPH-specific secondary alcohol dehydrogenases which have not been reported for 1,2-PDO production previously. This optimization strategy resulted in the production of ~150mg/L 1,2-PDO and minimized the accumulation of the incomplete reduction product, acetol. Conclusion This work demonstrated that cyanobacteria can be engineered as a catalyst for the photosynthetic conversion of CO2 to 1,2-PDO. This work also characterized two NADPH

  10. Occurrence and sequence of Sphaeroides Heme Protein and Diheme Cytochrome C in purple photosynthetic bacteria in the family Rhodobacteraceae

    Directory of Open Access Journals (Sweden)

    Kyndt John A

    2010-06-01

    Full Text Available Abstract Background Sphaeroides Heme Protein (SHP was discovered in the purple photosynthetic bacterium, Rhodobacter sphaeroides, and is the only known c-type heme protein that binds oxygen. Although initially not believed to be widespread among the photosynthetic bacteria, the gene has now been found in more than 40 species of proteobacteria and generally appears to be regulated. Rb. sphaeroides is exceptional in not having regulatory genes associated with the operon. We have thus analyzed additional purple bacteria for the SHP gene and examined the genetic context to obtain new insights into the operon, its distribution, and possible function. Results We found SHP in 9 out of 10 strains of Rb. sphaeroides and in 5 out of 10 purple photosynthetic bacterial species in the family Rhodobacteraceae. We found a remarkable similarity within the family including the lack of regulatory genes. Within the proteobacteria as a whole, SHP is part of a 3-6 gene operon that includes a membrane-spanning diheme cytochrome b and one or two diheme cytochromes c. Other genes in the operon include one of three distinct sensor kinase - response regulators, depending on species, that are likely to regulate SHP. Conclusions SHP is not as rare as generally believed and has a role to play in the photosynthetic bacteria. Furthermore, the two companion cytochromes along with SHP are likely to function as an electron transfer pathway that results in the reduction of SHP by quinol and formation of the oxygen complex, which may function as an oxygenase. The three distinct sensors suggest at least as many separate functional roles for SHP. Two of the sensors are not well characterized, but the third is homologous to the QseC quorum sensor, which is present in a number of pathogens and typically appears to regulate genes involved in virulence.

  11. photosynthetic carbon metabolism in wild, primitive and cultivated forms of wheat at three levels of ploidy

    International Nuclear Information System (INIS)

    14CO2 assimilation was studied with diploid, tetraploid, hexaploid species of the genera Triticum and their wild relatives Aegilops. Attached mature leaves of 3 - 4 week-old plants were allowed to undergo photosynthesis under air at ambient temperature. The pattern of distribution of 14C was notably similar in Triticum and Aegilops species whatever the level of ploidy. Sucrose was the sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolate pathway by glycolate, the product of the photorespiration or by the Calvin cycle intermediates exported into the cytoplasm. Depending on the species, the glycolate pathway provided 40 to 75% of the sucrose 14C. The higher labeling of sucrose was associated with the greater participation of the glycolate pathway in the wild diploid (DD) A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum. The results suggest that the expression of the male D genome is dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature) or hindering (1% O2) photorespiration, sucrose labeling decreased, but serine and glycine labeling was favoured. We propose that in wheat leaves, the role of photorespiration is to drain part of the carbon exported from the chloroplast as glycolate, towards sucrose synthesis. (author)

  12. Photosynthetic bacteria as alternative energy sources: overview on hydrogen production research

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, A.; Ohta, Y.; Frank, J.

    1979-01-01

    Hydrogen production research towards the application of marine and non-marine species of photosynthetic bacteria is reviewed. Potential use of photosynthetic bacteria as renewable energy resources is discussed.

  13. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  15. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-07-22

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many

  17. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/3/2001 through 4/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, we are continuing to evaluate candidate organisms and growth surfaces, and we are expanding the test facilities in preparation for scaled up system-level testing. Specific results and accomplishments for the first quarter of 2002 include: Organisms and Growth Surfaces: (1) Isolate 1.2 s.c. (2) has been selected for further investigations because of its favorable growth properties. (2) Research on optimal conditions for the growth of cyanobacterial isolates from YNP should be carried out using distilled water which has more stable chemical parameters, although tap water use may be permissible during full scale operations (at the cost of longer organism doubling times). (3) Tr. 9.4 WF is able to generate a biofilm on an Omnisil surface. Over the long term Omnisil does not inhibit the growth of TR 9.4 isolate, though it does elongate the lag phase of growth of this isolate. (4) Initial survivability tests for the TR 9.4 organism on Omnisil screens in the CRF2 modelscale bioreactor are underway. We have experienced problems keeping the organisms alive for more than three days, but we are currently investigating several possible causes for this unexpected result. (5) Accelerated materials testing have shown that Omnisil fabric has acceptable strength properties for use in a practical bioreactor system. Bioreactor support systems and test facilities: (1) Several CO{sub 2} scrubbing experiments have been completed in the translating slug flow test system, however the error introduced by the

  18. C-4 Gem-Dimethylated Oleanes of Gymnema sylvestre and Their Pharmacological Activities

    Directory of Open Access Journals (Sweden)

    Giovanni Di Fabio

    2013-12-01

    Full Text Available Gymnema sylvestre R. Br., one of the most important medicinal plants of the Asclepiadaceae family, is a herb distributed throughout the World, predominantly in tropical countries. The plant, widely used for the treatment of diabetes and as a diuretic in Indian proprietary medicines, possesses beneficial digestive, anti-inflammatory, hypoglycemic and anti-helmentic effects. Furthermore, it is believed to be useful in the treatment of dyspepsia, constipation, jaundice, hemorrhoids, cardiopathy, asthma, bronchitis and leucoderma. A literature survey revealed that some other notable pharmacological activities of the plant such as anti-obesity, hypolipidemic, antimicrobial, free radical scavenging and anti-inflammatory properties have been proven too. This paper aims to summarize the chemical and pharmacological reports on a large group of C-4 gem-dimethylated pentacyclic triterpenoids from Gymnema sylvestre.

  19. Simulation of the reflected blast wave from a C-4 charge

    Science.gov (United States)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  20. Core polarization effects on C4 form factors of sd-shell nuclei

    International Nuclear Information System (INIS)

    Coulomb form factors of C4 transitions in even-even N=Z sd-shell nuclei (20Ne, 24Mg, 28Si and 32S) are discussed taking into account higher-energy configurations outside the sd-shell model space which are called core polarization effects. Higher configurations are taken into account through a microscopic theory, which allows particle-hole excitations from the 1s and 1p shells core orbits and also from the 2s1d-shell orbits to the higher allowed orbits with excitations up to 4 ℎω. The effect of core polarization is found essential in both the transition strengths and momentum transfer dependence of form factors, and gives a remarkably good agreement with the measured data with no adjustable parameters. The calculations are based on the Wildenthal interaction for the sd-shell model space and on the modified surface delta interaction (MSDI) for the core polarization effects. (orig.)

  1. Detection of a new circumstellar carbon chain molecule, C4Si

    International Nuclear Information System (INIS)

    A new interstellar carbon chain molecule, C4Si, has been detected in the envelope of the evolved star IRC + 10216. This molecule is the carrier of six unidentified lines which had been detected during the molecular line survey at Nobeyama Radio Observatory. The identification was made through astronomical detections followed by quantum chemical calculations and laboratory spectroscopic experiments. The rotational constant and the centrifugal distortion constant were B(0) = 1533.77206(146) MHz and D(0) = 0.00005827(35) MHz, respectively, where the numbers in parentheses represent one standard deviation in units of the last significant digits. The rotation temperature and the column density were 15 + or - 2 K and (7 + or - 1) x 10 to the 12th/sq cm, respectively, assuming a source size of 25 arcsec. 16 refs

  2. Synthesis, crystal structure and antioxidant evaluation of C-4-acetamidophenylcalix[4]pyrogallolarene

    Energy Technology Data Exchange (ETDEWEB)

    Abosadiya, Hamza M.; Hasbullah, Siti Aishah; Yamin, Bohari M. [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)

    2015-09-25

    C-4-acetamidophenylcalix[4]pyrogallolarene was synthesized by an acid catalyzed condensation reaction of pyrogallol with 4-acetamidobenzaldehyde. The compound was characterized by IR, {sup 1}H and {sup 13}C NMR spectroscopy. Single crystal X-ray analysis revealed that the molecule crystallized in a triclinic system with space group Pī and the unit cell dimensions a= 12.2948(16) Å, b= 13.4423(17) Å, c= 13.5906(18) Å, α =107.549(4)°, β =102.034(4)°, γ =90.535(4)°, Z= 1 and V= 2088.2(5) Å{sup 3}. The macrocyclic calix adopts a chair (C{sub 2h}) conformation and the molecule is associated with eight DMSO molecules of crystallization. Antioxidant test by DPPH method showed that the compound exhibits good antioxidant activity of about 72%.

  3. DNA level in guard cells nuclei of Ornithogalum umbellatum ovary is 2C-4C

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2011-04-01

    Full Text Available The DNA content after Feulgen reaction in the guard cells and epidermis of Omithogalum umbellatum ovary was cytophotometrically measured in different phases of flower development. Only in bud of flowers guard cells DNA content was 2C while in full blown flowers it was higher, between 2C-4C. This observation was supported by autoradiographic studies with 3H-thymidine which was incorporated into guard cell nuclei in the ovary epidermis of newly developed flowers. Thus DNA level in O. umbellatum guard cells was higher than those in other plants described in literature. On the other hand, DNA content in the epidermis cells increased gradually with ovary growth reaching the maximum level of 8C in some cells.

  4. Synthesis, crystal structure and antioxidant evaluation of C-4-acetamidophenylcalix[4]pyrogallolarene

    Science.gov (United States)

    Abosadiya, Hamza M.; Hasbullah, Siti Aishah; Yamin, Bohari M.

    2015-09-01

    C-4-acetamidophenylcalix[4]pyrogallolarene was synthesized by an acid catalyzed condensation reaction of pyrogallol with 4-acetamidobenzaldehyde. The compound was characterized by IR, 1H and 13C NMR spectroscopy. Single crystal X-ray analysis revealed that the molecule crystallized in a triclinic system with space group Pī and the unit cell dimensions a= 12.2948(16) Å, b= 13.4423(17) Å, c= 13.5906(18) Å, α =107.549(4)°, β =102.034(4)°, γ =90.535(4)°, Z= 1 and V= 2088.2(5) Å3. The macrocyclic calix adopts a chair (C2h) conformation and the molecule is associated with eight DMSO molecules of crystallization. Antioxidant test by DPPH method showed that the compound exhibits good antioxidant activity of about 72%.

  5. Synthesis, crystal structure and antioxidant evaluation of C-4-acetamidophenylcalix[4]pyrogallolarene

    International Nuclear Information System (INIS)

    C-4-acetamidophenylcalix[4]pyrogallolarene was synthesized by an acid catalyzed condensation reaction of pyrogallol with 4-acetamidobenzaldehyde. The compound was characterized by IR, 1H and 13C NMR spectroscopy. Single crystal X-ray analysis revealed that the molecule crystallized in a triclinic system with space group Pī and the unit cell dimensions a= 12.2948(16) Å, b= 13.4423(17) Å, c= 13.5906(18) Å, α =107.549(4)°, β =102.034(4)°, γ =90.535(4)°, Z= 1 and V= 2088.2(5) Å3. The macrocyclic calix adopts a chair (C2h) conformation and the molecule is associated with eight DMSO molecules of crystallization. Antioxidant test by DPPH method showed that the compound exhibits good antioxidant activity of about 72%

  6. Late Miocene Rise of C4 Vegetation in NW Africa from Leaf Wax Biomarkers

    Science.gov (United States)

    Rose, C. A.; deMenocal, P. B.; Polissar, P. J.

    2014-12-01

    When and why did NW Africa become dry? The answers to these important questions have proven elusive. Strong climate controls on African vegetation today make knowledge of past changes a valuable proxy for understanding NW Africa's climate evolution. Various lines of geologic and paleobotanical evidence indicate that NW African landscapes changed from more humid conditions in the late Oligocene/early Miocene to arid/hyper-arid environments by the late Pliocene. As proxies for the paleohydrological and paleovegetation signatures of this event, we analyzed leaf wax n-alkane stable isotopes (δDwax and δ13Cwax) at Ocean Drilling Program Site 659 (20°N), offshore West Africa, from 0 - 25 Ma. Between 25 to 10 Ma, n-alkane δ13Cwax values were persistently very low (-31‰) suggesting that C3 vegetation dominated NW African landscapes over this interval. Between 10-7 Ma there is a marked, positive secular δ13Cwax shift (in excess of 4‰) suggesting the initial growth and establishment of C4 Sahel grasslands. δ13Cwax shows a sustained positive trend (>7‰ total) until 1 Ma. The 10-7 Ma date for the establishment of NW African C4 grasslands is earlier than comparable records from South Africa and South Asia. We will also present low-resolution isotope data from equatorial ODP Site 959 (3°N) and compare these data with Site 659 (20°N) to reconstruct the development of the modern vegetation and hydrological gradients in NW Africa over this time span.

  7. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  8. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    Science.gov (United States)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  9. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  10. Heat shock response in photosynthetic organisms: membrane and lipid connections.

    NARCIS (Netherlands)

    I. Horvath; A. Glatz; H. Nakamoto; M.L. Mishkind; T. Munnik; Y. Saidi; P. Goloubinoff; J.L. Harwood; L. Vigh

    2012-01-01

    The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as

  11. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    Science.gov (United States)

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to extracting pigments by a…

  12. Gene expression responses in photosynthetic tissues to herbicides and pathogens

    Science.gov (United States)

    When plants are attacked by pathogens, the photosynthetic tissue is often dramatically affected. The chloroplasts within this tissue can participate in defense by being a source of many plant secondary metabolites that serve as defense signaling compounds, antioxidants, and phytoalexins. The chlorop...

  13. Photosynthetic incorporation of 14C by Stevia rebaudiana

    International Nuclear Information System (INIS)

    The photosynthetic incorporation of 14 by Stevia rebaudiana specimens was investigated. The 14C incorporation, when the isotope was furnished to the plant in form of 14CO2, was rapid. After 24 hours, the radioactivity has been incorporated into a great number of compounds including pigments, terpenes, glucose, cellulose and also stevioside and its derivatives. (M.A.C.)

  14. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  15. Effect of maize seed laser irradiation on plant photosynthetic activity

    International Nuclear Information System (INIS)

    Investigations were made with the two hybrids, H-708 and Px-20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in Px-20. Transpiration and CO2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  16. 14CO2 incorporation into C4 acids by leaves of the C3-C4 intermediate species, Moricandia arvensis and Panicum milioides, at Gamma-levels of CO2

    International Nuclear Information System (INIS)

    The crucifer M. arvensis is a species with photorespiratory characteristics intermediate between C3 and C4 plants. Although the precise mechanism promoting decreased photorespiration has yet to be elucidated, evidence to date disfavors participation of C4 metabolism. In order to conclusively assess the possible contribution, if any, of limited C4 metabolism to the reduction of photorespiration, detached leaves of M. arvensis and M. moricandioides (C3) were labeled with 14CO2. When M. arvensis was illuminated and pulsed for 10 s the amount of label in malate increased from 4.5% of total soluble dpm fixed at 21% O2 and 340 μl/l CO2 to 10.3% at 20 μl/l. A two-fold increase was also evident for aspartate (from 2.9% to 6.5%). The C3 Moricandia species failed to show a similar response to decreased CO2. The physiological significance of the increase in C4 acid-labeling which occurred in the intermediate species will be investigated by pulse-chase analyses of C4 acids and glycine. Similar data for Panicum milioides (C3-C4) will also be presented

  17. Adulteration Identification of Commercial Honey with the C-4 Sugar Content of Negative Values by an Elemental Analyzer and Liquid Chromatography Coupled to Isotope Ratio Mass Spectroscopy.

    Science.gov (United States)

    Dong, Hao; Luo, Donghui; Xian, Yanping; Luo, Haiying; Guo, Xindong; Li, Chao; Zhao, Mouming

    2016-04-27

    According to the AOAC 998.12 method, honey is considered to contain significant C-4 sugars with a C-4 sugar content of >7%, which are naturally identified as the adulteration. However, the authenticity of honey with a C-4 sugar content of authenticity of honey with a C-4 sugar content of authenticity identification of honey with a C-4 sugar content of <0%. PMID:27064147

  18. Crystal structure, properties and phase transitions of morpholinium tetrafluoroborate [C 4H 10NO][BF 4

    Science.gov (United States)

    Szklarz, P.; Owczarek, M.; Bator, G.; Lis, T.; Gatner, K.; Jakubas, R.

    2009-07-01

    The crystal structure of [C 4H 10NO][BF 4] is determined in the phase I at 160, 180, 240 and 290 K. At room temperature the compound crystallizes in the orthorhombic space group: Pnam. The structure is composed of the morpholinium cations, [C 4H 10NO] +, which form one-dimensional hydrogen bonded chains, and [BF 4] - anions. [C 4H 10NO][BF 4] undergoes two structural phase transformations: second-order at 153 K and first-order at 117/118 K (cooling/heating). The phase transitions are characterized with the differential scanning calorimetry, dilatometric and dielectric techniques. The possible mechanism of the phase transitions in [C 4H 10NO][BF 4] is discussed on the basis of the presented results.

  19. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    The molecular and vibrational structure of the title compound (C4-HSL) was studied by experimental and theoretical methods. The infrared (IR) absorption spectrum was measured in the solid state and in CCl4 suspension. The observed absorption bands were compared with transitions obtained with B3LYP...... with the observed solid state IR spectrum. Due to the low solubility of C4-HSL in common solvents for IR spectroscopy, such as CS2 and CCl4, a liquid solution spectrum of pure, monomeric C4-HSL was not obtained. However, absorbance peaks observed in oversaturated CCl4 solution could be assigned to...... distinct contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4)....

  20. GRASS SPECIES FROM C-4 CARBON FIXATION GROUP: POLISH EXPERIMENT WITH A NOVEL ENERGY AND FORAGE PURPOSES CROP

    Directory of Open Access Journals (Sweden)

    Włodzimierz Majtkowski

    2010-02-01

    Full Text Available Experiment was conducted during four years 2003-2006. Materials used were three genus grass species of C-4 photosynthesis: Andropogon gerardi Vitman, Panicum virgatum L. and Miscanthus sacchariflorus (Maxim. Hack. Plants were planted at spring 1998. Agrotechnical part of experiment was conducted in Botanical Garden of Plant Breeding Acclimatization Institute in Bydgoszcz and analytical part in Department of Animal Nutrition and Feed Management, Faculty of Animal Breeding and Biology of University of Technology and Life Science in Bydgoszcz. Forage from grass C-4 photosynthesis were material of good ensilage suitability. High structural carbohydrates (NDF, ADF contents in tested forage dry matter suggest ensilage at early phases of plant development. Above results suggest to possibility of usage of forage from grass C-4 carbon fixation group for animal feeding purposes. C-4 grass forage should be recognized as a supplementary source of green matter in periods of insufficient access to traditional silage sources.

  1. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 1/01/2003. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the first quarter of 2003 include: Organisms and Growth Surfaces: (1) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in the West Thumb area of YNP. New samples were isolated and are being cultured in glass tubes. (2) We checked the motile ability of 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 6. It was found that unicellular isolates 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 1 are phototaxic. Isolate 3.2.2 Synechococcus s.c. 1 currently consists of two populations: one population appears to be positive phototaxic, and second population appears negative phototaxis to the same level of light. This means that the character of screen illumination should be uniform and reasonable for cyanobacterial cells. (3) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible the rate of the stimulation of cyanobacterial growth in CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (4) We are continuing the organizing of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park. During this reporting period we transferred about 160 samples and discarded about 80 samples with weak growth in standard media as BG-11, D or DH. As result of this work we currently have 13 unialgal cultures of thermophilic

  2. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but

  3. Leukotriene C4 synthase and ischemic cardiovascular disease and obstructive pulmonary disease in 13,000 individuals

    DEFF Research Database (Denmark)

    Freiberg, Jacob J; Dahl, Morten; Tybjaerg-Hansen, Anne; Grande, Peer; Nordestgaard, Børge G

    2009-01-01

    Ischemic cardiovascular disease and obstructive pulmonary disease involve inflammation. Leukotrienes may be important pro-inflammatory mediators. We tested the hypothesis that the (-1072)G > A and (-444)A > C promoter polymorphisms of leukotriene C4 synthase confer risk of transient ischemic attack...... with risk of asthma or COPD. Leukotriene C4 synthase promoter genotypes influence risk of TIA and ischemic stroke, but not risk of IHD/coronary atherosclerosis, asthma, or COPD....

  4. C3 and C4 plant species as energy sources and their potential impact on environment and climate

    International Nuclear Information System (INIS)

    Careful selection of crop species, among other aspects, is very helpful in enhancing energy production by way of increased biomass yields from agricultural land. A wide range of C3 and C4 plant species has been introduced and investigated for their environmental and climatic impact. The results indicate already that some perennial C4 crop species posses high yield potential, lower erosion-index, better CO2 reduction rates and need less fertiliser, water and chemicals. (Author)

  5. APRIL stimulates NF-κB-mediated HoxC4 induction for AID expression in mouse B cells

    OpenAIRE

    Park, Seok-Rae; Kim, Pyeung-Hyeun; Lee, Kyu-Seon; Lee, Sang-Hoon; Seo, Goo-Young; Yoo, Yung-Choon; Lee, Junglim; Casali, Paolo

    2012-01-01

    Activation-induced cytidine deaminase (AID) plays a key role in B cell immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM). We have previously reported that the highly conserved homeodomain HoxC4 transcription factor binds to the Aicda (AID gene) promoter to induce AID expression. Here, we investigated the regulation of HoxC4 transcription by a proliferation-inducing ligand (APRIL) and B cell-activating factor belonging to the TNF family (BAFF) in mouse B cell...

  6. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.)

    OpenAIRE

    Kadereit, Gudrun; Ackerly, David; Pirie, Michael D.

    2012-01-01

    C4 photosynthesis is a fascinating example of parallel evolution of a complex trait involving multiple genetic, biochemical and anatomical changes. It is seen as an adaptation to deleteriously high levels of photorespiration. The current scenario for C4 evolution inferred from grasses is that it originated subsequent to the Oligocene decline in CO2 levels, is promoted in open habitats, acts as a pre-adaptation to drought resistance, and, once gained, is not subsequently lost. We test the gene...

  7. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species.

    Science.gov (United States)

    Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo

    2015-02-01

    This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth. PMID:24743957

  8. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    Science.gov (United States)

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  9. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma.

    OpenAIRE

    Cowburn, A. S.; Sladek, K; Soja, J; L. Adamek; Nizankowska, E; Szczeklik, A.; Lam, B K; Penrose, J F; Austen, F K; Holgate, S T; Sampson, A P

    1998-01-01

    Aspirin causes bronchoconstriction in aspirin-intolerant asthma (AIA) patients by triggering cysteinyl-leukotriene (cys-LT) production, probably by removing PGE2-dependent inhibition. To investigate why aspirin does not cause bronchoconstriction in all individuals, we immunostained enzymes of the leukotriene and prostanoid pathways in bronchial biopsies from AIA patients, aspirin-tolerant asthma (ATA) patients, and normal (N) subjects. Counts of cells expressing the terminal enzyme for cys-LT...

  10. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas

    Science.gov (United States)

    Latorre, Claudio; Quade, Jay; McIntosh, William C.

    1997-01-01

    δ13C values in paleosols and fossil teeth have been used to document the expansion of C4 plants in South Asia, Africa, and North America during the late Miocene. However, the exact timing and rate of expansion of C4 vegetation is unclear outside the Old World because of a lack of high-resolution records. We present a high-resolution record from northwest Argentina in which the δ13C values of soil carbonate rise above a threshold of -8‰, suggesting the presence of C4 plants, starting at 7.3-6.7 Ma. δ13C values of fossil teeth from well dated sections in South and North America display a concomitant increase of C4 plants in the diets of large herbivores. These results show that the late Miocene expansion of C4 plants was global, but occurred at different rates in each region. While it is has been suggested that declining pCO2 levels during the late Neogene caused C4 plant expansion, climate change, such as an increase in summer-dominated rainfall regimes globally, is an alternative explanation. The δ18O soil carbonate records from South Asia, East Africa and now also northwest Argentina all show an increase of at least 3-4‰ in the late Neogene, either the result of climate change or of greater evaporation in average grassland soils.

  11. A Modified Thermal Time Model Quantifying Germination Response to Temperature for C3 and C4 Species in Temperate Grassland

    Directory of Open Access Journals (Sweden)

    Hongxiang Zhang

    2015-07-01

    Full Text Available Thermal-based germination models are widely used to predict germination rate and germination timing of plants. However, comparison of model parameters between large numbers of species is rare. In this study, seeds of 27 species including 12 C4 and 15 C3 species were germinated at a range of constant temperatures from 5 °C to 40 °C. We used a modified thermal time model to calculate germination parameters at suboptimal temperatures. Generally, the optimal germination temperature was higher for C4 species than for C3 species. The thermal time constant for the 50% germination percentile was significantly higher for C3 than C4 species. The thermal time constant of perennials was significantly higher than that of annuals. However, differences in base temperatures were not significant between C3 and C4, or annuals and perennial species. The relationship between germination rate and seed mass depended on plant functional type and temperature, while the base temperature and thermal time constant of C3 and C4 species exhibited no significant relationship with seed mass. The results illustrate differences in germination characteristics between C3 and C4 species. Seed mass does not affect germination parameters, plant life cycle matters, however.

  12. Carbon isotopic evidence from paleosols for mixed C 3/C 4 vegetation in the Bogota Basin, Colombia

    Science.gov (United States)

    Mora, Germán; Pratt, Lisa M.

    2002-04-01

    Pollen reconstructions in the Bogota basin (Colombia) indicate the expansion of tropical high-altitude grassland (paramo) at the expense of Andean forests during glacial intervals. The carbon isotopic composition (δ 13C) of soil organic matter (SOM) can be a useful indicator of changes in vegetation affecting grasslands because it distinguishes between two groups of grasses (C 3 and C 4) adapted to different ecological environments. Values of SOM δ 13C were determined in four weathering profiles containing both modern (Holocene) soils and paleosols formed during the Last Glacial Stage. These profiles are located along an altitudinal transect in the Bogota basin, extending from 2550 to 3100 m. Values of SOM δ 13C in the topsoil horizons reflect those of the native C 3 vegetation that currently dominates the ecosystems in the Colombian Andes. Although C 4 grasses are currently negligible in the basin, elevated SOM δ 13C values indicative of C 4 plants were found in two Holocene soils. Environmental changes or ancient agricultural activities could explain the increased abundance of these plants in the basin during the late Holocene. Isotopic values in the studied paleosols revealed the presence of a mixed C 3/C 4 vegetation in the basin during the Last Glacial Stage, thus indicating the expansion of C 4 grasses. We hypothesized that lowered pCO 2 and possibly reduced rainfall resulted in the colonization of the tropical Andes by lowland C 4 grasses despite of prevailing cooler temperatures.

  13. Adaptation of photosynthetic processes to stress.

    Science.gov (United States)

    Berry, J A

    1975-05-01

    I have focused on examples of plant adaptations to environmental conditions that range from adjustments in the allocation of metabolic resources and modification of structural components to entirely separate mechanisms. The result of these modifications is more efficient performance under the stresses typically encountered in the plants' native habitats. Such adaptations, for reasons which are not entirely clear, often lead to poorer performance in other environmental conditions. This situation may be a fundamental basis for the tendency toward specialization among plants native to specific niches or habitats. The evolutionary mechanisms that have resulted in these specializations are very large-scale processes. It seems reasonable to suppose that the plants native to particular habitats are relatively efficient in terms of the limitations imposed by those habitats, and that the adaptive mechanisms these plants possess are, compared to those which have evolved in competing organisms, the most succesful biological means of coping with the environmental stresses encountered. I believe that we can learn from nature and utilize the adaptive mechanisms of these plants in agriculture to replace in part our present reliance on resources and energy to modify the environment for plant growth. By analogy with natural systems, improved resource utilization will require specialization and greater knowledge of the limitations of a particular environment and plant genotype. For example, the cultural conditions, plant architecture, and physiological responses necessary to achieve high water use efficiency from our crop species with C(4) photosynthesis probably differ from those required to achieve maximum total growth. Also, efforts to control water application to eliminate waste carry with them the risk that the crop could be injured by inadequate water. Thus, greater demands would be placed on the crop physiologist, the plant breeder, and the farmer. Planting and appropriate

  14. Changes in photosynthetic carbon metabolism in senescent leaves of chickpea, Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Murumkar

    2014-02-01

    Full Text Available Photosynthetic processes in mature and senescent leaves of chickpea (Cicer arietinum L. have been compared. With age, leaf photosynthetic pigments viz. chlorophyll a, chlorophyll b and carotenoids, and rate of 14°C fixation were considerably affected. Analysis of δ13C, and short term photosynthetic products showed no major change in the path of photosynthetic carbon fixation. Study of long term photosynthetic 14C assimilation revealed that in old senescent leaves, 14C incorporation into organic acid and sugar fractions was enhanced.

  15. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of...... fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  16. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  17. The crystal structure of (Fe4Cr4Ni)9C4

    Institute of Scientific and Technical Information of China (English)

    SHI; Nicheng; MA; Zhesheng; XIONG; Ming; DAI; Mingquan; BA

    2005-01-01

    (Fe4Cr4Ni)9C4 is a metal carbide mineral formed by combination of Fe, Cr and Ni with C. It occurs in a chromite deposit in the Luobusha ophiolite, Tibet. Based on the determination of its crystal structure, the empirical formula is (Fe4.12Cr3.84Ni0.96)8.92C3.70 and the simplified formula is (Fe4Cr4Ni)4C9. The mineral is hexagonal with a = 1.38392(2) nm, c = 0.44690(9) nm,space group P63 m c, Z=6 and the calculated specific gravity Dx = 7.089 g/cm3. Fe, Cr and Ni occupy different crystallographic sites and their coordination numbers are approximately 12,forming an alternate stacking sequence of flat and puckered layers along the c axis. Some metallic atoms have a defect structure. The interatomic distances of Fe, Cr and Ni are 0.2525-0.2666 nm, and the distances between Fe, Cr, Ni and C are 0.1893-0.2169 nm. The coordination number of carbon is 6. It occurs in interstices of the metallic atoms Fe, Cr and Ni to form trigonal-prismatically coordinated polyhedra. These coordination polyhedra are linked with each other via shared corners or shared edges into a new type of metal carbide structure.

  18. Functionality of C(4,4) carbon nanotube as molecular detector.

    Science.gov (United States)

    Malcioğlu, Osman Bariş; Erkoç, Sakir

    2008-02-01

    Alterations in the electronic transport properties of C(4,4) single walled carbon nanotube when an agent is introduced to the outer surface are investigated theoretically. Several chemical agents in this context are investigated. The calculations are performed in two steps: First an optimized geometry for the functionalized carbon nanotube is obtained using semi-empirical calculations at the PM3 level, and then the transport relations are obtained using non equilibrium green-function approach. Gaussian and Transiesta-C simulation packages are used in the calculations correspondingly. The "electrodes" are chosen to be ideal geometry of the particular carbon nanotube, eliminating current quantization effects due to contact region. By varying chemical potential in the electrode regions, an I-V curve is traced for each particular functionalisation. Conductance in carbon nanotubes show a strong dependence on the geometry and aromaticity, both are which altered when the suitable agent is introduced. This dependence results in rather dramatic response in the I-V trace, the current is reduced significantly, and quantization effects are observed, even for a single molecule. However due to chemically stable nature, not all agents form a chemical bond to the surface. Overall, the material is a promising candidate for detector equipment. PMID:18464360

  19. Effect of leukotriene C4 on electromechanical activity and Ca2+ uptake in taenia coli

    International Nuclear Information System (INIS)

    The actions of leukotriene C4 (LTC4) on electromechanical activity and 45Ca2+ uptake in guinea pig taenia coli were investigated. The contractile action of LTC4 was abolished by the removal of extracellular Ca2+. LTC4 concentrations eliciting a maximal contraction in normal medium produced no response in preparations depolarized with KCl. In single sucrose gap studies, LTC4 increased both the frequency of electrical spiking and tension. These effects were blocked by the dihydropyridine Ca2+-channel antagonist PY 108-068 and by the leukotriene receptor antagonist FPL 55712. In double sucrose gap experiments, LTC4 caused a small depolarization without measurable change in membrane conductivity; increased spontaneous electrical activity was again accompanied by an increase in tension. LTC4 caused a detectable increase in 45Ca2+ uptake only at extracellular Ca2+ concentrations less than 1 mM, and this was again inhibited by PY 108-068 or FPL 55712. It is concluded that the contractile effects of LTC4 in guinea pig taenia coli occur as a consequence of its ability to open voltage-sensitive Ca2+ channels, an effect that may occur independently of membrane depolarization

  20. COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    International Nuclear Information System (INIS)

    The 'Pre-SMM' (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM's sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL's sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE

  1. Microscopic calculations of C2 and C4 form factors in sd-shell nuclei

    International Nuclear Information System (INIS)

    Inelastic electron scattering to 2+ and 4+ states for the even-even N=Z sd-shell nuclei (20Ne, 24Mg, 28Si and 32S) are discussed taking into account higher energy configurations outside the sd-shell. Higher energy configurations, which are called core polarization effects, are included through a microscopic theory that includes excitations from the core 1s and 1p orbits and also from 2s-1d shell to the higher allowed orbits with 2ℎω excitations. The predictions of C2 and C4 Coulomb form factors are compared with the available experimental data. The calculations based on the Wildenthal interaction for the sd-shell model space and on the modified surface delta interaction for the core-polarization effects. The effect of higher excited configurations is found essential in both the transition strength and momentum transfer dependence of form factors, and gives a remarkably good agreement with the measured data

  2. Thermomagnetic analysis of meteorites. III - C3 and C4 chondrites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.; Larson, E. E.; Watson, D. E.

    1976-01-01

    Results are presented for thermomagnetic analysis in a controlled oxygen atmosphere of samples from thirteen C3 chondrites and two C4 chondrites. The examined meteorites are found to have rather diverse thermomagnetic properties, so they are placed into three groups on the basis of their thermomagnetic behavior and magnetic mineralogy: (1) those possibly containing magnetite before heating, but which display a large increase in saturation moment upon cooling to room temperature; (2) those containing magnetite as their major magnetic phase, but which show little change in saturation moment following the heating-cooling cycle; and (3) those which contain iron metal in addition to other magnetic phases. Upper limits are placed on the magnetite content of the five meteorites in group 1 by assuming that the initial saturation moment is due entirely to magnetite, and quantitative estimates of the magnetite content of the four meteorites in group 2 are determined from ambient-temperature saturation magnetization measurements. The data for the six meteorites in group 3 are discussed in terms of nickel content and troilite oxidation. It is concluded that since the magnetic and bulk mineralogies of carbonaceous chondrites are more varied and complex than indicated by whole-rock elemental analyses, the origin of such meteorites cannot be described by a simple model.

  3. Multiparticle excitations in the 149 Gd superdeformed nucleus. Signature of new C4 nucleus symmetry

    International Nuclear Information System (INIS)

    The use of 8 π and EUROGAM phase I multi-detectors for the study of high spin states of 149 Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C4 symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs

  4. Development of architecture for digital I and C system using C4ISR framework

    International Nuclear Information System (INIS)

    The architect framework for the digital I and C system is presented in this work. With rapid changes in digital I and C technology, there is a strong need to provide uniform methods to describe the system functions and their performance in context with the physical configuration and logical behavior. C4ISR framework would provide the process and method for the digital system in that it allows the three different views of operational, systems and services, and technical standards. Therefore, stakeholders can share information that is related to the system interfaces, the actions or activities that those components perform, and rules or constraints for those activities from the initial state of system development. As a result, the lifecycle cost and development time for the digital I and C system can also be optimized. These benefits can be obtained by introducing views and products to reveal the logical, behavioral, and performance characteristics of the architecture. To prove this approach, the plant protection system (PPS) is chosen and the architect framework is developed. (author)

  5. Cultivating C4 crops in a changing climate: sugarcane in Ghana

    International Nuclear Information System (INIS)

    Over the next few decades, it is expected that increasing fossil fuel prices will lead to a proliferation of energy crop cultivation initiatives. The environmental sustainability of these activities is thus a pressing issue—particularly when they take place in vulnerable regions, such as West Africa. In more general terms, the effect of increased CO2 concentrations and higher temperatures on biomass production and evapotranspiration affects the evolution of the global hydrological and carbon cycles. Investigating these processes for a C4 crop, such as sugarcane, thus provides an opportunity both to extend our understanding of the impact of climate change, and to assess our capacity to model the underpinning processes. This paper applies a process-based crop model to sugarcane in Ghana (where cultivation is planned), and the São Paulo region of Brazil (which has a well-established sugarcane industry). We show that, in the Daka River region of Ghana, provided there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the São Paulo region. In the final part of the study, the production of sugarcane under an idealized temperature increase climate change scenario is explored. It is shown that doubling CO2 mitigates the degree of water stress associated with a 4 °C increase in temperature. (letter)

  6. Cultivating C4 crops in a changing climate: sugarcane in Ghana

    Science.gov (United States)

    Black, Emily; Vidale, Pier Luigi; Verhoef, Anne; Vianna Cuadra, Santiago; Osborne, Tom; Van den Hoof, Catherine

    2012-12-01

    Over the next few decades, it is expected that increasing fossil fuel prices will lead to a proliferation of energy crop cultivation initiatives. The environmental sustainability of these activities is thus a pressing issue—particularly when they take place in vulnerable regions, such as West Africa. In more general terms, the effect of increased CO2 concentrations and higher temperatures on biomass production and evapotranspiration affects the evolution of the global hydrological and carbon cycles. Investigating these processes for a C4 crop, such as sugarcane, thus provides an opportunity both to extend our understanding of the impact of climate change, and to assess our capacity to model the underpinning processes. This paper applies a process-based crop model to sugarcane in Ghana (where cultivation is planned), and the São Paulo region of Brazil (which has a well-established sugarcane industry). We show that, in the Daka River region of Ghana, provided there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the São Paulo region. In the final part of the study, the production of sugarcane under an idealized temperature increase climate change scenario is explored. It is shown that doubling CO2 mitigates the degree of water stress associated with a 4 °C increase in temperature.

  7. Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The analysis of carbon isotope in phytoliths from modern plants and surface soils in China shows that the values of carbon isotope are consistent with those from C3 and C4 plants,and the processes of photosynthesis of the original plants can be clearly identified by carbon isotope in phytoliths.The value of carbon isotope varied from -23.8‰ to -28‰,with the maximum distributed in the latitude zone from 34° N to 40° N in North China and East China areas,and the minimum in the Northeast China and South China regions.The values of carbon of phytoliths tend to increase from low to high and then reduce to low value again as the latitude increases.In the same latitude zone,the carbon isotope in phytoliths from grassland soil under the trees is obviously lower than that from grassland soil without any trees with the difference of 1‰-2‰.

  8. Contribution of root respiration to soil respiration in a C3/C4 mixed grassland

    Indian Academy of Sciences (India)

    Wei Wang; Kenji Ohse; Jianjun Liu; Wenhong Mo; Takehisa Oikawa

    2005-09-01

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11.54 mol m–2 s–1 was found in August 2004 and the lowest soil respiration rate of 4.99 mol m–2 s–1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m–2 in August 2004 to 1.02 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 mol m–2 s–1) and lowest in October 2004 (1.7 mol m–2 s–1). Microbial respiration rate was highest in August 2004 (5.8 mol m–2 s–1) and lowest in April 2005 (2.59 mol m–2 s–1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.

  9. Human Talent Prediction in HRM using C4.5 Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Hamidah Jantan,

    2010-11-01

    Full Text Available In HRM, among the challenges for HR professionals is to manage an organization’s talents, especially to ensure the right person for the right job at the right time. Human talent prediction is an alternative to handle this issue. Due to that reason, classification and prediction in data mining which is commonly used in many areas can also be implemented to human talent. There are many classification techniques in data mining techniques such as Decision Tree, Neural Network, Rough Set Theory, Bayesian theory and Fuzzy logic. Decision tree is among the popular classification techniques, which can produce the interpretable rules or logic statement. Thegenerated rules from the selected technique can be used for future prediction. In this article, we present the study on how the potential human talent can be predicted using a decision tree classifier. By using this technique, the pattern of talent performance can be identified through the classification process. In that case, the hidden and valuable knowledge discovered in the related databases will be summarized in the decision tree structure. In this study, we use decision tree C4.5 classification algorithm to generate the classification rules for human talent performance records. Finally, the generated rules are evaluated using the unseen data in order to estimate the accuracy of the prediction result.

  10. Effects of selenium and vitamin E deficiencies on level of leukotriene C4

    Institute of Scientific and Technical Information of China (English)

    刘为民; 岳丽杰; 等

    1996-01-01

    A reduction in the glutatihion peroxidase(GSH-Px) activity of the blood and myocardium accompanied with an increase in the leukotriene C4(LTC4),free radicals and lipid peroxides(LPO) concentrations of the plasma and myocardium are found in Wistar rats fed with the low selenium(Se) and vitamin E(VE) grains from a Keshan disease(KD) endemic area for 11 weeks.The concentrations of LTC4,free radical and LPO were decreased in these rats and the GSH-Px activity is strengthened except the group supplemented with VE alone.Theses results suggest that the dietary deficiencies of Se and VE might take part in the occurrence and devepopment process of myocardial damage in KD and other ischemic and anoxic cardiomyopathy by affecting the activity of lipoxygenase in arachidonic acid metabolism and by cardiomyopathy by affecting the activity of lipoxygenased in arachidonic acid metabolism and by accelerating the synthesis of LTC4 owing to excessive free radicals and LPO.

  11. Air oxidation and seawater corrosion of Hastelloy S and Hastelloy C-4

    International Nuclear Information System (INIS)

    A program is currently under way at the Pacific Northwest Laboratory (PNL) to develop the data and technology needed to permit the licensing of 90SrF2 as a radioisotope heat source fuel for terrestrial applications. The WESF 90SrF2 storage capsule consists of a Hastelloy C-276 inner capsule (2 in. I.D. x 19 in. long) and a 316L stainless steel outer capsule (2-3/8 in. I.D. x 20 in. long). Preliminary experimental tests and theoretical calculations show that the WESF storage capsule is incapable of meeting current licensing requirements for heat sources that are to be used for terrestrial applications. Therefore, the DOE decision was to develop a new heat source design that would retain the existing WESF Hastelloy C-276 inner capsule and replace the current WESF outer capsule with a new outer capsule capable of meeting current licensing requirements. Based on a number of factors, Hastelloy S was selected as the outer capsule material. Hastelloy C-4 was selected as a backup material in case the Hastelloy S had to be rejected for any reason. This report summarizes the results of studies carried out to determine the effects of both air oxidation at heat source operating temperatures and seawater corrosion on the tensile properties of the outer capsule materials

  12. Toward the accurate analysis of C1-C4 polycyclic aromatic sulfur heterocycles.

    Science.gov (United States)

    Zeigler, Christian; Wilton, Nicholas; Robbat, Albert

    2012-03-01

    Polycyclic aromatic sulfur heterocycles (PASH) are sulfur analogues of polycyclic aromatic hydrocarbons (PAH). Alkylated PAH attract much attention as carcinogens, mutagens, and as diagnostics for environmental forensics. PASH, in contrast, are mostly ignored in the same studies due to the conspicuous absence of gas chromatography/mass spectrometry (GC/MS) retention times and fragmentation patterns. To obtain these data, eight coal tar and crude oils were analyzed by automated sequential GC-GC. Sample components separated based on their interactions with two different stationary phases. Newly developed algorithms deconvolved combinatorially selected ions to identify and quantify PASH in these samples. Simultaneous detection by MS and pulsed flame photometric detectors (PFPD) provided additional selectivity to differentiate PASH from PAH when coelution occurred. A comprehensive library of spectra and retention indices is reported for the C(1)-C(4) two-, three-, and four-ring PASH. Results demonstrate the importance of using multiple fragmentation patterns per homologue (MFPPH) compared to selected ion monitoring (SIM) or extraction (SIE) to identify isomers. Since SIM/SIE analyses dramatically overestimate homologue concentrations, MFPPH should be used to correctly quantify PASH for bioavailability, weathering, and liability studies. PMID:22339202

  13. Modeling and verifying SoS performance requirements of C4ISR systems

    Institute of Scientific and Technical Information of China (English)

    Yudong Qi; Zhixue Wang; Qingchao Dong; Hongyue He

    2015-01-01

    System-of-systems (SoS) engineering involves a com-plex process of refining high-level SoS requirements into more detailed systems requirements and assessing the extent to which the performances of to-be systems may possibly satisfy SoS capa-bility objectives. The key issue is how to model such requirements to automate the process of analysis and assessment. This paper suggests a meta-model that defines both functional and non-functional features of SoS requirements for command and control, communication, computer, intel igence, surveil ance reconnais-sance (C4ISR) systems. A domain-specific modeling language is defined by extending unified modeling language (UML) con-structed of class and association with fuzzy theory in order to model the fuzzy concepts of performance requirements. An effi-ciency evaluation function is introduced, based on B´ezier curves, to predict the effectiveness of systems. An algorithm is presented to transform domain models in fuzzy UML into a requirements ontology in description logic (DL) so that requirements verification can be automated with a popular DL reasoner such as Pel et.

  14. Perfect Octagon Quadrangle Systems with an upper C4-system and a large spectrum

    Directory of Open Access Journals (Sweden)

    Luigia Berardi

    2011-02-01

    Full Text Available An octagon quadrangle is the graph consisting of an 8-cycle (x1, x2,..., x8 with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order ν and index λ [OQS] is a pair (X,H, where X is a finite set of ν vertices and H is a collection of edge disjoint octagon quadrangles (called blocks which partition the edge set of λKν defined on X. An octagon quadrangle system Σ=(X,H of order ν and index λ is said to be upper C4-perfect if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν; it is said to be upper strongly perfect, if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν and also the collection of all of the outside 8-cycles contained in the octagon quadrangles form a ρ-fold 8-cycle system of order ν. In this paper, the authors determine the spectrum for these systems, in the case that it is the largest possible.

  15. The effect of timing of growing season drought on flowering of a dominant C4 grass.

    Science.gov (United States)

    Dietrich, John D; Smith, Melinda D

    2016-06-01

    Timing of precipitation is equally important as amount for determining ecosystem function, especially aboveground net primary productivity (ANPP), in a number of ecosystems. In tallgrass prairie of the Central Plains of North America, grass flowering stalks of dominant C4 grasses, such as Andropogon gerardii, can account for more than 70 % of ANPP, or almost none of it, as the number of flowering stalks produced is highly variable. Although growing season precipitation amount is important for driving variation in flowering stalk production, it remains unknown whether there are critical periods within the growing season in which sufficient rainfall must occur to allow for flowering. The effect of timing of rainfall deficit (drought) on flowering of A. gerardii, was tested by excluding rainfall during three periods within the growing season (starting in mid-April, mid-May and mid-June). Mid-summer drought (starting in mid-June) strongly reduced the flowering rate (e.g., density and biomass) of A. gerardii (e.g., as high as 94 % compared to the control), suggesting flowering is highly sensitive to precipitation at this time. This effect appeared to be related to plant water status at the time of flowering stalk initiation, rather than an indirect consequence of reduced C assimilation. Our results suggest that increased frequency of growing season drought forecast with climate change could reduce sexual reproduction in this dominant grass species, particularly if it coincides with timing of flowering stalk initiation, with important implications for ecosystem functioning. PMID:26886131

  16. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  17. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    complement pathway regulator MAP-1. Furthermore, we found that complex formation between recombinant collectin-11 and recombinant MASP-2 on Candida albicans leads to deposition of C4b. Native collectin-11 in serum mediated complement activation and deposition of C4b and C3b, and formation of the terminal...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway in...

  18. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  19. Expression of complement components C3 and C4 in Takifugu obscurus infected by Aeromonas hydrophila%感染后暗纹东方纯补体组分C3、C4表达分析

    Institute of Scientific and Technical Information of China (English)

    陈勇; 郭丽; 陈舒泛

    2008-01-01

    通过用不同浓度(0、1×106、2×106、4×106 CFU/ml)的嗜水气单胞菌感染暗纹东方纯,利用RT-PCR技术检测感染后不同时间肝脏以及不同组织补体组分C3和C4的表达量,以了解和比较补体组分C3和C4在鱼体正常和患病状态以及感染后不同时间、不同组织内的表达差异.结果表明,补体组分c3的表达量在用2×106CFU/ml嗜水气单胞菌感染9 h时达到最大,补体组分C4表达量在用4×106 CFU/ml嗜水气单胞菌感染10 h时最大;在不同组织中补体组分C3和C4均是在肝脏中的表达量最大.由此可见,补体组分C3和C4在介导病原体清除及创伤修复过程中起着重要作用.

  20. Online CO2 and H2 O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants.

    Science.gov (United States)

    Barbour, Margaret M; Evans, John R; Simonin, Kevin A; von Caemmerer, Susanne

    2016-05-01

    Mesophyll conductance significantly, and variably, limits photosynthesis but we currently have no reliable method of measurement for C4 plants. An online oxygen isotope technique was developed to allow quantification of mesophyll conductance in C4 plants and to provide an alternative estimate in C3 plants. The technique is compared to an established carbon isotope method in three C3 species. Mesophyll conductance of C4 species was similar to that in the C3 species measured, and declined in both C4 and C3 species as leaves aged from fully expanded to senescing. In cotton leaves, simultaneous measurement of carbon and oxygen isotope discrimination allowed the partitioning of total conductance to the chloroplasts into cell wall and plasma membrane versus chloroplast membrane components, if CO2 was assumed to be isotopically equilibrated with cytosolic water, and the partitioning remained stable with leaf age. The oxygen isotope technique allowed estimation of mesophyll conductance in C4 plants and, when combined with well-established carbon isotope techniques, may provide additional information on mesophyll conductance in C3 plants. PMID:26778088