WorldWideScience

Sample records for c3a hepatoblastoma cells

  1. Hepatoblastoma: A Need for Cell Lines and Tissue Banks to Develop Targeted Drug Therapies

    Directory of Open Access Journals (Sweden)

    Rishi Raj Rikhi

    2016-03-01

    Full Text Available Limited research exists regarding the most aggressive forms of hepatoblastoma. Cell lines of the rare subtypes of hepatoblastoma with poor prognosis are not only difficult to attain, but are challenging to characterize histologically. A community approach to educating parents and families of the need for donated tissue is necessary for scientists to have access to resources for murine models and drug discovery. Herein we describe the currently available resources, the today’s existing gaps in research, and the path to move forward for uniform cure of hepatoblastoma.

  2. Hepatoblastoma incidence in Taiwan: A population-based study

    Directory of Open Access Journals (Sweden)

    Giun-Yi Hung

    2018-06-01

    Full Text Available Background: The incidence of hepatoblastoma is not well known in Taiwan. The goal of this study was to investigate the incidence rates of hepatoblastoma by age and sex. Methods: The data of patients with hepatoblastoma diagnosed from 1995 to 2012 were obtained from the population-based Taiwan Cancer Registry. Incidence rates of hepatoblastoma according to sex and age were analyzed. This study employed the published methods of International Agency for Research on Cancer to calculate the age-standardized incidence rates (ASIRs, standard errors, 95% confidence intervals (CIs, and standardized incidence rate ratios (SIRRs. Results: In total, 211 patients were diagnosed with hepatoblastoma during the 18-year study period. The ASIR was 0.76 per million person-years. Hepatoblastoma was predominantly diagnosed in children (n = 184, 87.2%. By contrast, adolescents/adults (n = 10, 4.7% and elderly people (n = 17, 8.1% were rarely affected. The incidence peaked at ages 0–4 years with corresponding ASIR of 7.3 per million person-years. A significant male predilection was only found in children and elderly people, with male-to-female SIRRs of 1.23 and 1.89, respectively. During 1995–2012, the overall incidence of hepatoblastoma significantly increased only in children (annual percent change: 7.4%, 95% CI 3.9%–11.1%, p < 0.05 and specifically in boys (annual percent change: 6.5%, 95% CI 1.9%–11.2%, p < 0.05. Conclusion: Only 27 patients aged ≥ 15 years with hepatoblastoma were identified in this study, the existence of adult hepatoblastoma still requires novel molecular tools to elucidate. The association between the upward trend of hepatoblastoma incidence in boys and increased survival of prematurity in Taiwan warrants further investigations. Keywords: Hepatoblastoma, Incidence, Taiwan

  3. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma.

    Science.gov (United States)

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-06-30

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma.

  4. CITED1 Expression in Liver Development and Hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Andrew J. Murphy

    2012-12-01

    Full Text Available Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1, a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT. In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5, begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8% hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1 and CXXC finger protein 4 (CXXC4. CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors.

  5. Sialoblastoma and hepatoblastoma in a neonate

    International Nuclear Information System (INIS)

    Siddiqi, S.H.; Solomon, M.P.; Haller, J.O.

    2000-01-01

    We report a case of salivary gland neoplasm and associated hepatoblastoma. The sialoblastoma was diagnosed by prenatal sonography; however, the hepatoblastoma was imaged post-operatively. Prior knowledge could have prevented a subsequent operation, including the additional risks of repeat anesthesia. We suggest that if a sialoblastoma is in the differential diagnosis, then additional imaging may be indicated because of the possibility of associated lesions. (orig.)

  6. Hepatoblastoma in the nordic countries

    DEFF Research Database (Denmark)

    de Fine Licht, S; Schmidt, L S; Rod, Naja Hulvej

    2011-01-01

    Little is known about the aetiology of hepatoblastoma. Because of the young age at diagnosis, several studies have looked at various birth characteristics. The purpose of this study was to investigate the incidence of hepatoblastoma in the Nordic countries and the association between selected bir...

  7. RESEARCH Lessons from the hepatoblastoma-familial polyposis ...

    African Journals Online (AJOL)

    screening of HB patients for APC gene variation in cases of childhood .... mutations that play a key role in liver development, regeneration and ... Ucar C, Caliskan U, Toy H, Gunel E. Hepatoblastoma in a child with neurofibromatosis type I.

  8. Successfully Surgical Treatment of Lung Metastatic Hepatoblastoma: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Halim Bardi Taneh

    2017-08-01

    Full Text Available Background Hepatoblastoma is a common liver malignancy in children and commonly presents with primary tumors. In hepatoblastoma, lung is the most common place to metastasis. Chemotherapy have led to many improvements in the local control of hepatoblastoma. A main goal of treatment for hepatoblastoma is to achieve complete tumor resection. Case Presentation The patient was a 2.5 years old boy with abdominal distention and abdominal pain. Abdominal and pelvic ultrasound and thoracic and abdominal CT was performed for the patient and the results of them showed a large and hyperecho mass in the liver and several nodular lesions in lung segments. After doing some other tests, the diagnosis for the patient was hepatoblastoma. After chemothetapy the primary tumor was removed by surgery. Follow-up by CT scan after second chemotherapy showed that the lesions in the liver were removed, but lung masses were still unchanged and after second surgery, lung masses were removed too. The outcome has been favorable with no recurrence as of 20 months after the operation. Conclusion In our case, the patient did not respond to chemotherapy and as main treatment, surgery was carried out, that shows its importance in the treatment of hepatoblastoma.

  9. Subcutaneous and intrahepatic growth of human hepatoblastoma in immunodeficient mice

    NARCIS (Netherlands)

    Schnater, J. Marco; Bruder, Elisabeth; Bertschin, Sibylle; Woodtli, Thomas; de Theije, Chiel; Pietsch, Torsten; Aronson, Daniel C.; von Schweinitz, Dietrich; Lamers, Wouter H.; Köhler, Eleonore S.

    2006-01-01

    BACKGROUND/AIMS: Hepatoblastoma is the most frequent malignant pediatric liver tumor. Approximately 25% of hepatoblastoma patients cannot be cured with current treatment protocols. Additional treatment options must, therefore, be developed. Subcutaneous animal models for hepatoblastoma exist, but a

  10. Surgical Resection for Hepatoblastoma-Updated Survival Outcomes.

    Science.gov (United States)

    Sunil, Bhanu Jayanand; Palaniappan, Ravisankar; Venkitaraman, Balasubramanian; Ranganathan, Rama

    2017-09-30

    Hepatoblastoma is the most common liver malignancy in the pediatric age group. The management of hepatoblastoma involves multidisciplinary approach. Patients with hepatoblastoma who underwent liver resection between 2000 and 2013 were analyzed and survival outcomes were studied. The crude incidence rate of hepatoblastoma at the Madras Metropolitan Tumor Registry (MMTR) is 0.4/1,00,000 population per year. Twelve patients underwent liver resection for hepatoblastoma during the study period; this included eight males and four females. The median age at presentation was 1.75 years (Range 5 months to 3 years). The median serum AFP in the study population was 20,000 ng/ml (Range 4.5 to 1,40,000 ng/ml). Three patients had stage I, one patient had stage II, and eight patients had stage III disease as per the PRETEXT staging system. Two patients were categorized as high risk and ten patients were categorized as standard risk. Seven of these patients received two to four cycles of neoadjuvant chemotherapy (PLADO regimen), and one patient received neoadjuvant radiation up to 84 Gy. Major liver resection was performed in nine patients. Nine patients received adjuvant chemotherapy. The most common histological subtype was embryonal type. Microscopic margin was positive in three cases. One patient recurred 7 months after surgery and the site of failure was the lung. The 5-year overall survival of the case series was 91%. The median survival was 120 months. Liver resections can be safely performed in pediatric populations after neoadjuvant treatment. Patients undergoing surgery had good disease control and long-term survival.

  11. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    Science.gov (United States)

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  12. Relapse surveillance in AFP-positive hepatoblastoma: re-evaluating the role of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Yesenia; Vasudevan, Sanjeev A.; Nuchtern, Jed G. [Baylor College of Medicine, Pediatric Surgery Division, Michael E. DeBakey Department of Surgery, Texas Children' s Hospital, Houston, TX (United States); Guillerman, R.P. [Baylor College of Medicine, Department of Pediatric Radiology, Texas Children' s Hospital, Houston, TX (United States); Zhang, Wei [Texas Children' s Hospital, Surgical Outcomes Center, Houston, TX (United States); Thompson, Patrick A. [Baylor College of Medicine, Hematology-Oncology Division, Department of Pediatrics, Texas Children' s Cancer Center, Texas Children' s Hospital, Houston, TX (United States); University of North Carolina, Hematology-Oncology Division, Department of Pediatrics, North Carolina Children' s Hospital, Chapel Hill, NC (United States)

    2014-10-15

    Children with hepatoblastoma routinely undergo repetitive surveillance imaging, with CT scans for several years after therapy, increasing the risk of radiation-induced cancer. The purpose of this study was to determine the utility of surveillance CT scans compared to serum alpha-fetoprotein (AFP) levels for the detection of hepatoblastoma relapse. This was a retrospective study of all children diagnosed with AFP-positive hepatoblastoma from 2001 to 2011 at a single institution. Twenty-six children with hepatoblastoma were identified, with a mean age at diagnosis of 2 years 4 months (range 3 months to 11 years). Mean AFP level at diagnosis was 132,732 ng/ml (range 172.8-572,613 ng/ml). Five of the 26 children had hepatoblastoma relapse. A total of 105 imaging exams were performed following completion of therapy; 88 (84%) CT, 8 (8%) MRI, 5 (5%) US and 4 (4%) FDG PET/CT exams. A total of 288 alpha-fetoprotein levels were drawn, with a mean of 11 per child. The AFP level was elevated in all recurrences and no relapses were detected by imaging before AFP elevation. Two false-positive AFP levels and 15 false-positive imaging exams were detected. AFP elevation was found to be significantly more specific than PET/CT and CT imaging at detecting relapse. We recommend using serial serum AFP levels as the preferred method of surveillance in children with AFP-positive hepatoblastoma, reserving imaging for the early postoperative period, for children at high risk of relapse, and for determination of the anatomical site of clinically suspected recurrence. Given the small size of this preliminary study, validation in a larger patient population is warranted. (orig.)

  13. Hepatoblastoma and prune belly syndrome: a potential association.

    Science.gov (United States)

    Becknell, Brian; Pais, Priya; Onimoe, Grace; Rangarajan, Hemalatha; Schwaderer, Andrew L; McHugh, Kirk; Ranalli, Mark A; Hains, David S

    2011-08-01

    Prune belly syndrome (PBS) is a congenital anomaly characterized by the clinical triad of lax abdominal musculature, bilateral cryptorchidism, and abnormalities of the kidney and urinary tract. Previous reports of malignancy in patients with PBS have been limited to germ cell tumors. Hepatoblastoma (HBL) is the most common hepatic malignancy of childhood, affecting approximately 100 children each year in the USA. We describe a set of 4 pediatric patients with PBS and HBL. All individuals were born after 2002. These subjects lacked genetic, natal, or environmental factors known to confer risk of HBL. The occurrence of PBS and HBL in these patients constitutes a novel potential association.

  14. Recurrent hepatoblastoma with localization by PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Figarola, Maria S.; McQuiston, Samuel A. [University of South Alabama, Department of Radiology, Mobile, AL (United States); Wilson, Felicia [University of South Alabama, Pediatric Hematology-Oncology, Mobile, AL (United States); Powell, Randall [University of South Alabama, Surgery Department, Mobile, AL (United States)

    2005-12-01

    Hepatoblastoma is the most common primary liver tumor in children, accounting for 79% of pediatric liver malignancies in children younger than 15 years, with most cases reported before the age of 5 years. Localization of primary and recurrent disease is necessary for appropriate clinical decision-making and treatment. We present a case of recurrent hepatoblastoma heralded by rising alpha-fetoprotein levels. After unsuccessful localization by conventional CT and MRI, positron emission tomography CT imaging localized the sites of recurrence. (orig.)

  15. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  16. Where do we stand with hepatoblastoma? A review

    NARCIS (Netherlands)

    Schnater, J. Marco; Köhler, S. Eleonore; Lamers, Wouter H.; von Schweinitz, Dietrich; Aronson, Daniël C.

    2003-01-01

    Hepatoblastoma (HB) is the most common pediatric liver malignancy, comprising approximately 1% of all pediatric cancers. The disparate clinical staging systems and histologic classifications that were developed during the last decades, nevertheless, reflect the remaining difficulties and

  17. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  18. Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas.

    Science.gov (United States)

    Chitragar, S; Iyer, V K; Agarwala, S; Gupta, S D; Sharma, A; Wari, M N

    2011-01-01

    IGF2 is a tumor suppressor gene at locus 11p15. Many hepatoblastomas have loss of heterozygosity (LOH) at this locus. Earlier studies have not demonstrated any association between LOH and prognosis. Aim of the study was to evaluate the prognostic significance of LOH at 11p15.5 in hepatoblastomas. DNA was isolated from normal liver and tumor tissue in 20 patients with hepatoblastoma. PCR was performed and cases were classified as LOH present, absent or non-informative. Patients' follow-up data was analyzed using Fischer's exact test and Kaplan-Meier survival analysis for relapse-free survival (RFS) in relation to LOH. Ethical clearance was obtained from the institutional ethics board. All cases were informative for at least one microsatellite marker used. 4 of the 20 cases (20%) had LOH at 11p15.5. One patient died in the immediate postoperative period. 5 of 19 patients relapsed (26%). Of 4 patients who had LOH, 3 (75%) relapsed, the time to relapse being 7, 7 and 9 months, respectively. Of the 15 cases without LOH, 2 (13.3%) relapsed. 4 patients had mixed epithelial and mesenchymal histology; 3 of them had LOH. The 2 groups with and without LOH were well matched. The RFS for patients with LOH (n=4) was 13% (mean survival time [MST]: 8.7 months; 95CI 6.7-10.7), while the RFS for cases without LOH (n=15) was 75% (MST: 100.7 months; 95CI 74.5-126.8). Mixed epithelial and mesenchymal histology is more frequently associated with LOH on chromosome 11p15.5 than pure epithelial histology. LOH on chromosome 11p15.5 is associated with a significantly increased incidence of relapse and a significantly shorter relapse-free survival in patients with hepatoblastoma. The risk of relapse is higher and the RFS lower both in standard-risk and high-risk patients with hepatoblastoma if they demonstrate the presence of LOH at 11p15.5. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  20. Resectable hepatoblastoma with tumor thrombus extending into the right atrium after chemotherapy: A case report

    Directory of Open Access Journals (Sweden)

    Kosuke Endo

    2016-04-01

    Full Text Available Hepatoblastoma with intraatrial tumor thrombus is relatively rare. We report a case of hepatoblastoma with tumor thrombus extending into the right atrium, which responded well to chemotherapy and was resected using extracorporeal circulation. A 4-year-old girl was referred to our hospital because of abdominal distention and tenderness. A computed tomography (CT scan showed a large tumor occupying the left 3 segments of the liver with tumor thrombus extending into the right atrium. There was also a small intrahepatic metastasis in the right lobe of the liver. She was diagnosed with hepatoblastoma on the basis of the results of open biopsy. Neoadjuvant chemotherapy with an intense CDDP-based regimen was performed. The tumor responded well to chemotherapy, and intrahepatic metastasis became undetectable on CT scan, although the tumor thrombus remained in the right atrium. After 7 courses of chemotherapy, we performed resection using extracorporeal circulation. The postoperative course was uneventful, and adjuvant chemotherapy was started 10 days after the operation. Her serum alpha-fetoprotein (AFP level decreased to the normal range, and she was free of disease for 1 year after the operation. Tumor resection using extracorporeal circulation can be performed safely and is justified in patients with intraatrial tumor thrombus.

  1. Using Acetaminophen's Toxicity Mechanism to Enhance Cisplatin Efficacy in Hepatocarcinoma and Hepatoblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Alexander J. Neuwelt

    2009-10-01

    Conclusions: Our results suggest that a chemotherapeutic regimen containing both AAP and CDDP with delayed NAC rescue has the potential to enhance chemotherapeutic efficacy while decreasing adverse effects. This would be a promising approach particularly for hepatoblastomas regardless of cellular CYP2E1 protein level but could also be beneficial in other malignancies.

  2. Ante situm liver resection with inferior vena cava replacement under hypothermic cardiopolmunary bypass for hepatoblastoma: Report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Roberta Angelico

    2017-01-01

    Conclusions: We report for the first time a case of ante situ liver resection and inferior-vena-cava replacement associated with hypothermic cardiopulmonary bypass in a child with hepatoblastoma. Herein, we extensively review the literature for hepatoblastoma with thumoral thrombi and we describe the technical aspects of ante situm approach, which is a realistic option in otherwise unresectable hepatoblastoma.

  3. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    International Nuclear Information System (INIS)

    Rumbajan, Janette Mareska; Aoki, Shigehisa; Kohashi, Kenichi; Oda, Yoshinao; Hata, Kenichiro; Saji, Tsutomu; Taguchi, Tomoaki; Tajiri, Tatsuro; Soejima, Hidenobu; Joh, Keiichiro; Maeda, Toshiyuki; Souzaki, Ryota; Mitsui, Kazumasa; Higashimoto, Ken; Nakabayashi, Kazuhiko; Yatsuki, Hitomi; Nishioka, Kenichi; Harada, Ryoko

    2013-01-01

    Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma

  4. Hepatoblastoma imaging with gadoxetate disodium-enhanced MRI - typical, atypical, pre- and post-treatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Arthur B. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Medical College of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Children' s Hospital of Wisconsin, Department of Pediatric Imaging, Milwaukee, WI (United States); Towbin, Alexander J.; Podberesky, Daniel J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Geller, James I. [Cincinnati Children' s Hospital Medical Center, Department of Hematology/Oncology, Cincinnati, OH (United States)

    2012-07-15

    Gadoxetate disodium (Gd-EOB-DTPA) is a hepatobiliary MRI contrast agent widely used in adults for characterization of liver tumors and increasingly used in children. Hepatoblastoma is the most common primary hepatic malignancy of childhood. In this review, we describe our experience with this agent both before and after initiating therapy in children with hepatoblastoma. (orig.)

  5. Lessons from the hepatoblastoma-familial polyposis connection ...

    African Journals Online (AJOL)

    Background. Approximately one-third of hepatoblastoma (HB) patients have associated congenital abnormalities, but familial recurrence is rare, except in association with familial adenomatous polyposis (FAP). This correlation may be missed if not actively sought, with implications for long-term outcome and management.

  6. Effectiveness of transarterial chemoembolization in hepatoblastoma: a preliminary study

    International Nuclear Information System (INIS)

    Park, Hark Hoon; Han, Young Min; Kang, Sung Soo; Kim, Jae Chun; Lee, Dong Geun; Hwang, Pyoung Han; Kim, Chong Soo; Lee, Jeong Min

    1998-01-01

    To evaluate the therapeutic effectiveness and useful as well as the ness, systemic effect and effectiveness, of preoperative TACE when used in patients with unresectable or high risk hepatoblastoma. We retrospectively evaluated four patients with pathologically proven hepatoblastoma. One was male and three were female, and they were aged between 8 and 27 (mean, 15) months. All underwent selective hepatic angiography and chemoembolization after superselection of tumor feeding vessels. Cisplatin 90mg/m 2 (50-80mg), adriamycine 40mg/m 2 (20mg) and lipiodol suspension 4cc ere used as chemotherapeutic agents. Embolization was then performed, gelfoam particles. TACE was repeated at intervals of 3 weeks, and after the second episode, all patients underwent hepatic resection. To evaluate changes in the size, volume, internal texture and margin of the mass, as well as the systemic toxicity of chemotherapeutic drugs, we performed con-trast-enhanced CT and checked AFP,CBC and GOT/GPT before and after TACE. In all patients, TACE was successfully performed and major problems related to the procedure and toxicity of chemotherapeutic agents used were not noted. The largest diameter and volume of tumors were reduced by 33% (from 8.3 to 5.6 cm) and 69% respectively. Tumor necrosis was evident in all patients. Lipiodol uptake by tumors was homogenous and tumors were well distingulished from normal parenchyma. Compared to pre-TACE, serum alpha-feto-protein was reduced from 994(range:615--1690 ng/ml) to 46 ng/ml(42-- 47ng/ml) after the second TACE, and six months after surgery was in the normal range(13ng/ml;3--23ng/ml). SGOT/SGPT levels were temporally elevated after TACE but normalized within a few weeks. TACE can be a useful technique for preoperative treatment of hepatoblestomas. In tomors which are high-risk or inoperable, the therapeutio agents involved were not shown to be toxic.=20

  7. Delta-like protein (DLK) is a novel immunohistochemical marker for human hepatoblastomas

    DEFF Research Database (Denmark)

    Dezso, Katalin; Halász, Judit; Bisgaard, Hanne Cathrine

    2008-01-01

    Delta-like protein (DLK) is a membrane protein with mostly unknown function. It is expressed by several embryonic tissues among others by the hepatoblasts of rodent and human fetal livers. We have investigated in the present study if this protein is expressed in human hepatoblastomas. The presenc...

  8. Preoperative Transcatheter Selective Arterial Chemoembolization in Treatment of Unresectable Hepatoblastoma in Infants and Children

    International Nuclear Information System (INIS)

    Li Jiaping; Chu Jianping; Yang Jianyong; Chen Wei; Wang Yu; Huang Yonghui

    2008-01-01

    The purpose of this study was to evaluate the clinical feasibility and efficacy of transcatheter selective arterial chemoembolization (TACE) for unresectable hepatoblastoma in infants and children. The study was performed with the approval of our institutional review board. Sixteen patients (13 boys, 3 girls) with unresectable hepatoblastoma were treated one to three times with preoperative TACE in an effort to improve the surgical and clinical outcome. Their ages ranged from 50 days to 60 months, with a mean age of 20.4 months. All cases were pathologically proved hepatoblastoma by fine-needle biopsy. After an intra-arterial catheter was selectively inserted into the main feeding artery of the tumor, cycles of cisplatin (40 to 50 mg/m 2 ) and adriamycin (20 to 30 mg/m 2 ) mixed with lipiodol were given, followed by gelatin foam particles or stainless-steel coils. Tumor response was evaluated according to tumor shrinkage, α-fetoprotein (AFP) levels, and pathological findings. TACE procedure was performed one to three times, depending on the patient's response. Surgical resection was carried out when the tumor volume appeared sufficiently reduced to allow safe resection by either lobectomy or extended lobectomy. A marked reduction in tumor size associated with decreased AFP level occurred after treatment. According to paired-samples test, tumor shrinkage ranged from 19.0% to 82.0%, with a mean value of 59.2%. AFP levels decreased 99.0% to 29.0% from initial levels, with a mean decrease of 60.0%. TACE allowed subsequent complete surgical resection in 13 cases and the other 3 cases underwent partial resection. One patient underwent successful orthotopic liver transplantation after receiving TACE therapy. Pathological examination showed that the mean percentage of necrotic area in the surgical specimens was 87%. Overall survival rate at 1, 3, and 5 years was 87.5%, 68.7%, and 50%, respectively. Correspondingly, event-free survival rate was 75%, 62.5%, and 43

  9. Anaphylatoxin C3a induced mediator release from mast cells

    International Nuclear Information System (INIS)

    Herrscher, R.; Hugli, T.E.; Sullivan, T.J.

    1986-01-01

    The authors investigated the biochemical and functional consequences of the binding of highly purified human C3a to isolated rat serosal mast cells. C3a caused a dose-dependent (1-30 μM), noncytotoxic release of up to 64% (+/- 7 SEM) of the mast cell histamine content. C3a (10μM) increased 45 Ca ++ uptake 8.2- fold (+/- 2.2 SEM) above unstimulated control values within 10 minutes. Arachidonyl-diacylglycerol and arachidonyl-monoacylglycerol levels increased significantly within 2 minutes after C3a (10 μM) stimulation. Turnover of phosphatidylinositol, phosphatidic acid, and phosphatidylcholine were increased within 15 minutes. In contrast to antigen, C3a stimulation (10 μM) was not enhanced by exogenous phosphatidylserine, and was not inhibited by ethanol (100 μmM). C3a suppressed arachidonic acid (AA) release to 38% (+/- 9 SEM) below baseline, and did not cause PGD 2 formation. C3a and the desarginine form of C3a caused identical responses in all experiments. These studies indicate that C3a stimulation activates mast cell preformed mediator release in a manner very similar to antigen-IgE stimulation, but C3a suppresses free AA levels and does not stimulate PGD 2 synthesis

  10. Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells

    DEFF Research Database (Denmark)

    Romanelli, Roberto G; Petrai, Ilaria; Robino, Gaia

    2005-01-01

    Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl......, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in this cell type. Specific transcripts for c-Mpl were detected in HepG2 cells by RT-PCR, and expression of the protein was demonstrated by Western blot analysis and immunofluorescence. Exposure of HepG2 cells to TPO...... members of the MAPK family, including ERK and JNK, as assessed using phosphorylation-specific antibodies and immune complex kinase assays. TPO also activated phosphatidylinositol 3-kinase (PI3K) and the downstream kinase Akt in a time-dependent manner. Finally, activation of c-Mpl was associated...

  11. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells.

    Science.gov (United States)

    Zheng, Yingjuan; Zhao, Chao; Zhang, Naijian; Kang, Wenqin; Lu, Rongrong; Wu, Huadong; Geng, Yingxue; Zhao, Yaping; Xu, Xiaoyan

    2018-04-01

    The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.

  12. CT findings of hepatoblastoma before and after chemotherapy : correlation with pathologic features

    International Nuclear Information System (INIS)

    Seo, Joon Beom; Kim, Woo Sun; Kim, In One; Jang, Ja June; Kim, Chong Jai; Ahn, Hyo Seop; Yeon, Kyung Mo

    1998-01-01

    The purpose of this study was to analyze the CT findings of hepatoblastoma before and after chemotherapy, and to compare them with surgical and pathologic features. Twelve hepatoblastoma patients underwent chemotherapy prior to surgery; in all cases, CT scanning was performed before and after chemotherapy. We reviewed the findings with special attention to changes in tumor volume, the extent and pattern of contrast enhancement, the extent of low-attenuation area in the tumor, the presence of a septum, and calcification or ossification or ossification within the mass before and after chemotherapy. Post-chemotherapy CT findings were compared with operative and pathologic findings. After chemotheapy, the volume of the tumor mass decreased in all patients, and the extent of involved segments decreased in nine (75%), the non-enhancing area within the mass, on the other hand, increased in nine (75 %). On pre-chemotherapy CT, calcifications were detected in seven patients (58%), and on post-chemotherapy CT, in nine (75%); the extent of calcification were detected in seven patients. On the basis of CT findings, viable tumor and necrosis areas could not be distinguished. Massive calcification or osteoid mixed with loose connective tissue was noted in the mesenchymal component of the tumor; the whirling pattern of enhancement within the area of low density seen on CT scanning corresponded to osteoid mixed with loose connective tissue, which contained rich blood vessels. We describe the CT findings of hepatoblastoma both before and after chemotherapy, highlighting the changes which occurred. An understanding of these changes is helpful for the proper management of this condition. (author). 18 refs., 1 tab., 5 figs

  13. C3a Enhances the Formation of Intestinal Organoids through C3aR1

    Directory of Open Access Journals (Sweden)

    Naoya Matsumoto

    2017-09-01

    Full Text Available C3a is important in the regulation of the immune response as well as in the development of organ inflammation and injury. Furthermore, C3a contributes to liver regeneration but its role in intestinal stem cell function has not been studied. We hypothesized that C3a is important for intestinal repair and regeneration. Intestinal organoid formation, a measure of stem cell capacity, was significantly limited in C3-deficient and C3a receptor (C3aR 1-deficient mice while C3a promoted the growth of organoids from normal mice by supporting Wnt-signaling but not from C3aR1-deficient mice. Similarly, the presence of C3a in media enhanced the expression of the intestinal stem cell marker leucine-rich repeat G-protein-coupled receptor 5 (Lgr5 and of the cell proliferation marker Ki67 in organoids formed from C3-deficient but not from C3aR1-deficient mice. Using Lgr5.egfp mice we showed significant expression of C3 in Lgr5+ intestinal stem cells whereas C3aR1 was expressed on the surface of various intestinal cells. C3 and C3aR1 expression was induced in intestinal crypts in response to ischemia/reperfusion injury. Finally, C3aR1-deficient mice displayed ischemia/reperfusion injury comparable to control mice. These data suggest that C3a through interaction with C3aR1 enhances stem cell expansion and organoid formation and as such may have a role in intestinal regeneration.

  14. Azathioprine desensitizes liver cancer cells to insulin-like growth factor 1 and causes apoptosis when it is combined with bafilomycin A1

    International Nuclear Information System (INIS)

    Hernández-Breijo, Borja; Monserrat, Jorge; Román, Irene D.; González-Rodríguez, Águeda; Fernández-Moreno, M. Dolores

    2013-01-01

    Hepatoblastoma is a primary liver cancer that affects children, due to the sensitivity of this tumor to insulin-like growth factor 1 (IGF-1). In this paper we show that azathioprine (AZA) is capable of inhibiting IGF1-mediated signaling cascade in HepG2 cells. The efficiency of AZA on inhibition of proliferation differs in the evaluated cell lines as follows: HepG2 (an experimental model of hepatoblastoma) > Hep3B (derived from a hepatocellular carcinoma) > HuH6 (derived from a hepatoblastoma) ≫ HuH7 (derived from a hepatocellular carcinoma) = Chang Liver cells (a non-malignant cellular model). The effect of AZA in HepG2 cells has been proven to derive from activation of Ras/ERK/TSC2, leading to activation of mTOR/p70S6K in a sustained manner. p70S6K phosphorylates IRS-1 in serine 307 which leads to the uncoupling between IRS-1 and p85 (the regulatory subunit of PI3K) and therefore causing the lack of response of HepG2 to IGF-1. As a consequence, proliferation induced by IGF-1 is inhibited by AZA and autophagy increases leading to senescence of HepG2 cells. Our results suggest that AZA induces the autophagic process in HepG2 activating senescence, and driving to deceleration of cell cycle but not to apoptosis. However, when simultaneous to AZA treatment the autophagy was inhibited by bafilomycin A1 and the degradation of regulatory proteins of cell cycle (e.g. Rb, E2F, and cyclin D1) provoked apoptosis. In conclusion, AZA induces resistance in hepatoblastoma cells to IGF-1, which leads to autophagy activation, and causes apoptosis when it is combined with bafilomycin A1. We are presenting here a novel mechanism of action of azathioprine, which could be useful in treatment of IGF-1 dependent tumors, especially in its combination with other drugs. - Highlights: • Azathioprine activated Ras/ERK/TSC-2/mTOR/p70S6K signaling pathway in HepG2 cells. • Azathioprine inhibited IGF-1-mediated signaling cascade. • Azathioprine induced autophagy leading to cell cycle

  15. Azathioprine desensitizes liver cancer cells to insulin-like growth factor 1 and causes apoptosis when it is combined with bafilomycin A1

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Breijo, Borja [Departamento de Biología de Sistemas, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad de Alcalá, 28871 Alcalá de Henares (Spain); Monserrat, Jorge [Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, 28871 Alcalá de Henares (Spain); Román, Irene D. [Departamento de Biología de Sistemas, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad de Alcalá, 28871 Alcalá de Henares (Spain); González-Rodríguez, Águeda [Departamento de Biomedicina y Biotecnología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, 28871 Alcalá de Henares (Spain); Fernández-Moreno, M. Dolores [Departamento de Biología de Sistemas, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad de Alcalá, 28871 Alcalá de Henares (Spain); and others

    2013-11-01

    Hepatoblastoma is a primary liver cancer that affects children, due to the sensitivity of this tumor to insulin-like growth factor 1 (IGF-1). In this paper we show that azathioprine (AZA) is capable of inhibiting IGF1-mediated signaling cascade in HepG2 cells. The efficiency of AZA on inhibition of proliferation differs in the evaluated cell lines as follows: HepG2 (an experimental model of hepatoblastoma) > Hep3B (derived from a hepatocellular carcinoma) > HuH6 (derived from a hepatoblastoma) ≫ HuH7 (derived from a hepatocellular carcinoma) = Chang Liver cells (a non-malignant cellular model). The effect of AZA in HepG2 cells has been proven to derive from activation of Ras/ERK/TSC2, leading to activation of mTOR/p70S6K in a sustained manner. p70S6K phosphorylates IRS-1 in serine 307 which leads to the uncoupling between IRS-1 and p85 (the regulatory subunit of PI3K) and therefore causing the lack of response of HepG2 to IGF-1. As a consequence, proliferation induced by IGF-1 is inhibited by AZA and autophagy increases leading to senescence of HepG2 cells. Our results suggest that AZA induces the autophagic process in HepG2 activating senescence, and driving to deceleration of cell cycle but not to apoptosis. However, when simultaneous to AZA treatment the autophagy was inhibited by bafilomycin A1 and the degradation of regulatory proteins of cell cycle (e.g. Rb, E2F, and cyclin D1) provoked apoptosis. In conclusion, AZA induces resistance in hepatoblastoma cells to IGF-1, which leads to autophagy activation, and causes apoptosis when it is combined with bafilomycin A1. We are presenting here a novel mechanism of action of azathioprine, which could be useful in treatment of IGF-1 dependent tumors, especially in its combination with other drugs. - Highlights: • Azathioprine activated Ras/ERK/TSC-2/mTOR/p70S6K signaling pathway in HepG2 cells. • Azathioprine inhibited IGF-1-mediated signaling cascade. • Azathioprine induced autophagy leading to cell cycle

  16. Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma

    NARCIS (Netherlands)

    Kalish, Jennifer M.; Doros, Leslie; Helman, Lee J.; Hennekam, Raoul C.; Kuiper, Roland P.; Maas, Saskia M.; Maher, Eamonn R.; Nichols, Kim E.; Plon, Sharon E.; Porter, Christopher C.; Rednam, Surya; Schultz, Kris Ann P.; States, Lisa J.; Tomlinson, Gail E.; Zelley, Kristin; Druley, Todd E.

    2017-01-01

    A number of genetic syndromes have been linked to increased risk for Wilms tumor (WT), hepatoblastoma (HB), and other embryonal tumors. Here, we outline these rare syndromes with at least a 1% risk to develop these tumors and recommend uniform tumor screening recommendations for North America.

  17. Characterization of the N-methoxyindole-3-carbinol (NI3C)–Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    DEFF Research Database (Denmark)

    Neave, Antje S.; Sarup, Sussi; Seidelin, Michel

    2005-01-01

    Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is found beside I3C. Knowledge about the biological effects of NI3C is limited. The aim of the present...... study was to show the effect of NI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that NI3C is a more potent inhibitor of cell proliferation than I3C. In addition to the inhibition...... of cellular proliferation, NI3C caused an accumulation of HCT-116 cells in the G2/M phase, in contrast to I3C, which led to an accumulation of the colon cells in G0/G1 phase. Furthermore, NI3C delays the G1-S phase transition of synchronized HCT-116 cells. The indole-mediated cell-cycle arrest may be related...

  18. The radioprotective effects of carboxy fullerene C3 on AHH-1 cell

    International Nuclear Information System (INIS)

    Shan, Husheng; Cai, Jianming; Huang, Yuecheng; Cui, Jianguo; Liu, Hanchen; Sun, Ding; Zhao, Fang; Dong, Junru; Li, Bailong

    2008-01-01

    Purpose: To investigate the radioprotective effects of carboxy fullerene C 3 on AHH-1 cell and it's prospective as a novel radioprotectant. Materials and Methods: Carboxy fullerene C 3 was prepared by chemical synthesis and trypan blue rejection test was performed to detect its cytotoxicity to AHH-1 cell. Then different concentration of C 3 was used to treat AHH-1 cells after radiated with 60 Coγ ray. Annexin-V/PI staining and flow cytometry assay were applied to assess the cell proliferation and apoptosis after irradiation. Results: C 3 showed little toxicity to AHH-1 cells with little change of trypan blue rejection rate during the drug concentration range 0-400 mg/L (P>0.05). We found in this study C 3 had good radioprotective effects to AHH-1 cell radiated with 1-8 Gy γ-ray. When the concentration was 10 mg/L, C 3 showed protection effects to AHH-1 cell irradiated with 4 Gy γ -ray, which was enhanced with increase of C 3 concentration. When the final concentration reached 200-400 mg/L, the cell survival rate after irradiation was similar to that of non-irradiated control cells(P >0.05). And the irradiation induced apoptosis and death rate were significantly lower than that of single radiation group cells(P 3 were time-dependant, and the best protection effects were observed when the C 3 was administered before irradiation (0-24 h). Conclusion: Carboxy fullerene C 3 has good radioprotective effects to AHH-1 cell, which is dose-dependent, and the higher concentration of C 3 is, the better protective effects it shows. In the effective drug concentration range of this study, C 3 do little harm on the survival rate of AHH-1 cell, which suggest that C 3 as a novel promising radioprotectant deserve to be further investigated. (author)

  19. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  20. Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.

    Science.gov (United States)

    Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M

    2010-01-01

    Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.

  1. A Comparison between 18F-FDG PET/CT Imaging and Biological and Radiological Findings in Restaging of Hepatoblastoma Patients

    Directory of Open Access Journals (Sweden)

    Angelina Cistaro

    2013-01-01

    Full Text Available Background. In this study we retrospectively evaluated if 18F-FDG-PET/CT provided incremental diagnostic information over CI in a group of hepatoblastoma patients performing restaging. Procedure. Nine patients (mean age: 5.9 years; range: 3.1–12 years surgically treated for hepatoblastoma were followed up by clinical examination, serum α-FP monitoring, and US. CI (CT or MRI and PET/CT were performed in case of suspicion of relapse. Fine-needle aspiration biopsies (FNAB were carried out for final confirmation if the results of CI, PET/CT, and/or α-FP levels were suggestive of relapse. PET/CT and CI findings were analyzed for comparison purposes, using FNAB as reference standard. Results. α-FP level was suggestive of disease recurrence in 8/9 patients. Biopsy was performed in 8/9 cases. CI and PET/CT resulted to be concordant in 5/9 patients (CI identified recurrence of disease, but 18F-FDG-PET/CT provided a better definition of disease extent; in 4/9 cases, CI diagnostic information resulted in negative findings, whereas PET/CT correctly detected recurrence of disease. 18F-FDG-PET/CT showed an agreement of 100% (8/8 with FNAB results. Conclusions. 18F-FDG-PET/CT scan seems to better assess HB patients with respect to CI and may provide incremental diagnostic value in the restaging of this group of patients.

  2. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells.

    Science.gov (United States)

    Landvik, N E; Arlt, V M; Nagy, E; Solhaug, A; Tekpli, X; Schmeiser, H H; Refsnes, M; Phillips, D H; Lagadic-Gossmann, D; Holme, J A

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system. Copyright 2009 Elsevier B.V. All rights reserved.

  3. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Landvik, N.E. [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway); Arlt, V.M.; Nagy, E. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Solhaug, A. [Section for Toxicology, Department of Feed and Food Safety, National Veterinary Institute Pb 750 Sentrum, N-0106 Oslo (Norway); Tekpli, X. [EA SeRAIC, Equipe labellisee Ligue contre le Cancer, IFR 140, Universite de Rennes 1, Rennes (France); Schmeiser, H.H. [Research Group Genetic Alteration in Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Refsnes, M. [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway); Phillips, D.H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Lagadic-Gossmann, D. [EA SeRAIC, Equipe labellisee Ligue contre le Cancer, IFR 140, Universite de Rennes 1, Rennes (France); Holme, J.A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway)

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ({sup 32}P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of I{kappa}B-{alpha} (suggesting activation of NF-{kappa}B) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-{kappa}B play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system.

  4. A Challenging Case of Hepatoblastoma Concomitant with Autosomal Recessive Polycystic Kidney Disease and Caroli Syndrome—Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nevil Kadakia

    2017-06-01

    Full Text Available We report a rare case of an 18-month-old female with autosomal recessive polycystic kidney disease, Caroli syndrome, and pure fetal type hepatoblastoma. The liver tumor was surgically resected with no chemotherapy given. Now 9 years post resection she demonstrates no local or distant recurrence and stable renal function.

  5. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Lee, Byung-Hoon

    2004-01-01

    20-O-(β-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponin formed from ginsenosides Rb1, Rb2, and Rc, is suggested to be a potential chemopreventive agent. Here, we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (12 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. Treatment of HepG2 cells with IH901 also induced the cleavage of cytosolic factors such as Bid and Bax and translocation of truncated Bid (tBid) to mitochondria. A time-dependent release of cytochrome c from mitochondria was observed, which was accompanied by activation of caspase-9. A broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), and a specific inhibitor for caspase-8, N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone (zIETD-fmk), abrogated Bid processing and translocation, and caspase-3 activation. Cytochrome c release was inhibited by zVAD-fmk, however, the inhibition by zIETD-fmk was not complete. The activation of caspase-8 was inhibited not only by zIETD-fmk but also by zVAD-fmk. The results, together with the kinetic change of caspase activation, indicate that activation of caspase-8 occurred downstream of caspase-3 and -9. Our data suggest that the activation of caspase-8 after early caspase-3 activation might act as an amplification loop necessary for successful apoptosis. Primary hepatocytes isolated from normal Sprague-Dawley rats were not affected by IH901 (0-60 μM). The very low toxicity in normal hepatocytes and high activity in hepatoblastoma HepG2 cells suggest that IH901 is a promising experimental cancer chemopreventive agent

  6. C3 rho-inhibitor for targeted pharmacological manipulation of osteoclast-like cells.

    Directory of Open Access Journals (Sweden)

    Andrea Tautzenberger

    Full Text Available The C3 toxins from Clostridium botulinum (C3bot and Clostridium limosum (C3lim as well as C3-derived fusion proteins are selectively taken up into the cytosol of monocytes/macrophages where the C3-catalyzed ADP-ribosylation of Rho results in inhibition of Rho-signalling and characteristic morphological changes. Since the fusion toxin C2IN-C3lim was efficiently taken up into and inhibited proliferation of murine macrophage-like RAW 264.7 cells, its effects on RAW 264.7-derived osteoclasts were investigated. C2IN-C3lim was taken up into differentiated osteoclasts and decreased their resorption activity. In undifferentiated RAW 264.7 cells, C2IN-C3lim-treatment significantly decreased their differentiation into osteoclasts as determined by counting the multi-nucleated, TRAP-positive cells. This inhibitory effect was concentration- and time-dependent and most efficient when C2IN-C3lim was applied in the early stage of osteoclast-formation. A single-dose application of C2IN-C3lim at day 0 and its subsequent removal at day 1 reduced the number of osteoclasts in a comparable manner while C2IN-C3lim-application at later time points did not reduce the number of osteoclasts to a comparable degree. Control experiments with an enzymatically inactive C3 protein revealed that the ADP-ribosylation of Rho was essential for the observed effects. In conclusion, the results indicate that Rho-activity is crucial during the early phase of osteoclast-differentiation. Other bone cell types such as pre-osteoblastic cells were not affected by C2IN-C3lim. Due to their cell-type selective and specific mode of action, C3 proteins and C3-fusions might be valuable tools for targeted pharmacological manipulation of osteoclast formation and activity, which could lead to development of novel therapeutic strategies against osteoclast-associated diseases.

  7. ClC-3 Promotes Osteogenic Differentiation in MC3T3-E1 Cell After Dynamic Compression.

    Science.gov (United States)

    Wang, Dawei; Wang, Hao; Gao, Feng; Wang, Kun; Dong, Fusheng

    2017-06-01

    ClC-3 chloride channel has been proved to have a relationship with the expression of osteogenic markers during osteogenesis, persistent static compression can upregulate the expression of ClC-3 and regulate osteodifferentiation in osteoblasts. However, there was no study about the relationship between the expression of ClC-3 and osteodifferentiation after dynamic compression. In this study, we applied dynamic compression on MC3T3-E1 cells to detect the expression of ClC-3, runt-related transcription factor 2 (Runx2), bone morphogenic protein-2 (BMP-2), osteopontin (OPN), nuclear-associated antigen Ki67 (Ki67), and proliferating cell nuclear antigen (PCNA) in biopress system, then we investigated the expression of these genes after dynamic compression with Chlorotoxin (specific ClC-3 chloride channel inhibitor) added. Under transmission electron microscopy, there were more cell surface protrusions, rough surfaced endoplasmic reticulum, mitochondria, Golgi apparatus, abundant glycogen, and lysosomes scattered in the cytoplasm in MC3T3-E1 cells after dynamic compression. The nucleolus was more obvious. We found that ClC-3 was significantly up-regulated after dynamic compression. The compressive force also up-regulated Runx2, BMP-2, and OPN after dynamic compression for 2, 4 and 8 h. The proliferation gene Ki67 and PCNA did not show significantly change after dynamic compression for 8 h. Chlorotoxin did not change the expression of ClC-3 but reduced the expression of Runx2, BMP-2, and OPN after dynamic compression compared with the group without Cltx added. The data from the current study suggested that ClC-3 may promotes osteogenic differentiation in MC3T3-E1 cell after dynamic compression. J. Cell. Biochem. 118: 1606-1613, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)

    2015-01-01

    A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses ...

  9. Germline APC mutations in hepatoblastoma.

    Science.gov (United States)

    Yang, Adeline; Sisson, Rebecca; Gupta, Anita; Tiao, Greg; Geller, James I

    2018-04-01

    Conflicting reports on the frequency of germline adenomatous polyposis coli (APC) gene mutations in patients with hepatoblastoma (HB) have called into question the clinical value of APC mutation testing on apparently sporadic HB. An Institutional Review Board approved retrospective review of clinical data collected from patients with HB who received APC testing at our institution was conducted. All HB patients seen at Cincinnati Children's Hospital Medical Center were eligible for testing. Potential genotype/phenotype correlations were assessed. As of July 2015, 29 patients with HB had received constitutional APC testing. Four (14%) were found to have APC pathogenic truncations of the APC protein and in addition two (7%) had APC missense variants of unknown clinical significance. Two patients (7%) had family histories indicative of familial adenomatous polyposis (FAP). Response to chemotherapy tracked differently in APC pathogenic cases, with a slower imaging response despite an equivalent or slightly faster α-fetoprotein (AFP) response. The prevalence of pathogenic APC variants in apparently sporadic HB may be higher than previously detected. Differences in time to imaging response, despite similar AFP response, may impact surgical planning. All patients with HB warrant germline APC mutation testing for underlying FAP. © 2017 Wiley Periodicals, Inc.

  10. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    Science.gov (United States)

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-10-27

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    Science.gov (United States)

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  12. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  13. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines.

    Science.gov (United States)

    van Wenum, Martien; Adam, Aziza A A; Hakvoort, Theodorus B M; Hendriks, Erik J; Shevchenko, Valery; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application.

  14. Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    Science.gov (United States)

    2018-05-15

    Advanced Malignant Solid Neoplasm; RB1 Positive; Recurrent Childhood Ependymoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Kidney Wilms Tumor; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Germ Cell Tumor; Recurrent Malignant Glioma; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Recurrent Rhabdoid Tumor; Recurrent Rhabdomyosarcoma; Recurrent Soft Tissue Sarcoma; Refractory Ependymoma; Refractory Ewing Sarcoma; Refractory Glioma; Refractory Hepatoblastoma; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Germ Cell Tumor; Refractory Malignant Glioma; Refractory Medulloblastoma; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Refractory Osteosarcoma; Refractory Peripheral Primitive Neuroectodermal Tumor; Refractory Rhabdoid Tumor; Refractory Rhabdomyosarcoma; Refractory Soft Tissue Sarcoma

  15. Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP

    Science.gov (United States)

    Verrier, Jonathan D.; Kochanek, Patrick M.

    2015-01-01

    The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have

  16. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    Science.gov (United States)

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  17. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  18. 3D material cytometry (3DMaC): a very high-replicate, high-throughput analytical method using microfabricated, shape-specific, cell-material niches.

    Science.gov (United States)

    Parratt, Kirsten; Jeong, Jenny; Qiu, Peng; Roy, Krishnendu

    2017-08-08

    Studying cell behavior within 3D material niches is key to understanding cell biology in health and diseases, and developing biomaterials for regenerative medicine applications. Current approaches to studying these cell-material niches have low throughput and can only analyze a few replicates per experiment resulting in reduced measurement assurance and analytical power. Here, we report 3D material cytometry (3DMaC), a novel high-throughput method based on microfabricated, shape-specific 3D cell-material niches and imaging cytometry. 3DMaC achieves rapid and highly multiplexed analyses of very high replicate numbers ("n" of 10 4 -10 6 ) of 3D biomaterial constructs. 3DMaC overcomes current limitations of low "n", low-throughput, and "noisy" assays, to provide rapid and simultaneous analyses of potentially hundreds of parameters in 3D biomaterial cultures. The method is demonstrated here for a set of 85 000 events containing twelve distinct cell-biomaterial micro-niches along with robust, customized computational methods for high-throughput analytics with potentially unprecedented statistical power.

  19. Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration.

    Science.gov (United States)

    Al-Khayal, Khayal; Alafeefy, Ahmed; Vaali-Mohammed, Mansoor-Ali; Mahmood, Amer; Zubaidi, Ahmed; Al-Obeed, Omar; Khan, Zahid; Abdulla, Maha; Ahmad, Rehan

    2017-01-03

    Colorectal cancer (CRC) is the 3 rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c

  20. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    Science.gov (United States)

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  1. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  2. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    Science.gov (United States)

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  3. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    Science.gov (United States)

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  4. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  5. Microscopic Aspects of Autoschizic Cell Death in Human Ovarian Carcinoma (2774) Cells Following Vitamin C, Vitamin K3 or Vitamin C:K3 Treatment

    Science.gov (United States)

    Gilloteaux, Jacques; Jamison, James M.; Arnold, David; Taper, Henryk S.; von Gruenigen, Vivian E.; Summers, Jack L.

    2003-08-01

    Human ovarian carcinoma cells (MDAH 2774) were treated with sodium ascorbate (VC), menadione (VK3), or with a VC:VK3 combination for 1 h and then studied using light microscopy (LM) and scanning (SEM) and transmission electron (TEM) microscopy. Plasma membrane damage (blisters and blebs, hairy aspect) results from vitamin C (VC) treatment, while cytoskeletal damage and self-morsellation are caused by vitamin K3 (VK3) treatment. VC:VK3-treated cells exhibit exacerbated injuries characteristic of both VC and VK3 treatment as well as a significant decrease in cell diameters from 20 35 [mu]m for control cells to 7 12 [mu]m for VC:VK3 treatment. Moreover, after a 1-h exposure to the vitamin combination, autoschizis (43%), apoptosis (3%), and oncosis (1.9%) are observed at the percentages indicated. All cellular changes associated with autoschizis observed with SEM were confirmed by LM and TEM observations and are consistent with cell death by autoschizis: decrease in cell size, cytoplasmic self-excisions, degradation of the nucleus and nucleolus without formation of apoptotic bodies and, ultimately, karyorrhexis and karyolysis. These results also suggest that the vitamin combination may find clinical use in the treatment of ovarian cancer.

  6. Method for combined 3H and 14C autoradiography with a single emulsion tested in cultured mammalian cells

    International Nuclear Information System (INIS)

    Perdue, S.W.; Kimball, R.F.; Hsie, A.W.

    1977-01-01

    A single-gelatin expanded film method for double-isotope autoradiography is described. A preliminary classification based upon silver-grain distribution is used to assign labeled cells to 3 H only or with 14 C classes. Optical sectioning combined with grain counting is employed to obtain ratios for classifying cells labeled with 14 C into 14 C only and 3 H + 14 C classes. The method has been tested with CHO-K1 cells in plateau-phase cultures using two 24-h labeling periods. The experimental design allowed for independent estimation of the expected frequencies of label classes under conditions that provided a wide range of possible label levels and combinations. Previous methods have used time-consuming applications of two emulsion layers and exposures to distinguish between cells labeled with 3 H only or with 14 C and do not identify the 3 H + 14 C class. A single-gelatin expanded film requires only one exposure and permits all label classes to be determined by an objective grain-counting procedure

  7. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines

    NARCIS (Netherlands)

    van Wenum, Martien; Adam, Aziza A. A.; Hakvoort, Theodorus B. M.; Hendriks, Erik J.; Shevchenko, Valery; van Gulik, Thomas M.; Chamuleau, Robert A. F. M.; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on

  8. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  9. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells.

    Directory of Open Access Journals (Sweden)

    Hariharan Subramanian

    Full Text Available BACKGROUND: The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na(+/H(+ exchange regulatory factor (NHERF1 and NHERF2 have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1 motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2 and CD34(+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. CONCLUSION/SIGNIFICANCE: This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.

  10. Risk-adapted treatment for childhood hepatoblastoma. final report of the second study of the International Society of Paediatric Oncology--SIOPEL 2

    NARCIS (Netherlands)

    Perilongo, G.; Shafford, E.; Maibach, R.; Aronson, D.; Brugières, L.; Brock, P.; Childs, M.; Czauderna, P.; MacKinlay, G.; Otte, J. B.; Pritchard, J.; Rondelli, R.; Scopinaro, M.; Staalman, C.; Plaschkes, J.

    2004-01-01

    SIOPEL 2 was a pilot study designed to test the efficacy and toxicity of two chemotherapy (CT) regimens, one for patients with hepatoblastoma (HB) confined to the liver and involving no more than three hepatic sectors ('standard-risk (SR) HB'), and one for those with HB extending into all four

  11. Double labeling autoradiography. Cell kinetic studies with 3H- and 14C-thymidine

    International Nuclear Information System (INIS)

    Schultze, B.

    1981-01-01

    Examples of the multiple applicability of the double labeling method with 3 H- and 14 C-TdR are demonstrated. Double labeling with 3 H- and 14 C-TdR makes it possible to determine the cycle and its phases with high precision by modifying the usual percent labeled mitoses method with a single injection of 3 H-TdR. In addition, data is provided on the variances of the transit times through the cycle phases. For example, in the case of the jejunal crypt cells of the mouse, the transit times through successive cycle phases are uncorrelated. In the case of glial cells the double labeling method provides cell kinetic parameters despite the paucity of proliferating glial cells. In the adult untreated animal, glial cell mitoses are so rare that the percent labeled mitoses method can not be utilized. However, the S-phase duration can be measured by double labeling and the cycle time can be determined by the so-called method of labeled S phases. With the latter method the passage through the S phase of the 3 H-TdR-labeled S phase cells can be registered by injecting 14 C-TdR at different time intervals following 3 H-TdR application. In this way an S-phase duration of about 10 hr and a cycle time of about 20 hr was found for glial cells in the adult untreated mouse. An exchange of glial cells between the growth fraction and the nongrowth fraction has also been shown by double labeling. A quite different application of the double labeling method with 3H- and 14 C-TdR is the in vivo study of the cell cycle phase-specific effect of drugs used in chemotherapy of tumors. The effect of vincristine on these cells has been studied. Vincristine affects cells in S and G2 in such a manner that they are arrested during the next metaphase and subsequently become necrotic. It has no effect on G1 cells

  12. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells.

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Yu-Shiang; Tang, Po-Wen; Tai, Chao-Yi; Tseng, Zong-Liang; Lin, Ja-Hon; Chen, Sheng-Hui; Kuo, Hao-Chung

    2017-11-23

    Comprehensive studies were carried out to understand the origin of the current hysteresis effects in highly efficient C 60 -CH 3 NH 3 PbI 3 (MAPbI 3 ) heterojunction solar cells, using atomic-force microscopy, transmittance spectra, photoluminescence spectra, X-ray diffraction patterns and a femtosecond time-resolved pump-probe technique. The power conversion efficiency (PCE) of C 60 -MAPbI 3 solar cells can be increased to 18.23% by eliminating the point (lattice) defects in the MAPbI 3 thin film which is fabricated by using the one-step spin-coating method with toluene washing treatment. The experimental results show that the point defects and surface defects of the MAPbI 3 thin films can be minimized by varying the dropping time of the washing solvent. The point defects (surface defects) can be reduced with an (a) increase (decrease) in the dropping time, resulting in an optimized dropping time for obtaining the defect-minimized MAPbI 3 thin film deposited on top of the C 60 thin film. Consequently, the formation of the defect-minimized MAPbI 3 thin film allows for high-efficiency MAPbI 3 solar cells.

  13. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    International Nuclear Information System (INIS)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-01-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  14. Cellular basis of the immunohematologic defects observed in short-term semiallogeneic B6C3F1→C3H chimeras: evidence for host-versus-graft reaction initiated by radioresistant T cells

    International Nuclear Information System (INIS)

    Aizawa, S.; Sado, T.; Kamisaku, H.; Kubo, E.

    1980-01-01

    Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 x 10 6 ) of B6C3F 1 bone marrow cells (B6C3F 1 →C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf→C3Hf or B6C3F 1 →B6C3F 1 ) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F 1 -derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F 1 →C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2/sup b/) when assesed by 51 Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in shortterm F 1 to parent bone marrow chimeras (B6C3F 1 →C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed

  15. Protective role of complement C3 against cytokine-mediated beta cell apoptosis

    DEFF Research Database (Denmark)

    Dos Santos, R. S.; Marroqui, L.; Grieco, F. A.

    2017-01-01

    Background and aims: Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by pro-inflammatory cytokines and other mediators. The complement system, a major component of the immune system, has been recently shown to also act in metab...... in metabolic organs, such as liver, adipose tissue, and pancreas. In the present study we identified complement C3 as an important hub of a cytokine-modified complement network in human islets and characterized the role of C3 in β-cell survival....

  16. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  17. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  18. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses

    DEFF Research Database (Denmark)

    Gottwein, J.M.; Scheel, Troels Kasper Høyer; Hoegh, A.M.

    2007-01-01

    BACKGROUND & AIMS: Recently, full viral life cycle hepatitis C virus (HCV) cell culture systems were developed for strain JFH1 (genotype 2a) and an intragenotypic 2a/2a genome (J6/JFH). We aimed at exploiting the unique JFH1 replication characteristics to develop culture systems for genotype 3a......, which has a high prevalence worldwide. METHODS: Huh7.5 cells were transfected with RNA transcripts of an intergenotypic 3a/JFH1 recombinant with core, E1, E2, p7, and NS2 of the 3a reference strain S52, and released viruses were passaged. Cultures were examined for HCV core and/or NS5A expression...... (immunostaining), HCV RNA titers (real-time PCR), and infectivity titers (50% tissue culture infectious dose). The role of mutations identified by sequencing of recovered S52/JFH1 viruses was analyzed by reverse genetics studies. RESULTS: S52/JFH1 and J6/JFH viruses passaged in Huh7.5 cells showed comparable...

  19. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-01-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive 86 Rb + uptake, a measure of the activity of the Na + /K + pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na + influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt 2 ) also enhanced ouabain sensitive 86 Rb + uptake and amiloride-sensitive 22 Na + influx. Prolonged treatment (40 hr) of 3T3 cells with PBt 2 at a saturating dose, which reduces the number of PBt 2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt 2 . They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na + /H + antiport activity, which, in turn, leads to Na + influx, intracellular pH modulation, and stimulation of the Na + /K + pump

  20. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  1. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  2. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogenous c-myc gene

    International Nuclear Information System (INIS)

    Sorrentino, V.; Drozdoff, V.; Zeitz, L.; Fleissner, E.

    1987-01-01

    C3H/10T 1/2 cells were infected with a retroviral vector expressing a mouse c-myc oncogene and a drug-selection marker. The resulting cells, morphologically indistinguishable from C3H/10T l/1, displayed a greatly enhanced sensitivity to neoplastic transformation by ionizing radiation or by a chemical carcinogen. Constitutive expression of myc therefore appears to synergize with an initial carcinogenic event, providing a function analogous to a subsequent event that apparently is required for the neoplastic transformation of these cells. This cell system should prove useful in exploring early stages in radiation-induced transformation

  3. Morphometric studies with attached mouse C3H/10T 1/2 cells

    International Nuclear Information System (INIS)

    Geard, C.R.; Harding, T.

    1981-01-01

    Studies of in vitro transformation using the Syrian hamster embryo cell system and the mouse C3H/10T 1/2 cell system form an integral part of this laboratory's activities. As part of the studies with the mouse cell line we have monitored the behavior of these cells in culture in order to ascertain those variables which might influence the expression of transformation. The study of transformed cells versus normal cells could lead to insight into an earlier definition of transformation that the clonal morphological change currently in use. This present report details the changes in cellular morphology with time in culture of normal mouse C3H/10T 1/2 cells from early passages (9 to 13) and x-ray transformed cells which have been maintained in culture for three years

  4. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  5. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  6. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Minta Maria

    2014-12-01

    Full Text Available The aim of the study was to test and compare the cytotoxic potential of two synthetic oestrogens: diethylstilboestrol (DES and ethinyloestradiol (EE2 and two androgens: testosterone propionate (TP and trenbolone (TREN on two cell lines. The fibroblast cell line Balb/c 3T3 and the hepatoma cell line HepG2 were selected. To get more insight into the mode of toxic action, four methods were used, which evaluated different biochemical endpoints: mitochondrial activity (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide reduction assay, lysosomal activity (neutral red uptake assay, total protein content, and lactate dehydrogenase release. Cytotoxicity was assessed after 24, 48, and 72 h exposure to eight concentrations ranging from 0.78 to 100 μg/mL. Concentration- and time- dependent effects were observed. Depending on the line and assay used, half maximal effective concentration after 72 h (EC50-72h values ranged as follows: DES 1-13.7 μg/mL (Balb/c 3T3 and 3.7-5.2 μg/mL (HepG2; EE2 2.1-14.3 μg/mL (Balb/c 3T3 and 1.8-7.8 μg/mL (HepG2; TP-14.9-17.5 μg/mL (Balb/c 3T3, and 63.9- 100 μg/mL (HepG2; and TREN 11.3-31.4 μg/mL (Balb/c 3T3 and 12.5-59.4 μg/mL (HepG2. The results revealed that oestrogens were more toxic than androgens and the most affected endpoint was mitochondrial activity. In contrast to oestrogens, for which EC50-72h values were similar in both lines and by all assays used, Balb/c 3T3 cells were more sensitive than HepG2 cells to TP.

  7. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    International Nuclear Information System (INIS)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-01-01

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  8. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Chu [Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Chinese Medicine, China Medical University, China Medical University, Taichung, Taiwan (China); Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Chen, Yun-Ting [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chen, Haw-Wen, E-mail: chenhw@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  9. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin.

    Science.gov (United States)

    Lin, Marvin; Yin, Na; Murphy, Barbara; Medof, M Edward; Segerer, Stephan; Heeger, Peter S; Schröppel, Bernd

    2010-09-01

    The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.

  10. Thimerosal-induced apoptosis in mouse C2C12 myoblast cells occurs through suppression of the PI3K/Akt/survivin pathway.

    Directory of Open Access Journals (Sweden)

    Wen-Xue Li

    Full Text Available BACKGROUND: Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. METHODOLOGY/PRINCIPAL FINDINGS: The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125-500 nM for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Akt(ser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic

  11. Sema3C Promotes the Survival and Tumorigenicity of Glioma Stem Cells through Rac1 Activation

    Directory of Open Access Journals (Sweden)

    Jianghong Man

    2014-12-01

    Full Text Available Summary: Different cancer cell compartments often communicate through soluble factors to facilitate tumor growth. Glioma stem cells (GSCs are a subset of tumor cells that resist standard therapy to contribute to disease progression. How GSCs employ a distinct secretory program to communicate with and nurture each other over the nonstem tumor cell (NSTC population is not well defined. Here, we show that GSCs preferentially secrete Sema3C and coordinately express PlexinA2/D1 receptors to activate Rac1/nuclear factor (NF-κB signaling in an autocrine/paracrine loop to promote their own survival. Importantly, Sema3C is not expressed in neural progenitor cells (NPCs or NSTCs. Disruption of Sema3C induced apoptosis of GSCs, but not NPCs or NSTCs, and suppressed tumor growth in orthotopic models of glioblastoma. Introduction of activated Rac1 rescued the Sema3C knockdown phenotype in vivo. Our study supports the targeting of Sema3C to break this GSC-specific autocrine/paracrine loop in order to improve glioblastoma treatment, potentially with a high therapeutic index. : Glioma stem cells (GSCs have a high capacity for self-renewal, invasion, and survival. How they communicate with each other to survive and maintain their identity is not clear. Man et al. now show that GSCs have co-opted a neurodevelopmental program to activate Rac1 to promote defining features of GSCs.

  12. Foxp3+ Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice

    Science.gov (United States)

    Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Breloer, Minka

    2014-01-01

    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6

  13. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Horowitz, A.T.

    1981-01-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells

  14. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation.

    Science.gov (United States)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0-15μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-01-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10 6 receptors per cell. The cell line with the highest 125 I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10 6 receptors with a K/sub d/ of 10 -9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 10 7 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  16. Semaphorin 3C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells.

    Science.gov (United States)

    Tam, Kevin J; Hui, Daniel H F; Lee, Wilson W; Dong, Mingshu; Tombe, Tabitha; Jiao, Ivy Z F; Khosravi, Shahram; Takeuchi, Ario; Peacock, James W; Ivanova, Larissa; Moskalev, Igor; Gleave, Martin E; Buttyan, Ralph; Cox, Michael E; Ong, Christopher J

    2017-09-13

    Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.

  17. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    Science.gov (United States)

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  18. Saposin C promotes survival and prevents apoptosis via PI3K/Akt-dependent pathway in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Lee Tae-Jin

    2004-11-01

    Full Text Available Abstract Background In addition to androgens, growth factors are also implicated in the development and neoplastic growth of the prostate gland. Prosaposin is a potent neurotrophic molecule. Homozygous inactivation of prosaposin in mice has led to the development of a number of abnormalities in the male reproductive system, including atrophy of the prostate gland and inactivation of mitogen-activated protein kinase (MAPK and Akt in prostate epithelial cells. We have recently reported that prosaposin is expressed at a higher level by androgen-independent (AI prostate cancer cells as compared to androgen-sensitive prostate cancer cells or normal prostate epithelial and stromal cells. In addition, we have demonstrated that a synthetic peptide (prosaptide TX14A, derived from the trophic sequence of the saposin C domain of prosaposin, stimulated cell proliferation, migration and invasion and activated the MAPK signaling pathway in prostate cancer cells. The biological significances of saposin C and prosaposin in prostate cancer are not known. Results Here, we report that saposin C, in a cell type-specific and dose-dependent manner, acts as a survival factor, activates the Akt-signaling pathway, down-modulates caspase-3, -7, and -9 expression and/or activity, and decreases the cleaved nuclear substrate of caspase-3 in prostate cancer cells under serum-starvation stress. In addition, prosaptide TX14A, saposin C, or prosaposin decreased the growth-inhibitory effect, caspase-3/7 activity, and apoptotic cell death induced by etoposide. We also discovered that saposin C activates the p42/44 MAP kinase pathway in a pertussis toxin-sensitive and phosphatidylinositol 3-kinase (PI3K /Akt-dependent manner in prostate cancer cells. Our data also show that the anti-apoptotic activity of saposin C is at least partially mediated via PI3K/Akt signaling pathway. Conclusion We postulate that as a mitogenic, survival, and anti-apoptotic factor for prostate cancer cells

  19. The Complement C3a-C3aR Axis Promotes Development of Thoracic Aortic Dissection via Regulation of MMP2 Expression.

    Science.gov (United States)

    Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie

    2018-03-01

    Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.

  20. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Julija Umbrasaite

    2010-12-01

    Full Text Available In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

  1. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways.

    Science.gov (United States)

    Peng, Xiaolin; Wang, Zhengming; Liu, Yang; Peng, Xin; Liu, Yao; Zhu, Shan; Zhang, Zhe; Qiu, Yuling; Jin, Meihua; Wang, Ran; Zhang, Qingying; Kong, Dexin

    2018-08-01

    Melanoma remains to be one of the most incurable cancers. Discovery of novel antitumor agent for melanoma therapy is expected. We recently isolated Oxyfadichalcone C from Oxytropis falcate and investigated the anti-proliferative and anti-metastatic activity on human melanoma A375 cells in vitro. Cell viability was determined using MTT assay and soft agar cloning formation assay. The effect of Oxyfadichalcone C on cell cycle distribution and apoptosis were analyzed by flow cytometry. Cell metastasis was determined by wound healing assay, Transwell assay and Gelatin zymography assay. The effect of Oxyfadichalcone C on signal proteins of PI3K/Akt and MAPK/ERK pathways was examined by western blot analysis. Synergism assay was employed to determine whether combination of Oxyfadichalcone C with Vemurafenib would enhance the anti-proliferative effect. Oxyfadichalcone C potently inhibited proliferation, induced G1 phase arrest and weak apoptosis in A375 cells. Anti-migration and anti-invasion activities were also indicated. Such effects were associated with upregulation of p27, reduction of cyclin D1, p-pRb, p-Integrin β1, as well as the proteolytic activity of metalloproteinase (MMP)-2/9. Meanwhile, key molecules of PI3K/Akt and MAPK/ERK pathways were downregulated, which might be involved in the inhibition against proliferation and metastasis of A375 cells by Oxyfadichalcone C. In addition, combination of Oxyfadichalcone C with Vemurafenib at a ratio of IC50 Oxyfadichalcone C : 5 × IC 50 Vemurafenib exhibited synergistic anti-proliferative effect on A375 cells. Our findings suggest that Oxyfadichalcone C has the potential to be developed as a promising drug candidate for the treatment of melanoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Establishment of a new cell line susceptible to Cyprinid herpesvirus 3 (CyHV-3) and possible latency of CyHV-3 by temperature shift in the cells.

    Science.gov (United States)

    Imajoh, M; Fujioka, H; Furusawa, K; Tamura, K; Yamasaki, K; Kurihara, S; Yamane, J; Kawai, K; Oshima, S

    2015-06-01

    A new cell line named CCF-K104 predominantly consisting of fibroblastic cells showed optimal growth at temperatures from 25 °C to 30 °C. Serial morphological changes in the cells induced by Cyprinid herpesvirus 3 (CyHV-3) included cytoplasmic vacuolar formation, cell rounding and detachment. Mature virions were purified from CyHV-3-infected CCF-K104 cells by sucrose gradient ultracentrifugation and had a typical herpesvirus structure on electron microscopy. Infectious CyHV-3 was produced stably in CCF-K104 cells over 30 viral passages. Our findings showed that CCF-K104 is a useful cell line for isolation and productive replication of CyHV-3. A temperature shift from 25 °C to 15 °C or 35 °C did not allow serial morphological changes as observed at 25 °C for 14 days. Under the same conditions, real-time PCR showed that CyHV-3 was present with low viral DNA loads, suggesting that CyHV-3 may establish latent infection in CCF-K104 cells. Amplification of the left and right terminal repeat sequences of the CyHV-3 genome arranged in a head-to-tail manner was detected by nested PCR following an upshift in temperature from 25 °C to 35 °C. The PCR results suggested that the circular genome may represent a latent form of CyHV-3. © 2014 John Wiley & Sons Ltd.

  3. Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function.

    Science.gov (United States)

    Hernández-Franco, Pablo; Silva, Martín; Franco, Rodrigo; Valverde, Mahara; Rojas, Emilio

    2018-04-01

    Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 μM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 μg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 μg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 μM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.

  4. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    Science.gov (United States)

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  5. Conserved cell cycle regulatory properties within the amino terminal domain of the Epstein-Barr virus nuclear antigen 3C

    International Nuclear Information System (INIS)

    Sharma, Nikhil; Knight, Jason S.; Robertson, Erle S.

    2006-01-01

    The gammaherpesviruses Rhesus lymphocryptovirus (LCV) and Epstein-Barr virus (EBV) are closely related phylogenetically. Rhesus LCV efficiently immortalizes Rhesus B cells in vitro. However, despite a high degree of conservation between the Rhesus LCV and EBV genomes, Rhesus LCV fails to immortalize human B cells in vitro. This species restriction may, at least in part, be linked to the EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), known to be essential for B cell transformation. We compared specific properties of EBNA3C, a well-characterized and essential EBV protein, with its Rhesus counterpart to determine whether EBNA3C phenotypes which contribute to cell cycle regulation are conserved in the Rhesus LCV. We show that both EBNA3C and Rhesus EBNA3C bind to a conserved region of mammalian cyclins, regulate pRb stability, and modulate SCF Skp2 -dependent ubiquitination. These results suggest that Rhesus LCV restriction from human B cell immortalization is independent of the conserved cell cycle regulatory functions of the EBNA3C protein

  6. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    Science.gov (United States)

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  7. Comparison of heat and/or radiation sensitivity and membrane composition of seven X-ray-transformed C3H 10T1/2 cell lines and normal C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Vadasz, J.A.; Azzam, E.I.; Sargent, M.D.; Borsa, J.; Einspenner, M.

    1985-01-01

    C3H 10T1/2 mouse embryo cells were transformed by X-irradiation, and seven transformed clones were isolated and propagated as cell lines. Some of these cell lines produced tumors in syngeneic mice and grew in agarose while the normal C3H 10T1/2 cell line did not possess these characteristics. Exponentially growing cell cultures with comparable cell-cycle distributions as measured by flow cytometry were tested for heat and X-ray sensitivity. The heat and X-ray sensitivity varied randomly compared to the normal cell line. One cell line was more heat resistant and one more heat sensitive than the normal cell line, and the others had sensitivities comparable to the normal cell line. Measurements on some of the biochemical parameters of the particulate fraction of cells after sonication and 24,000 X g centrifugation showed that altered thermal sensitivity was not correlated with protein, cholesterol, or phospholipid content of this fraction

  8. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells.

    Science.gov (United States)

    Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor

    2009-02-01

    PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

  9. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    International Nuclear Information System (INIS)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2012-01-01

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer. Highlights:

  10. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    Science.gov (United States)

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  11. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    Science.gov (United States)

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  12. Dendritic cells induce specific cytotoxic T lymphocytes against prostate cancer TRAMP-C2 cells loaded with freeze- thaw antigen and PEP-3 peptide.

    Science.gov (United States)

    Liu, Xiao-Qi; Jiang, Rong; Li, Si-Qi; Wang, Jing; Yi, Fa-Ping

    2015-01-01

    Prostate cancer is the most common cancer in men. In this study, we investigated immune responses of cytotoxic T lymphocytes (CTLs) against TRAMP-C2 prostate cancer cells after activation by dendritic cells (DCs) loaded with TRAMP-C2 freeze-thaw antigen and/or PEP-3 peptide in vitro. Bone marrow-derived DC from the bone marrow of the C57BL/6 were induced to mature by using the cytokine of rhGM-CSF and rhIL-4, and loaded with either the freeze-thaw antigen or PEP-3 peptide or both of them. Maturation of DCs was detected by flow cytometry. The killing efficiency of the CTLs on TRAMP-C2 cells were detected by flow cytometry, CCK8, colony formation, transwell migration, and wound-healing assay. The levels of the IFN-γ, TNF-β and IL-12 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the unloaded DCs, the loaded DCs had significantly increased expression of several phenotypes related to DC maturation. CTLs activated by DCs loaded with freeze-thaw antigen and PEP-3 peptide had more evident cytotoxicity against TRAMP-C2 cells in vitro. The secretion levels of IFN-γ, TNF-β and IL-12, secreted by DCs loaded with antigen and PEP-3 and interaction with T cells, were higher than in the other groups. Our results suggest that the CTLs activated by DCs loaded with TRAMP-C2 freeze-thaw antigen and PEP-3 peptide exert a remarkable killing efficiency against TRAMP-C2 cells in vitro.

  13. Foxp3⁺ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice.

    Science.gov (United States)

    Blankenhaus, Birte; Reitz, Martina; Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Breloer, Minka

    2014-02-01

    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6

  14. CLA isomer t10,c12 induce oxidation and apoptosis in 3t3 adipocyte cells in a similar effect as omega-3 linolenic acid and DHA.

    Directory of Open Access Journals (Sweden)

    Jon Meadus

    2017-02-01

    Full Text Available Background: Commercial conjugated linoleic acid (CLA dietary supplements contain an equal mixture of the C18:2 isomers, cis-9trans-11 and trans-10cis-12. Predominantly, CLA-c9t11 occurs naturally in meat and dairy products at ~ 0.5% of total fat , whereas CLA-t10c12 occurs at >0.1%. Recent studies show that CLA-c9t11 generally promotes lipid accumulation but CLA-t10c12 may inhibit lipid accumulation and may also promote inflammation. The omega-3 fatty acids α-linolenic acid (C18:3n-3 and docosahexaenoic acid (DHA have also been observed to inhibit lipid accumulation and effect inflammation; therefore we examined the effects of the two main isomersof CLA and omega -3 fatty acids C18:3n-3 and DHA at the molecular levelto determine if they are causing similar oxidative stresses.Methods:Purified CLA-c9t11 and CLA-t10c12 were added to 3T3 cells induced into mature adipocyte cultures at 100uM concentrations and compared with 100uM C18:3n-3(α-linolenic acid and 50uM docosahexaenoic acid (DHA to observe their effect on growth, gene transcription and general oxidation. The results of multiple separate trials were averaged and compared for significance at levels of P< 0.05, using one way ANOVA and Student’s t-test.Results:C18:3n-3, DHA and CLA-t10c12inhibited 3T3 adipose cell growth and caused a significant increase in lipid hydro peroxide activity. CLA-t10c12 and c9t11 increased AFABP, FAS and ACOX1 mRNA gene expression but DHA and C18:3n-3decreased the same mRNAs. CLA-c9t11 but not the t10c12 stimulated adipoQ expression even though; CLA-c9t11 had only a slightly greater affinity for PPARγ than CLA-t10c12, according to TR-FRET assays. The expression of the xenobiotic metabolism genes, aldo-keto reduct as 1c1 (akr1c1, superoxide dismutase (SODand inflammation chemokine secretions of eotaxin (CCL11, Rantes (CCL5, MIG (CCL9 and MCP-1 were increased by DHA, C18:3n-3and CLA-t10c12 but not CLA-c9t11. This correlated with an increase in apoptosis factors

  15. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.

    Science.gov (United States)

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Su, Zhijian; Zhang, Qihao; Ou, Shiyi; Huang, Yadong

    2013-10-16

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been shown to impede the male reproductive function. However, its mechanism of action remains to be elucidated. In this study, the effects of 3-MCPD on progesterone production were investigated using R2C Leydig cells. 3-MCPD caused concentration-dependent inhibition of cell viability at the IC25, IC50, and IC75 levels of 1.027, 1.802, and 3.160 mM, respectively. Single cell gel/comet assay and atomic force microscopy assay showed that 3-MCPD significantly induced early apoptosis. In addition, 3-MCPD significantly reduced progesterone production by reducing the expression of cytochrome P450 side-chain cleavage enzyme, steroidogenic acute regulatory protein, and 3β-hydroxysteroid dehydrogenase in R2C cells. The change in steroidogenic acute regulatory protein expression was highly consistent with progesterone production. Furthermore, the mitochondrial membrane potential and cAMP significantly decreased.

  16. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  17. Triple Layer Antireflection Design Concept for the Front Side of c-Si Heterojunction Solar Cell Based on the Antireflective Effect of nc-3C-SiC:H Emitter Layer

    Directory of Open Access Journals (Sweden)

    Erick Omondi Ateto

    2016-01-01

    Full Text Available We investigated the antireflective (AR effect of hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H emitter and its application in the triple layer AR design for the front side of silicon heterojunction (SHJ solar cell. We found that the nc-3C-SiC:H emitter can serve both as an emitter and antireflective coating for SHJ solar cell, which enables us to realize the triple AR design by adding one additional dielectric layer to normally used SHJ structure with a transparent conductive oxide (TCO and an emitter layer. The optimized SHJ structure with the triple layer AR coating (LiF/ITO/nc-3C-SiC:H exhibit a short circuit current density (Jsc of 38.65 mA/cm2 and lower reflectivity of about 3.42% at wavelength range of 300 nm–1000 nm.

  18. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m....... The C3c mAb was confirmed to be C3c specific, as it showed no cross-reactivity with native (un-cleaved) C3, with C3b, iC3b, or with C3d. Also, no significant reaction was observed with C3 fragments in factor I deficient sera or plasma. This antibody forms the basis for the generation of a robust ELISA...... that allows for a quick and reliable evaluation of complement activation and consumption as a marker for inflammatory processes. We established the C3c plasma range in 100 healthy Danish blood donors with a mean of 3.47 μg/ml and a range of 2.12-4.92 μg/ml. We believe that such an antibody might...

  19. Foxp3⁺ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Birte Blankenhaus

    2014-02-01

    Full Text Available Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in

  20. Metabolism of 4-/sup 14/C-dehydroepiandrosterone and 4-/sup 14/C-4-Androstene-3, 17-dione by isolated cells of early human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Dziadkowiec, I; Czarnik, Z; Rembiesa, R [Department of Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow

    1977-03-01

    The preparation of isolated cells was used for the study of the metabolism of 4-/sup 14/C-dehydroepiandrosterone and 4-/sup 14/C-4-androstene-3,17-dione in early human placenta. Free cell suspension converted dehydroepiandrosterone and 4-androstene-3,17-dione into estrone, estradiol-17..beta.., 4-androstene-3,17-dione and testosterone.

  1. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-01-01

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  2. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  3. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  4. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  5. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  6. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2009-12-01

    Full Text Available Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  7. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  8. BENZO[A]PYRENE AND ITS K-REGION DIOL INDUCE DNA DAMAGE IN C3H10T1/2C18 CELLS AS MEASURED BY THE ALKALINE SINGLE CELL GEL (COMET) ASSAY

    Science.gov (United States)

    160. Benzo[a]pyrene and its K-region diol induce DNA damage in C3HlOTl/2Cl8 cells as measured by the alkaline single cell gel (Comet) assay In a continuing series of studies on the genotoxicity ofK-region dihydrodiols of polycyclic aromatic hydrocarbons, we have repo...

  9. Cytokine and surface receptor diversity of NK cells in resistant C3H/HeN and susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Moser, Claus; Jensen, Peter Østrup

    2003-01-01

    The purpose of the present study was to investigate whether NK cells from resistant C3H/HeN mice and susceptible BALB/c mice showed different release of cytokines and expression of surface molecules during chronic P. aeruginosa lung infection using alginate-embedded P. aeruginosa mimicking...... expression of the LFA-1 and Fc receptors on NK cells. At day 2, IFN-gamma levels increased in C3H/HeN mice but decreased in BALB/c mice. The GM-CSF levels increased only in the C3H/HeN mice at day 1 and 2. Surface expression of LFA-1 on the NK cells was higher in C3H/HeN mice at day 1 and 2. In contrast...

  10. Atypical Plasmacytic Proliferation in a Case of C3 Glomerulopathy

    Directory of Open Access Journals (Sweden)

    Osama Elfituri MD

    2017-02-01

    Full Text Available An 11-year-old Hispanic female underwent evaluation of asymptomatic proteinuria and hematuria. The patient denied fever, edema, and gross hematuria. Urinalysis showed mild proteinuria, and a urine microscopic examination revealed red blood cells. Screening tests for glomerulonephritis revealed a low C3 and negative ANA, ASO, DNAse-B, and ANCA. Histological examination of a renal biopsy specimen showed glomeruli with endocapillary proliferation, a predominant C3 deposition in the capillary loops by immunofluorescence, and electron dense deposits in the mesangium, paramesangium, and capillary walls by electron microscopy consistent with a diagnosis of C3 glomerulopathy. An interstitial plasmacytosis was also present with focal clustering of plasma cells, which were found to be kappa light chain restricted by in situ hybridization suggestive of a clonal proliferation. One can speculate that these plasma cells may be directly responsible for the renal pathology that was seen.

  11. Cytokine and surface receptor diversity of NK cells in resistant C3H/HeN and susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Moser, Claus; Jensen, Peter Østrup

    2003-01-01

    The purpose of the present study was to investigate whether NK cells from resistant C3H/HeN mice and susceptible BALB/c mice showed different release of cytokines and expression of surface molecules during chronic P. aeruginosa lung infection using alginate-embedded P. aeruginosa mimicking...... the infection in cystic fibrosis. Lung cell suspensions were depleted of lymphocytes by magnetic cell sorting. The concentrations of IFN-gamma, IL-1beta and GM-CSF were estimated by ELISA at day 1 and 2 after infection. Non-infected mice were used as controls. Flow cytometry was used to estimate the surface...... expression of the LFA-1 and Fc receptors on NK cells. At day 2, IFN-gamma levels increased in C3H/HeN mice but decreased in BALB/c mice. The GM-CSF levels increased only in the C3H/HeN mice at day 1 and 2. Surface expression of LFA-1 on the NK cells was higher in C3H/HeN mice at day 1 and 2. In contrast...

  12. Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo.

    Science.gov (United States)

    Chang, Yung-Hsien; Yang, Jai-Sing; Yang, Jiun-Long; Wu, Chang-Lin; Chang, Shu-Jen; Lu, Kung-Wen; Lin, Jen-Jyh; Hsia, Te-Chun; Lin, Yi-Ting; Ho, Chin-Chih; Wood, W Gibson; Chung, Jing-Gung

    2009-12-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom having biological effects such as immunomodulation and anti-tumor actions. In China and many other Asian countries, G. lucidum is used as a folk remedy to promote health and longevity. Although many studies have shown that G. lucidum modulates the immune system, including, for example, antigen-presenting cells, natural killer (NK) cells, and the T and B lymphocytes, the effects of G. lucidum on the WEHI-3 leukemic BALB/c mice are unclear. We attempted to determine whether G. lucidum would promote immune responses in BALB/c mice injected with WEHI-3 leukemia cells. The effects of G. lucidum on the survival rate of WEHI-3 leukemia cells injected into BALB/c mice were examined. It increased the percentages of CD3 and CD19, but decreased the percentages of Mac-3 and CD11b markers, suggesting that differentiation of the precursor of T and B cells was promoted but macrophages were inhibited. It decreased the weight of spleens as compared with control mice. It also promoted phagocytosis by macrophage from peripheral blood mononuclear cell (PBMC) and it also promoted natural killer cell activity. It decreased the percentage of leukemia cells in the spleens of mice before they were injected with WEHI-3 cells. Apparently, G. lucidum affects murine leukemia WEHI-3 cells in vivo.

  13. Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51

    Science.gov (United States)

    Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.

    2009-01-01

    Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754

  14. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism.

    Science.gov (United States)

    Bonilla-Porras, Angelica R; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-06-10

    Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively. We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  15. BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Jui-Chieh Chen

    Full Text Available Bone morphogenic protein (BMP-7 is a member of the transforming growth factor (TGF-beta superfamily, which is originally identified based on its ability to induce cartilage and bone formation. In recent years, BMP-7 is also defined as a potent promoter of cell motility, invasion, and metastasis. However, there is little knowledge of the role of BMP-7 and its cellular function in chondrosarcoma cells. In the present study, we investigated the biological impact of BMP-7 on cell motility using transwell assay. In addition, the intracellular signaling pathways were also investigated by pharmacological and genetic approaches. Our results demonstrated that treatment with exogenous BMP-7 markedly increased cell migration by activating c-Src/PI3K/Akt/IKK/NF-κB signaling pathway, resulting in the transactivation of αvβ3 integrin expression. Indeed, abrogation of signaling activation, by chemical inhibition or expression of a kinase dead form of the protein attenuated BMP-7-induced expression of integrin αvβ3 and cell migration. These findings may provide a useful tool for diagnostic/prognostic purposes and even therapeutically in late-stage chondrosarcoma as an anti-metastatic agent.

  16. CH3NH3I treatment temperature of 70 °C in low-pressure vapor-assisted deposition for mesoscopic perovskite solar cells

    Science.gov (United States)

    Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan

    2018-01-01

    Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.

  17. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    Science.gov (United States)

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids

  18. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  19. Leptin rapidly activates PPARs in C2C12 muscle cells

    International Nuclear Information System (INIS)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-01-01

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF 3 , a specific inhibitor of cytosolic phospholipase A 2 (cPLA 2 ), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA 2 activity, evaluated as the release of [ 3 H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA 2 through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA 2 pathway

  20. A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Directory of Open Access Journals (Sweden)

    Lydia Dmochewitz

    Full Text Available BACKGROUND: The C3bot1 protein (~23 kDa from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.

  1. Suppression of transformed foci, induced by alpha radiation of C3H 10T1/2 cells, by untransformed cells

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.

    1978-01-01

    The C3H 10T1/2 CL8 cell line obtained from a mouse embryo has been widely used for screening chemical carcinogens. Transformed foci are easily distinguishable in this system as crisscrossed, piled-up cells which stain more deeply than the surrounding untransformed cells. When these foci are ringcloned and subcultured, they have been shown to give rise to malignant tumors in C3H immunodepressed mice. Previous work showed that such malignant transformations, which occurred with a dose dependent frequency, could be induced by alpha particle irradiation. The present study, in turn, demonstrates that the expression of these transformations can be completely suppressed by co-cultivating the transformed cells with a large number of untransformed cells. The precise ratio of the number of untransformed cells to transformed cells to give complete suppression was found to vary in different experiments. Maximum effects were seen when a small number of transformed cells in low passage were used. These experiments may provide at least a partial explanation for the greatly increased frequency of transformations per cell irradiated in vitro, compared with the number of tumors observed after irradiation of the same number of cells in vivo. In addition, if conditions could be optimized whereby transformed foci could reproducibly be eliminated by the use of a known number of untransformed cells, this might have important applications in the prevention and treatment of certain human cancers

  2. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  3. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  4. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism

    Directory of Open Access Journals (Sweden)

    Velez-Pardo Carlos

    2011-06-01

    Full Text Available Abstract Background Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. Results It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM or 100:1 (300 μM: 3 μM, respectively. Conclusion We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  5. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.

    Science.gov (United States)

    Ulianov, Sergey V; Tachibana-Konwalski, Kikue; Razin, Sergey V

    2017-10-01

    Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture (3C)-based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number of alternative configurations, some of which could be transiently stabilized and serve regulatory purposes. Single-cell Hi-C approaches provide an opportunity to analyze chromatin folding in rare cell types such as stem cells, tumor progenitors, oocytes, and totipotent cells, contributing to a deeper understanding of basic mechanisms in development and disease. Here, we review key findings of single-cell Hi-C and discuss possible biological reasons and consequences of the inferred dynamic chromatin spatial organization. © 2017 WILEY Periodicals, Inc.

  6. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-01-01

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  7. Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells.

    Science.gov (United States)

    Li, Ke; Zhou, Wuding; Hong, Yuzhi; Sacks, Steven H; Sheerin, Neil S

    2009-03-31

    Bacterial infection of the urinary tract is a common clinical problem with E. coli being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of E. coli strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic E. coli and investigated features of the bacterial phenotype that may account for any heterogeneity. In 31 clinical isolates of E. coli tested, C3-dependent internalisation was evident in 10 isolates. Type 1 fimbriae mediated-binding is essential for C3-dependent internalisation as shown by phenotypic association, type 1 fimbrial blockade with soluble ligand (mannose) and by assessment of a type 1 fimbrial mutant. we propose that efficient internalisation of uropathogenic E. coli by the human urinary tract depends on co-operation between type 1 fimbriae-mediated adhesion and C3 receptor -ligand interaction.

  8. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  9. Interaction between Galectin-9/TIM-3 pathway and follicular helper CD4+ T cells contributes to viral persistence in chronic hepatitis C.

    Science.gov (United States)

    Zhuo, Ya; Zhang, Yi-Fu; Wu, Hong-Jie; Qin, Lei; Wang, Yan-Ping; Liu, A-Min; Wang, Xin-Hong

    2017-10-01

    Both Galectin 9 (Gal-9)/T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) pathway and follicular helper CD4 + T (Tfh) cells play important roles in persistent hepatitis C virus (HCV) infection. Thus, we aimed to investigate the regulatory role of interaction between Gal-9/TIM-3 pathway and Tfh cells in chronic hepatitis C. A total of 44 chronic hepatitis C patients and 19 normal controls (NCs) were enrolled in this study. Purified CD4 + T cells were cultured by TIM-3 Fc protein, recombinant Gal-9, or IL-21 for 48h. TIM-3 expression, Tfh proportion, and IL-21 production was measured, respectively. The immunomodulatory role of Gal-9/TIM-3 and IL-21 was also investigated in HCV cell culture system in vitro. We found that the percentage corresponding to both TIM-3-positive and CXCR5 + ICOS + Tfh cells within CD4 + T cells, which correlated with HCV RNA replication, was significantly elevated in patients with chronic hepatitis C in comparison with those in NCs. Moreover, blockade of Gal-9/TIM-3 pathway by TIM-3 Fc protein increased Tfh cells proportion, IL-21 mRNA and protein expression within purified CD4 + T cells, while activation of Gal-9/TIM-3 signaling by Gal-9 stimulation decreased IL-21 production in both patients with chronic HCV infection and healthy individuals. Meanwhile, high concentrations (100 and 200ng/mL) of IL-21 stimulation also elevated TIM-3 expression on CD4 + T cells in chronic hepatitis C. Furthermore, TIM-3 blockage and IL-21 stimulation suppressed mRNA expressions of HCV-induced antiviral proteins (myxovirus resistance A and oligoadenylate synthetase) in Huh7.5 cells without affecting viral replication in HCV cell culture system. The interaction between Gal-9/TIM-3 pathway and Tfh cells contributed to viral persistent in chronic HCV infection, which might be pivotal for development of new therapeutic approaches for chronic hepatitis C. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. The comparison of grey-scale ultrasonic and clinical features of hepatoblastoma and hepatocellular carcinoma in children: a retrospective study for ten years

    Directory of Open Access Journals (Sweden)

    Luo Yan

    2011-06-01

    Full Text Available Abstract Background Hepatoblastoma (HBL and hepatocellular carcinoma (HCC are respectively the first and the second most common pediatric malignant liver tumors. The purpose of this study was to evaluate the combined use of the ultrasound examination and the assessment of the patients' clinical features for differentiating HBL from HCC in children. Methods Thirty cases of the confirmed HBL and 12 cases of the confirmed HCC in children under the age of 15 years were enrolled into our study. They were divided into the HBL group and the HCC group according to the histological types of the tumors. The ultrasonic features and the clinical manifestations of the two groups were retrospectively analyzed, with an emphasis on the following parameters: onset age, gender (male/female ratio, positive epatitis-B-surface-antigen (HBV, alpha-fetoprotein increase, and echo features including septa, calcification and liquefaction within the tumors. Results Compared with the children with HCC, the children with HBL had a significantly younger onset age (8.2 years vs. 3.9 years, P Conclusion Ultrasonic features combined with clinical manifestations are valuable for differentiating HBL from HCC in children.

  11. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  12. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high temperature autoclave pyrolysis using decomposing precursors. Below 500 °C, melamine...

  13. PDGF stimulation of Mueller cell proliferation: Contributions of c-JNK and the PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Moon, Sang Woong; Chung, Eun Jee; Jung, Sun-Ah; Lee, Joon H.

    2009-01-01

    Platelet-derived growth factor (PDGF) has a critical role in proliferative vitreoretinopathy (PVR) as a chemoattractant and mitogen for retinal pigment epithelial cells and retinal glial cells. Here, we investigated the potential effects of PDGF on the proliferation of Mueller cells and the intracellular signaling pathway mediating these changes. PDGF induced Mueller cell proliferation and increased phosphorylation of the PDGF receptor (PDGFR), as shown by an MTT assay and immunoprecipitation analyses. Both effects were blocked by JNJ, a PDGFR-selective tyrosine kinase inhibitor. PDGF also stimulated phosphorylation of c-JNK and Akt. PDGF-induced Mueller cell proliferation was significantly reduced by pre-treatment with SP600125 and LY294002, inhibitors of c-JNK and Akt phosphorylation, respectively. Our findings collectively indicate that PDGF-stimulated Mueller cell proliferation occurs via activation of the c-JNK and PI3K/Akt signaling pathways. These data provide useful information in establishing the role of Mueller cells in the development of proliferative vitreoretinopathy.

  14. Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death

    International Nuclear Information System (INIS)

    Arnaud-Dabernat, Sandrine; Masse, Karine; Smani, Moneim; Peuchant, Evelyne; Landry, Marc; Bourbon, Pierre-Marie; Le Floch, Renaud; Daniel, Jean-Yves; Larou, Monique

    2004-01-01

    The nm23 gene family encodes nucleoside diphosphate kinases (NDPKs) which supply the cell with (d)NTPs. The human NDPKB, also known as the PuF protein, binds the c-myc promoter and transactivates the c-myc protooncogene. We have now studied the effects of mouse NDPKA and NDPKB overexpression on endogenous c-myc transactivation in the mouse BAF3 and the rat PC12 cell lines. c-myc transcripts were found to be up-regulated by NDPKB only in the BAF3 line. This suggests that c-myc transcriptional control via NDPKB depends on the presence of cell-specific co-factors. Unexpectedly, NDPKB also induced NDPKA expression. This new effect was found in both cell lines, suggesting that NDPKB-dependent nm23-M1 gene transactivation requires cis and/or trans elements different from those involved in c-myc transactivation. Moreover, the BAF3 cell proliferation capacities were found to be independent of NDPKA or B cell contents. Interestingly, cell death induced by c-myc overexpression or H 2 O 2 exposure was decreased in nm23-transfected compared to control BAF3 cells. These data collectively suggest that NDPKs might improve cell survival by a mechanism coupling DNA repair and transcriptional regulation of genes involved in DNA damage response

  15. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Directory of Open Access Journals (Sweden)

    Kazumi Hirano

    Full Text Available Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  16. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Science.gov (United States)

    Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H; Nishihara, Shoko

    2012-01-01

    Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  17. Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.

    Science.gov (United States)

    DeMaere, Matthew Z; Darling, Aaron E

    2018-02-01

    Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.

  18. Regulation of C/EBPβ isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3

    International Nuclear Information System (INIS)

    Marcinkowska, Ewa; Garay, Edward; Gocek, Elzbieta; Chrobak, Agnieszka; Wang, Xuening; Studzinski, George P.

    2006-01-01

    C/EBPβ is known to be important for monocytic differentiation and macrophage function. Here, we found that expression of all three C/EBPβ isoforms induced in HL60 cells by 1,25-dihydroxyvitamin D 3 (1,25D) was upregulated in a sustained manner that correlates with the appearance of monocytic phenotype and with the G1 phase cell cycle arrest. In 1,25D-resistant HL60-40AF cells, isoforms β-1 and β-3 were expressed at levels comparable to 1,25D-sensitive HL60-G cells, but isoform β-2 was difficult to detect. Treatment of sensitive HL60 cells with 1,25D resulted in predominantly nuclear localization of C/EBP isoforms β-2 and β-3, while a large proportion of C/EBPβ-1 remained in the cytoplasm. Attenuation of the MEK-ERK MAPK pathway by the inhibitor PD98059 markedly reduced the expression, 1,25D-induced phosphorylation and nuclear localization of C/EBPβ-2 and C/EBPβ-3. Interestingly, only the lower molecular mass isoforms of C/EBPβ phosphorylated on Thr235 were found in the nuclei, while C/EBPβ-1 was constitutively phosphorylated and was detected principally in the cytoplasmic fraction. Although the role of C/EBPβ isoforms in 1,25D-induced differentiation is complex, our results taken together strongly suggest that the phosphorylation of C/EBPβ isoforms on Thr235 takes place mainly via the MEK-ERK pathway and that C/EBPβ-2 is the principal transcription factor in this cell system

  19. Cadmium-109 uptake by tumors derived from Balb C/3T3 cell lines with varying degrees of the transformed phenotype

    International Nuclear Information System (INIS)

    Morton, K.; Alazraki, N.; Winge, D.; Lynch, R.E.

    1986-01-01

    To determine if tumors are rich in metallothionein, the authors measured the vivo uptake of subcutaneously-injected carrier-free cadmium-109 in tumors and in normal tissues of Balb/C mice. The tumors were grown in the mice from cultured Balb/3T3 cells transformed by the Moloney murine sarcoma virus. Uptake of cadmium-109 per gram of tissue was greatest for liver, kidney, and spleen. However, tumor uptake of cadmium-109 was markedly greater than that in blood, skeletal muscle, bones, intestine or adipose tissue. B Sephadex G-75 chromatography, the radioactivity in tumor and in liver lysates eluted with cytochrome-C, a molecule similar in molecular weight to metal-lothionein. To determine if metallothionein levels are related to the degree of malignancy of tumors, cadmium-109 uptake in the tumors from the virally-transformed cells was compared to that in tumors from non-transformed Balb/3T3 cells and two derivative chemically transformed cell lines. There was strong correlation between the substrate-independent growth in soft agarose of the four cell lines, the rate of growth of the corresponding tumors, and the amount of cadmium-109 uptake in the tumors. The authors conclude that metallothionein levels may be elevated in tumors as a function of the degree of expression of the transformed phenotype

  20. Doping and stability of 3C-SiC: from thinfilm to bulk growth

    DEFF Research Database (Denmark)

    Jokubavicius, V.; Sun, J.; Linnarsson, M. K.

    cell technology. Nitrogen and boron doped 3C-SiC layers can depict a new infrared LED. Hexagonal SiC is an excellent substrate for heteropeitaxial growth of 3C-SiC due to excellent compatibility in lattice constant and thermal expansion coefficient. However, the growth of 3C-SiC on such substrates......-SiC for optoelectronic applications are discussed....

  1. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  2. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cellsa murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  3. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    Science.gov (United States)

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  4. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Anna Litwiniuk

    Full Text Available Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours and long-term (days experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β and forkhead box protein O1 (FOXO1 on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2. Insulin, via the phosphatidylinositol 3-kinase (PI3-K/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin

  5. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    International Nuclear Information System (INIS)

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-01-01

    Highlights: ► Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. ► Overexpression of ATF3 represses C/EBPα expression. ► ATF3 directly binds to mouse C/EBPα promoter spanning from −1928 to −1907. ► ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBPα transcript and repressed the activity of the 3.6-kb mouse C/EBPα promoter, demonstrating that ATF3 downregulates C/EBPα expression. Transfection studies using mutant constructs containing 5′-deletions in the C/EBPα promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between −1921 and −1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBPα promoter spanning from −1928 to −1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBPα mRNA and repress the promoter activity of the C/EBPα gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBPα expression. Collectively, these results demonstrate that ATF3 represses the C/EBPα gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition of adipocyte differentiation.

  6. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  7. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.

    Science.gov (United States)

    Lando, David; Stevens, Tim J; Basu, Srinjan; Laue, Ernest D

    2018-01-01

    Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.

  8. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  9. A review on g-C3N4-based photocatalysts

    International Nuclear Information System (INIS)

    Wen, Jiuqing; Xie, Jun; Chen, Xiaobo; Li, Xin

    2017-01-01

    Graphical abstract: The photocatalytic fundamentals, versatile properties, design strategies and potential applications of g-C 3 N 4 -based photocatalysts were systematically summarized and addressed. - Highlights: • The photocatalytic fundamentals of g-C 3 N 4 were systematically summarized. • The versatile properties of g-C 3 N 4 photocatalysts were highlighted. • The different design strategies of g-C 3 N 4 photocatalysts were reviewed. • The important photocatalytic applications of g-C 3 N 4 were also addressed. - Abstract: As one of the most appealing and attractive technologies, heterogeneous photocatalysis has been utilized to directly harvest, convert and store renewable solar energy for producing sustainable and green solar fuels and a broad range of environmental applications. Due to their unique physicochemical, optical and electrical properties, a wide variety of g-C 3 N 4 -based photocatalysts have been designed to drive various reduction and oxidation reactions under light irradiation with suitable wavelengths. In this review, we have systematically summarized the photocatalytic fundamentals of g-C 3 N 4 -based photocatalysts, including fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C 3 N 4 -based photocatalysts. The versatile properties of g-C 3 N 4 -based photocatalysts are highlighted, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties. Various design strategies are also thoroughly reviewed, including band-gap engineering, defect control, dimensionality tuning, pore texture tailoring, surface sensitization, heterojunction construction, co-catalyst and nanocarbon loading. Many important applications are also addressed, such as photocatalytic water splitting (H 2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction, selective organic

  10. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation

    International Nuclear Information System (INIS)

    Karaolis, David K.R.; Cheng, Kunrong; Lipsky, Michael; Elnabawi, Ahmed; Catalano, Jennifer; Hyodo, Mamoru; Hayakawa, Yoshihiro; Raufman, Jean-Pierre

    2005-01-01

    The novel cyclic dinucleotide, 3',5'-cyclic diguanylic acid, cGpGp (c-di-GMP), is a naturally occurring small molecule that regulates important signaling mechanisms in prokaryotes. Recently, we showed that c-di-GMP has 'drug-like' properties and that c-di-GMP treatment might be a useful antimicrobial approach to attenuate the virulence and pathogenesis of Staphylococcus aureus and prevent or treat infection. In the present communication, we report that c-di-GMP (≤50 μM) has striking properties regarding inhibition of cancer cell proliferation in vitro. c-di-GMP inhibits both basal and growth factor (acetylcholine and epidermal growth factor)-induced cell proliferation of human colon cancer (H508) cells. Toxicity studies revealed that exposure of normal rat kidney cells and human neuroblastoma cells to c-di-GMP at biologically relevant doses showed no lethal cytotoxicity. Cyclic dinucleotides, such as c-di-GMP, represent an attractive and novel 'drug-platform technology' that can be used not only to develop new antimicrobial agents, but also to develop novel therapeutic agents to prevent or treat cancer

  11. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  12. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.

  13. Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein*

    Science.gov (United States)

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M.; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-01-01

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (KD = 0.34–2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  14. Cell density dependence of transformation frequencies in C3H10T1/2 cells exposed to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Bettega, D; Calzolari, P; Ottolenghi, A; Lombardi, L T [Milan Univ. (Italy). Ist. di Fisica; Rimoldi, E [Milan Univ. (Italy). Ist. di Radiologia Veterinaria

    1989-12-01

    The effects of cell density on transformation frequencies were studied in C3H10T1/2 cells exposed to 0.5 and 7 Gy of 200 kVp X-rays. Initial cell density strongly influenced transformation frequency; this decreased by a factor of between 4 and 10 when the initial seeding density was changed from 50 to 2500 cells/10 cm diameter Petri dish. The data were fitted with two equations: (a) an allometric function represented on a log-log scale by a straight line and (b) a sigmoidal function with plateaux between 50 and 250 cells/dish and above 600. The two curves are compared and their probabilities discussed. Our data indicate that the region between 50 and 250 cells/dish would be the most suitable region for dose-effect measurements. A study of the growth curves at 0.5 and 8.5 Gy shows that cell growth rates are not influenced by initial cell density. (author).

  15. Synergistic cytotoxic action of vitamin C and vitamin K3.

    Science.gov (United States)

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  16. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Krystyna Mazan-Mamczarz

    2014-01-01

    Full Text Available Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

  17. Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2011-12-01

    Full Text Available The Epstein-Barr nuclear antigen 3C (EBNA3C, one of the essential latent antigens for Epstein-Barr virus (EBV-induced immortalization of primary human B lymphocytes in vitro, has been implicated in regulating cell proliferation and anti-apoptosis via interaction with several cellular and viral factors. Gemin3 (also named DDX20 or DP103 is a member of DEAD RNA helicase family which exhibits diverse cellular functions including DNA transcription, recombination and repair, and RNA metabolism. Gemin3 was initially identified as a binding partner to EBNA2 and EBNA3C. However, the mechanism by which EBNA3C regulates Gemin3 function remains unclear. Here, we report that EBNA3C directly interacts with Gemin3 through its C-terminal domains. This interaction results in increased stability of Gemin3 and its accumulation in both B lymphoma cells and EBV transformed lymphoblastoid cell lines (LCLs. Moreover, EBNA3C promotes formation of a complex with p53 and Gemin3 which blocks the DNA-binding affinity of p53. Small hairpin RNA based knockdown of Gemin3 in B lymphoma or LCL cells remarkably attenuates the ability of EBNA3C to inhibit the transcription activity of p53 on its downstream genes p21 and Bax, as well as apoptosis. These findings provide the first evidence that Gemin3 may be a common target of oncogenic viruses for driving cell proliferation and anti-apoptotic activities.

  18. Investigation of a Pt3Sn/C Electro-Catalyst in a Direct Ethanol Fuel Cell Operating at Low Temperatures for Portable Applications

    OpenAIRE

    Zignani, S. C.; Gonzalez, E. R.; Baglio, V.; Siracusano, S.; Arico, A. S.

    2012-01-01

    A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifu...

  19. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Manami [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yang, Zeyu [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang (China); Nakagawa, Kentaro; Maruyama, Junichi [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Xu, Xiaoyin [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Sarkar, Aradhan; Ichimura, Ayana [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Nasu, Yusuke [Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Ozawa, Takeaki [Department of Chemistry, School of Science, The University of Tokyo, Tokyo (Japan); Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Ishigami-Yuasa, Mari [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Shigeru [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); Kagechika, Hiroyuki [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  20. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    International Nuclear Information System (INIS)

    Kodaka, Manami; Yang, Zeyu; Nakagawa, Kentaro; Maruyama, Junichi; Xu, Xiaoyin; Sarkar, Aradhan; Ichimura, Ayana; Nasu, Yusuke; Ozawa, Takeaki; Iwasa, Hiroaki; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki

    2015-01-01

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced

  1. Suppression of X-ray induced transformation by vitamin E in mouse C3H/10T1/2 cells

    International Nuclear Information System (INIS)

    Radner, B.S.; Kennedy, A.R.

    1986-01-01

    Vitamin E (d-α-tocopherol) was shown to decrease X-ray induced transformation in mouse C3H/10 1/2 cells. The d-α-tocopherol was active in the form of succinate diluted in ethanol, but was inactive at the highest non-toxic concentration of the pure substance dissolved in oil and diluted in acetone. Vitamin E succinate was effective when present only for the early portion of the radiation transformation assay period, indicating that its effect may be reversible. Vitamin E did not supress the growth and expression of transformed C3H/10 1/2 cells as foci when transformed cells were surrounded by a monolayer of normal cells. (author)

  2. A cell-based biosensor for nanomaterials cytotoxicity assessment in three dimensional cell culture

    International Nuclear Information System (INIS)

    Dubiak-Szepietowska, Monika; Karczmarczyk, Aleksandra; Winckler, Thomas; Feller, Karl-Heinz

    2016-01-01

    Nanoparticles (NPs) are widely used in consumer and medicinal products. The high prevalence of nanoparticles in the environment raises concerns regarding their effects on human health, but there is limited knowledge about how NPs interact with cells or tissues. Because the European Union has called for a substantial reduction of animal experiments for scientific purposes (Directive 2010/63), increased efforts are required to develop in vitro models to evaluate potentially hazardous agents. Here, we describe a new cell-based biosensor for the evaluation of NPs cytotoxicity. The new biosensor is based on transgenic human hepatoblastoma cells (HepG2) that express a secreted form of alkaline phosphatase (SEAP) as a reporter protein whose expression is induced upon activation of a stress response pathway controlled by the transcription regulator nuclear factor-κB (NF-κB). The NF-κB-HepG2 sensor cells were cultured in a Matrigel-based three dimensional environment to simulate the in vivo situation. The new biosensor cells offer the advantage of generating fast and reproducible readout at lower concentrations and shorter incubation time than conventional viability assays, avoid possible interaction between nanomaterials and assay compounds, therefore, minimize generation of false positive or negative results and indicate mechanism of toxicity through NF-κB signaling.

  3. MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Niu, Man; Gao, Dan; Wen, Qiuyuan; Wei, Pingpin; Pan, Suming; Shuai, Cijun; Ma, Huiling; Xiang, Juanjuan; Li, Zheng; Fan, Songqing; Li, Guiyuan; Peng, Shuping

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue. In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn’t affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR. We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1. The regulation of miR-29c/DNMTs/miR-34c/449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC

  4. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  5. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, Jingyuan; Liu, Zhentao; Wang, Ziqi; Wang, Shubin; Chen, Zuhua; Li, Zhongwu; Zhang, Mengqi; Zou, Jianling; Dong, Bin; Gao, Jing; Shen, Lin

    2018-04-10

    c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  7. Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.

    Science.gov (United States)

    Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar

    2011-08-09

    Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.

  8. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.

    Science.gov (United States)

    da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes

    2016-05-01

    Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.

  9. A Revised Mechanism for the Activation of Complement C3 to C3b

    Science.gov (United States)

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.

    2015-01-01

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663

  10. Increased deposition of C3b on red cells with low CR1 and CD55 in a malaria-endemic region of western Kenya: Implications for the development of severe anemia

    Directory of Open Access Journals (Sweden)

    Odera Michael M

    2008-08-01

    Full Text Available Abstract Background Severe anemia due to Plasmodium falciparum malaria is a major cause of mortality among young children in western Kenya. The factors that lead to the age-specific incidence of this anemia are unknown. Previous studies have shown an age-related expression of red cell complement regulatory proteins, which protect erythrocytes from autologous complement attack and destruction. Our primary objective was to determine whether in a malaria-endemic area red cells with low levels of complement regulatory proteins are at increased risk for complement (C3b deposition in vivo. Secondarily, we studied the relationship between red cell complement regulatory protein levels and hemoglobin levels. Methods Three hundred and forty-two life-long residents of a malaria-holoendemic region of western Kenya were enrolled in a cross-sectional study and stratified by age. We measured red cell C3b, CR1, CD55, and immune complex binding capacity by flow cytometry. Individuals who were positive for malaria were treated and blood was collected when they were free of parasitemia. Analysis of variance was used to identify independent variables associated with the %C3b-positive red cells and the hemoglobin level. Results Individuals between the ages of 6 and 36 months had the lowest red cell CR1, highest %C3b-positive red cells, and highest parasite density. Malaria prevalence also reached its peak within this age group. Among children ≤ 24 months of age the %C3b-positive red cells was usually higher in individuals who were treated for malaria than in uninfected individuals with similarly low red cell CR1 and CD55. The variables that most strongly influenced the %C3b-positive red cells were age, malaria status, and red cell CD55 level. Although it did not reach statistical significance, red cell CR1 was more important than red cell CD55 among individuals treated for malaria. The variables that most strongly influenced the hemoglobin level were age, the %C3b

  11. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  12. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  13. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    Science.gov (United States)

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  14. In vitro antitumour activity, safety testing and subcellular distribution of two poly[oxyethylene(aminophosphonate-co-H-phosphonate]s in Ehrlich ascites carcinoma and BALB/c 3T3 cell culture systems

    Directory of Open Access Journals (Sweden)

    Ani Georgieva

    2016-01-01

    Full Text Available Two polyphosphoesters containing anthracene-derived aminophosphonate and hydrophilic H-phosphonate repeating units, poly[oxyethylene(aminophosphonate-co-H-phosphonate]s (1 and 2, were tested for the in vitro antitumour activity on cell cultures derived from ascitic form of Ehrlich mammary adenocarcinoma by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT-dye reduction assay. The in vitro safety testing of the copolymers was performed by BALB/c 3T3 neutral red uptake assay. A study on their uptake and subcellular distribution in non-tumourigenic and tumour cells was performed by means of fluorescence microscopy. Both copolymers showed significant antitumour activity towards Ehrlich ascites carcinoma (EAC cells. However, the in vitro safety testing revealed significant toxicity of polymer 2 to BALB/c 3T3 mouse embryo cells. In contrast, polymer 1 showed complete absence of cytotoxicity to BALB/c 3T3 cells. The fluorescent studies showed that the substances were diffusely distributed in the cytoplasm in both cell culture systems. As opposed to BALB/c 3T3 cells, in EAC cells, intense fluorescent signal was observed in the nuclei and in the perinuclear region. The tested polyphosphoesters are expected to act under physiological conditions as prodrugs of aminophosphonates.

  15. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kuo-Feng Weng

    2009-09-01

    Full Text Available Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell-virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71 3C protease (3C(pro cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3' pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3C(pro. CstF-64 was cleaved in vitro by 3C(pro but neither by mutant 3C(pro (in which the catalytic site was inactivated nor by another EV71 protease 2A(pro. Serial mutagenesis was performed in CstF-64, revealing that the 3C(pro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500. An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3'-end pre-mRNA processing and polyadenylation in 3C(pro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3C(pro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.

  16. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  17. C2-Ceramide Induces Cell Death and Protective Autophagy in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhu

    2014-02-01

    Full Text Available Ceramides are second messengers involved in several intracellular processes in cancer cells, amongst others. The aim of this study was to evaluate the anti-tumor efficacy of C2-ceramide (C2-Cer; N-acetyl-D-sphingosine by investigating cell death and autophagy in head and neck squamous cell carcinoma (HNSCC cells. C2-Cer showed concentration-dependent cytotoxicity in HN4 and HN30 cell lines. It simultaneously induced caspase-3-independent apoptosis and programmed necrosis. C2-Cer markedly increased the expression level of microtubule-associated protein 1 light chain 3B (LC3B type II associated with protective autophagy. An autophagy inhibitor enhanced C2-Cer-mediated cytotoxicity, while a programmed-necrosis inhibitor produced the opposite effect. Furthermore, C2-Cer up-regulated the phosphorylation of extracellular signal-regulated kinase 1/2, but down-regulated its downstream substrate phospho-mammalian target of rapamycin (p-mTOR during the autophagy process. These results suggested that C2-Cer exerts anti-tumor effects by inducing programmed apoptosis and necrosis in HNSCC, and these cytotoxic effects are enhanced by an autophagy inhibitor.

  18. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication.

    Science.gov (United States)

    Bochkov, Yury A; Watters, Kelly; Ashraf, Shamaila; Griggs, Theodor F; Devries, Mark K; Jackson, Daniel J; Palmenberg, Ann C; Gern, James E

    2015-04-28

    Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C529Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y529 variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y529 that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.

  19. Effect of low dose radiation on cytochrome c and caspase-3 protein expressions in spermatogenic cells of mouse testis

    International Nuclear Information System (INIS)

    Wang Zhicheng; Zhao Hongguang; Piao Chunnan; Liu Guangwei; Liu Shuchun; Lv Zhe; Gong Shouliang

    2006-01-01

    Objective: To investigate the effect of low dose radiation on the expressions of cytochrome e (Cyt c) and caspase-3 proteins in spermatogenic cells of mouse testis. Methods: The relationships of dose- and time-effect of Cyt c and caspase-3 protein expressions with different dose of X-rays were observed in the spermatogenic cells of mouse testis with immunohistochemical technique (SABC). Results: After irradiation with 0, 0.025, 0.05, 0.075, 0.1 and 0.2 Gy, Cyt c and caspase-3 proteins expressed differently in all kinds of spermatogenic cells, and principally in spermatogonia and spermatocytes, and less in spermatids and spermatozoa. And the expressions increased with the increasing of irradiation dose. The expressions of both proteins after irradiation with 0.075 Gy increased with the lapse of time and reached to the peak at 12 h, and then decreased. Conclusion: Dose-and time-effect exists on the low-dose irradiation induced expressions of Cyt e and caspase-3 proteins in spermatogenic cells of mouse testis. (authors)

  20. 1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells.

    Science.gov (United States)

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong

    2014-07-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    2017-05-01

    Full Text Available Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators.

  2. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    Science.gov (United States)

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  4. Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss

    Directory of Open Access Journals (Sweden)

    Yuto Hatakeyama

    2016-10-01

    Full Text Available In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC. Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.

  5. Effect of ciguatoxin 3C on voltage-gated Na+ and K+ currents in mouse taste cells.

    Science.gov (United States)

    Ghiaroni, Valeria; Fuwa, Haruhiko; Inoue, Masayuki; Sasaki, Makoto; Miyazaki, Keisuke; Hirama, Masahiro; Yasumoto, Takeshi; Rossini, Gian Paolo; Scalera, Giuseppe; Bigiani, Albertino

    2006-09-01

    The marine dinoflagellate Gambierdiscus toxicus produces highly lipophilic, polycyclic ether toxins that cause a seafood poisoning called ciguatera. Ciguatoxins (CTXs) and gambierol represent the two major causative agents of ciguatera intoxication, which include taste alterations (dysgeusiae). However, information on the mode of action of ciguatera toxins in taste cells is scarce. Here, we have studied the effect of synthetic CTX3C (a CTX congener) on mouse taste cells. By using the patch-clamp technique to monitor membrane ion currents, we found that CTX3C markedly affected the operation of voltage-gated Na(+) channels but was ineffective on voltage-gated K(+) channels. This result was the exact opposite of what we obtained earlier with gambierol, which inhibits K(+) channels but not Na(+) channels. Thus, CTXs and gambierol affect with high potency the operation of separate classes of voltage-gated ion channels in taste cells. Our data suggest that taste disturbances reported in ciguatera poisoning might be due to the ability of ciguatera toxins to interfere with ion channels in taste buds.

  6. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  7. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  8. 1,25 dihydroxyvitamin D3 (1,25) regulation of c-myc mRNA in HL-60 leukemia cells

    International Nuclear Information System (INIS)

    Simpson, R.U.; Bresnick, E.H.; Begley, D.A.

    1986-01-01

    Recently, 1,25 was shown to induce differentiation and decrease c-myc levels in HL-60 cells. The authors have confirmed these observations by RNA dot blot analysis. Cells treated with 50 nM 1,25 for 4, 24 and 48 hr showed c-myc mRNA levels of 26, 17 and 15% of control respectively. β-Actin mRNA levels were not altered. To ascertain whether 1, 25 regulated c-myc transcriptionally, an HL-60 nuclear RNA runoff assay was developed. Assay of total nuclei transcriptional activity revealed that 50% of RNA elongation was α-amanitin (0.8 μg/ml) sensitive and was linear with nuclei concentration (0.1-1 x 10 7 nuclei). 1,25 (50 nM) treated (45-96 hr) cells had decreased (approx.40%) total transcription rate relative to control. Decreased total RNA synthesis occurred concomitant with NBT reducing activity. 32 P-RNA runoff transcripts from HL-60 nuclei were hybridized to excess (5 μg DNA was excess) Pst I linearized c-myc and β-actin clones (in pBR322) immobilized on nitrocellulose filter. 32 P-RNA input from 2 x 10 6 to 2 x 10 7 cpm yielded linear hybridization signal. Analysis of blot dot intensity revealed no difference in transcription of c-myc in nuclei from 1,25 dosed or control cells. (myc/actin ratios: 1,25 (50 nM, 72 hr) =1.1 +/- 0.3 and control (72 hr) = 1.0, N=3 or 2 or 3 dots ea). These preliminary data suggest 1,25 does not affect c-myc transcription in HL-60 nuclei and may regulate c-myc mRNA post-transcriptionally

  9. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Steven N Steinway

    Full Text Available c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF, plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.We utilized the human MHCC97-H c-Met positive (c-Met+ HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that

  10. Short Stat5-interacting peptide derived from phospholipase C3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  11. Radiobiological properties of spermatogonial stem cells in C3H/101 hybrid mice and evaluation of the model for induction of genetic damage in spermatogonial stem cells

    International Nuclear Information System (INIS)

    De Rooij, V.

    1993-01-01

    C3H/101 (3H1) hybrid mice are studied, in order to find answers to the following questions: What are the D 0 values for killing of proliferating and quiescent stem cells by X-irradiation in 3H1 mice; How many stem cells are present per 3H1 testis and what is the density of these cells during the epithelial cycle; What are the approximate numbers of proliferating and quiescent stem cells in a 3H1 mouse testis. (R.P.) 5 figs

  12. Altered sensitivity of system A amino acid transport to ouabain in normal and transformed C3H-10T1/2 cells during the cell cycle

    International Nuclear Information System (INIS)

    Leister, K.J.; Schenerman, M.A.; Racker, E.

    1989-01-01

    Quiescent C3H-10T1/2 mouse fibroblasts that have not undergone any type of stress have a relatively low rate of 2-aminoisobutyrate (Aib) uptake by means of system A, which is primarily energized by the transmembrane Na + chemical gradient potential. System A activity in these cells is not sensitive to ouabain or proton ionophores. In contrast, methylcholanthrene-transformed and cofluent C3H-10T1/2 cells treated with ouabain utilize the membrane potential generated by the Na + , K + -ATPase pump to drive Aib transport by means of system A as shown by the sensitivity of transport activity to ouabain and proton ionophores. Since glucose is present during the assay, the proton ionophores do not affect the availability of ATP, as indicated by the undiminished uptake of 86 Rb + by the Na + , K + -ATPase pump. As cells progress through the G 1 phase of the cell cycle, they show an increased system A activity prior to entry into the S phase, which is also dependent on the electrogenicity of the Na + , K + -ATPase pump. There appears to be in all these cases a qualitative shift in the bioenergetic mechanism for the uptake of Aib as well as a marked quantitative increase in Aib uptake. The high activity after ouabain treatment was sustained in the transformed cells after removal of the ouabain, whereas in the confluent 10T1/2 cells the rate of uptake decayed rapidly, suggesting a difference in the mode of regulation. The authors conclude that transformed cells and normal cells in late G 1 or under stress make use of the membrane potential generated by the Na + , K + -ATPase pump to drive amino acid uptake by means of system A

  13. c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.

    Science.gov (United States)

    Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A

    1994-07-01

    The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Importância do co-cultivo com fibroblastos de camundongo 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo humano Importance of 3T3 feeder layer to establish epithelial cultures from cell suspension obtained from corneo-scleral rims

    Directory of Open Access Journals (Sweden)

    Priscila Cardoso Cristovam

    2008-10-01

    Full Text Available OBJETIVO: Avaliar a importância da presença de células 3T3 para estabelecer cultura de suspensão de células epiteliais do limbo obtido de rimas córneo-esclerais. MÉTODOS: Rimas de diferentes doadores tiveram seus estroma posterior e endotélio removidos (n=6. Cada rima foi dividida em três segmentos iguais, que foram colocados em cultura em três diferentes condições: um segmento foi colocado na placa de cultura com o lado epitelial para cima (Grupo A. Os dois segmentos restantes foram tripsinizados e a suspensão de células obtida foi cultivada com (Grupo B ou sem (Grupo C células 3T3 irradiadas. As células foram mantidas em meio de cultura "supplemental hormonal epithelial médium" (SHEM, a migração epitelial e a formação de clones nos grupos A, B e C foram avaliadas pela microscopia de contraste de fase e por coloração pela rodamina B. Os resultados foram comparados estatisticamente. RESULTADOS: O crescimento de células epiteliais foi observado em 4/6 rimas (Grupo A. Todas as suspensões de células epiteliais que foram cultivadas com células 3T3 (Grupo B formaram clones. Nenhuma adesão ou formação de clones verdadeiros (holo ou meroclones foi observada na cultura de células que foi cultivada sem 3T3 (Grupo C (p=0,009. CONCLUSÕES: Suspensão de células epiteliais límbicas obtidas de rimas córneo-esclerais no modelo utilizado precisa ser cultivada com células 3T3 para formar clones e estabelecer colônias epiteliais com perspectivas para uso terapêutico na reconstrução da superfície ocular.PURPOSE: To evaluate the importance of the presence of 3T3 fibroblasts for establishing limbal epithelial cultures from cell suspension obtained from corneo-scleral rims (CSR. METHODS: Corneo-scleral rims from different donors (n=6 had their posterior stroma and endothelium stripped away. Each corneo-scleral rim was divided into three equal segments that were set up in tissue culture in three different conditions: one of the

  15. Radiation effects in C cells

    International Nuclear Information System (INIS)

    Alcaraz Banos, M.; Garcia Ayala, A.; Meseguer Penalver, J.; Genoves Garcia, J.L.

    1994-01-01

    The para follicular cell (C cell) ultrastructure of euthyroid, propyl thiouracil-treated (PTU) and protyrreline-treated (TRH) irradiated rabbit thyroid gland was studied. The ultrastructural features of C cells in the non-irradiated thyroid glands were similar to those described in other mammals. We have not observed the disappearance of the C cells in irradiated thyroid glands. Clusters of C cells were occasionally observed in the irradiated glands. The irradiated C cells showed intranuclear, filamentous bundles and a dense body together with a well-developed endoplasmic reticulum and numerous secretory vesicles. C cells follicles could be observed in irradiated and TRH-treated animals. (Author)

  16. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    2016-06-01

    Full Text Available Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented.

  17. The chicken c-erbA alpha-product induces expression of thyroid hormone-responsive genes in 3,5,3'-triiodothyronine receptor-deficient rat hepatoma cells

    DEFF Research Database (Denmark)

    Muñoz, A; Höppner, W; Sap, J

    1990-01-01

    To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon...

  18. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas - Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c.

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A; Rieker, Ralf J; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  19. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c

    Directory of Open Access Journals (Sweden)

    Bei eHuang

    2013-12-01

    Full Text Available The molecular pathogenesis of thymomas and thymic carcinomas (TCs is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and thymic carcinomas, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCC with a custom made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  20. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    Science.gov (United States)

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  1. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells.

    Science.gov (United States)

    Felemban, Shatha G; Garner, A Christopher; Smida, Fathi A; Boocock, David J; Hargreaves, Alan J; Dickenson, John M

    2015-11-16

    At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.

  2. X-radiation-induced transformation in a C3H mouse embryo-derived cell line

    International Nuclear Information System (INIS)

    Terzaghi, M.; Little, J.B.

    1976-01-01

    Reproducible x-ray-induced oncogenic transformation has been demonstrated in an established cell line of mouse embryo fibroblasts. Cells derived from transformed foci formed malignant tumors when injected into syngeneic hosts. An exponential increase in the number of transformants per viable cell occurred with doses of up to 400 rads of x-radiation. The transformation frequency in exponentially growing cultures remained constant at 2.3 x 10 -3 following doses of 400 to 1500 rads. There was little change in survival following x-ray doses up to 300 rads. Doses greater than 300 rads were associated with an exponential decline in survival; the D 0 for the survival curve was 175 rads. Transformation frequency varied with changes in the number of viable cells seeded per dish. There was about a 10-fold decline in the transformation frequency when the number of cells was increased from 400 to 1000 viable cells/100-mm Petri dish. Below this density range there was little change in transformation frequency. The presence of lethally preirradiated cells was not associated with an enhancement of transformation in irradiated cells or with the induction of transformation in unirradiated cell cultures. Amphotericin B (Fungizone) inhibited the appearance of transformants when added to the culture medium within 2 to 3 weeks after initiation of the experiment

  3. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  5. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    Science.gov (United States)

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of

  6. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  7. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    International Nuclear Information System (INIS)

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  8. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  9. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  10. Demonstration of a specific C3a receptor on guinea pig platelets

    International Nuclear Information System (INIS)

    Fukuoka, Y.; Hugli, T.E.

    1988-01-01

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin

  11. Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells

    International Nuclear Information System (INIS)

    Gao Yanhong; Yue Wen; Zhang Peng; Li Li; Xie Xiaoyan; Yuan Hongfeng; Chen Lin; Liu Daqing; Yan Fang; Pei Xuetao

    2005-01-01

    spindlin1, a novel human gene recently isolated by our laboratory, is highly homologous to mouse spindlin gene. In this study, we cloned cDNA full-length of this novel gene and send it to GenBank database as spindlin1 (Homo sapiens spindlin1) with Accession No. AF317228. In order to investigate the function of spindlin1, we studied further the subcellular localization of Spindlin1 protein and the effects of spindlin1 overexpression in NIH3T3 cells. The results showed that the fusion protein pEGFP-N1-spindlin1 was located in the nucleus and the C-terminal is correlated with nuclear localization of Spindlin1 protein. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the control cells displayed a complete morphological change; made cell growth faster; and increased the percentage of cells in G 2 /M and S phase. Furthermore, overexpressed spindlin1 cells formed colonies in soft agar in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may contribute to tumorigenesis

  12. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  13. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells.

    Science.gov (United States)

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François; Pèlegrin, André; Navarro-Teulon, Isabelle

    2017-06-06

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was

  14. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment.

    Science.gov (United States)

    Sun, Wei; Li, Lian; Yang, Qingqing; Shan, Wei; Zhang, Zhirong; Huang, Yuan

    2015-11-02

    Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers.

  15. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    Science.gov (United States)

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  16. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  18. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  19. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas – Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A.; Rieker, Ralf J.; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. PMID:24427739

  20. Detection of Serum Protein Biomarkers for the Diagnosis and Staging of Hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2015-06-01

    Full Text Available The present study aimed to identify serum biomarkers for the detection of hepatoblastoma (HB. Serum samples were collected from 71 HB patients (stage I, n = 19; stage II, n = 19, stage III, n = 19; and stage IV, n = 14 and 23 age- and sex-matched healthy children. Differential expression of serum protein markers were screened using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS, and the target proteins were isolated and purified using HPLC and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS, SEQUEST, and bioinformatics analysis. Differential protein expression was confirmed by enzyme-linked immunosorbent analysis (ELISA. SELDI-TOF-MS screening identified a differentially expressed protein with an m/z of 9348 Da, which was subsequently identified as Apo A–I; its expression was significantly lower in the HB group as compared to the normal control group (1546.67 ± 757.81 vs. 3359.21 ± 999.36, respectively; p < 0.01. Although the expression level decreased with increasing disease stage, pair-wise comparison revealed significant differences in Apo A–I expression between the normal group and the HB subgroups (p < 0.01. ELISA verified the reduced expression of Apo A–I in the HB group. Taken together, these results suggest that Apo A–I may represent a serum protein biomarker of HB. Further studies will assess the value of using Apo A–I expression for HB diagnosis and staging.

  1. Proliferative Activity of Mammary Carcinoma Cells by AgNOR Count in C3H mice Receiving Ethanol Extract of Sponge Haliclona sp

    Science.gov (United States)

    Sijabat, Lanceria; Susilaningsih, Neni; Trianto, Agus; Murwani, Retno

    2018-02-01

    Quantification of argyrophilic nucleolar organizer region (AgNORs) was considered as one of markers of proliferative activity of cancer cells. Sponge Haliclona sp extract contains anticancer bioactive compounds and our previous study showed that the extract was able to improve histological grade of induced mammary adenocarcinoma in mice. The following research was conducted to study the extract administration on the proliferative activity of the carcinoma cells represented by AgNOR count in mice. This experimental study applied post test only control group design. Twenty C3H mice were divided into four groups namely C (control), H1, H2 and H3. Each group was given 0, 0.15, 1.5, and 15 mg Haliclona sp extract respectively. After three weeks of extract administration, mice were inoculated with breast cancer cells from donor mice. The extract administration were continued for another three weeks. AgNOR count was performed on tumor sections and expressed as mean of AgNOR (mAgNOR) and percentage of AgNOR (pAgNOR). Means of mAgNOR in C, H1, H2 and H3 were 4.070, 3.195, 3.450, and 3.190 respectively. Means of pAgNOR in C, H1, H2 and H3 were 34,40, 25,40, 38,40 and 19,80 respectively. The lowest means of mAgNOR and pAgNOR which is an indication of lower proliferative activity of the cancer cells was found in H3. However no significant difference can be found among treatment groups (p>0.05). Using AgNOR count, the ethanol extract of Haliclona sp could not show significant reduction in proliferation of mammary carcinoma cells of C3H mice. This finding support the view that AgNOR alone could not be used to determine pathology of cancer cells.

  2. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing.

    Science.gov (United States)

    Jonsson, Frida; Westin, Ida Maria; Österman, Lennart; Sandgren, Ola; Burstedt, Marie; Holmberg, Monica; Golovleva, Irina

    2018-02-20

    Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  4. C-reactive protein bearing cells are a subpopulation of natural killer cell precursors

    International Nuclear Information System (INIS)

    Baum, L.L.; Krueger, N.X.

    1986-01-01

    Cell surface C-reactive protein (S-CRP) is expressed on the surface membrane of a small percentage of lymphocytes. Anti-CRP inhibits natural killer (NK) function. Since NK effectors are heterogeneous, they suspected that the cells expressing S-CRP (CRP + ) might respond differently to stimulation than the NK effectors lacking S-CRP (CRP - ). Methods were developed to separate CRP + and CRP - lymphocytes and their functional responses were examined and compared. These techniques are dependent upon the binding of CRP to its ligands, C-polysaccharide (CPS) or Phosphocholine (PC). The first method involves rosette formation with CPS coupled autologous red blood cells; the second method utilizes the binding of CRP + lymphocytes to PC-sepharose. Lymphocytes separated using either of these techniques yield similar results. CRP - lymphocytes respond to 3 day incubation with PHA or Il-2 by producing effectors which kill 51 Cr labeled K562 tumor cells, CRP + precursors do not. CRP + lymphocytes respond to a 5 day incubation with inactivated K562 by producing effectors which kill K562; CRP - precursors do not. NK functional activity of both is increased by incubation with interferon. This ability to respond differently to stimulation suggests that CRP + and CRP - cells are functionally distinct

  5. The radiosensitivity of spermatogonial stem cells in C3H/101 F1 hybrid mice

    International Nuclear Information System (INIS)

    Van der Meer, Yvonne; De Rooij, Dirk G.; Cattanach, Bruce M.

    1993-01-01

    The radiosensitivity of spermatogonial stem cells of C3H/HeHx101/H F 1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIII irr , during quiescence, the spermatogonial stem cells were most radiosensitive with a D 0 of 1.4 Gy. In stages XI irr -V irr , when the cells were proliferatively active, the D 0 was about 2.6 Gy. Based on the D 0 values for sensitive and resistant spermatogonia and on the D 0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing. When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y=e τD , with τ=1 for the sensitive and τ=0.1 for the resistant spermatogonial stem cells, with a maximal e τD of 100

  6. C3b/iC3b deposition on Streptococcus pneumoniae is not affected by HIV infection.

    Directory of Open Access Journals (Sweden)

    Catherine Hyams

    2010-01-01

    Full Text Available Streptococcus pneumoniae is a common cause of infection in both HIV positive patients and those with complement deficiencies. We hypothesised that HIV positive individuals might exhibit reduced opsonisation of pneumococcus with complement due to reduced levels of S. pneumoniae specific IgG. We discovered no difference in C3 deposition on S. pneumoniae between HIV positive or negative individuals, and furthermore C3 deposition remained unchanged as HIV progressed towards AIDS. We found no correlation between C3 deposition on S. pneumoniae and CD4 cell count in HIV infected individuals. Hence we have demonstrated no failure of complement immunity in HIV positive patients.

  7. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  8. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  9. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  10. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  11. A Novel Role for C5a in B-1 Cell Homeostasis

    Directory of Open Access Journals (Sweden)

    Katharina Bröker

    2018-02-01

    Full Text Available B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC but are also found in spleen and bone marrow (BM. As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1−/− mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2−/− mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1−/− and C5aR2−/− mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells

  12. Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumour progenitor cells that express stem cell markers.

    Directory of Open Access Journals (Sweden)

    Thomas Kruewel

    Full Text Available BACKGROUND: The non-receptor tyrosine kinases c-Abl and c-Src are overexpressed in various solid human tumours. Inhibition of their hyperactivity represents a molecular rationale in the combat of cancerous diseases. Here we examined the effects of a new family of pyrazolo [3,4-d] pyrimidines on a panel of 11 different murine lung tumour progenitor cell lines, that express stem cell markers, as well as on the human lung adenocarcinoma cell line A549, the human hepatoma cell line HepG2 and the human colon cancer cell line CaCo2 to obtain insight into the mode of action of these experimental drugs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with the dual kinase inhibitors blocked c-Abl and c-Src kinase activity efficiently in the nanomolar range, induced apoptosis, reduced cell viability and caused cell cycle arrest predominantly at G0/G1 phase while western blot analysis confirmed repressed protein expression of c-Abl and c-Src as well as the interacting partners p38 mitogen activated protein kinase, heterogenous ribonucleoprotein K, cyclin dependent kinase 1 and further proteins that are crucial for tumour progression. Importantly, a significant repression of the epidermal growth factor receptor was observed while whole genome gene expression analysis evidenced regulation of many cell cycle regulated genes as well integrin and focal adhesion kinase (FAK signalling to impact cytoskeleton dynamics, migration, invasion and metastasis. CONCLUSIONS/SIGNIFICANCE: Our experiments and recently published in vivo engraftment studies with various tumour cell lines revealed the dual kinase inhibitors to be efficient in their antitumour activity.

  13. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy

    KAUST Repository

    Jourdain, P.

    2013-12-11

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  14. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2018-03-01

    Full Text Available miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important role in many biological processes by numerous studies, while the role of miR-25 in metabolism and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K gene expression and triglyceride (TG content, and enhancing the content of adenosine triphosphate (ATP and reactive oxygen species (ROS. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT serine/threonine kinase 1 (Akt1 3′ untranslated region (3′UTR. The core promoter of miR-25-3p was identified, and the transcription factor activator protein-2α (AP-2α significantly increased the expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin immunoprecipitation (ChIP assay, and AP-2α binding also downregulated the expression of Akt1. Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.

  15. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3

    Science.gov (United States)

    Gaidt, Moritz M.; Ebert, Thomas S.; Chauhan, Dhruv; Ramshorn, Katharina; Pinci, Francesca; Zuber, Sarah; O’Duill, Fionan; Schmid-Burgk, Jonathan L.; Hoss, Florian; Buhmann, Raymund; Wittmann, Georg; Latz, Eicke; Subklewe, Marion; Hornung, Veit

    2018-01-01

    Summary Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing. PMID:29033128

  16. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    Science.gov (United States)

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  17. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Xu De Wang

    2018-04-01

    Full Text Available Background: AD-2 (20(R-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R-3b-O-(L-alanyl-dammarane-12b, 20, 25-triol, a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on Wnt/β-catenin signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting Wnt/β-catenin signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy. Keywords: 1C, AD-2, apoptosis, reactive oxygen species, Wnt/β-catenin pathway

  18. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  19. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that

  20. Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Science.gov (United States)

    Shapira, Assaf; Shapira, Shiran; Gal-Tanamy, Meital; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2012-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express

  1. RBFOX3 Regulates the Chemosensitivity of Cancer Cells to 5-Fluorouracil via the PI3K/AKT, EMT and Cytochrome-C/Caspase Pathways

    Directory of Open Access Journals (Sweden)

    Tianze Liu

    2018-04-01

    Full Text Available Background/Aims: RBFOX3, an RNA-binding fox protein, plays an important role in the differentiation of neuronal development, but its role in the chemosensitivity of hepatocellular carcinoma (HCC to 5-FU is unknown. Methods: In this study, we examined the biological functions of RBFOX3 and its effect on the chemosensitivity of HCC cells to 5-FU in vitro and in a mouse xenograft model. Results: RBFOX3 was found to have elevated expression in HCC cell lines and tissue samples, and its knockdown inhibited HCC cell proliferation. Moreover, knockdown of RBFOX3 improved the inhibitory effect of 5-fluorouracil (5-FU on cell proliferation, migration and invasion, and enhanced the apoptosis induced by 5-FU. However, overexpression of RBFOX3 reduced the inhibitory effect of 5-fluorouracil (5-FU on cell proliferation, migration and invasion, and decreased the apoptosis induced by 5-FU. We further elucidated that RBFOX3 knockdown synergized with 5-FU to inhibit the growth and invasion of HCC cells through PI3K/AKT and epithelial-mesenchymal transition (EMT signaling, and promote apoptosis by activating the cytochrome-c/caspase signaling pathway. Finally, we validated that RBFOX3 regulated 5-FU-mediated cytotoxicity in HCC in mouse xenograft models. Conclusions: The findings from this study indicate that RBFOX3 regulates the chemosensitivity of HCC to 5-FU in vitro and in vivo. Therefore, targeting RBFOX3 may improve the inhibition of HCC growth and progression by 5-FU, and provide a novel potential therapeutic strategy for HCC.

  2. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  3. Patterns of cell loss and repopulation in irradiated cultures of plateau phase C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Zeman, E.M.; Bedford, J.S.

    1985-01-01

    Patterns of cell loss and repopulation were studied in plateau phase cultures of slowly-cycling, contact-inhibited C3H 10T1/2 mouse fibroblasts following large single, and multiple small doses 137 Cs-gamma rays. A progressive, dose-independent cell loss was apparent within after irradiation with large single doses, and similar patterns of loss were observed following the start of multifraction irradiations. This progressive cell loss culminated in the loss of integrity of the monolayer of cells, a loss of contact-inhibition, and therefore, an increased rate of cell division. Repopulation did not start immediately after the start of irradiation, but needed a triggering event, in this case, a decrease to a critical level in the cell density. Once initiated, repopulation was able to decrease or even eliminate the effectiveness of subsequent doses in reducing the number of viable cells per culture. To the extent that the responses of slowly-cycling, contact-inhibited cells in vitro can be applied to interpret the radiation responses of cell populations in vivo, these results further support the notion that it may be necessary, in some cases, to account for an increasing contribution from repopulation with increasing overall treatment time in dose fractionation isoeffect formulae used for predicting tissue tolerances or tumor control. (Auth.)

  4. Identification and characterization of luekotriene C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1

    International Nuclear Information System (INIS)

    Tamura, N.; Agrawal, D.K.; Townley, R.G.

    1987-01-01

    The authors studied the characteristics of the leukotriene (LT) C 4 and D 4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [ 3 H]LTC 4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant(Kd) of 14.3 +/- 2.0 nM (n=9). The association and dissociation of [ 3 H]LTC 4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [ 3 H]LTC binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC 4 to compete for the specific binding of [ 3 H]LTC 4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The maximum number of binding sites (Bmax) of [ 3 H]LTD 4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [ 3 H]LTC 4 . The calculated values of Kd and Bmax of [ 3 H]LTD 4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg proteins, respectively (n=3). These findings demonstrate that BC3H-1 cell line possess both LTC 4 and LTD 4 receptors with a predominance of LTC 4 receptors. Thus, BC3H-1 cell line is a good model to study the regulation of LTC 4 and LTD 4 receptors. 34 references, 5 figures, 1 table

  5. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  6. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Effects of 2,3-iminosqualene in cultured cells

    International Nuclear Information System (INIS)

    Popjak, G.; Meenan, A.; Nes, W.D.

    1987-01-01

    2,3-Iminosqualene added to culture media 10 ug/ml) of rat hepatoma (H4-II-E-C3) or Chinese hamster ovary (CHO) cells irreversibly inactivates the squalene-oxide: lanosterol cyclase, but it does not inhibit general polyprenyl synthesis either from [ 14 C]acetate or [ 14 C]mevalonate. Isq added to lipoprotein-containing media of H4 cells causes in 24 hr an over twofold rise in HMG-CoA reductase and abolishes the repressive effect of mevalonate (MVA) on the reductase. H4 cells synthesize from [2- 14 C]-MVA labelled squalene, squalene-2,3-oxide, squalene-2,3-22,23-dioxide, but very little sterol. The conversion of MVA to these polyprenyls in the presence of Isq is as efficient as its conversion to squalene and cholesterol in control cells. They conclude that the repressor of HMG-CoA reductase derived from MVA is a sterol - whatever might be the nature of that sterol - and not a nonsteroidal derivative of MVA metabolism. H4 cells exposed to Isq in lipid-depleted media die in 48-72 hr, but can be rescued by LDL, but not by free cholesterol or MVA. CHO cells are more resistant than H4 cells and succumb only after 8-9 days' exposure to Isq

  8. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    International Nuclear Information System (INIS)

    Beaver, Laura M.; Yu, Tian-Wei; Sokolowski, Elizabeth I.; Williams, David E.; Dashwood, Roderick H.; Ho, Emily

    2012-01-01

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  9. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Sokolowski, Elizabeth I., E-mail: sokolowe@onid.orst.edu [School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Dashwood, Roderick H., E-mail: rod.dashwood@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture and Life Sciences Building, Corvallis, OR 97331 (United States); Ho, Emily, E-mail: Emily.Ho@oregonstate.edu [Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331 (United States); School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331 (United States)

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  10. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C, contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.

  11. Altered deoxyribonuclease activity in cancer cells and its role in non toxic adjuvant cancer therapy with mixed vitamins C and K3.

    Science.gov (United States)

    Taper, Henryk S

    2008-01-01

    The alterations of deoxyribonuclease DNase activity in cancer cells were the basis of the utilization of mixed vitamins C and K3 in a nontoxic, adjuvant cancer therapy. In order to localize exactly the altered activities of DNase in cancer cells, histochemical methods were utilized. The deficiency of alkaline and acid DNase activity appeared to be characteristic for non-necrotic cells of malignant human and animal tumors. This enzymatic deficiency appeared in experimental carcinogenesis before the phenotypic signs of malignancy. Tumor promoters directly reduced the activity of both DNases. The incidence of spontaneous malignant human and animal tumors appeared to be inversely proportional to the intensity of the activity of both DNases in normal cells and tissues from which these tumors were derived. The fact that alkaline and acid DNase activity was reactivated during the spontaneous and therapeutically induced necrosis of cancer cells suggests that this enzymatic deficiency of DNase activity in cancer cells was due to the action of specific inhibitors of DNases. Characteristic variations of serum alkaline DNase activity in positive responders to therapy, examined in more than 800 cancer-bearing patients, may be the basis for the development of a useful test for therapeutic prognosis and for monitoring of cancer bearing patients. Acid DNase was selectively reactivated in malignant tumor cells by vitamin C (sodium ascorbate), whereas alkaline DNase was reactivated by vitamin K3. Joint vitamin C and K3 administration produced in vitro and in vivo tumor growth inhibition, potentiation and sensitization of chemo- and/or radiotherapy and a decrease in the number of metastases in animals with experimental tumors. Joint vitamin C and K3 administration may be considered as a possible new, non-toxic, adjuvant cancer therapy, which can be easily introduced into the classic protocols of clinical cancer therapy without any supplementary risk for patients.

  12. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo

    International Nuclear Information System (INIS)

    Schlax, Peter E.; Zhang Jin; Lewis, Elizabeth; Planchart, Antonio; Lawson, T. Glen

    2007-01-01

    We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination

  13. The relationship between dose rate and transformation induction in C3H/10T1/2 cells by TRIGA reactor fission neutrons at 0.3 Gy

    International Nuclear Information System (INIS)

    Balcer-Kubiczek, E.K.; Harrison, G.H.

    1989-01-01

    The authors present their own and other data showing dose-effect relations for cell survival and the induction of transformations in C3H/IOT 1/2 cells in exponential or stationary cultures after a range of high dose-rate irradiations with X-rays or AFRRI neutrons. (UK)

  14. Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Larsen, Per; Bouzinova, Elena V.

    2008-01-01

    have recently characterized a cGMP-dependent Ca(2+)-activated Cl(-) current with unique characteristics in smooth muscle cells. This novel current has been shown to coexist with a "classic" (cGMP-independent) Ca(2+)-activated Cl(-) current and to have characteristics distinct from those previously...... known for Ca(2+)-activated Cl(-) currents. Here, we suggest that a bestrophin, a product of the Best gene family, is responsible for the cGMP-dependent Ca(2+)-activated Cl(-) current based on similarities between the membrane currents produced by heterologous expressions of bestrophins and the cGMP......-dependent Ca(2+)-activated Cl(-) current. This is supported by similarities in the distribution pattern of the cGMP-dependent Ca(2+)-activated Cl(-) current and bestrophin-3 (the product of Best-3 gene) expression in different smooth muscle. Furthermore, downregulation of Best-3 gene expression with small...

  15. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  16. Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.

    Science.gov (United States)

    Jaru-Ampornpan, Peera; Jengarn, Juggragarn; Wanitchang, Asawin; Jongkaewwattana, Anan

    2017-01-15

    Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDV AVCT12 harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation. Recurrent PEDV outbreaks have resulted in enormous economic losses to swine industries worldwide. To gain the upper hand in combating this disease, it is necessary to understand how this virus replicates and evades host immunity. Characterization of viral proteins provides important clues to mechanisms by which viruses survive and spread. Here, we characterized an intriguing phenomenon in which the nucleocapsids of some PEDV strains are proteolytically processed by the virally encoded main protease. Growth retardation in recombinant PEDV carrying uncleavable N suggests a replication advantage provided by the cleavage

  17. Test Series 3: seismic-fragility tests of naturally-aged Class 1E C and D LCU-13 battery cells

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.; Tulk, J.D.; Janis, W.J.; Black, D.A.; Paulsen, G.D.; Aucoin, B.D.

    1985-03-01

    This report, the third in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium C and D LCU-13 cells from the North Anna Nuclear Power Station operated by the Virginia Electric and Power Company. The C and D cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of seven electrically active cells was used in the two different cell configurations. None of the seven cells failed in the first stage tests during the actual seismic test up to the 1.5 g ZPAs imposed. Subsequent discharge capacity tests showed that while these cells suffered some loss of discharge capacity, all cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. When two of the same cells were exposed to the second stage, higher g-level tests, both cells again provided instantaneous uninterrupted power. Subsequent capacity tests showed both of these cells to have capacities well below the accepted standard of 80%. Four of the cells were disassembled for examination and metallurgical analyses. The examination showed that all plates and separators were in very good condition

  18. A review on g-C{sub 3}N{sub 4}-based photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiuqing; Xie, Jun [College of Materials and Energy, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642 (China); Chen, Xiaobo, E-mail: chenxiaobo@umkc.edu [Department of Chemistry, University of Missouri – Kansas City, Kansas City, MO, 64110 (United States); Li, Xin, E-mail: Xinliscau@yahoo.com [College of Materials and Energy, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642 (China)

    2017-01-01

    Graphical abstract: The photocatalytic fundamentals, versatile properties, design strategies and potential applications of g-C{sub 3}N{sub 4}-based photocatalysts were systematically summarized and addressed. - Highlights: • The photocatalytic fundamentals of g-C{sub 3}N{sub 4} were systematically summarized. • The versatile properties of g-C{sub 3}N{sub 4} photocatalysts were highlighted. • The different design strategies of g-C{sub 3}N{sub 4} photocatalysts were reviewed. • The important photocatalytic applications of g-C{sub 3}N{sub 4} were also addressed. - Abstract: As one of the most appealing and attractive technologies, heterogeneous photocatalysis has been utilized to directly harvest, convert and store renewable solar energy for producing sustainable and green solar fuels and a broad range of environmental applications. Due to their unique physicochemical, optical and electrical properties, a wide variety of g-C{sub 3}N{sub 4}-based photocatalysts have been designed to drive various reduction and oxidation reactions under light irradiation with suitable wavelengths. In this review, we have systematically summarized the photocatalytic fundamentals of g-C{sub 3}N{sub 4}-based photocatalysts, including fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C{sub 3}N{sub 4}-based photocatalysts. The versatile properties of g-C{sub 3}N{sub 4}-based photocatalysts are highlighted, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties. Various design strategies are also thoroughly reviewed, including band-gap engineering, defect control, dimensionality tuning, pore texture tailoring, surface sensitization, heterojunction construction, co-catalyst and nanocarbon loading. Many important applications are also addressed, such as photocatalytic water splitting (H{sub 2} evolution and overall water

  19. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  20. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and alpha-lactone recorded in gaseous reactions of CH3CO and O2.

    Science.gov (United States)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH(3)CO and O(2); IR absorption spectra of CH(3)C(O)OO and alpha-lactone were observed. Absorption bands with origins at 1851+/-1, 1372+/-2, 1169+/-6, and 1102+/-3 cm(-1) are attributed to t-CH(3)C(O)OO, and those at 1862+/-3, 1142+/-4, and 1078+/-6 cm(-1) are assigned to c-CH(3)C(O)OO. A weak band near 1960 cm(-1) is assigned to alpha-lactone, cyc-CH(2)C(=O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH(3)C(O)OO is more stable than c-CH(3)C(O)OO by 3+/-2 kJ mol(-1). Based on these observations, the branching ratio for the OH+alpha-lactone channel of the CH(3)CO+O(2) reaction is estimated to be 0.04+/-0.01 under 100 Torr of O(2) at 298 K. A simple kinetic model is employed to account for the decay of CH(3)C(O)OO.

  1. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3-C4 intermediate in genus Portulaca L. (Portulacaceae).

    Science.gov (United States)

    Voznesenskaya, Elena V; Koteyeva, Nuria K; Edwards, Gerald E; Ocampo, Gilberto

    2010-08-01

    Portulacaceae is one of 19 families of terrestrial plants in which species having C(4) photosynthesis have been found. Representative species from major clades of the genus Portulaca were studied to characterize the forms of photosynthesis structurally and biochemically. The species P. amilis, P. grandiflora, P. molokiniensis, P. oleracea, P. pilosa, and P. umbraticola belong to the subgenus Portulaca and are C(4) plants based on leaf carbon isotope values, Kranz anatomy, and expression of key C(4) enzymes. Portulaca umbraticola, clade Umbraticola, is NADP-malic enzyme (NADP-ME)-type C(4) species, while P. oleracea and P. molokiniensis in clade Oleracea are NAD-ME-type C(4) species, all having different forms of Atriplicoid-type leaf anatomy. In clade Pilosa, P. amilis, P. grandiflora, and P. pilosa are NADP-ME-type C(4) species. They have Pilosoid-type anatomy in which Kranz tissues enclose peripheral vascular bundles with water storage in the centre of the leaf. Portulaca cf. bicolor, which belongs to subgenus Portulacella, is an NADP-ME C(4) species with Portulacelloid-type anatomy; it has well-developed Kranz chlorenchyma surrounding lateral veins distributed in one plane under the adaxial epidermis with water storage cells underneath. Portulaca cryptopetala (clade Oleracea), an endemic species from central South America, was identified as a C(3)-C(4) based on its intermediate CO(2) compensation point and selective localization of glycine decarboxylase of the photorespiratory pathway in mitochondria of bundle sheath cells. The C(4) Portulaca species which were examined also have cotyledons with Kranz-type anatomy, while the stems of all species have C(3)-type photosynthetic cells. The results indicate that multiple structural and biochemical forms of C(4) photosynthesis evolved in genus Portulaca.

  2. Matrin 3 as a key regulator of endothelial cell survival

    International Nuclear Information System (INIS)

    Przygodzka, Patrycja; Boncela, Joanna; Cierniewski, Czeslaw S.

    2011-01-01

    Matrin 3 is an integral component of nuclear matrix architecture that has been implicated in interacting with other nuclear proteins and thus modulating the activity of proximal promoters. In this study, we evaluated the contribution of this protein to proliferation of endothelial cells. To selectively modulate matrin 3 expression, we used siRNA oligonucleotides and transfection of cells with a pEGFP-N1-Mtr3. Our data indicate that downregulation of matrin 3 is responsible for reduced proliferation and leads to necrosis of endothelial cells. This conclusion is supported by observations that reducing matrin 3 expression results in (a) producing signs of necrosis detected by PI staining, LDH release, and scatter parameters in flow cytometry, (b) affecting cell cycle progression. It does not cause (c) membrane asymmetry of cells as indicated by lack of Annexin V binding as well as (d) activation of caspase 3 and cleavage of PARP. We conclude that matrin 3 plays a significant role in controlling cell growth and proliferation, probably via formation of complexes with nuclear proteins that modulate pro- and antiapoptotic signaling pathways. Thus, degradation of matrin 3 may be a switching event that induces a shift from apoptotic to necrotic death of cells.

  3. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  4. Preimplantation Factor (PIF Promotes HLA-G, -E, -F, -C Expression in JEG-3 Choriocarcinoma Cells and Endogenous Progesterone Activity

    Directory of Open Access Journals (Sweden)

    Miya Soukaina Hakam

    2017-10-01

    Full Text Available Background/Aims: Pregnancy success requires mandatory maternal tolerance of the semi/ allogeneic embryo involving embryo-derived signals. Expression levels of PreImplantation Factor (PIF, a novel peptide secreted by viable embryos, correlate with embryo development, and its early detection in circulation correlates with a favourable pregnancy outcome. PIF enhances endometrial receptivity to promote embryo implantation. Via the p53 pathway, it increases trophoblast invasion, improving cell survival / immune privilege. PIF also reduces spontaneous and LPS-induced foetal death in immune naïve murine model. We examined PIF effect on gene expression of human leukocyte antigen (HLA-G, -E -F and –C and the influence of PIF on local progesterone activity in JEG-3 choriocarcinoma cells. Methods: PIF and progesterone (P4 effects on JEG-3 cells surface and intracellular HLA molecules was tested using monoclonal antibodies, flow cytometry, and Western blotting. PIF and IL17 effects on P4 and cytokines secretion was determined by ELISA. PIF and P4 effects on JEG-3 cells proteome was examined using 2D gel staining followed by spot analysis, mass spectrometry and bioinformatic analysis. Results: In cytotrophoblastic JEG-3 cells PIF increased intracellular expression of HLA-G, HLA-F, HLA-E and HLA-C and surface expression of HLA-G, HLA-E and HLA-C in dose and time dependent manner. In case of HLA-E, -F results were confirmed also by Western blot. Proteome analysis confirmed an increase in HLA-G, pro-tolerance FOXP3+ regulatory T cells (Tregs, coagulation factors and complement regulator. In contrast, PIF reduced PRDX2 and HSP70s to negate oxidative stress and protein misfolding. PIF enhanced local progesterone activity, increasing steroid secretion and the receptor protein. It also promoted the secretion of the Th1/Th2 cytokines (IL-10, IL-1β, IL-8, GM-CSF and TGF-β1, resulting in improved maternal signalling. Conclusion: PIF can generate a pro

  5. Radiation dose to trabecular bone marrow stem cells from 3H, 14C and selected α-emitters incorporated in a bone remodeling compartment

    International Nuclear Information System (INIS)

    Nie Huiling; Richardson, Richard B

    2009-01-01

    A Monte Carlo simulation of repeated cubic units representing trabecular bone cavities in adult bone was employed to determine absorbed dose fractions evaluated for 3 H, 14 C and a set of α-emitters incorporated within a bone remodeling compartment (BRC). The BRC consists of a well-oxygenated vascular microenvironment located within a canopy of bone-lining cells. The International Commission on Radiological Protection (ICRP) considers that an important target for radiation-induced bone cancer is the endosteum marrow layer adjacent to bone surface where quiescent bone stem cells reside. It is proposed that the active stem cells and progenitor cells located above the BRC canopy, the 'BRC stem cell niche', is a more important radiation-induced cancer target volume. Simulation results from a static model, where no remodeling occurs, indicate that the mean dose from bone and bone surface to the 50 μm quiescent bone stem cell niche, the current ICRP target, was substantially lower (two to three times lower) than that to the narrower and hypoxic 10 μm endosteum for 3 H, 14 C and α-particles with energy range 0.5-10 MeV. The results from a dynamic model indicate that the temporal α-radiation dose to active stem/progenitor cells located in the BRC stem cell niche from the material incorporated in and buried by forming bone was 9- to 111-fold greater than the dose to the quiescent bone stem cell niche. This work indicates that the remodeling portion of the bone surface, rather than the quiescent (endosteal) surface, has the greatest risk of radiation-induced bone cancer, particularly from short-range radiation, due to the elevated dose and the radiosensitizing oxygen effect.

  6. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.

    1991-01-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  7. Induction of apoptosis by 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via modulation of MAPKs (p38 and c-Jun N-terminal kinase) and c-Myc in HL-60 human leukemia cells.

    Science.gov (United States)

    Park, Eun-Jung; Kiselev, Evgeny; Conda-Sheridan, Martin; Cushman, Mark; Pezzuto, John M

    2012-03-23

    Recently, we reported that 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (AM6-36), sharing structural similarity with naturally occurring isoquinolines, induced activities mediated by retinoid X receptor (RXR) response element accompanied by antiproliferative effects on breast cancer cells. To further characterize the biologic potential of AM6-36, we currently report studies conducted with HL-60 human leukemia cells. AM6-36 significantly inhibited cellular proliferation in a dose- and time-dependent manner with an IC(50) value of 86 nM. When evaluated at low test concentrations (≤0.25 μM), AM6-36 induced arrest in the G2/M phase of the cell cycle. At higher concentrations (1 and 2 μM), the response shifted to apoptosis, which was consistent with the effect of AM6-36 on other apoptotic signatures including an increase of apoptotic annexin V(+) 7-AAD(-) cells, loss of mitochondrial membrane potential, induction of poly(ADP-ribose) polymerase cleavage, and activation of several caspases. These apoptotic effects are potentially due to up-regulation of p38 MAPK and JNK phosphorylation and down-regulation of c-Myc oncogene expression. Taken together, AM6-36 might serve as an effective anticancer agent by inducing G2/M cell cycle arrest and apoptosis through the activation of MAPKs and inhibition of c-Myc.

  8. C-cells in colloid goiter

    Directory of Open Access Journals (Sweden)

    Lima Marcus A.

    2003-01-01

    Full Text Available PURPOSE: The aim of this investigation was to quantitatively evaluate C-cells in colloid goiters, analyzing 36 thyroids that were obtained through thyroidectomy from 24 patients with goiter and 12 normal glands from adult patients without thyroid disease, which were used as the control group. MATERIAL AND METHODS: On average, 6 different thyroid areas were sampled and labeled by immunohistochemistry with a monoclonal anticalcitonin antibody, utilizing the avidin-biotin-peroxidase complex. C-cells were counted in fields measuring 1 square centimeter, and the mean number of cells per field was then calculated. Data were statistically analyzed using the Mann-Whitney test. RESULTS: In the colloid goiter group, the number of C-cells ranged from 0 to 23 per field, while in normal controls they ranged from 20 to 148 per field. CONCLUSIONS: These results demonstrate a significant decrease of C-cell number in the colloid goiter group compared with control group, indicating that the hyperplastic process is restricted to follicular cells, to the detriment of C-cells, which probably cease to receive trophic stimuli.

  9. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis.

    Science.gov (United States)

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-12-26

    Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.

  10. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines.

    Science.gov (United States)

    Yao, Kai; Wu, Junfeng; Zhang, Jianfeng; Bo, Jimei; Hong, Zhen; Zu, Hengbing

    2016-07-01

    Various useful animal models, such as Alzheimer's disease and Niemann-Pick disease, were provided by U18666A. However, the pathogenesis of U18666A-induced diseases, including U18666A-mediated apoptosis, remains incompletely elucidated, and therapeutic strategies are still limited. Dihydrotestosterone (DHT) has been reported to contribute to the prevention and treatment of neurodegenerative disorders. Our study investigated the neuroprotective activity of DHT in U18666A-related diseases. Apoptosis of C6 cells was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. Cell viability was assessed using Cell Counting Kit-8. Expression of apoptosis-related proteins, such as Akt, seladin-1, Bcl-2 family proteins, and caspase-3, was determined using Western blot. Our results demonstrated that the apoptotic rate of C6 cells significantly increased after U18666A addition, but was remarkably reduced after DHT treatment. Pretreatment with DHT attenuated U18666A-induced cell viability loss. PI3K inhibitor LY294002 could suppress DHT anti-apoptotic effect. Furthermore, we discovered that U18666A could significantly downregulate seladin-1 expression in a dose-dependent manner, but no significant change was observed in Bcl-xL, Bax, and P-Akt protein expressions. Compared with U18666A-treated group, the expression of P-Akt, seladin-1, and Bcl-xL significantly increased, and the expression of Bax and caspase-3 remarkably reduced after DHT treatment. However, in the presence of LY294002, the effect of DHT was reversed. In conclusion, we found that seladin-1 may take part in U18666A-induced apoptosis. DHT may inhibit U18666A-induced apoptosis by regulating downstream apoptosis-related proteins including seladin-1, caspase-3, Bcl-xL, and Bax through activation of the PI3K/Akt signal pathway.

  11. Transformation of mouse embryo (C3H 10T1/2) cells by alpha particles

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1977-01-01

    Mammalian cells in culture (C3H mouse 10T1/2 cells) have been shown here for the first time to be transformed by alpha irradiation when cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine. Malignant tumors were induced following inoculation of the transformed cells into syngeneic hosts. Unirradiated control cells injected at the same concentration have, so far, failed to produce tumors. The morphology of the transformed foci was remarkably similar to that obtained by x rays and chemicals but different from virally transformed cells. When the cells were seeded at low density in the exponential growth phase, the transformation frequency per surviving cell increased approximately as the cube of the dose and peaked at an alpha particle fluence between 1.5 and 2.5 x 10 7 alpha particles per cm 2 (205 to 342 rads). The frequency of the transformation was found to be greatly dependent on the number of cells per dish irradiated. Irradiation of larger numbers resulted in much lower frequencies of transformation. The maximum transformation frequency observed in nine separate experiments was 4 percent of the surviving cells. At doses greater than 200 rads the transformation frequency per surviving cell remained constant. The present results permit us to conclude that alpha irradiation may, indeed, be able to exert a direct effect on the genome of the cell to produce malignancy without any external immunological or hormonal influences

  12. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.

  13. Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol

    Directory of Open Access Journals (Sweden)

    Okudaira Taeko

    2009-01-01

    Full Text Available Abstract Background Adult T-cell leukemia/lymphoma (ATLL is a malignancy derived from T cells infected with human T-cell leukemia virus type 1 (HTLV-1, and it is known to be resistant to standard anticancer therapies. Indole-3-carbinol (I3C, a naturally occurring component of Brassica vegetables such as cabbage, broccoli and Brussels sprout, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic and antiestrogenic properties in experimental studies. The aim of this study was to determine the potential anti-ATLL effects of I3C both in vitro and in vivo. Results In the in vitro study, I3C inhibited cell viability of HTLV-1-infected T-cell lines and ATLL cells in a dose-dependent manner. Importantly, I3C did not exert any inhibitory effect on uninfected T-cell lines and normal peripheral blood mononuclear cells. I3C prevented the G1/S transition by reducing the expression of cyclin D1, cyclin D2, Cdk4 and Cdk6, and induced apoptosis by reducing the expression of XIAP, survivin and Bcl-2, and by upregulating the expression of Bak. The induced apoptosis was associated with activation of caspase-3, -8 and -9, and poly(ADP-ribose polymerase cleavage. I3C also suppressed IκBα phosphorylation and JunD expression, resulting in inactivation of NF-κB and AP-1. Inoculation of HTLV-1-infected T cells in mice with severe combined immunodeficiency resulted in tumor growth. The latter was inhibited by treatment with I3C (50 mg/kg/day orally, but not the vehicle control. Conclusion Our preclinical data suggest that I3C could be potentially a useful chemotherapeutic agent for patients with ATLL.

  14. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    Science.gov (United States)

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  15. Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases

    DEFF Research Database (Denmark)

    Friis, Ulla G; Jensen, Boye L; Sethi, Shala

    2002-01-01

    , and the PDE4 inhibitor rolipram enhanced cellular cAMP content. Dialysis of single JG cells with cAMP in whole-cell patch-clamp experiments led to concentration-dependent, biphasic changes in cell membrane capacitance (C(m)) with a marked increase in C(m) at 1 micromol/L, no net change at 10 micromol....../L, and a decrease at 100 micromol/L cAMP. cGMP also had a dual effect on C(m) at 10-fold higher concentration compared with cAMP. Trequinsin, milrinone, and rolipram mimicked the effect of cAMP on C(m). Trequinsin, cAMP, and cGMP enhanced outward current 2- to 3-fold at positive membrane potentials. The effects...... of cAMP, cGMP, and trequinsin on C(m) and cell currents were abolished by inhibition of protein kinase A with Rp-cAMPs. We conclude that degradation of cAMP by PDE3 and PDE4 contributes to regulation of renin release from JG cells. Our data provide evidence at the cellular level that stimulation...

  16. DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line.

    Science.gov (United States)

    Takahashi, S; Maecker, H T; Levy, R

    1989-10-01

    An anti-T cell receptor (TcR) monoclonal antibody (mAb), LC4, directed against a human leukemic T cell line, SUP-T13, caused DNA fragmentation ("apoptosis") and cell death upon binding to this cell line. Cross-linking of receptor molecules was necessary for this effect since F(ab')2, but not Fab', fragments of LC4 could induce cell death. Five anti-CD3 mAb tested also caused apoptosis, but only when they were presented on a solid phase. Interestingly, soluble anti-CD3 mAb induced calcium flux and had an additive effect on the calcium flux and interleukin 2 receptor expression induced by LC4, but these anti-CD3 mAb reversed the growth inhibition and apoptosis caused by LC4. The calcium ionophore A23187, but not the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), also induced apoptosis, suggesting that protein kinase C activation alone does not cause apoptosis, although PMA is growth inhibitory. These results suggest that two distinct biological phenomena can accompany stimulation of the TcR/CD3 complex. In both cases, calcium flux and interleukin 2 receptor expression is induced, but only in one case is apoptosis and cell death seen. The signal initiating apoptosis can be selectively prevented by binding CD3 portion of the receptor in this cell line. This difference in signals mediated by the TcR/CD3 complex may be important in explaining the process of thymic selection, as well as in choosing anti-TcR mAb for therapeutic use.

  17. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    Science.gov (United States)

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Aflac ST0901 CHOANOME - Sirolimus in Solid Tumors

    Science.gov (United States)

    2018-05-15

    Ewing's Sarcoma; Osteosarcoma; Astrocytoma; Atypical Teratoid/Rhabdoid Tumor; Ependymoma; Germ Cell Tumor; Glioma; Medulloblastoma; Rhabdoid Tumor; Retinoblastoma; Clear Cell Sarcoma; Renal Cell Carcinoma; Wilms Tumor; Hepatoblastoma; Neuroblastoma; Rhabdomyosarcoma

  19. Immunoglobulins and C3 in the P. brasiliensis granuloma

    Directory of Open Access Journals (Sweden)

    Lilian M. V. Biagioni

    1987-04-01

    Full Text Available The experimental model of paracoccidioidomycosis induced in mice by the intravenous injection of yeast-forms of P. brasiliensis (Bt2 strain; 1 x 10(6 viable fungi/animal was used to evaluate sequentially 2, 4, 8, 16 and 20 weeks after inoculation: 1. The presence of immunoglobulins and C3 in the pulmonary granuloma-ta, by direct immunofluorescence; 2. The humoral (immunodiffusion test and the cellular (footpad sweeling test immune response; 3. The histopathology of lesions. The cell-immune response was positive since week 2, showing a transitory depression at week 16. Specific antibodies were first detected at week 4 and peaked at week 16. At histology, epithelioid granulomas with numerous fungi and polymorphonuclear agreggates were seen. The lungs showed progressive involvement up to week 16, with little decrease at week 20. From week 2 on, there were deposits of IgG and C3 around fungal walls within the granulomas and IgG stained cells among the mononuclear cell peripheral halo. Interstitital immunoglobulins and C3 deposits in the granulomas were not letected. IgG and C3 seen to play an early an important role in. the host defenses against P. brasiliensis by possibly cooperating in the killing of parasites and blocking the antigenic diffusion.

  20. Transformations of C3H 10T1/2 cells by Benzo(a)pyrene and subsequent attempts at suppression of transformed foci by untransformed cells and Vitamin A

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1978-01-01

    The mouse embryo cell line (C3H 10T1/2 CL8) has been shown here, in agreement with findings by others, to be transformed by benzo(a)pyrene (BP). Transformation studies were carried out at two different concentrations (0.25 μg BP/ml and 2.5 μg BP/ml) and two different cell densities (200 and 1000 cells/60 mm dish). Transformation frequencies per surviving cell were found to be greatest when the higher concentration of BP was used with the lower cell density. A comparison of these results with earlier alpha-irradiation experiments demonstrated the greater effectiveness of BP as a transforming agent in this cell system, although the foci produced by the two agents were morphologically similar. Attempts made to eliminate the expression of BP transformed foci by two different techniques were unsuccessful, although one of these had previously been shown to be effective with cells transformed by alpha particle irradiation. The two systems tested were treatment with retinyl acetate, a common nutritional form of Vitamin A and the previously successful technique - growth of transformed cells with large numbers of untransformed cells. The differences between the BP-induced transformations and those induced by alpha particle irradiation may result from intrinsic differences in the mechanism of action of the two carcinogenic agents, differences in the number of cell generations between the induction of the transformed foci and the subsequent treatment of the cells, or genetic differences between different foci

  1. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3C4 intermediate in genus Portulaca L. (Portulacaceae)

    Science.gov (United States)

    Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Ocampo, Gilberto

    2010-01-01

    Portulacaceae is one of 19 families of terrestrial plants in which species having C4 photosynthesis have been found. Representative species from major clades of the genus Portulaca were studied to characterize the forms of photosynthesis structurally and biochemically. The species P. amilis, P. grandiflora, P. molokiniensis, P. oleracea, P. pilosa, and P. umbraticola belong to the subgenus Portulaca and are C4 plants based on leaf carbon isotope values, Kranz anatomy, and expression of key C4 enzymes. Portulaca umbraticola, clade Umbraticola, is NADP-malic enzyme (NADP-ME)-type C4 species, while P. oleracea and P. molokiniensis in clade Oleracea are NAD-ME-type C4 species, all having different forms of Atriplicoid-type leaf anatomy. In clade Pilosa, P. amilis, P. grandiflora, and P. pilosa are NADP-ME-type C4 species. They have Pilosoid-type anatomy in which Kranz tissues enclose peripheral vascular bundles with water storage in the centre of the leaf. Portulaca cf. bicolor, which belongs to subgenus Portulacella, is an NADP-ME C4 species with Portulacelloid-type anatomy; it has well-developed Kranz chlorenchyma surrounding lateral veins distributed in one plane under the adaxial epidermis with water storage cells underneath. Portulaca cryptopetala (clade Oleracea), an endemic species from central South America, was identified as a C3C4 based on its intermediate CO2 compensation point and selective localization of glycine decarboxylase of the photorespiratory pathway in mitochondria of bundle sheath cells. The C4 Portulaca species which were examined also have cotyledons with Kranz-type anatomy, while the stems of all species have C3-type photosynthetic cells. The results indicate that multiple structural and biochemical forms of C4 photosynthesis evolved in genus Portulaca. PMID:20591900

  2. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  3. Early events elicited by Bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding

    International Nuclear Information System (INIS)

    Zachary, I.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-01-01

    Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an M/sub r/ 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent. The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125 I-labeled epidermal growth factor ( 125 I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca 2+ concentration does not mediate the bombesin inhibition of 125 I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125 I-EGF to its cellular receptor

  4. A simple two-step purification procedure for the iC3b binding collectin conglutinin

    DEFF Research Database (Denmark)

    Krogh-Meibom, Thomas; Ingvartsen, Klaus Lønne; Tornoe, Ida

    2010-01-01

    Bovine conglutinin is a serum protein involved in innate immunity. It binds calcium dependently to iC3b, a product of the complement component C3 deposited on cell surfaces, immune complexes or artificial surfaces after complement activation. We here present a simple and efficient two-step proced...

  5. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; McMurray, David N; Chapkin, Robert S

    2013-09-01

    Little is known about the impact of n33) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.

  6. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism.

    Science.gov (United States)

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2015-01-23

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg(102). In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg(102)-Glu(1032) salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg(102)-Glu(1032) salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg(102)-Glu(1032) salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg(102)) and disease-linked C3F (Gly(102)) allotypes of C3b were experimentally explained for the first time. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Semi-synthetic preparation of 1-O-[1'-14C]hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) using plant cell cultures

    International Nuclear Information System (INIS)

    Weber, N.; Mangold, H.K.

    1985-01-01

    Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-[1'- 14 C]hexadecyl-sn-glycerol or rac-1-O-[1'- 14 C]hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-[1'- 14 C]hexadecyl-sn-glycero-3-phosphocholine. 1-O-[1'-14C]Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity

  8. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  9. The thrombopoietin receptor, c-Mpl, is a selective surface marker for human hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Kerr William G

    2006-02-01

    Full Text Available Abstract Background Thrombopoietin (TPO, the primary cytokine regulating megakaryocyte proliferation and differentiation, exerts significant influence on other hematopoietic lineages as well, including erythroid, granulocytic and lymphoid lineages. We previously demonstrated that the receptor for TPO, c-mpl, is expressed by a subset of human adult bone marrow hematopoietic stem/progenitor cells (HSC/PC that are enriched for long-term multilineage repopulating ability in the SCID-hu Bone in vivo model of human hematopoiesis. Methods Here, we employ flow cytometry and an anti-c-mpl monoclonal antibody to comprehensively define the surface expression pattern of c-mpl in four differentiation stages of human CD34+ HSC/PC (I: CD34+38--, II: CD34+38dim, III: CD34+38+, IV: CD34dim38+ for the major sources of human HSC: fetal liver (FL, umbilical cord blood (UCB, adult bone marrow (ABM, and cytokine-mobilized peripheral blood stem cells (mPBSC. We use a surrogate in vivo model of human thymopoiesis, SCID-hu Thy/Liv, to compare the capacity of c-mpl+ vs. c-mpl-- CD34+38--/dim HSC/PC for thymocyte reconstitution. Results For all tissue sources, the percentage of c-mpl+ cells was significantly highest in stage I HSC/PC (FL 72 ± 10%, UCB 67 ± 19%, ABM 82 ± 16%, mPBSC 71 ± 15%, and decreased significantly through stages II, III, and IV ((FL 3 ± 3%, UCB 8 ± 13%, ABM 0.6 ± 0.6%, mPBSC 0.2 ± 0.1% [ANOVA: P I, decreasing through stage IV [ANOVA: P + cells [P = 0.89] or intensity of c-mpl expression [P = 0.21]. Primary Thy/Liv grafts injected with CD34+38--/dimc-mpl+ cells showed slightly higher levels of donor HLA+ thymocyte reconstitution vs. CD34+38--/dimc-mpl---injected grafts and non-injected controls (c-mpl+ vs. c-mpl--: CD2+ 6.8 ± 4.5% vs. 2.8 ± 3.3%, CD4+8-- 54 ± 35% vs. 31 ± 29%, CD4--8+ 29 ± 19% vs. 18 ± 14%. Conclusion These findings support the hypothesis that the TPO receptor, c-mpl, participates in the regulation of primitive human HSC

  10. FGF-2 Transcriptionally Down-Regulates the Expression of BNIP3L via PI3K/Akt/FoxO3a Signaling and Inhibits Necrosis and Mitochondrial Dysfunction Induced by High Concentrations of Hydrogen Peroxide in H9c2 Cells

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2016-12-01

    Full Text Available Background/Aims: Cardiovascular disease is a growing major global public health problem. Necrosis is one of the main forms of cardiomyocyte death in heart disease. Oxidative stress is regarded as one of the key regulators of cardiac necrosis, which eventually leads to cardiovascular disease. Many pharmacological and in vitro studies have suggested that FGF-2 can act directly on cardiomyocytes to maintain the integrity and function of the myocardium and prevent damage during oxidative stress. However, the mechanisms by which FGF-2 rescues the myocardium from oxidative stress damage in cardiovascular disease remain unclear. The present study explored the protective effects of FGF-2 in the H2O2-induced necrosis of H9C2 cardiomyocytes as well as the possible signaling pathways involved. Methods: Necrosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using a Cell Counting Kit-8 (CCK8 assay and flow cytometry analysis. The cells were pretreated with the PI3K/Akt inhibitor Wortmannin to investigate the possible involvement of the PI3K/Akt pathway in the protection by FGF-2. The levels of Akt, p-Akt, FoxO3a, p-FoxO3a, and BNIP3L were detected by Western blot. Chromatin immuno-precipitation (ChIP analysis was used to test whether FoxO3a binds directly to the BNIP3L promoter region. A luciferase assay was used to study the effects of FoxO3a on BNIP3L gene promoter activity. Mitochondrial ΔΨM was quantified using tetramethylrhodamine methyl ester perchlorate (TMRM. The mitochondrial oxygen consumption rate (OCR was assessed with a Seahorse XF24 Analyzer. Results: Treatment with H2O2 decreased the phosphorylation of Akt and FoxO3a, and it induced the nuclear localization of FoxO3a and the necrosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by the PI3K/Akt inhibitor Wortmannin. ChIP analyses indicated that FoxO3a binds directly to the BNIP3L promoter

  11. Induction of DNA strand breaks in 14C-labelled cells

    International Nuclear Information System (INIS)

    Sundell-Bergman, S.; Johanson, K.J.

    1979-01-01

    Chinese hamster cells grown in vitro were labelled with 14 C-thymidine for 18 hours and after 3 hours in non-radioactive medium they were stored at 0 0 C for various periods ( 1 to 12 hours). During this treatment a number of DNA strand breaks were induced by 14 C decay which were not repaired at 0 0 C. The number of DNA strand breaks was determined using the DNA unwinding technique. At 0.5-1 dpm per cell a detectable number of DNA strand breaks were found. Treatment for six hours (1 dpm per cell) reduced the percentage of double-stranded DNA from 80 to 70%, corresponding to about 750 DNA strand breaks per cell. The rejoining of DNA strand breaks was studied after treatment for 12 hours at 0 0 C followed by incubation of the cells for various periods at 37 0 C. Most of the DNA strand breaks induced by 14 C decay at 0 0 C were repaired after incubation at 37 0 C for 15 minutes. Assuming an absorbed dose of 1.8 mGy per 14 C decay to the cell nucleus an RBE value close to 1 was found for internal irradiation from 14 C decay as compared with 60 Co-gamma irradiation. (author)

  12. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  13. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  14. Retrovirus-mediated gene transfer of a human c-fos cDNA into mouse bone marrow stromal cells.

    Science.gov (United States)

    Roux, P; Verrier, B; Klein, B; Niccolino, M; Marty, L; Alexandre, C; Piechaczyk, M

    1991-11-01

    A cDNA encoding a complete human c-fos protein was isolated and inserted into two different murine MoMuLV-derived recombinant retroviruses allowing expression of c-fos protein in different cell types. One c-fos-expressing retrovirus, chosen for its ability to express high levels of proteins in fibroblast-like cells, was shown to potentiate long-term cultures of mouse bone marrow stromal cells in vitro and therefore constitutes a potential tool for immortalizing such cells. Moreover, when tested in an in vitro differentiation assay, stromal cells constitutively expressing c-fos favor the granulocyte differentiation of hematopoietic precursors. Interestingly, retroviruses expressing v-src and v-abl oncogenes, included as controls in our experiments, do not produce any detectable effects, whereas those expressing polyoma virus middle T antigen facilitate long-term growth in vitro of stromal cells that favor the macrophage differentiation pathway of bone marrow stem cells. Our observation supports the idea that constitutive expression of some oncogenes, including c-fos and polyoma virus middle T antigen, may influence cytokine production by bone marrow stromal cells.

  15. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    International Nuclear Information System (INIS)

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-01-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl 2 doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl 2 doses for prolonged time points. Furthermore, CoCl 2 treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes

  16. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  17. TRB3 is involved in free fatty acid-induced INS-1-derived cell apoptosis via the protein kinase C δ pathway.

    Directory of Open Access Journals (Sweden)

    Jun Qin

    Full Text Available Chronic exposure to free fatty acids (FFAs may induce β cell apoptosis in type 2 diabetes. However, the precise mechanism by which FFAs trigger β cell apoptosis is still unclear. Tribbles homolog 3 (TRB3 is a pseudokinase inhibiting Akt, a key mediator of insulin signaling, and contributes to insulin resistance in insulin target tissues. This paper outlined the role of TRB3 in FFAs-induced INS-1 β cell apoptosis. TRB3 was promptly induced in INS-1 cells after stimulation by FFAs, and this was accompanied by enhanced INS-1 cell apoptosis. The overexpression of TRB3 led to exacerbated apoptosis triggered by FFAs in INS-1-derived cell line and the subrenal capsular transplantation animal model. In contrast, cell apoptosis induced by FFAs was attenuated when TRB3 was knocked down. Moreover, we observed that activation and nuclear accumulation of protein kinase C (PKC δ was enhanced by upregulation of TRB3. Preventing PKCδ nuclear translocation and PKCδ selective antagonist both significantly lessened the pro-apoptotic effect. These findings suggest that TRB3 was involved in lipoapoptosis of INS-1 β cell, and thus could be an attractive pharmacological target in the prevention and treatment of T2DM.

  18. Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib.

    Science.gov (United States)

    Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio

    2018-03-01

    Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR-3/CCR7 activation.

    Science.gov (United States)

    Huang, Xin; Su, Kunkai; Zhou, Limin; Shen, Guofang; Dong, Qi; Lou, Yijia; Zheng, Shu

    2013-12-01

    Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches. © 2013 Wiley Periodicals, Inc.

  1. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein.

    Science.gov (United States)

    Kuyumcu-Martinez, Muge; Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Green, Kim Y; Lloyd, Richard E

    2004-08-01

    Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.

  2. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  3. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  4. Identification of nasopharyngeal carcinoma from photoluminescence spectra of 3C-SiC nanocrystals

    Science.gov (United States)

    Wang, Li-Fen; Guo, Jun-Hong; Huang, Zhi-Chun; Gu, Jian-Sen; Feng, Li-Ren; Liu, Li-Zhe

    2017-09-01

    The identification of intracellular pH (pHi) during carcinogenesis progression plays a crucial role in the studies of biochemistry, cytology, and clinical medicine. In this work, 3C-SiC nanocrystals (NCs), which can effectively monitor the pH environment by using the linear relation between photoluminescence intensity and surface OH- and H+ concentration, are adapted as fluorescent probes for monitoring carcinogenesis progression of nasopharyngeal carcinoma. Our results demonstrated that 3C-SiC NCs are compatible with living cells and have low cytotoxicity. The pHi measurements in different carcinogenesis environments indicate the validity and sensitivity of this technology in identifying nasopharyngeal carcinoma in application.

  5. Reduction of fatal graft-versus-host disease by 3H--thymidine suicide of donor cells cultured with host cells

    International Nuclear Information System (INIS)

    Cheever, M.A.; Einstein, A.B. Jr.; Kempf, R.A.; Fefer, A.

    1977-01-01

    The effect of the tritiated thymidine ( 3 H-TdR) suicide technique on the ability of donor cells to induce fatal graft-versus-host disease (GVHD) was studied. C57BL/6 (H-2/sup b/) spleen cells were stimulated in vitro with irradiated BALB/c (H-2/sup d/) Moloney lymphoma cells in mixed culture and 3 H-TdR of high-specific activity added to eliminate proliferating cells. The ability of such cells to induce fatal GVHD was assayed by injecting them i.v. into adult BALB/c mice immunosuppressed with cyclophosphamide (180 mg/kg). These cells induced fatal GVHD in fewer mice (52 percent) than did C57BL/6 cells cultured with BALB/c lymphoma cells but without 3 H-TdR (87 percent) and C57BL/6 cells cultured with irradiated C57BL/6 cells with (95 percent) or without 3 H-TdR (86 percent). Thus, the 3 H-TdR suicide technique greatly diminished the ability of cells to induce lethal GVHD

  6. Passivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene/ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Peng Zhong

    2017-12-01

    Full Text Available Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs. However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used to modify the interface of ZnO/poly(3-hexylthiophene (P3HT. Results indicate that the C60 modification passivates the surface defects of ZnO and improves its intrinsic fluorescence. The quenching efficiency of P3HT photoluminescence is enhanced upon C60 functionalization, suggesting a more efficient charge transfer occurs across the modified P3HT/ZnO interface. Furthermore, the fullerene modified hybrid solar cell based on P3HT/ZnO NRAs displays substantially-enhanced performance as compared to the unmodified one and the devices with other modifiers, which is contributed to retarded recombination and enhanced exciton separation as evidenced by electrochemical impedance spectra. Therefore, fullerene passivation is a promising method to ameliorate the connection between conjugated polymers and metal oxides, and is applicable in diverse areas, such as solar cells, transistors, and light-emitting dioxides.

  7. cAMP Signaling Regulates Histone H3 Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression

    OpenAIRE

    Rodriguez-Collazo, Pedro; Snyder, Sara K.; Chiffer, Rebecca C.; Bressler, Erin A.; Voss, Ty C.; Anderson, Eric P.; Genieser, Hans-Gottfried; Smith, Catharine L.

    2008-01-01

    cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in ...

  8. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    Science.gov (United States)

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  9. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells.

    Science.gov (United States)

    Zhang, Wei; Cao, Jiamin; Liu, Ying; Xiao, Zuo; Zhu, Weiguo; Zuo, Qiqun; Ding, Liming

    2012-09-26

    A novel electron-accepting unit cyclopenta[2,1-b:3,4-c']dithiophene-4-one (CPDTO-c'), which is an isomer of CPDTO-b' was developed. CPDTO-c' can be incorporated into the D-A backbone through 5, 7 positions. The 2 position of CPDTO-c' can be easily functionalized with an electron-withdrawing chain. By copolymerizing CPDTO-c' with four different donor units: benzo[1,2-b:4,5-b']dithiophene (BDT), dithieno[3,2-b:2',3'-d]silole (DTS), carbazole, and fluorene, four new conjugated copolymers P1-P4 were obtained. All these polymers have good solubility and low-lying HOMO energy levels (-5.41 ∼ -5.92 eV). Among them, P1 and P2 exhibit broad absorption and narrow optical bandgaps of 1.91 and 1.72 eV, respectively. Solar cells based on P1/PC(71) BM afforded a PCE up to 2.72% and a high V(oc) up to ∼0.9 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel antihuman C3d monoclonal antibody with specificity to the C3d complement split product

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Skjødt, Mikkel-Ole; Vitved, Lars

    2017-01-01

    The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect...... different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d. The antibody can therefore only bind to C3d when it manifests itself as the final end product of cleaved C3. We believe...

  11. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw

    2005-01-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  12. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  13. n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells123

    Science.gov (United States)

    Monk, Jennifer M.; Hou, Tim Y.; Turk, Harmony F.; McMurray, David N.; Chapkin, Robert S.

    2013-01-01

    Little is known about the impact of n33) PUFAs on polarization of CD4+ T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4+ T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3+) cells] or Th17 cells [interleukin (IL)-17A+ and retinoic acid receptor-related orphan receptor (ROR) γτ+ cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4+ IL-17A+ (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA–dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset. PMID:23864512

  14. The cytosolic chaperonin CCT/TRiC and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Chafika Boudiaf-Benmammar

    Full Text Available The molecular chaperone CCT/TRiC plays a central role in maintaining cellular proteostasis as it mediates the folding of the major cytoskeletal proteins tubulins and actins. CCT/TRiC is also involved in the oncoprotein cyclin E, the Von Hippel-Lindau tumour suppressor protein, cyclin B and p21(ras folding which strongly suggests that it is involved in cell proliferation and tumor genesis. To assess the involvement of CCT/TRiC in tumor genesis, we quantified its expression levels and activity in 18 cancer, one non-cancer human cell lines and a non-cancer human liver. We show that the expression levels of CCT/TRiC in cancer cell lines are higher than that in normal cells. However, CCT/TRiC activity does not always correlate with its expression levels. We therefore documented the expression levels of CCT/TRiC modulators and partners PhLP3, Hop/P60, prefoldin and Hsc/Hsp70. Our analysis reveals a functional interplay between molecular chaperones that might account for a precise modulation of CCT/TRiC activity in cell proliferation through changes in the cellular levels of prefoldin and/or Hsc/p70 and CCT/TRiC client protein availability. Our observation and approaches bring novel insights in the role of CCT/TRiC-mediated protein folding machinery in cancer cell development.

  15. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-01

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  16. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Van Kuppevelt, Toin H. [Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 280 P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  17. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  18. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    International Nuclear Information System (INIS)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8 + T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract SEB

  19. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan

    2017-08-15

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  20. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan; Qian, Deping; Balawi, Ahmed Hesham; Wu, Yang; Ma, Wei; Laquai, Fré dé ric; Tang, Zheng; Zhang, Fengling; Li, Weiwei

    2017-01-01

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  1. The oncogenic potential of three different 7, 12-dimethylbenz (a)anthracene transformed C3H/10T1/2 cell clones at various passages and the importance of the mode of immunosuppression

    International Nuclear Information System (INIS)

    Saxholm, H.J.K.

    1979-01-01

    The oncogenic potential of C3H/10T1/2 cells which were transformed in vitro with 7,12-dimethylbenz(a)anthracene is reported. The ability of the cells to grow as malignant tumors in syngeneic immunosuppressed mice was used as parameter for oncogenic potential. Cells of types I, II and III were assayed at several dosage levels, i.e., 10 4 , 10 5 or 10 6 cells per inoculum, with or without immunosuppression by antithymocyte serum globulin fraction. The studies were performed in several strains of host animals, i.e., male and female syngeneic C3H mice supplied by the National Cancer Institute, C3H mice supplied by Charles River and nude, athymic female mice. Morphological transformation preceded oncological transformation, and type I cells could not be established as tumors. Type II and type III cells developed oncogenic potential only after several passages in culture. Oncogenic potential was pronounced in the type III cells, and less strongly expressed in type II cells. Also tested were different methods of immunosuppression of the animal against the expression of the oncogenic potential of DMBA transformed C3H/10T1/2 cells from type II and III clones. Immunosuppression by antithymocyte serum globulin fraction was an effective method of preparing the syngeneic host so that cells with a low oncogenic potential would grow as tumors, whereas total body irradiation was not effective. For cells with a high oncogenic potential both ways of immunosuppression were sufficient. Admixing lethally irradiated cells in the cell inoculum slightly enhanced the tumor development from cells with low oncogenic potential and such addition was clearly effective for cells with a higher oncogenic potential, both for the antibody-treated and for the irradiated series. The findings were reproducible. The study stresses the importance of immunosuppression by antithymocyte globulins for detecting in vitro transformed weakly oncogenic cells. (author)

  2. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    Science.gov (United States)

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  3. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    International Nuclear Information System (INIS)

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K.

    1990-01-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by [35S]cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the [35S]-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein

  4. Comparative Analysis of Osteogenic/Chondrogenic Differentiation Potential in Primary Limb Bud-Derived and C3H10T1/2 Cell Line-Based Mouse Micromass Cultures

    Directory of Open Access Journals (Sweden)

    Róza Zákány

    2013-08-01

    Full Text Available Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2 were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models.

  5. A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wang, Wenhui; Zhang, Jiaolong; Lin, Yue; Ding, Fei; Chen, Zhenyu; Dai, Changsong

    2015-01-01

    The application of lithium ion batteries in plug-in hybrid electric vehicles (PHEVs) requires safety, high energy density, high power density, excellent cyclability and good low temperature performance. On the basis of thermally stable Li 3 V 2 (PO 4 ) 3 /C and cost-effective performance carbon additives, we designed a Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (PB stands for performance carbon additives PBX101) cathode that meets the above requirements for PHEVs battery. Firstly, its Ragone plot presents an excellent energy density retention at high power rates; secondly, the excellent capacity retention and high Coulombic efficiency of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB)-Li half-cell clearly indicates a potential good cyclability of full cells based on Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) cathode. Finally, we believe the good low temperature performance of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (i.e. retains 91.6% and 76.3% of its capacity at ∼25 °C, when cycled at 0 and -15 °C) is also beneficial to its application in PHEVs

  6. Interstellar clouds toward 3C 154 and 3C 353

    International Nuclear Information System (INIS)

    Federman, S.R.; Evans, N.J. II; Willson, R.F.; Falgarone, E.; Combes, F.; Texas Univ., Austin; Tufts Univ., Medford, MA; Meudon, Observatoire, France)

    1987-01-01

    Molecular observations of the interstellar clouds toward the radio sources 3C 154 and 3C 353 were obtained in order to elucidate the physical conditions within the clouds. Maps of (C-12)O emission in the J = 1-0 and J = 2-1 lines were compared with observations of the (C-13)O, CH, and OH molecules. The peak emission in the (C-12)O transitions does not occur in the direction of the continuum sources, and thus, an incomplete picture arises when only one line of sight in the two clouds is analyzed. The cloud toward 3C 154 appears to have a low extinction, but a relatively high CO abundance, suggesting that it is similar to high-latitude clouds and CO-rich diffuse clouds. The cloud toward 3C 353 is considerably denser than that toward 3C 154 and may be more like a dark cloud. 32 references

  7. The p85α regulatory subunit of PI3K mediates cAMP-PKA and retinoic acid biological effects on MCF7 cell growth and migration.

    Science.gov (United States)

    Donini, Caterina F; Di Zazzo, Erika; Zuchegna, Candida; Di Domenico, Marina; D'Inzeo, Sonia; Nicolussi, Arianna; Avvedimento, Enrico V; Coppa, Anna; Porcellini, Antonio

    2012-05-01

    Phosphoinositide-3-OH kinase (PI3K) signalling regulates various cellular processes, including cell survival, growth, proliferation and motility, and is among the most frequently mutated pathways in cancer. Although the involvement of p85αPI3K SH2 domain in signal transduction has been extensively studied, the function of the SH3 domain at the N-terminus remains elusive. A serine (at codon 83) adjacent to the N-terminal SH3 domain in the PI3K regulatory subunit p85αPI3K that is phosphorylated by protein kinase A (PKA) in vivo and in vitro has been identified. Virtually all receptors binding p85αPI3K can cooperate with cAMP-PKA signals via phosphorylation of p85αPI3KSer83. To analyse the role of p85αPI3KSer83 in retinoic acid (RA) and cAMP signalling, in MCF7 cells, we used p85αPI3K mutated forms, in which Ser83 has been substituted with alanine (p85A) to prevent phosphorylation or with aspartic acid (p85D) to mimic the phosphorylated residue. We demonstrated that p85αPI3KSer83 is crucial for the synergistic enhancement of RARα/p85αPI3K binding induced by cAMP/RA co-treatment in MCF7 cells. Growth curves, colorimetric MTT assay and cell cycle analysis demonstrated that phosphorylation of p85αPI3KSer83 plays an important role in the control of MCF7 cell proliferation and in RA-induced inhibition of proliferation. Wound healing and transwell experiments demonstrated that p85αPI3KSer83 was also essential both for the control of migratory behaviour and for the reduction of motility induced by RA. This study points to p85αPI3KSer83 as the physical link between different pathways (cAMP-PKA, RA and FAK), and as an important regulator of MCF7 cell proliferation and migration.

  8. Inhibition of the development of metastases by dietary vitamin C:K3 combination.

    Science.gov (United States)

    Taper, Henryk S; Jamison, James M; Gilloteaux, Jacques; Summers, Jack L; Calderon, Pedro Buc

    2004-07-09

    The tumor growth-inhibiting and chemo-potentiating effects of vitamin C and K(3)combinations have been demonstrated both in vitro and in vivo. The purpose of this study was to investigate the influence of orally administered vitamin C and K(3) on the metastasis of mouse liver tumor (T.L.T.) cells implanted in C3H mice. Adult male C3H mice were given water containing vitamin C and K3 (15 g/0.15 g dissolved in 1000 ml) beginning 2 weeks before tumor transplantation until the end of the experiment. T.L.T. cells (106) were implanted intramuscularly in the right thigh of mice. All mice were sacrificed 42 days after tumor transplantation. Primary tumor, lungs, lymph nodes and other organs or tissues suspected of harboring metastases were macroscopically examined. Samples of primary tumors, their local lymph nodes, lungs and main organs such as liver, kidneys, spleen were taken for histological examination. Forty-two percent of control mice exhibited lung metastases and 27% possessed metastases in local lymph nodes whereas 24% of vitamin-treated mice exhibited lung metastases and 10% possessed local lymph nodes metastases. The total number of lung metastases was 19 in control group and 10 in vitamin C and K(3)-treated mice. Histopathological examination of the metastatic tumors from the vitamin-treated mice revealed the presence of many tumor cells undergoing autoschizic cell death. These results demonstrate that oral vitamin C and K(3) significantly inhibited the metastases of T.L.T. tumors in C3H mice. At least a portion of this inhibition was due to tumor cell death by autoschizis.

  9. The effects of ultraviolet light on host cell reactivation and plaque size of Herpes simplex virus type 1 in C3H/10T1/2 mouse cells

    International Nuclear Information System (INIS)

    Montes, J.G.; Taylor, W.D.

    1986-01-01

    Herpes simplex virus-type 1 (HSV-1) plaque-forming ability and plaque size were measured on (C3H/10T1/2) cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus, as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others, C3H/10T1/2 cells have been transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation. (author)

  10. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

    Science.gov (United States)

    García-Morales, Verónica; Luaces-Regueira, María; Campos-Toimil, Manuel

    2017-12-01

    3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca 2+ concentration ([Ca 2+ ] c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca 2+ ] c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca 2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca 2+ ] c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hydration reactions in pastes C3S+C3A+CaSO4.2aq+H20 at 25°C.I

    NARCIS (Netherlands)

    Corstanje, W.A.; Stein, H.N.; Stevels, J.M.

    1973-01-01

    A characteristic retardation of the hydration of C3A is found in pastes C3S+C3A+CaSO4.2aq+H2O of weight ratios 1:3:z:4 at certain values of z, when sulphate concentration becomes insufficient for monosulphate formation. This retardation is ascribed to precipitation of amorphous Al(OH)3, when C3A

  12. FOXP3 positive regulatory T-cells in cutaneous and systemic CD30 positive T-cell lymphoproliferations

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Woetmann, Anders; Ødum, Niels

    2008-01-01

    for FOXP3 expression in tumour cells and tumour infiltrating Tregs. Labelling of a majority of the neoplastic cells was seen in one case of C-ALCL. Another three cases (one LyP and two C-ALCL) displayed weak labelling of very occasional atypical T-cells. In the remaining 38 cases the atypical lymphoid...... infiltrate was FOXP3 negative. By contrast, all biopsies contained tumour infiltrating FOXP3-positive Tregs. Significant higher numbers were recorded in ALK negative S-ALCL and LyP than in C-ALCL and S-ALCL positive for ALK. In conclusion, it is shown that FOXP3 expression in cutaneous and systemic CD30...

  13. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    Science.gov (United States)

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  14. A novel indole-3-carbinol derivative inhibits the growth of human oral squamous cell carcinoma in vitro.

    Science.gov (United States)

    Weng, Jing-Ru; Bai, Li-Yuan; Omar, Hany A; Sargeant, Aaron M; Yeh, Ching-Tung; Chen, Yuan-Yin; Tsai, Ming-Hsui; Chiu, Chang-Fang

    2010-10-01

    Indole-3-carbinol (I3C), a naturally occurring phytochemical found in cruciferous vegetables, has received much attention due to its translational potential in cancer prevention and therapy. In this study, we investigated the antitumor effects of OSU-A9, a structurally optimized I3C derivative, in a panel of oral squamous cell carcinoma cell lines, SCC4, SCC15, and SCC2095. The antiproliferative effect of OSU-A9 was approximately two-orders-of-magnitude higher than that of I3C. Importantly, normal human oral keratinocytes were less sensitive to OSU-A9 than oral cancer cells. This antiproliferative effect of OSU-A9 was attributable to the induction of mitochondrial-dependent apoptosis as evidenced by sub-G1 accumulation of cells, poly ADP-ribose polymerase cleavage, and cytochrome c release from the mitochondria. OSU-A9 down regulates Akt and NF-κB signaling pathways, leading to changes in many downstream effectors involved in regulating cell cycle and apoptosis. Moreover, the observed down regulation of IKKα and IKKβ expression by OSU-A9 is not reported for I3C. OSU-A9 also induces both the production of reactive oxygen species and the endoplasmic reticulum stress. Taken together, these results suggest the translational value of OSU-A9 in oral squamous cell cancer therapy in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Friboulet, Luc; Gourzones, Claire; Tsao, Sai Wah; Morel, Yannis; Paturel, Carine; Témam, Stéphane; Uzan, Catherine; Busson, Pierre

    2010-01-01

    There is increasing evidence that the toll-like receptor 3 (TLR3) is an interesting target for anti-cancer therapy. Unfortunately, most laboratory investigations about the impact of TLR3 stimulation on human malignant cells have been performed with very high concentrations - 5 to 100 μg/ml - of the prototype TLR3 ligand, poly(I:C). In a previous study focused on a specific type of human carcinoma - nasopharyngeal carcinoma - we have shown that concentrations of poly(I:C) as low as 100 ng/ml are sufficient to induce apoptosis of malignant cells when combined to a pharmacological antagonist of the IAP family based on Smac mimicry. This observation prompted us to investigate the contribution of the IAP family in cell response to poly(I:C) in a variety of human malignant cell types. We report a rapid, intense and selective increase in c-IAP2 protein expression observed under stimulation by poly(I:C)(500 ng/ml) in all types of human malignant cells. In most cell types, this change in protein expression is underlain by an increase in c-IAP2 transcripts and dependent on the TLR3/TRIF pathway. When poly(I:C) is combined to the IAP inhibitor RMT 5265, a cooperative effect in apoptosis induction and/or inhibition of clonogenic growth is obtained in a large fraction of carcinoma and melanoma cell lines. Currently, IAP inhibitors like RMT 5265 and poly(I:C) are the subject of separate therapeutic trials. In light of our observations, combined use of both types of compounds should be considered for treatment of human malignancies including carcinomas and melanomas

  16. Studies on anatomical characters indicating C3 and C4 photosynthetic metabolism in the genus Boerhavia L. (Nyctaginaceae

    Directory of Open Access Journals (Sweden)

    Abdulwakeel Ayokun-nun Ajao

    2017-08-01

    Full Text Available The C3 and C4 photosynthetic pathways in dicotyledons were investigated with the four species of Boerhavia occurring in Nigeria using light microscopy. The study is not yet well reported on dicotyledons as done for monocotyledons. The features cross-examined were stomata index, stomata size, inter-stomatal distance, stomatal density, interveinal distance, intercellular air spaces, leaf thickness, mesophyll thickness, Kranz tissue, one cell distant count criterion, maximum lateral cell count criterion, vein density and vein distance. Based on these features, these species (B. erecta, B. coccinea and B. repens were grouped into C4 while B. diffusa was grouped as a C3 plant. In particular, interveinal distance less than 166µm and maximum lateral count ranging 2 to 6 will help in grouping C4 dicotyledons species while those that were greater than these values are useful in grouping C3 and plants.

  17. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Kundu, Chanakya N. [School of Biotechnology, KIIT University, Bhubaneswar (India); Verma, Subhash C. [Department of Microbiology and Immunology, University of Nevada, School of Medicine, Reno, NV 89557 (United States); Choudhuri, Tathagata, E-mail: tatha@ils.res.in [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Department of Biotechnology, Siksha Bhavana, Visva Bharati, Santiniketan, Bolpur (India)

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  18. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    International Nuclear Information System (INIS)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit; Kundu, Chanakya N.; Verma, Subhash C.; Choudhuri, Tathagata

    2014-01-01

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways

  19. The Demethylase JMJD2C Localizes to H3K4me3 Positive Transcription Start Sites and Is Dispensable for Embryonic Development

    DEFF Research Database (Denmark)

    Pedersen, Marianne Terndrup; Agger, Karl; Laugesen, Anne

    2014-01-01

    cell (ESC) self-renewal and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3 positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line, containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain...... expression of a subset of target genes involved in cell cycle progression. Taken together, we show that JMJD2C is targeted to H3K4me3 positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene, JMJD2C, is not generally required...

  20. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  1. Epitaxial growth of 3C-SiC by using C{sub 60} as a carbon source; Untersuchungen zum epitaktischen Wachstum von 3C-SiC bei Verwendung einer C{sub 60}-Kohlenstoffquelle

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Sascha

    2006-01-15

    Within this work epitaxial 3C-SiC-films were grown on Si(001) substrates and on ion beam synthesized 3C-SiC(001) pseudo substrates. A rather new process was used which is based on the simultaneous deposition of C60 and Si. In order to set up the necessary experimental conditions an ultra-high vacuum chamber has been designed and built. A RHEED system was used to examine SiC film growth in-situ. Using the described technique 3C-SiC films were grown void-free on Si(001) substrates. Deposition rates of C60 and Si were chosen adequately to maintain a Si:C ratio of approximately one during the deposition process. It was shown that stoichiometric and epitaxial 3C-SiC growth with the characteristic relationship (001)[110]Si(001)[110]3C-SiC could be achieved. TEM investigations revealed that the grown 3C-SiC films consist of individual grains that extend from the Si substrate to the film surface. Two characteristic grain types could be identified. The correlation between structure and texture of void-free grown 3C-SiC films and film thickness was studied by X-ray diffraction (XRD). Pole figure measurements showed that thin films only contain first-order 3C-SiC twins. With higher film thickness also second-order twins are found which are located as twin lamellae in grain type 2. Improvement of polar texture with increasing film thickness couldn't be observed in the investigated range of up to 550 nm. On ion beam synthesized 3C-SiC pseudo substrates homoepitaxial 3C-SiC growth could be demonstrated for the first time by using a C{sub 60} carbon source. In respect to the crystalline quality of the grown films the surface quality of the used substrates was identified as a crucial factor. Furthermore a correlation between the ratio of deposition rates of C{sub 60} and Si and 3C-SiC film quality could be found. Under silicon-rich conditions, i.e. with a Si:C ratio of slightly greater one, homoepitaxial 3C-SiC layer-by-layer growth can be achieved. Films grown under these

  2. BAG3 is upregulated by c-Jun and stabilizes JunD.

    Science.gov (United States)

    Li, Chao; Li, Si; Kong, De-Hui; Meng, Xin; Zong, Zhi-Hong; Liu, Bao-Qin; Guan, Yifu; Du, Zhen-Xian; Wang, Hua-Qin

    2013-12-01

    BAG3 plays a regulatory role in a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, epithelial-mesenchymal transition (EMT), autophagy activation, and virus infection. The AP-1 transcription factors are implicated in a variety of important biological processes including cell differentiation, proliferation, apoptosis and oncogenesis. Recently, it has been reported that AP-1 protein c-Jun inhibits autophagy and enhances apoptotic cell death mediated by starvation. However, the molecular mechanisms remain unclear. For the first time, the current study demonstrated that serum starvation downregulated BAG3 at the transcriptional level via c-Jun. In addition, the current study reported that BAG3 stabilized JunD mRNA, which was, at least in part, responsible for the promotion of serum starvation mediated-growth inhibition by BAG3. © 2013.

  3. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  4. Synthesis and biological evaluation of 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives as potential c-met inhibitors.

    Science.gov (United States)

    Zhao, Sijia; Zhang, Yu; Zhou, Hongyang; Xi, Shuancheng; Zou, Bin; Bao, Guanglong; Wang, Limei; Wang, Jiao; Zeng, Tianfang; Gong, Ping; Zhai, Xin

    2016-09-14

    Six series of novel 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives conjugated with aza-aryl formamide/amine scaffords were designed and synthesized through a structure-based molecular hybridization approach. The target compounds were evaluated for c-Met kinase inhibitory activities and cytotoxicity against four cancer cell lines (HT-29, A549, MKN-45 and MDA-MB-231) in vitro. Most compounds exhibited moderate to excellent potency, and the most promising candidate 26c (c-Met kinase IC50 = 8.2 nM) showed a 4.7-fold increase in cytotoxicity against c-Met-addicted MKN-45 cell line in vitro (IC50 = 3 nM), superior to that of Foretinib (IC50 = 23 nM). The preliminary structure-activity relationship indicated that a 1H-benzo [e] [1,3,4]thiadiazine-3-carboxamide-4,4-dioxide moiety as linker contributed to the antitumor potency. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. A family of cell-adhering peptides homologous to fibrinogen C-termini

    International Nuclear Information System (INIS)

    Levy-Beladev, Liron; Levdansky, Lilia; Gaberman, Elena; Friedler, Assaf; Gorodetsky, Raphael

    2010-01-01

    Research highlights: → Cell-adhesive sequences homologous to fibrinogen C-termini exist in other proteins. → The extended homologous cell-adhesive C-termini peptides family is termed Haptides. → In membrane-like environment random coiled Haptides adopt a helical conformation. → Replacing positively charged residues with alanine reduces Haptides activity. -- Abstract: A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides Cβ, preCγ, and CαE, corresponding to sequences on the C-termini of fibrinogen chains β, γ, and αE, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1 and 2, tenascins C and X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preCγ peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.

  6. Complement C3a binding to its receptor as a negative modulator of Th2 response in liver injury in trichloroethylene-sensitized mice.

    Science.gov (United States)

    Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2014-08-17

    Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    Energy Technology Data Exchange (ETDEWEB)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract

  8. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-01-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  9. Adoptive transfer of transplantation tolerance in the H-2 compatible mouse system CBA/C3H

    International Nuclear Information System (INIS)

    Siegl, E.; Brock, J.; Schulze, H.A.

    1985-01-01

    Transfer of neonatally induced tolerance in the H-2 compatible CBA/C3H strain combination is possible with different efficiency by injection of adherent and non-adherent spleen cells, unseparated spleen cells and lymph node cells from C3H-tolerant CBA mice into sublethal irradiated CBA mice. The most efficient cell populations are adherent spleen cells and lymph node cells. Successfull transfer of transplantation tolerance is not possible to non-irradiated mice. The adherent fraction of spleen cells and lymph node cells contains a suppressor cell population responsible for transplantation tolerance against non-H-2 antigens. The induced transplantation tolerance is not due to a chimeric state of C3H-tolerant CBA mice. (author)

  10. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.

    Science.gov (United States)

    Nagano, Takashi; Wingett, Steven W; Fraser, Peter

    2017-01-01

    Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.

  11. Tenascin-C, a Prognostic Determinant of Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Zhao-Ting Yang

    Full Text Available Tenascin-C, an adhesion modulatory extracellular matrix molecule, is highly expressed in numerous human malignancies; thus, it may contribute to carcinogenesis and tumor progression. We explored the clinicopathological significance of Tenascin-C as a prognostic determinant of esophageal squamous cell carcinoma (ESCC.In ESCC patient tissues and cell lines, the presence of isoforms were examined using western blotting. We then investigated Tenascin-C immunohistochemical expression in 136 ESCC tissue samples. The clinical relevance of Tenascin-C expression and the correlation between Tenascin-C expression and expression of other factors related to cancer-associated fibroblasts (CAFs were also determined.Both 250 and 350 kDa sized isoforms of Tenascin-C were expressed only in esophageal cancer tissue not in normal tissue. Furthermore, both isoforms were also identified in all of four CAFs derived from esophageal cancer tissues. Tenascin-C expression was remarkably higher in ESCC than in adjacent non-tumor esophageal epithelium (p < 0.001. Tenascin-C expression in ESCC stromal fibroblasts was associated with patient's age, tumor (pT stage, lymph node metastasis, clinical stage, and cancer recurrence. Tenascin-C expression in cancer cells was correlated with an increase in tumor-associated macrophage (TAM population, cancer recurrence, and hypoxia inducible factor1α (HIF1α expression. Moreover, Tenascin-C overexpression in cancer cells and stromal fibroblasts was an independent poor prognostic factor for overall survival (OS and disease-free survival (DFS. In the Cox proportional hazard regression model, Tenascin-C overexpression in cancer cells and stromal fibroblasts was a significant independent hazard factor for OS and DFS in ESCC patients in both univariate and multivariate analyses. Furthermore, Tenascin-C expression in stromal fibroblasts of the ESCC patients was positively correlated with platelet-derived growth factor α (PDGFRα, PDGFR

  12. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA.

    Directory of Open Access Journals (Sweden)

    Mari Gotoh

    Full Text Available Cyclic phosphatidic acid (cPA is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2 to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A cells with CoCl(2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1, LPA(2, and LPA(6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1 and LPA(2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1 and LPA(2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1 and LPA(3 antagonist, was adopted to know the LPA(1 function and siRNA was used to knockdown the expression of LPA(2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2-induced hypoxia damage is mediated via LPA(2.

  13. Relationship between X-ray exposure and malignant transformation in C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Fox, M.; Murphy, G.; Little, J.B.

    1980-01-01

    The appearance of transformed foci after x-irradiation of the C3H 10T1/2 line of murine cells requires extensive proliferation followed by prolonged incubation under conditions of confluence. When the progeny of irradiated cells are resuspended and plated to determine the number of potential transformed foci, the absolute yield is constant over a wide range of dilutions and is similar to that observed in cultures that have not been resuspended. In addition, for cells exposed to a given x-ray dose, the number of transformed foci per dish is independent of the number of irradiated cells. These observations suggest that few, if any, of the transformed clones occur as a direct consequence of the x-ray exposure and challenge the hypothesis that transformed foci are the clonal products of occasional cells that have experienced an x-ray-induced mutational change. Rather, it appears that at least two steps are involved. We suggest that exposure to x-rays results in a change, for example, the induction or expression of some cell function, in many or all of the cells and that this change is transmitted to the progeny of the surviving cells; a consequence of this change is an enhanced probability of the occurrence of a second step, transformation, when these cells are maintained under conditions of confluence

  14. Self-association and domain rearrangements between complement C3 and C3u provide insight into the activation mechanism of C3.

    Science.gov (United States)

    Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2010-10-01

    Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.

  15. 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in Head and Neck cancer cells

    International Nuclear Information System (INIS)

    Macha, Muzafar A; Matta, Ajay; Chauhan, SS; Siu, KW Michael; Ralhan, Ranju

    2010-01-01

    The five-year survival rates for head and neck squamous cell carcinoma (HNSCC) patients are less than 50%, and the prognosis has not improved, despite advancements in standard multi-modality therapies. Hence major emphasis is being laid on identification of novel molecular targets and development of multi-targeted therapies. 14-3-3 zeta, a multifunctional phospho-serine/phospho-threonine binding protein, is emerging as an effector of pro-survival signaling by binding to several proteins involved in apoptosis (Bad, FKHRL1 and ASK1) and may serve as an appropriate target for head and neck cancer therapy. Herein, we determined effect of guggulsterone (GS), a farnesoid X receptor antagonist, on 14-3-3 zeta associated molecular pathways for abrogation of apoptosis in head and neck cancer cells. Head and neck cancer cells were treated with guggulsterone (GS). Effect of GS-treatment was evaluated using cell viability (MTT) assay and apoptosis was verified by annexin V, DNA fragmentation and M30 CytoDeath antibody assay. Mechanism of GS-induced apoptosis was determined by western blotting and co-IP assays using specific antibodies. Using in vitro models of head and neck cancer, we showed 14-3-3 zeta as a key player regulating apoptosis in GS treated SCC4 cells. Treatment with GS releases BAD from the inhibitory action of 14-3-3 zeta in proliferating HNSCC cells by activating protein phosphatase 2A (PP2A). These events initiate the intrinsic mitochondrial pathway of apoptosis, as revealed by increased levels of cytochrome c in cytoplasmic extracts of GS-treated SCC4 cells. In addition, GS treatment significantly reduced the expression of anti-apoptotic proteins, Bcl-2, xIAP, Mcl1, survivin, cyclin D1 and c-myc, thus committing cells to apoptosis. These events were followed by activation of caspase 9, caspase 8 and caspase 3 leading to cleavage of its downstream target, poly-ADP-ribose phosphate (PARP). GS targets 14-3-3 zeta associated cellular pathways for reducing

  16. Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells.

    Science.gov (United States)

    Huang, Tao; Yan, Lichen; Zheng, Shanshan; Wang, Yue; Wang, Xiaohong; Fan, Lingyun; Li, Chao; Zhao, Yuanhui; Martyniuk, Christopher J

    2017-12-01

    The objective of this study was to determine whether toxicity in mouse fibroblast cells (3T3 cells) could predict toxicity in mice. Synthesized data on toxicity was subjected to regression analysis and it was observed that relationship of toxicities between mice and 3T3 cells was not strong (R 2  = 0.41). Inclusion of molecular descriptors (e.g. ionization, pKa) improved the regression to R 2  = 0.56, indicating that this relationship is influenced by kinetic processes of chemicals or specific toxic mechanisms associated to the compounds. However, to determine if we were able to discriminate modes of action (MOAs) in mice using the toxicities generated from 3T3 cells, compounds were first classified into "baseline" and "reactive" guided by the toxic ratio (TR) for each compound in mice. Sequence, binomial and recursive partitioning analyses provided strong predictions of MOAs in mice based upon toxicities in 3T3 cells. The correct classification of MOAs based on these methods was 86%. Nearly all the baseline compounds predicted from toxicities in 3T3 cells were identified as baseline compounds from the TR in mice. The incorrect assignment of MOAs for some compounds is hypothesized to be due to experimental uncertainty that exists in toxicity assays for both mice and 3T3 cells. Conversely, lack of assignment can also arise because some reactive compounds have MOAs that are different in mice compared to 3T3 cells. The methods developed here are novel and contribute to efforts to reduce animal numbers in toxicity tests that are used to evaluate risks associated with organic pollutants in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.

    Science.gov (United States)

    Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter

    2015-12-01

    Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.

  18. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Medof, M.E.; Walter, E.I.; Roberts, W.L.; Haas, R.; Rosenberry, T.L.

    1986-01-01

    Membrane-associated decay accelerating factor (DAF) of human erythrocytes (E/sup hu/) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the E/sup hu/ acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact E/sup hu/ with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated for urine. Nitrous acid deamination cleavage of E/sup hu/ DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine ([ 125 I]TID) released the [ 125 I]TID label in a parallel fashion as from [ 125 I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [ 3 H] ethanolamine resulted in rapid 3 H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. The findings indicate that DAF and AChE are anchored in E/sup hu/ by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi

  19. Characterization of a C3a receptor in rainbow trout and Xenopus: the first identification of C3a receptors in nonmammalian species

    Science.gov (United States)

    Boshra, Hani; Wang, Tiehui; Hove-Madsen, Leif; Hansen, John D.; Li, Jun; Matlapudi, Anjun; Secombes, Christopher J.; Tort, Lluis; Sunyer, J. Oriol

    2005-01-01

    Virtually nothing is known about the structure, function, and evolutionary origins of the C3aR in nonmammalian species. Because C3aR and C5aR are thought to have arisen from the same common ancestor, the recent characterization of a C5aR in teleost fish implied the presence of a C3aR in this animal group. In this study we report the cloning of a trout cDNA encoding a 364-aa molecule (TC3aR) that shows a high degree of sequence homology and a strong phylogenetic relationship with mammalian C3aRs. Northern blotting demonstrated that TC3aR was expressed primarily in blood leukocytes. Flow cytometric analysis and immunofluorescence microscopy showed that Abs raised against TC3aR stained to a high degree all blood B lymphocytes and, to a lesser extent, all granulocytes. More importantly, these Abs inhibited trout C3a-mediated intracellular calcium mobilization in trout leukocytes. A fascinating structural feature of TC3aR is the lack of a significant portion of the second extracellular loop (ECL2). In all C3aR molecules characterized to date, the ECL2 is exceptionally large when compared with the same region of C5aR. However, the exact function of the extra portion of ECL2 is unknown. The lack of this segment in TC3aR suggests that the extra piece of ECL2 was not necessary for the interaction of the ancestral C3aR with its ligand. Our findings represent the first C3aR characterized in nonmammalian species and support the hypothesis that if C3aR and C5aR diverged from a common ancestor, this event occurred before the emergence of teleost fish.

  20. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Junming Wang

    Full Text Available c-Jun, c-Jun N-terminal kinase(JNK and endothelin B (ETB receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP. In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE. The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression

  1. Poly[(3-hexylthiophene-block-(3-semifluoroalkylthiophene] for Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Takeshi Toru

    2010-12-01

    Full Text Available We report the synthesis of poly[(3-hexylthiophene-block-(3-(4,4,5,5,6,6,7,7,7-nonafluoroheptylthiophene], P(3HT-b-3SFT, carried out by the Grignard Metathesis Method (GRIM. The copolymers composition was determined by 1H and 19F NMR spectroscopies, and gel permeation chromatography (GPC. The thin films of P(3HT‑b‑3SFT were investigated by ultraviolet-visible absorption spectroscopy and atomic force microscopy (AFM. We also fabricated bulk-hetero junction (BHJ solar cells based on blends of P(3HT-b-3SFT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM. Although the composition ratio of P3SFT in P(3HT-b-3SFT was low, the influence of P3SFT on the morphology and properties of solar cells was significant. The annealing process for the BHJ solar cells induced the formation of large domains and led to poor solar cell performance. The BHJ solar cells, based on PCBM and P(3HT-b-3SFT, prepared by the non-annealing process, had a maximum power conversion efficiency of 0.84% under 100 mW/cm2 (AM 1.5 solar illumination in air.

  2. Clinicopathological significance of c-MYC in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Lian, Yu; Niu, Xiangdong; Cai, Hui; Yang, Xiaojun; Ma, Haizhong; Ma, Shixun; Zhang, Yupeng; Chen, Yifeng

    2017-07-01

    Esophageal squamous cell carcinoma is one of the most common malignant tumors. The oncogene c-MYC is thought to be important in the initiation, promotion, and therapy resistance of cancer. In this study, we aim to investigate the clinicopathologic roles of c-MYC in esophageal squamous cell carcinoma tissue. This study is aimed at discovering and analyzing c-MYC expression in a series of human esophageal tissues. A total of 95 esophageal squamous cell carcinoma samples were analyzed by the western blotting and immunohistochemistry techniques. Then, correlation of c-MYC expression with clinicopathological features of esophageal squamous cell carcinoma patients was statistically analyzed. In most esophageal squamous cell carcinoma cases, the c-MYC expression was positive in tumor tissues. The positive rate of c-MYC expression in tumor tissues was 61.05%, obviously higher than the adjacent normal tissues (8.42%, 8/92) and atypical hyperplasia tissues (19.75%, 16/95). There was a statistical difference among adjacent normal tissues, atypical hyperplasia tissues, and tumor tissues. Overexpression of the c-MYC was detected in 61.05% (58/95) esophageal squamous cell carcinomas, which was significantly correlated with the degree of differentiation (p = 0.004). The positive rate of c-MYC expression was 40.0% in well-differentiated esophageal tissues, with a significantly statistical difference (p = 0.004). The positive rate of c-MYC was 41.5% in T1 + T2 esophageal tissues and 74.1% in T3 + T4 esophageal tissues, with a significantly statistical difference (p = 0.001). The positive rate of c-MYC was 45.0% in I + II esophageal tissues and 72.2% in III + IV esophageal tissues, with a significantly statistical difference (p = 0.011). The c-MYC expression strongly correlated with clinical staging (p = 0.011), differentiation degree (p = 0.004), lymph node metastasis (p = 0.003), and invasion depth (p = 0.001) of patients with esophageal squamous cell carcinoma. The c-MYC was

  3. conformational complexity of complement component C3

    NARCIS (Netherlands)

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues.

  4. Protective Role of Complement C3 Against Cytokine-Mediated beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Dos Santos, Reinaldo S.; Marroqui, Laura; Grieco, Fabio A.

    2017-01-01

    silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine...

  5. Manipulation of [C-11]-5-hydroxytryptophan and 6-[F-18]fluoro-3,4-dihydroxy-L-phenylalanine accumulation in neuroendocrine tumor cells

    NARCIS (Netherlands)

    Neels, Oliver C.; Koopmans, Klaas P.; Jager, Pieter L.; Vercauteren, Laya; van Waarde, Aren; Doorduin, Janine; Timmer-Bosscha, Hetty; Brouwers, Adrienne H.; de Vries, Elisabeth G. E.; Dierckx, Rudi A. J. O.; Kema, Ido P.; Elsinga, Philip H.

    2008-01-01

    [C-11]-5-Hydroxytryptophan ([C-11]HTP) and 6-[F-18]fluoro-3,4-dihydroxy-L-phenylalanine [F-18]FDOPA) are used to image neuroendocrine tumors with positron emission tomography. The precise mechanism by which these tracers accumulate in tumor cells is unknown. We aimed to study tracer uptake via large

  6. A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c+MHCII+ dendritic cell infiltration.

    Science.gov (United States)

    Singh, Divya; Tanwar, Himanshi; Das, Sudeshna; Ganju, Lilly; Singh, Shashi Bala

    2018-02-28

    Kaempferol, a natural flavonol present in various traditional medicinal plants, is known to possess potent anti-inflammatory properties. This study was designed to study the adjuvant effect of kaempferol administration along with ovalbumin antigen (K + O) in balb/c mice. Mice were immunized with kaempferol (100 and 50 mg/kg body weight) without or with ovalbumin (20 µg/mouse). After priming, booster was administered on day 21. Antigen specific IgG titers and its subtypes, on day 28, were estimated by indirect ELISA. Effect of kaempferol administration on CD11c + MHCII + peritoneal dendritic cells was studied by flow cytometry. Expression levels of proteins Tbx21, GATA-3, BLIMP-1, Caspase-1 and Oct-2 were studied by western blotting. LPS activated IL-1β production by peritoneal cells of immunized mice was estimated by sandwich ELISA. Ovalbumin specific IgG, IgG1 and IgG2a antibody titers in sera samples of K + O immunized mice increased significantly (p Kaempferol increased the infiltration of peritoneal CD11c + MHCII + dendritic cells but failed to enhance LPS activated IL-1β by peritoneal macrophages and suppressed caspase-1 protein expression as compared to that in ovalbumin immunized mice. Present study strongly demonstrates the novel adjuvant activity of kaempferol in vivo and its potential as an immunostimulatory agent.

  7. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  8. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  9. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    Science.gov (United States)

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  10. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    NARCIS (Netherlands)

    van Dijk, T. B.; van den Akker, E.; Amelsvoort, M. P.; Mano, H.; Löwenberg, B.; von Lindern, M.

    2000-01-01

    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was

  11. Eculizumab treatment: stochastic occurrence of C3 binding to individual PNH erythrocytes

    Directory of Open Access Journals (Sweden)

    Michela Sica

    2017-06-01

    Full Text Available Abstract Background C5 blockade by eculizumab prevents complement-mediated intravascular hemolysis in paroxysmal nocturnal hemoglobinuria (PNH. However, C3-bound PNH red blood cells (RBCs, arising in almost all treated patients, may undergo extravascular hemolysis reducing clinical benefits. Despite the uniform deficiency of CD55 and of CD59, there are always two distinct populations of PNH RBCs, with (C3+ and without (C3C3 binding. Methods To investigate this paradox, the phenomenon has been modeled in vitro by incubating RBCs from eculizumab untreated PNH patients with compatible sera containing eculizumab, and by assessing the C3 binding after activation of complement alternative pathway. Results When RBCs from untreated patients were exposed in vitro to activated complement in the context of C5-blockade, there was the prompt appearance of a distinct C3+ PNH RBC population whose size increased with time and also with the rate of complement activation. Eventually, all PNH RBCs become C3+ to the same extent, without differences between old and young (reticulocytes PNH RBCs. Conclusions This study indicates that the distinct (C3+ and C3− PNH RBC populations are not intrinsically different; rather, they result from a stochastic all-or-nothing phenomenon linked to the time-dependent cumulative probability of each individual PNH red cell to be exposed to levels of complement activation able to trigger C3 binding. These findings may envision novel approaches to reduce C3 opsonization and the subsequent extravascular hemolysis in PNH patients on eculizumab.

  12. 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase.

    Science.gov (United States)

    Kolesnick, R N; Clegg, S

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C

  13. Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury.

    Science.gov (United States)

    Gao, Jian-mei; Li, Ran; Zhang, Lei; Jia, Li-long; Ying, Xi-xiang; Dou, De-qiang; Li, Jian-chun; Li, Hai-bo

    2013-07-09

    Cuscuta chinensis (C. chinensis) is a well-known traditional Chinese herb that has been used to treat heart disease, diabetes, liver injury, cancer, and aging. Murine osteoblastic MC3T3-E1 cells were treated with various concentrations of C. chinensis water extraction at different time intervals. The antioxidant effect of C. chinensis on MC3T3-E1 cells was evaluated using MTT and TUNEL assays. The effect of C. chinensis on cell cycle was analyzed by flow cytometry with propidium iodide. Lipid peroxidation was measured by the HPLC method. The cellular redox status was determined from the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) and the enzymes involved in glutathione metabolism, including glutathione reductase (GR), Glutathione S-transferase (GST), and Glucose-6-phosphate dehydrogenase (G6PD). The changes in relative mitochondrial transmembrane potential (ΔΨm) in the MC3T3-E1 cells were analyzed with rhodamine 123 staining. Western blot analysis was used to evaluate the levels of cytochrome c (cyto c), Bax, Bcl-2, caspase 3, Sirt3, and IDH2 expressions. The C. chinensis water extraction protects tertiary butyl hydroperoxide (TBHP)-treated MC3T3-E1 cells from death in a dose-dependent manner. C. chinensis treatment significantly inhibited the reactive oxygen species (ROS) generation, malondialdehyde (MDA) production, and increased the activity of superoxide dismutase (SOD), GR, GST, and G6PD. The release of cyto c from mitochondria was reduced by C. chinensis, which increased the expression of antiapoptotic IDH2, Sirt3, and Bcl-2 and decreased the expression of Bax, cyto c, and caspase 3. C. chinensis modulated the oxidative stress-induced apoptosis in MC3T3-E1 cells, probably due to its antioxidant activity and functioning via mitochondria-dependent pathways. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    Science.gov (United States)

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  15. Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells

    International Nuclear Information System (INIS)

    Hino, Mizuki; Tajika, Yuki; Hamada, Nobuyuki

    2010-01-01

    Autophagy is one of the major processes involved in the degradation of intracellular materials. Here, we examined the potential impact of heavy ion irradiation on the induction of autophagy in irradiated C2C12 mouse myoblasts and their non-targeted bystander cells. In irradiated cells, ultrastructural analysis revealed the accumulation of autophagic structures at various stages of autophagy (id est (i.e.) phagophores, autophagosomes and autolysosomes) within 20 min after irradiation. Multivesicular bodies (MVBs) and autolysosomes containing MVBs (amphisomes) were also observed. Heavy ion irradiation increased the staining of microtubule-associated protein 1 light chain 3 and LysoTracker Red (LTR). Such enhanced staining was suppressed by an autophagy inhibitor 3-methyladenine. In addition to irradiated cells, bystander cells were also positive with LTR staining. Altogether, these results suggest that heavy ion irradiation induces autophagy not only in irradiated myoblasts but also in their bystander cells. (author)

  16. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  17. Natural indoles, indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM, attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Philip B Busbee

    Full Text Available Staphylococcal enterotoxin B (SEB is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40 mg/kg, by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells.

  18. The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis.

    Science.gov (United States)

    Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M

    2001-07-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.

  19. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    Science.gov (United States)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  20. Beryllium-induced immune response in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  1. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    Science.gov (United States)

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  2. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

    Directory of Open Access Journals (Sweden)

    Fabian Runkel

    Full Text Available BACKGROUND: Inositol 1,4,5trisphosphate (IP(3 and diacylglycerol (DAG are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia, whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab that resulted from the insertion of an intracisternal A particle (IAP into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab alleles are phenotypically normal. However, the presence of one Plcd3(mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9olt1Pas and the Plcd3(mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.

  3. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  4. Radiation-induced genetic instability: no association with changes in radiosensitivity or cell cycle checkpoints in C3H 10T1/2 mouse fibroblasts

    International Nuclear Information System (INIS)

    Crompton, N.E.A.; Emery, G.C.; Shi Yuquan; Sigg, M.; Blattmann, H.

    1998-01-01

    We investigated various phenotypic characteristics of radiation-induced morphologically transformed C3H 10T1/2 mouse fibroblasts. The cells were treated with 8 Gy x-rays, and type II/III foci were isolated. Cell lines were developed from these foci, and subsequently clones were established from these focal lines. The clones were examined for DNA content, radiosensitivity and inducible cell cycle arrests. Besides the morphological changes associated with the transformed state, the major difference between the isolated focal lines or derived clones and the parental C3H 10T1/2 line was one of ploidy. The transformed cells often displayed aneuploid and multiple polyploid populations. No change in the radiosensitivity of the transformed cells was observed. Furthermore, the two major radiation- and staurosporine-induced G1 and G2 cell cycle arrests observed in the parental cell line were also observed in the morphological transformants, suggesting that checkpoint function was normal. (orig.)

  5. Phospholipase C-β in immune cells.

    Science.gov (United States)

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-09-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Bäckström, T; Lauritsen, J P

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the ......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....

  7. Accurate and sensitive determination of molar fractions of "1"3C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    International Nuclear Information System (INIS)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M.; García Alonso, J. Ignacio

    2017-01-01

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on "1"3C/"1"2C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of "1"3C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of "1"3C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of "1"3C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of "1"3C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS. • Validation of the method by

  8. The regulation and role of c-FLIP in human Th cell differentiation.

    Science.gov (United States)

    Kyläniemi, Minna K; Kaukonen, Riina; Myllyviita, Johanna; Rasool, Omid; Lahesmaa, Riitta

    2014-01-01

    The early differentiation of T helper (Th) cells is a tightly controlled and finely balanced process, which involves several factors including cytokines, transcription factors and co-stimulatory molecules. Recent studies have shown that in addition to the regulation of apoptosis, caspase activity is also needed for Th cell proliferation and activation and it might play a role in Th cell differentiation. The isoforms of the cellular FLICE inhibitory protein (c-FLIP) are regulators of CASPASE-8 activity and the short isoform, c-FLIPS, has been shown to be up-regulated by IL-4, the Th2 driving cytokine. In this work, we have studied the expression and functional role of three c-FLIP isoforms during the early Th cell differentiation. Only two of the isoforms, c-FLIPS and c-FLIPL, were detected at the protein level although c-FLIPR was expressed at the mRNA level. The knockdown of c-FLIPL led to enhanced Th1 differentiation and elevated IL-4 production by Th2 cells, whereas the knockdown of c-FLIPS diminished GATA3 expression and IL-4 production by Th2 cells. In summary, our results provide new insight into the role of c-FLIP proteins in the early differentiation of human Th cells.

  9. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  10. EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells

    Directory of Open Access Journals (Sweden)

    Yang Ruijie

    2010-10-01

    Full Text Available Abstract Background The purpose of the present study is to investigate the direct biological effects of the epidermal growth factor receptor (EGFR inhibitor C225 on the radiosensitivity of human lung squamous cancer cell-H520. H520 cells were treated with different dosage of 60Co γ ray irradiation (1.953 Gy/min in the presence or absence of C225. The cellular proliferation, colony forming capacity, apoptosis, the cell cycle distribution as well as caspase-3 were analyzed in vitro. Results We found that C225 treatment significantly increased radiosensitivity of H-520 cells to irradiation, and led to cell cycle arrest in G1 phase, whereas 60Co γ ray irradiation mainly caused G2 phase arrest. H-520 cells thus displayed both the G1 and G2 phase arrest upon treatment with C225 in combination with 60Co γ ray irradiation. Moreover, C225 treatment significantly increased the apoptosis percentage of H-520 cells (13.91% ± 1.88% compared with the control group (5.75% ± 0.64%, P Conclusion In this regard, C225 treatment may make H-520 cells more sensitive to irradiation through the enhancement of caspase-3 mediated tumor cell apoptosis and cell cycle arrest.

  11. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland

  12. Attenuation of Red Blood Cell Storage Lesions with Vitamin C

    Directory of Open Access Journals (Sweden)

    Kimberly Sanford

    2017-07-01

    Full Text Available Stored red blood cells (RBCs undergo oxidative stress that induces deleterious metabolic, structural, biochemical, and molecular changes collectively referred to as “storage lesions”. We hypothesized that vitamin C (VitC, reduced or oxidized would reduce red cell storage lesions, thus prolonging their storage duration. Whole-blood-derived, leuko-reduced, SAGM (saline-adenine-glucose-mannitol-preserved RBC concentrates were equally divided into four pediatric storage bags and the following additions made: (1 saline (saline; (2 0.3 mmol/L reduced VitC (Lo VitC; (3 3 mmol/L reduced VitC (Hi VitC; or (4 0.3 mmol/L oxidized VitC (dehydroascorbic acid, DHA as final concentrations. Biochemical and rheological parameters were serially assessed at baseline (prior to supplementation and Days 7, 21, 42, and 56 for RBC VitC concentration, pH, osmotic fragility by mechanical fragility index, and percent hemolysis, LDH release, glutathione depletion, RBC membrane integrity by scanning electron microscopy, and Western blot for β-spectrin. VitC exposure (reduced and oxidized significantly increased RBC antioxidant status with varying dynamics and produced trends in reduction in osmotic fragility and increases in membrane integrity. Conclusion: VitC partially protects RBC from oxidative changes during storage. Combining VitC with other antioxidants has the potential to improve long-term storage of RBC.

  13. Actividad antiparasitaria de nuevas dihidrodibenzo[c,f]tiazolo[3,2-a] azepin-3(2H-onas contra Leishmania chagasi y Trypanosoma cruzi Antiparasitic activity of novel dihydrodibenzo[c,f]tiazolo[3,2-a] azepin-3(2H-ones agaisnt Leishmania chagasi and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Sandra Milena Leal Pinto

    2009-12-01

    Chagas disease are considered public health problems in several countries and new chemotherapeutic approaches are needed to control these diseases. Objective: The aim of this study was to evaluate the antiparasitic activity of 7 new dihydrodibenzo[c,f]thiazolo[3.2-a]azepin-3(2H-ones on Leishmania chagasi, Trypanosoma cruzi, and the cytotoxicity on Vero and THP-1 cells. Materials and methods: The antiparasitic activities were determined microscopically counting living parasites compared with untreated control, and the mammalian cell toxicities using the MTT colorimetric test. (Extracellular and intracellular forms of the parasites used and mammalian cells were treated with different concentrations (0.3-600 μM of compounds for 3-5 days. The activities of the compounds were expressed as the concentration to inhibit 50% percent of parasites (IC50 and the concentration to kill 50% of the mammalian cells (CC50. Results: 4 compounds (4a, 4b, 4d, 4g were active against T. cruzi epimastigotes with ranges of IC50 from 11.28 to 32.66 μM, and three (4a, 4c, 4g inhibited the intracellular form (IC50 = 18.42-23.62 μM, with low toxicity on mammalian cells. In L. chagasi, 6 compounds (4a-d, 4g were active against promastigote forms (IC50= 8.27-28.59 μM. Compound 4d was partially active against intracellular amastigotes of L. chagasi (IC50= 59.36 μM. Conclusions: The compounds 4a and 4g were actives on both T. cruzi and L. chagasi parasites with low toxicity on mammalian cells. Further studies of genotoxicity, mechanisms of action and evaluation of its activity in experimental models are necessaries. Salud UIS 2009; 41: 268-274.

  14. Simulation calculations of efficiencies and silicon consumption for CH3NH3PbI3−x−y Brx Cly/crystalline silicon tandem solar cells

    International Nuclear Information System (INIS)

    Zhang, Lili; Xie, Ziang; Qin, Guogang; Tian, Fuyang

    2017-01-01

    Much attention has been paid to two-subcell tandem solar cells (TSCs) with crystalline silicon (c-Si) as the bottom cell (TSC-Si). Previous works have pointed out that the optimal band gap, E g , of the top cell material for a TSC-Si is around 1.75 eV. With a tunable E g and better stability than MAPbI 3 (MA  =  CH 3 NH 3 ), MAPbI 3−x−y Br x Cl y is a promising candidate for the top cell material of a TSC-Si. In this work, calculations concerning the E g , refractive index and extinction coefficient of MAPbI 3−x−y Br x Cl y are performed using first-principles calculations including the spin–orbit coupling (SOC) effect. MAPbI 3−x−y Br x Cl y with five sets of x and y , which have a E g around 1.75 eV, are obtained. On this basis, absorption of the perovskite top cell is calculated applying the Lambert–Beer model (LBM) and the transfer matrix model (TMM), respectively. Considering the Auger recombination in the c-Si bottom cell and radiation coupling between the two subcells, the efficiencies for MAPbI 3−x−y Br x Cl y/ c-Si TSCs with the five sets of x and y are calculated. Among them, the MAPbI 2.375 Br 0.5 Cl 0.125 /c-Si TSC achieves the highest efficiency of 35.1% with a 440 nm thick top cell and 50 µ m thick c-Si when applying the LBM. When applying the TMM, the highest efficiency of 32.5% is predicted with a 580 nm thick MAPbI 2.375 Br 0.5 Cl 0.125 top cell and 50 µ m thick c-Si. Compared with the limiting efficiency of 27.1% for a 190 µ m thick c-Si single junction solar cell (SC), the MAPbI 2.375 Br 0.5 Cl 0.125 /c-Si TSC shows a superior performance of high efficiency and low c-Si consumption. (paper)

  15. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.

    Science.gov (United States)

    Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li

    2017-03-23

    We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.

  16. A novel approach for a C-11C bond formation: synthesis of 17α-([11C]prop-1-ynyl)-3-methoxy-3,17β-estradiol

    International Nuclear Information System (INIS)

    Wuest, F.; Zessin, J.

    2002-01-01

    A novel method for a 11 C-C bond formation was developed, employing a cross-coupling reaction between a terminal acetylene and [ 11 C]methyl iodide. The method was used for the synthesis of 17α-([ 11 C]prop-1-ynyl)-3-methoxy-3,17β-estadiol. (orig.)

  17. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

    Directory of Open Access Journals (Sweden)

    Weibo Chen

    2014-01-01

    Full Text Available Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture.

  18. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles.

    Science.gov (United States)

    Liu, Qin; Li, Ru-Tian; Qian, Han-Qing; Wei, Jia; Xie, Li; Shen, Jie; Yang, Mi; Qian, Xiao-Ping; Yu, Li-Xia; Jiang, Xi-Qun; Liu, Bao-Rui

    2013-09-01

    Cancer stem cells (CSCs) are recently discovered as vital obstacles for the successful cancer therapy. Emerging evidences suggest that miR-200c functions as an effective CSCs inhibitor and can restore sensitivity to microtubule-targeting drugs. In the present work, the intelligent gelatinases-stimuli nanoparticles (NPs) was set up to co-deliver miR-200c and docetaxel (DOC) to verify their synergetic effects on inhibition of CSCs and non-CSC cancer cells. After tumor cells were treated with miR-200c NPs, miR-200c and its targeted gene class III beta-tubulin (TUBB3)TUBB3 expression were evaluated. The effects of miR-200c/DOC NPs on tumor cell viability, migration and invasion as well as the expression of E-cadherin and CD44 were studied. The antitumor effects of miR-200c/DOC NPs were compared with DOC NPs in xenograft gastric cancer mice. Moreover, the residual tumors after treatment were subcutaneously seeded into nude mice to further investigate the effective maintenance of NPs. We found that the gelatinases-stimuli NPs facilitated miR-200c into cells, achieving sustained miR-200c expression in tumor cells during 9 days. The miR-200c/DOC NPs significantly enhanced cytotoxicity of DOC, possibly by decreasing TUBB3 level, and reversing EMT. The miR-200c NPs achieved high levels of in vivo accumulation and long retention in gastric cancer xenografts after intravenous administration. The miR-200c/DOC NPs prominently suppressed in vivo tumor growth with elevated miR-200c and E-cadherin levels and down-regulated TUBB3 and CD44 expressions. When the residual tumors after miR-200c/DOC NPs treatment were re-transplanted into nude mice, the tumors demonstrated the slowest growth speed. The miR-200c/DOC NPs may provide a promising modality for co-delivery of nucleic acid and drugs to simultaneously inhibit CSCs and non-CSC cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  20. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  1. The indolinone MAZ51 induces cell rounding and G2/M cell cycle arrest in glioma cells without the inhibition of VEGFR-3 phosphorylation: involvement of the RhoA and Akt/GSK3β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Joo-Hee Park

    Full Text Available MAZ51 is an indolinone-based molecule originally synthesized as a selective inhibitor of vascular endothelial growth factor receptor (VEGFR-3 tyrosine kinase. This study shows that exposure of two glioma cell lines, rat C6 and human U251MG, to MAZ51 caused dramatic shape changes, including the retraction of cellular protrusions and cell rounding. These changes were caused by the clustering and aggregation of actin filaments and microtubules. MAZ51 also induced G2/M phase cell cycle arrest. This led to an inhibition of cellular proliferation, without triggering significant cell death. These alterations induced by MAZ51 occurred with similar dose- and time-dependent patterns. Treatment of glioma cells with MAZ51 resulted in increased levels of phosphorylated GSK3β through the activation of Akt, as well as increased levels of active RhoA. Interestingly, MAZ51 did not affect the morphology and cell cycle patterns of rat primary cortical astrocytes, suggesting it selectively targeted transformed cells. Immunoprecipitation-western blot analyses indicated that MAZ51 did not decrease, but rather increased, tyrosine phosphorylation of VEGFR-3. To confirm this unanticipated result, several additional experiments were conducted. Enhancing VEGFR-3 phosphorylation by treatment of glioma cells with VEGF-C affected neither cytoskeleton arrangements nor cell cycle patterns. In addition, the knockdown of VEGFR-3 in glioma cells did not cause morphological or cytoskeletal alterations. Furthermore, treatment of VEGFR-3-silenced cells with MAZ51 caused the same alterations of cell shape and cytoskeletal arrangements as that observed in control cells. These data indicate that MAZ51 causes cytoskeletal alterations and G2/M cell cycle arrest in glioma cells. These effects are mediated through phosphorylation of Akt/GSK3β and activation of RhoA. The anti-proliferative activity of MAZ51 does not require the inhibition of VEGFR-3 phosphorylation, suggesting that it is

  2. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    International Nuclear Information System (INIS)

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong

    2012-01-01

    Highlights: ► Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. ► fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. ► fat-1 reduces lipid deposition in 3T3-L1 adipocytes. ► The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  3. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C4 and C3 modes in contrasting environments

    International Nuclear Information System (INIS)

    Ueno, Osamu; Samejima, Muneaki; Muto, Shoshi; Miyachi, Shigetoh

    1988-01-01

    Eleocharis vivipara Link, a freshwater amphibious leafless plant belonging to the Cyperaceae can grow in both terrestrial and submersed aquatic conditions. Two forms of E. vivipara obtained from these contrasting environments were examined for the characteristics associated with C 4 and C 3 photosynthesis. In the terrestrial form, the culms, which are photosynthetic organs, possess a Kranz-type anatomy typical of C 4 plants, and well-developed bundle-sheath cells contain numerous large chloroplasts. In the submersed form, the culms possess anatomical features characteristic of submersed aquatic plants, and the reduced bundle-sheath cells contain only a few small chloroplasts. 14 C pulse- 12 C chase experiments showed that the terrestrial form and the submersed form fix carbon by way of the C 4 pathway, with aspartate (40%) and malate (35%) as the main primary products, and by way of the C 3 pathway, with 3-phosphoglyceric acid (53%) and sugar phosphates (14%) as the main primary products, respectively. The terrestrial form showed photosynthetic enzyme activities typical of the NAD-malic enzyme-C 4 subtype, whereas the submersed form showed decreased activities of key C 4 enzymes and an increased ribulose 1,5-bisphosphate carboxylase activity. These data suggest that this species can differentiate into the C 4 mode under terrestrial conditions and into the C 3 mode under submersed conditions

  4. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells.

    Science.gov (United States)

    Artaza, Jorge N; Bhasin, Shalender; Magee, Thomas R; Reisz-Porszasz, Suzanne; Shen, Ruoquin; Groome, Nigel P; Meerasahib, Mohamed Fareez; Fareez, Meerasaluh M; Gonzalez-Cadavid, Nestor F

    2005-08-01

    Inactivating mutations of the mammalian myostatin gene are associated with increased muscle mass and decreased fat mass; conversely, myostatin transgenic mice that overexpress myostatin in the skeletal muscle have decreased muscle mass and increased fat mass. We investigated the effects of recombinant myostatin protein and antimyostatin antibody on myogenic and adipogenic differentiation of mesenchymal multipotent cells. Accordingly, 10T(1/2) cells were incubated with 5'-azacytidine for 3 d to induce differentiation and then treated with a recombinant protein for myostatin (Mst) carboxy terminal 113 amino acids or a polyclonal anti-Mst antibody for 3, 7, and 14 d. Cells were also cotransfected with a Mst cDNA plasmid expressing the full-length 375-amino acid protein (pcDNA-Mst375) and the silencer RNAs for either Mst (pSil-Mst) or a random sequence (pSil-RS) for 3 or 7 d, and Mst expression was determined. Adipogenesis was evaluated by quantitative image analysis of fat cells before and after oil-red-O staining, immunocytochemistry of adiponectin, and Western blot for CCAAT/enhancer binding protein-alpha. Myogenesis was estimated by quantitative image analysis-immunocytochemistry for MyoD (Myo differentiation protein), myogenin, and myosin heavy chain type II, or by Western blot for myogenin. 5'-Azacytidine-mediated differentiation induced endogenous full-length Mst expression. Recombinant Mst carboxy terminal 113 amino acids inhibited both early and late markers of myogenesis and stimulated both early and late markers of adipogenesis, whereas the antibody against Mst exerted the reverse effects. Myogenin levels at 7 d after transfection of pcDNA-Mst375 were reduced as expected and elevated by pSil-Mst, which blocked efficiently Mst375 expression. In conclusion, myostatin promotes the differentiation of multipotent mesenchymal cells into the adipogenic lineage and inhibits myogenesis.

  5. In vitro induction of O6-methylguanine-DNA methyltransferase in C3H/10T1/2 cells by X-rays is inhibited by nitrogen

    International Nuclear Information System (INIS)

    Hofe, E. von; Kennedy, A.R.

    1988-01-01

    Ionizing radiation is one of the most potent inducers of O 6 -methylguanine-DNA methyltransferase (MT) in rat liver in vivo. In this study we show that MT is readily induced in C3H/10T1/2 cells in culture, which provides a system more amenable to determining the molecular events involved in the induction of this repair enzyme. Maximal induction was observed in logarithmically growing cells 48 h after a dose of 200 rad, similar to the optimal induction time seen in rat liver in vivo. The absolute level of MT observed in C3H/10T1/2 cells which had been at confluence for 24 h was less than in cells in log growth but was still inducible by X-rays, exhibiting an ∼ 2-fold increase over unirradiated cells similar to MT induction in logarithmically growing cells. Irradiating cells under anaerobic conditions abolished MT induction by 100 rad. Cells irradiated with 200 rad under anaerobic conditions exhibited ∼ 70% inhibition of induction compared with aerobically irradiated cells. The possibility that MT may be partially inactivated by interaction with radicals produced by ionizing radiation is discussed. (author)

  6. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  7. Radiation-induced tumours in C57BLf/6JNrs[SPF] and C3Hf/HeMsNrs[SPF] strain male mice

    International Nuclear Information System (INIS)

    Kasuga, T.; Sado, T.; Noda, Y.; Terasima, T.; Kitagawa, T.

    1978-01-01

    Mice at the age of 12 weeks were irradiated with single graded doses of gamma rays delivered from caesium-137. The mice were kept in specific pathogen-free (SPF) conditions until death. In this communication, autopsy data from 385 males of C57BLf/6JNrs[SPF] and 278 males of C3Hf/HeMsNrs[SPF] mice are summarized. The median survival time of unirradiated control mice was 29 months for the C57BL and 25 months for the C3H mice respectively. The incidence of tumour-bearing mice in the control groups was 71.3% for the C57BL and 90.9% for the C3H mice. Major, spontaneous tumour types were reticular cell sarcoma (51.3%), liver tumour (8.8%), lung tumour (11.3%) for the C57BL, and liver tumour (84.6%), lung tumour (8.2%) and non-thymic lymphoma (3.6%) for the C3H mice. Miscellaneous tumours with a low incidence were vascular, bone, muscle, adrenal tumours and others. In the C57BL mice the incidence of reticular cell sarcoma declined gradually with increasing doses of radiation exposure from 0 to 800 R. Histological examination revealed that reticular cell sarcomas normally found in unirradiated C57BL mice originated from abdominal lymphatic tissues whereas lymphoblastic lymphoma in irradiated mice arose from thymus and/or submandibular lymph nodes. It is noteworthy that the peak incidence of thymoma (33.3%) was found after whole-body exposure up to 700 R. Myeloid leukaemia was also included although to a slight extent. The age at death with lymphoreticular tumours and myeloid leukaemias was shortened in a dose-dependent manner. In the C3H mice tumour induction by radiation was generally not remarkable. The incidence of myeloid leukaemia attained a peak (15%) at 200 R. A lowering of the age at death was found to be proportional to the dose delivered

  8. (3'R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells.

    Science.gov (United States)

    Paterna, Angela; Gomes, Sofia E; Borralho, Pedro M; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2016-12-24

    Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer. To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant. Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed. (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC 50 values similar or lower than 5-FU in the three cell lines tested. The IC 50 value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer

  9. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  10. A pseudoatom in a cage: trimetallofullerene Y(3)@C(80) mimics y(3)n@c(80) with nitrogen substituted by a pseudoatom.

    Science.gov (United States)

    Popov, Alexey A; Zhang, Lin; Dunsch, Lothar

    2010-02-23

    Y(3)C(80) obtained in the synthesis of nitride clusterfullerenes Y(3)N@C(2n) (2n = 80-88) by the reactive atmosphere method is found to be a genuine trimetallofullerene, Y(3)@C(80), with low ionization potential and divalent state of yttrium atoms. DFT studies of the electronic structure of Y(3)@C(80) show that this molecule mimics Y(3)N@C(80) with the pseudoatom (PA) instead of the nitrogen atom. Topology analysis of the electron density and electron localization function show that yttrium atoms form Y-PA bonds rather than direct Y-Y bonds. Molecular dynamics simulations show that the Y(3)PA cluster is as rigid as Y(3)N and rotates inside the fullerene cage as a single entity.

  11. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response.

    Directory of Open Access Journals (Sweden)

    Doug E Brackney

    2010-10-01

    Full Text Available Mosquitoes rely on RNA interference (RNAi as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV infection in C6/36 (Aedes albopictus cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses. Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae, Sindbis virus (SINV, Togaviridae and La Crosse virus (LACV, Bunyaviridae and total RNA recovered from cell lysates. Small RNA (sRNA libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand and distribution (position along viral genome of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.

  12. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Formation and early hydration characteristics of C2.75B1.25A3$ in binary system of C2.75B1.25A3$-C2S

    Directory of Open Access Journals (Sweden)

    Wang, Shoude

    2016-09-01

    Full Text Available C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2O3• SO3 is one of the important minerals and it govern-directly the early-strength of belite-barium calcium sulphoaluminate cement. In this paper a binary system C2.75B1.25A3$-C2S is selected to investigate the formation of C2.75B1.25A3$. In the range of 1100 °C–1200 °C, the earlier formed C2S hinders the formation of C2.75B1.25A3$. On the contrary, when the temperature is in the range of 1200 °C–1350 °C, the initially formed C2S could provide a surface for the nucleation of C2.75B1.25A3$ and cut down the potential barrier (?Gk* for the heterogeneous nucleation of C2.75B1.25A3$, which contributes to its formation. Moreover, at 1350 °C, the large amount of previously formed C2S benefits the extent of formation of C2.75B1.25A3$. The possible reason was that it could prevent sulfur evaporation. In early hydration age, AFm and AFt originating from C2.75B1.25A3$ hydration are found within 2 h and 12 h under 95% RH at 1 °C, respectively, whereas C2S is unhydrated at this moment.En el cemento de sulfoaluminato de calcio y bario, el C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2 O3• SO3 es una de las principales fases, y regula directamente la resistencia inicial del cemento. En este trabajo, se ha seleccionado el sistema binario C2.75B1.25A3$-C2S para investigar la formación de C2.75B1.25A3$. En el rango de 1100 °C-1200 °C, el C2S formado anteriormente impide la formación de C2.75B1.25A3$, mientras que cuando la temperatura está entre 1200 °C-1350 °C, el C2S proporcionaría una superficie de nucleación de C2.75B1.25A3$ reduciendo la barrera de potencial (?Gk* para la nucleación heterogénea de C2.75B1.25A3$, lo que contribuye a su formación. Además, a 1350 °C, la gran cantidad de C2S formado beneficia la formación de C2.75B1.25A3$, ya que podía prevenir la evaporación del azufre. En las primeras etapas de la hidratación (entre 2 y 12h y 95% HR a 1 ºC se pueden encontrar AFM y AFt

  14. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  15. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  16. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  17. KCC isoforms in a human lens epithelial cell line (B3) and lens tissue extracts.

    Science.gov (United States)

    Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C; Warwar, Ronald; Brown, Thomas L; Lauf, Peter K

    2006-11-01

    We recently reported potassium-chloride cotransporter activity in human lens epithelial B3 (HLE-B3) cells. The purpose of the present study was to demonstrate in these cells as well as in human lens tissue the potassium-chloride cotransport (KCC) isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence microscopy. Of the four KCC genes known to encode the respective proteins and their spliced variants, RT-PCR with both rat and human primers revealed the predicted cDNA fragments of KCC1, KCC3a, KCC3b, and KCC4 but not KCC2 in both HLE-B3 cells and in human lens tissue extracts from cataractous patients. Polyclonal rabbit (rb) anti-rat (rt) and anti-human (hm) antibodies against rtKCC1 and hmKCC3, respectively, and a commercially available rb-anti-mouse (ms) KCC4 antibody were used. Rb anti-rtKCC1-ECL3 [against epitopes within the large extracellular loop 3 (ECL3)] revealed a 150kDa band in HLE-B3 cells consistent with the known molecular weight of KCC1. Rb anti-hmKCC3-ECL3 yielded three bands of 150, 122 and 105kDa, evidence for the presence of KCC3a, KCC3b and possibly KCC3c isoforms. The 122 and 112kDa bands were also demonstrated by rb anti-hmKCC3-CTD [the C-terminal domain (CTD)]. Rb anti-msKCC4 antibody only showed a 100kDa band in HLE-B3 cells. In the human lens tissues, a 115kDa protein was detected with rb anti-rtKCC1-ECL3 and a 100kDa band with rb anti-msKCC4, however, no bands with rb anti-hmKCC3-ECL3 or rb anti-hmKCC3-CTD. Fluorescence microscopy revealed immunocytochemical cytoplasmic and membrane labeling of HLE-B3 cells with anti-KCC1, -KCC3 (laser confocal microscopy) and -KCC4 antibodies and a Cy3-tagged secondary antibody. Hence HLE-B3 cells expressed proteins of the KCC1, KCC3a, b, and KCC4 isoforms, whereas surgically removed cataractous lens tissue expressed only those of KCC1 and KCC4.

  18. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  19. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  20. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells.

    Science.gov (United States)

    Gu, Mancang; Nishihara, Reiko; Chen, Yang; Li, Wanwan; Shi, Yan; Masugi, Yohei; Hamada, Tsuyoshi; Kosumi, Keisuke; Liu, Li; da Silva, Annacarolina; Nowak, Jonathan A; Twombly, Tyler; Du, Chunxia; Koh, Hideo; Li, Wenbin; Meyerhardt, Jeffrey A; Wolpin, Brian M; Giannakis, Marios; Aguirre, Andrew J; Bass, Adam J; Drew, David A; Chan, Andrew T; Fuchs, Charles S; Qian, Zhi Rong; Ogino, Shuji

    2017-10-20

    Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA -mutant colorectal carcinoma, but not in PIK3CA -wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA -mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferative activity of aspirin might be stronger for PIK3CA -mutant colon cancer cells than for PIK3CA -wild-type colon cancer cells. We measured the anti-proliferative effect of aspirin at physiologic concentrations in seven PIK3CA -mutant and six PIK3CA -wild-type human colon cancer cell lines. After exposure to aspirin, the apoptotic index and cell cycle phase of colon cancer cells were assessed. In addition, the effect of aspirin was examined in parental SW48 cells and SW48 cell clones with individual knock-in PIK3CA mutations of either c.3140A>G (p.H1047R) or c.1633G>A (p.E545K). Aspirin induced greater dose-dependent loss of cell viability in PIK3CA -mutant cells than in PIK3CA -wild-type cells after treatment for 48 and 72 hours. Aspirin treatment also led to higher proportions of apoptotic cells and G0/G1 phase arrest in PIK3CA -mutant cells than in PIK3CA -wild-type cells. Aspirin treatment of isogenic SW48 cells carrying a PIK3CA mutation, either c.3140A>G (p.H1047R) or c.1633G>A (p. E545K), resulted in a more significant loss of cell viability compared to wild-type controls. Our findings indicate that aspirin causes cell cycle arrest, induces apoptosis, and leads to loss of cell viability more profoundly in PIK3CA -mutated colon cancer cells than in PIK3CA -wild-type colon cancer cells. These findings support the use of aspirin to treat patients with PIK3CA -mutant colon cancer.

  1. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  2. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    Science.gov (United States)

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  3. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  4. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Mayo, Juan C.

    2017-01-01

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID:28933733

  5. Study of immunogenicity of solid Gardner's lymphosarcoma implanted to C3H/Sumice mice

    International Nuclear Information System (INIS)

    Motycka, K.; Soucek, J.; Potmesilova, I.; Zak, M.; Jandova, A.; Bostik, J.; Pezlarova, A.

    1982-01-01

    Mice of inbred strain C3H/Sumice (H-2sup(k)) were immunized with solid Gardner's lymphosarcoma cells inactivated using a 60 Co source. Immunization once repeated extended average survival after transplantation of proliferation-capable cells of the tumor as against intact controls. After immunization twice repeated, some mice were so resistant that they survived the time of observation without tumor. Significant differences were found in relative numbers of mice in the individual experimental groups which, immunized using the same technique, became little, or totally resistant to the transplantation of viable tumor. Transplantation of spleen cells of the C3H strain mice which survived the time of observation without apparent tumor showed that resistance need not be associated with the disposal of all malignant Gardner's lymphosarcoma cells. Different reasons for immunity to the tumor are disscussed on the basis of the differences in the cytotoxicity of the spleen cells of the C3H (H-2sup(k)) strain mice and those of the C 57B1.B10 (H-2sup(b)) strain, immune to the lymphosarcoma. (author)

  6. Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yunsheng Zhang

    2017-01-01

    Full Text Available Salinomycin is an antibiotic isolated from Streptomyces albus that selectively kills cancer stem cells (CSCs. However, the antitumor mechanism of salinomycin is unclear. This study investigated the chemotherapeutic efficacy of salinomycin in human prostate cancer PC-3 cells. We found that cytotoxicity of salinomycin to PC-3 cells was stronger than to nonmalignant prostate cell RWPE-1, and exposure to salinomycin induced G2/M phage arrest and apoptosis of PC-3 cells. A mechanistic study found salinomycin suppressed Wnt/β-catenin pathway to induce apoptosis of PC-3 cells. An in vivo experiment confirmed that salinomycin suppressed tumorigenesis in a NOD/SCID mice xenograft model generated from implanted PC-3 cells by inhibiting the Wnt/β-catenin pathway, since the total β-catenin protein level was reduced and the downstream target c-Myc level was significantly downregulated. We also showed that salinomycin, but not paclitaxel, triggered more apoptosis in aldehyde dehydrogenase- (ALDH- positive PC-3 cells, which were considered as the prostate cancer stem cells, suggesting that salinomycin may be a promising chemotherapeutic to target CSCs. In conclusion, this study suggests that salinomycin reduces resistance and relapse of prostate tumor by killing cancer cells as well as CSCs.

  7. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Stefanovski, Darko [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19348 (United States); Tang, George [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Wawrowsky, Kolja [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Liu, Naiyou; Fair, Jeffrey H. [Department of Surgery and UF Health Comprehensive Transplant Center, University of Florida College of Medicine, Gainesville, FL 32608 (United States)

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  8. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  9. Epigenetic regulation of cardiac progenitor cells marker c-kit by stromal cell derived factor-1α.

    Directory of Open Access Journals (Sweden)

    Zhongpu Chen

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF, are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α could enhance the expression of c-kit. However, the mechanism is unknown. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts, c-kit(+ and c-kit(- CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+CPCs, made c-kit(-CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+ and c-kit(- CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom's MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+ and c-kit(- CPCs. CONCLUSIONS: SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+CPCs and make c-kit(-CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT

  10. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics

    International Nuclear Information System (INIS)

    Lin, Z.J.; Zhuo, M.J.; He, L.F.; Zhou, Y.C.; Li, M.S.; Wang, J.Y.

    2006-01-01

    The microstructures of bulk Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 ceramics have been investigated using transmission electron microscopy and scanning transmission electron microscopy. These two carbides were determined to have a point group 6/mmm and a space group P6 3 /mmc using selected-area electron diffraction and convergent beam electron diffraction. The atomic-scale microstructures of Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 were investigated through high-resolution imaging and Z-contrast imaging. Furthermore, intergrowth between Zr 2 Al 3 C 4 and Zr 3 Al 3 C 5 was identified. Stacking faults in Zr 3 Al 3 C 5 were found to result from the insertion of an additional Zr-C layer. Cubic ZrC was occasionally identified to be incorporated in elongated Zr 3 Al 3 C 5 grains. In addition, Al may induce a twinned ZrC structure and lead to the formation of ternary zirconium aluminum carbides

  11. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  12. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models

    Science.gov (United States)

    Nguyen, Liem H.; Robinton, Daisy A.; Seligson, Marc; Wu, Linwei; Li, Lin; Rakheja, Dinesh; Comerford, Sarah; Ramezani, Saleh; Sun, Xiankai; Parikh, Monisha; Yang, Erin; Powers, John T.; Shinoda, Gen; Shah, Samar; Hammer, Robert; Daley, George Q.; Zhu, Hao

    2014-01-01

    SUMMARY Lin28a/b are RNA-binding proteins that influence stem cell maintenance, metabolism, and oncogenesis. Poorly differentiated, aggressive cancers often overexpress Lin28, but its role in tumor initiation or maintenance has not been definitively addressed. We report that LIN28B overexpression is sufficient to initiate hepatoblastoma and hepatocellular carcinoma in murine models. We also detected Lin28b overexpression in MYC-driven hepatoblastomas, and liver-specific deletion of Lin28a/b reduced tumor burden, extended latency, and prolonged survival. Both intravenous siRNA against Lin28b and conditional Lin28b deletion reduced tumor burden and prolonged survival. Igf2bp proteins are upregulated and Igf2bp3 is required in the context of LIN28B overexpression to promote growth. Thus, multiple murine models demonstrate that Lin28b is both sufficient to initiate liver cancer and necessary for its maintenance. PMID:25117712

  13. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  14. Glycogen synthase kinase 3β regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    International Nuclear Information System (INIS)

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-01-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 β (GSK3β) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3β has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3β (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3β delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3β is required for the activation of NFAT during wound repair

  15. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  16. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function.

    Science.gov (United States)

    Lim, Shok Ping; Ioannou, Nikolaos; Ramsay, Alan G; Darling, David; Gäken, Joop; Mufti, Ghulam J

    2018-05-01

    MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3 + T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions. ©2018 Society for Leukocyte Biology.

  17. 3'-Hydroxy-3,4'-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells.

    Science.gov (United States)

    Estévez-Sarmiento, Francisco; Said, Mercedes; Brouard, Ignacio; León, Francisco; García, Celina; Quintana, José; Estévez, Francisco

    2017-11-01

    Flavonoids are naturally occurring polyphenolic compounds and are among the most promising anticancer agents. A series of flavonols and their 3-methyl ether derivatives were synthesized and assessed for cytotoxicity. It was found that 3'-hydroxy-3,4'-dimethoxyflavone (flavonoid 7a) displayed strong cytotoxicity against human SK-MEL-1 melanoma cells and blocked tubulin polymerization, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. Our analyses showed that flavonoid 7a induces G 2 -M cell cycle arrest and apoptosis in melanoma cells which is associated with cytochrome c release and activation of both extrinsic and intrinsic apoptotic pathways of cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Production of prostate-specific antigen by a breast cancer cell line, Sk-Br-3

    International Nuclear Information System (INIS)

    Kamali Sarvestani, E.; Ghaderi, A.

    2002-01-01

    Prostate-specific antigen is a 33-KDa serine protease that is produced predominantly by prostate epithelium. However, it has been shown that about 30-40% of female breast tumors produce prostate-specific antigen and its production is associated with the presence of estrogen and progesterone receptors. We have now developed a new tissue culture system to study prostate-specific antigen production in breast cancer and its association with prognostic factors such as progesterone receptor and c-erbB-2. For this purpose we investigated the ability of prostate-specific antigen production in five different cell lines, including two breast cancer cell lines, Sk-Br-3 and MDA-MB-453. The prostate-specific antigen in tissue culture supernatant and cytoplasm of the Sk-Br-3 cell line was detected by western blotting and immunoperoxidase, respectively. Furthermore, we found lower expression of c-erbB-2 in Sk-Br-3 than non-prostate-specific antigen producer breast cancer cell line, MDA-MB-453. Progesterone receptor was expressed by both prostate-specific antigen-positive and -negative cell lines and only the intensity of staining and the number of positive cells in Sk-Br-3 population was higher than MDA-MB-453. According to our findings prostate-specific antigen can be considered as a good prognostic factor in breast cancer and we suggest that these two cell lines are a good in vitro model to study the relationship of different breast cancer prognostic factors and their regulations

  19. Metabolic fate of 18F-FDG in mice bearing either SCCVII squamous cell carcinoma or C3H mammary carcinoma

    DEFF Research Database (Denmark)

    Kaarstad, Katrin; Bender, Dirk; Bentzen, Lise

    2002-01-01

    in mice. METHODS: 18F-FDG was given intravenously to mice with either SCCVII squamous cell carcinoma or C3H mammary carcinoma grown on the back. 18F-Labeled metabolites were determined by radio-high-performance liquid chromatography in tumor tissue biopsies, in a time course of 180 min (12 mice of each...... tumor type), and in liver tissue biopsies 80 min after tracer injection (2 mice of each type). RESULTS: After the tracer injection, not only 18F-FDG and 18F-FDG-6-P but also 18F-FD-PG1 and 2-18F-fluoro-2-deoxy-1,6-biphosphate were detected in both tumors, relatively more in SCCVII carcinoma than in C3H...... carcinoma. Both tumors accumulated radioactivity throughout the 180-min measurement period, 4-fold more in SCCVII carcinoma than in C3H carcinoma. At 80 min, the radioactivity was approximately 6 and 1.2 times higher in the respective tumors than in liver tissue. CONCLUSION: Our results agree...

  20. Relative Apoptosis-inducing Potential of Homeopa-thic Condurango 6C and 30C in H460 Lung Cancer Cells In vitro

    Directory of Open Access Journals (Sweden)

    Sikdar Sourav

    2014-03-01

    Full Text Available Objectives: In homeopathy, it is claimed that more homeopathically-diluted potencies render more protective/curative effects against any disease condition. Potentized forms of Condurango are used successfully to treat digestive problems, as well as esophageal and stomach cancers. However, the comparative efficacies of Condurango 6C and 30C, one diluted below and one above Avogadro’s limit (lacking original drug molecule, respectively, have not been critically analyzed for their cell-killing (apoptosis efficacy against lung cancer cells in vitro, and signalling cascades have not been studied. Hence, the present study was undertaken. Methods: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenylte- trazolium bromide (MTT assays were conducted on H460-non-small-cell lung cancer (NSCLC cells by using a succussed ethyl alcohol vehicle (placebo as a control. Studies on cellular morphology, cell cycle regulation, generation of reactive oxygen species (ROS, changes in mitochondrial membrane potential (MMP, and DNA-damage were made, and expressions of related signaling markers were studied. The observations were done in a “blinded” manner. Results: Both Condurango 6C and 30C induced apoptosis via cell cycle arrest at subG0/G1 and altered expressions of certain apoptotic markers significantly in H460 cells. The drugs induced oxidative stress through ROS elevation and MMP depolarization at 18-24 hours. These events presumably activated a caspase-3-mediated signalling cascade, as evidenced by reverse transcriptase- polymerase chain reaction (RT-PCR, western blot and immunofluorescence studies at a late phase (48 hours in which cells were pushed towards apoptosis. Conclusion: Condurango 30C had greater apoptotic effect than Condurango 6C as claimed in the homeopathic doctrine.

  1. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Summary: Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders. : Piovesan et al. examine how B cells establish transcriptional programs that result in tailored responses to invading pathogens. The authors find that the transcription factor c-Myb represses the T-bet-mediated anti-viral program in B cells. c-Myb limits inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Keywords: B cells, c-Myb, T-bet, immunoglobulin, CXCR3, plasma cell, germinal center

  3. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Guo, Wenjing; Hao, Baixia; Wang, Qian; Lu, Yingying; Yue, Jianbo

    2013-01-01

    Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are

  4. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wenjing; Hao, Baixia; Wang, Qian; Lu, Yingying; Yue, Jianbo, E-mail: jbyue@me.com

    2013-11-01

    Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are

  5. [Shikimic acid inhibits the degranulation and histamine release in RBL-2H3 cells].

    Science.gov (United States)

    Chen, Xianyong; Zheng, Qianqian; Liu, Wei; Yu, Lingling; Wang, Jinling; Li, Shigang

    2017-05-01

    Objective To study the effects of shikimic acid on the proliferation of rat RBL-2H3 cells and the degranulation of the cells induced by C48/80 and its mechanism. Methods MTT assay was performed to measure the proliferation of RBL-2H3 cells treated with 3, 10, 30 μg/mL shikimic acid. Toluidine blue staining was used to observe the degranulation of RBL-2H3 cells. The release of β-hexosaminidase from RBL-2H3 cells treated with 0, 12.5, 25, 50, 80, 100 μg/mL C48/80 was determined by substrate assay. ELISA was used to detect the histamine content in the supernatant of each treated group. Results Shikimic acid at 3, 10, 300 μg/mL had no obvious inhibitory effect on the proliferation of RBL-2H3 cells. There was a dose-effect relationship between the degranulation of RBL-2H3 cells and C48/80 concentration. Shikimic acid inhibited the degranulation of RBL-2H3 cells compared with the positive control group, the β-hexosaminidase release rate and histamine release were significantly reduced in RBL-2H3 cells treated with shikimic acid and C48/80. Conclusion Shikimic acid can inhibit the degranulation of RBL-2H3 cells and reduce histamine release.

  6. Metabolic flux ratio analysis and cell staining suggest the existence of C4 photosynthesis in Phaeodactylum tricornutum.

    Science.gov (United States)

    Huang, A; Liu, L; Zhao, P; Yang, C; Wang, G C

    2016-03-01

    Mechanisms for carbon fixation via photosynthesis in the diatom Phaeodactylum tricornutum Bohlin were studied recently but there remains a long-standing debate concerning the occurrence of C4 photosynthesis in this species. A thorough investigation of carbon metabolism and the evidence for C4 photosynthesis based on organelle partitioning was needed. In this study, we identified the flux ratios between C3 and C4 compounds in P. tricornutum using (13)C-labelling metabolic flux ratio analysis, and stained cells with various cell-permeant fluorescent probes to investigate the likely organelle partitioning required for single-cell C4 photosynthesis. Metabolic flux ratio analysis indicated the C3/C4 exchange ratios were high. Cell staining indicated organelle partitioning required for single-cell C4 photosynthesis might exist in P. tricornutum. The results of (13)C-labelling metabolic flux ratio analysis and cell staining suggest single-cell C4 photosynthesis exists in P. tricornutum. This study provides insights into photosynthesis patterns of P. tricornutum and the evidence for C4 photosynthesis based on (13)C-labelling metabolic flux ratio analysis and organelle partitioning. © 2015 The Society for Applied Microbiology.

  7. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Directory of Open Access Journals (Sweden)

    Viviana Meraviglia

    2018-03-01

    Full Text Available Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3, encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies.Resource tableImage 1Unique stem cell lines identifierEURACi001-AEURACi002-AEURACi003-AAlternative names of stem cell linesB2CAV3 (EURACi001-AL1CAV3 (EURACi002-AN1CAV3 (EURACi003-AInstitutionInstitute for Biomedicine, Eurac ResearchContact information of distributorAlessandra Rossini (alessandra.rossini@eurac.eduType of cell linesiPSCsOriginHumanCell sourcePeripheral blood mononuclear cells (PBMCsMethod of reprogrammingElectroporation of episomal vectors (pCXLE hOCT3/4-shp53-F, pCXLE-hSK, and pCXLE-hULMultiline rationaleNon-isogenic cell lines obtained from patients with mutations in the same gene (CAV3Gene modificationNOType of modificationSpontaneous mutationsAssociated diseaseCaveolinopathiesGene/locusHeterozygous CAV3 c.Δ184–192 (EURACi001-AHeterozygous CAV3 c.303 TGG > TGC (EURACi002-AHeterozygous CAV3 c.233 ACG > AAG (EURACi003-AMethod of modificationN/AName of transgene or resistanceN/AInducible/constitutive systemN/ADate archived/stock dateJanuary 2016 (EURACi001-ASeptember 2016 (EURACi002-AMay 2016 (EURACi003-ACell line repository/bankN/AEthical approvalPeripheral blood was collected from patients after signing the informed consent provided by Cell Line and DNA Biobank from Patients Affected by Genetic Diseases, member of the

  8. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently......–80 to 280–300. cPLA2 -stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2 . The action of cPLA2 was mimicked by a combination of arachidonic acid...... and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2 was inhibited by the Cl- channel inhibitor DIDS...

  9. Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase.

    Science.gov (United States)

    Gomes, Pedro; Saito, Tomoaki; Del Corsso, Cris; Alioua, Abderrahmane; Eghbali, Mansoureh; Toro, Ligia; Stefani, Enrico

    2008-10-01

    Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.

  10. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C4 and C3 modes in contrasting environments

    Science.gov (United States)

    Ueno, Osamu; Samejima, Muneaki; Muto, Shoshi; Miyachi, Shigetoh

    1988-01-01

    Eleocharis vivipara Link, a freshwater amphibious leafless plant belonging to the Cyperaceae can grow in both terrestrial and submersed aquatic conditions. Two forms of E. vivipara obtained from these contrasting environments were examined for the characteristics associated with C4 and C3 photosynthesis. In the terrestrial form (δ 13C values = -13.5 to -15.4‰, where ‰ is parts per thousand), the culms, which are photosynthetic organs, possess a Kranz-type anatomy typical of C4 plants, and well-developed bundle-sheath cells contain numerous large chloroplasts. In the submersed form (δ 13C value = -25.9‰), the culms possess anatomical features characteristic of submersed aquatic plants, and the reduced bundle-sheath cells contain only a few small chloroplasts. 14C pulse-12C chase experiments showed that the terrestrial form and the submersed form fix carbon by way of the C4 pathway, with aspartate (40%) and malate (35%) as the main primary products, and by way of the C3 pathway, with 3-phosphoglyceric acid (53%) and sugar phosphates (14%) as the main primary products, respectively. The terrestrial form showed photosynthetic enzyme activities typical of the NAD-malic enzyme-C4 subtype, whereas the submersed form showed decreased activities of key C4 enzymes and an increased ribulose 1,5-bisphosphate carboxylase (EC 4.1.1.39) activity. These data suggest that this species can differentiate into the C4 mode under terrestrial conditions and into the C3 mode under submersed conditions. Images PMID:16593980

  11. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    Science.gov (United States)

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  12. The influence of gamma radiation upon the biological activity of the third serum complement component (C3)

    International Nuclear Information System (INIS)

    Steuhl, K.P.; Dierich, M.P.; Mainz Univ.

    1981-01-01

    For investigation of interaction between C3 and C3-binding cells the third complement component is to be labelled with radiotracer. After labelling C3 with high specific activity (0,2 μCi 125 l/μg C3) binding of C3 to Raji-cells was increased up to the twentyfold nine days after labelling. This effect was not to be reproduced with external gamma radiation using doses of 10, 200 and 1000 rad. The rosette inhibition test could demonstrate that with radiation doses of 200 and 1000 rad the radiated C3 lost its ability of specific binding to C3 receptors in Raji-cells. This functional alteration corresponded to amino acid analysis with relative increase of asparagine, glutamic acid and proline and relative decrease of cystine and phenylalanine in the C3 molecule. (orig.) [de

  13. MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway

    Science.gov (United States)

    Alam, Maroof; Bouillez, Audrey; Tagde, Ashujit; Ahmad, Rehan; Rajabi, Hasan; Maeda, Takahiro; Hiraki, Masayuki; Suzuki, Yozo; Kufe, Donald

    2016-01-01

    Apical-basal polarity and epithelial integrity are maintained in part by the Crumbs (CRB) complex. The C-terminal subunit of MUC1 (MUC1-C) is a transmembrane protein that is expressed at the apical border of normal epithelial cells and aberrantly at high levels over the entire surface of their transformed counterparts. However, it is not known if MUC1-C contributes to this loss of polarity that is characteristic of carcinoma cells. Here it is demonstrated that MUC1-C downregulates expression of the Crumbs complex CRB3 protein in triple-negative breast cancer (TNBC) cells. MUC1-C associates with ZEB1 on the CRB3 promoter and represses CRB3 transcription. Notably, CRB3 activates the core kinase cassette of the Hippo pathway, which includes LATS1 and LATS2. In this context, targeting MUC1-C was associated with increased phosphorylation of LATS1, consistent with activation of the Hippo pathway, which is critical for regulating cell contact, tissue repair, proliferation and apoptosis. Also shown is that MUC1-C-mediated suppression of CRB3 and the Hippo pathway is associated with dephosphorylation and activation of the oncogenic YAP protein. In turn, MUC1-C interacts with YAP, promotes formation of YAP/β-catenin complexes and induces the WNT target gene MYC. These data support a previously unrecognized model in which targeting MUC1-C in TNBC cells (i) induces CRB3 expression, (ii) activates the CRB3-driven Hippo pathway, (iii) inactivates YAP, and thereby (iv) suppresses YAP/β-catenin-mediated induction of MYC expression. Implications These findings demonstrate a previously unrecognized role for the MUC1-C oncoprotein in the regulation of polarity and the Hippo pathway in breast cancer. PMID:27658423

  14. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  15. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  16. Adriamycin continuous i.v. infusion for the treatment of childhood hepatic malignancies, toxicity and efficacy: a pilot study childrens cancer study group

    International Nuclear Information System (INIS)

    Ortega, J.A.; Feusner, J.; Reaman, G.; Woods, W.

    1986-01-01

    In an effort to increase the number of patients with hepatoblastoma and hepatocellular carcinoma receiving the benefits of complete surgical excision, a pilot study was undertaken at a few Childrens Cancer Study Group institutions. For this purpose, repeated courses of adriamycin administered as a continuous I.V. infusion either singly or in combination with c-platinum and radiation therapy treatment was selected. The patient population consisted of a total of eleven children with primary hepatic malignancies: six children had hepatoblastoma; all six were under two years of age at diagnosis. Five patients with hepatocellular carcinoma were entered to the study. Of the eleven patients, four had previously received adriamycin as an I.V. bolus. A table summarizes the patient's characteristics, the adriamycin dose they received and their responses to therapy

  17. The in vitro antitumor activity of vitamins C and K3 against ovarian carcinoma.

    Science.gov (United States)

    von Gruenigen, Vivian E; Jamison, James M; Gilloteaux, Jacques; Lorimer, Heather E; Summers, Marcia; Pollard, Robert R; Gwin, Carley A; Summers, Jack L

    2003-01-01

    The objective was to evaluate the cytotoxic effect and mechanism of action of vitamins C (VC) and K3 (VK3) on ovarian carcinoma. Cytotoxicity assays were performed on ovarian cancer cell lines with VC, VK3 or a VC/VK3 combination. FIC index was employed to evaluate synergism. Flow cytometry was accomplished at 90% cytotoxic doses. Light, transmission electron microscopy and DNA isolation were performed. Antitumor activity was exhibited by both VC, VK3 and VC/VK3. VC/VK3 demonstrated synergistic activity. VC/VK3 may induce a G1 block in the cell cycle. Combined vitamin treatment resulted in cells that maintain apparently intact nuclei while extruding pieces of organelle-free cytoplasm. Degradation of chromosomal DNA was observed. Cell death (autoschizis) displayed characteristics of both apoptosis and necrosis. The cytotoxic effects observed may enable vitamins C and K3 to play an adjuvant role in the treatment of ovarian cancer.

  18. Investigations at INRIM on a Pd-C cell manufactured by NPL

    Science.gov (United States)

    Battuello, M.; Florio, M.; Machin, G.

    2011-10-01

    One of a set of metal-carbon eutectic cells (a Pd-C cell, 1765 K) manufactured by NPL and used for a previous comparison of temperature scales with NIST has been investigated at INRIM. There it was implemented in two different furnaces, namely a single- and a three-zone, and measured with a standard radiation thermometer operating at 900 nm and 950 nm. Both ITS-90 and thermodynamic melting temperatures of the cell were determined by means of an extrapolation approach. The thermodynamic temperature differs by only -0.31 K from the NIST value whereas the ITS-90 temperature differs by only -0.46 K from the NPL value. The agreements, within the combined expanded uncertainties, are particularly significant, because of the different approach followed at INRIM, namely the extrapolation of multi-fixed-point scales (n = 3 and n = 4), as compared with a direct radiometric method at NIST and an ITS-90 realization traceable to the gold point at NPL.

  19. Effects of radiation on parafollicular C cells of the thyroid gland

    International Nuclear Information System (INIS)

    Shah, K.H.; Oslapas, R.; Calandra, D.B.

    1983-01-01

    While radiation has well-recognized effects on follicular cells of the thyroid gland, those on parafollicular C cells are not yet established. Low-dose radiation that has been proved to be nonablative and carcinogenic to follicular cells was administered to 8-week-old Long-Evans rats to study the changes in C cell number and function. Circulating calcitonin levels were significantly reduced in animals that had undergone radiation at age 24 months. Mean calcitonin values were 0.66 (+/- 0.20) ng/ml and 1.64 (+/- 0.59) ng/ml for control males and females compared with 0.14 (+/- 0.06) ng/ml and 0.11 (+/- 0.01) ng/ml for males (P less than 0.05) and females (P less than 0.001) that had undergone radiation, respectively. These levels correlated well with C cell population density in thyroid glands in the control group and in the group that had undergone radiation as evidenced by light microscopy. Routine hematoxylin and eosin staining showed C cell hyperplasia in 77% of control animals of both sexes compared with 4% in animals that had undergone radiation (P less than 0.005). Immunoperoxidase staining with an anticalcitonin antibody showed virtual absence of C cells in most animals that had undergone radiation compared with diffusely scattered cells in animals in the control group. Medullary carcinomas occurred in 14% of animals in the control group compared with 3% of animals that had undergone radiation (P less than 0.05). These data indicate that the radiation dosage that is carcinogenic to the follicular epithelium causes lethal injury to C cells and thus suggest that C cells are more sensitive to radiation than are follicular cells. This increased sensitivity could explain the virtual absence of C cells, decrease in calcitonin levels, and reduced numbers of medullary carcinomas in the animals that had undergone radiation

  20. 25-OCH3-PPD induces the apoptosis of activated t-HSC/Cl-6 cells via c-FLIP-mediated NF-κB activation.

    Science.gov (United States)

    Wu, Yan-ling; Wan, Ying; Jin, Xue-Jun; OuYang, Bing-Qing; Bai, Ting; Zhao, Yu-Qing; Nan, Ji-Xing

    2011-11-15

    25-OCH(3)-PPD is a dammarane-type triterpene sapogenin isolated from the roots, leaves and seeds of Panax notoginseng, which has shown anti-tumor effects in several human cancer lines. In this study, we evaluated the effects of 25-OCH(3)-PPD on apoptosis of activated t-HSC/Cl-6 cells induced by tumor necrosis factor-α (TNF-α). The inhibitory effects of eleven compounds isolated from Panax ginseng and P. notoginseng were detected in activated t-HSC/Cl-6 cells. 25-OCH(3)-PPD produced a significant inhibitory effect on activated t-HSC/Cl-6 cells. However, 25-OCH(3)-PPD showed almost no effect on the cell viability of Chang liver cells, a type of normal human hepatic cell line. Therefore, we aimed to determine the anti-fibrotic potential of 25-OCH(3)-PPD and to characterize the signal transduction pathways involved in activated HSCs. 25-OCH(3)-PPD decreased the fibrosis markers, including α-smooth muscle actin (α-SMA), transforming growth factor β-1 (TGF-β1) and tissue inhibitors of metalloproteinases-1 (TIMP-1). 25-OCH(3)-PPD elevated the level of cellular GSH in activated HSCs, which demonstrated that 25-OCH(3)-PPD might inhibit HSC activation by its antioxidant capacity. Further analyses revealed that 25-OCH(3)-PPD increased the levels of cleaved caspase-3, decreased the ratio of Bcl-2/Bax and the expression of survivin via c-FLIP-mediated NF-κB activation and shed light on the regulation of apoptosis. Therefore, 25-OCH(3)-PPD may prove to be an excellent candidate agent for the therapy of hepatic fibrosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Participation of 14-3-3ε and 14-3-3ζ proteins in the phagocytosis, component of cellular immune response, in Aedes mosquito cell lines.

    Science.gov (United States)

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Del Angel, Rosa María; Medina-Ramírez, Fernando; Santos-Argumedo, Leopoldo; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2017-08-01

    Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.

  2. Discovery of peroxisome proliferator-activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line.

    Science.gov (United States)

    Tachibana, Keisuke; Yuzuriha, Tomohiro; Tabata, Ryotaro; Fukuda, Syohei; Maegawa, Takashi; Takahashi, Rika; Tanimoto, Keiichi; Tsujino, Hirofumi; Nunomura, Kazuto; Lin, Bangzhong; Matsuura, Yoshiharu; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro Js; Kodama, Tatsuhiko; Kobayashi, Tadayuki; Ishimoto, Kenji; Miyachi, Hiroyuki; Doi, Takefumi

    2018-05-15

    Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator responsive elements (PPRE) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of > 12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo. Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor.

    Directory of Open Access Journals (Sweden)

    Maikel Jongsma

    Full Text Available Lysophosphatidic acid (LPA, a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA(1-6, showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18:1 being 10-fold more potent than acyl-LPA(18:1. The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA(2, LPA(5 and LPA(6 receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA(5 receptor (GPR92, which raises intracellular cAMP via a noncanonical pathway. Our results define LPA(5 as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells.

  4. Stability of the phenotypic reversion of x-ray transformed C3H/10T1/2 cells depends on cellular proliferation after subcultivation at low cell density

    International Nuclear Information System (INIS)

    Brouty-Boye, D.; Gresser, I.; Bandu, M.T.

    1982-01-01

    Reversion from the transformed to the non-transformed phenotype could be obtained by seeding X-ray transformed C3H/10T1/2 cells at low cell density. Cloned revertant cells of varying degrees of reversion were obtained depending on the time they were isolated after one subculture at low cell density. Most of the revertants isolated 7 and 10 days after seeding at very low cell density eventually returned to the transformed phenotype when passaged serially at high cell density. In contrast, 25-35% of the revertants isolated 17-20 days after seeding at low cell density maintained the non-transformed phenotype despite subsequent serial passages at high cell density. The finding that there was a direct relationship between the time during which transformed cells seeded at low cell density multiplied and the number of stable revertant clones obtained, suggests the possibility that reversion from the transformed to the non-transformed phenotype may be a multistep process. Revertant cells displayed a chromosomal pattern characteristic of the transformed cells rather than that of the parental non-transformed 10T1/2 cells. (author)

  5. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    Science.gov (United States)

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  6. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Stanley K.L. [Singapore Immunology Network A-STAR (Singapore); Neo, Soek-Ying, E-mail: neo_soek_ying@sics.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Yap, Yann-Wan [Singapore Immunology Network A-STAR (Singapore); Karuturi, R. Krishna Murthy; Loh, Evelyn S.L. [Genome Institute of Singapore A-STAR (Singapore); Liau, Kui-Hin [Department of General Surgery, Tan Tock Seng Hospital (Singapore); Ren, Ee-Chee, E-mail: ren_ee_chee@immunol.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  7. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells.

    Science.gov (United States)

    Liu, Shuo; Zhang, Cun; Zhang, Kuo; Gao, Yuan; Wang, Zhaowei; Li, Xiaoju; Cheng, Guang; Wang, Shuning; Xue, Xiaochang; Li, Weina; Zhang, Wei; Zhang, Yingqi; Xing, Xianghui; Li, Meng; Hao, Qiang

    2017-07-04

    Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.

  8. Thermal and electrochemical behaviour of C/Li xCoO 2 cell during safety test

    Science.gov (United States)

    Doh, Chil-Hoon; Kim, Dong-Hun; Kim, Hyo-Suck; Shin, Hye-Min; Jeong, Young-Dong; Moon, Seong-In; Jin, Bong-Soo; Eom, Seung Wook; Kim, Hyun-Soo; Kim, Ki-Won; Oh, Dae-Hee; Veluchamy, Angathevar

    Thermal and electrochemical processes in a 1000 mAh lithium-ion pouch cell with a graphite anode and a Li xCoO 2 cathode during a safety test are examined. In overcharge tests, the forced current shifts the cell voltage to above 4.2 V. This causes a cell charged at the 1 C rate to lose cycleability and a cell charged at the 3 C rate to undergo explosion. In nail penetration and impact tests, a high discharge current passing through the cells gives rise to thermal runaway. These overcharge and high discharge currents promote joule heat within the cells and leads to decomposition and release of oxygen from the de-lithiated Li xCoO 2 and combustion of carbonaceous materials. X-ray diffraction analysis reveals the presence of Co 3O 4 in the cathode material of a 4.5 V cell heated to 400 °C. The major cathode product formed after the combustion process cells abused by forced current is Co 3O 4 and by discharge current the products are LiCoO 2 and Co 3O 4. The formation of a trace quantity of CoO through the reduction of Co 3O 4 by virtue of the reducing power of the organic solvent is also discussed.

  9. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  10. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-01-01

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance

  11. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Science.gov (United States)

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  12. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off

    International Nuclear Information System (INIS)

    Sharma, Rakhi; Raychaudhuri, Santanu; Dasgupta, Asim

    2004-01-01

    Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off

  13. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  14. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  15. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  16. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  17. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway.

    Directory of Open Access Journals (Sweden)

    Sébastien Tauzin

    2011-06-01

    Full Text Available Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms, which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L, found increased in sera of systemic lupus erythematosus (SLE patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy. Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration, we uncover that cl-CD95L promotes cell migration through a c-yes/Ca²⁺/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells.

  18. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells.

    Science.gov (United States)

    Hong, Gyeong Eun; Lee, Ho Jeong; Kim, Jin A; Yumnam, Silvia; Raha, Suchismita; Venkatarame Gowda Saralamma, Venu; Heo, Jeong Doo; Lee, Sang Joon; Kim, Eun Hee; Won, Chun Kil; Kim, Gon Sup

    2017-02-01

    Citrus platymamma Hort.et Tanaka is an indigenous fruit of Jeju island in Korea. In this study the bioactivity of C. platymamma flavonoids were evaluated on human hepatoma Hep3B cell lines. Eleven flavonoids were identified from the peels of C. platymamma Hort.et Tanaka through high-performance liquid chromatography-Tandem mass spectrometry and the anticancer effect of these C. platymamma flavonoids on human hepatoma Hep3B were studied. Chromatin condensation was observed in Hep3B cells treated with C. platymamma flavonoids. DNA fragmentation was confirmed through agarose gel electrophoresis and TUNEL assay. An increase in the total apoptotic cells and G2/M cell cycle arrest with decreased protein expression of CDC25C, CDK1, cyclin B1 and p21 were observed in Hep3B cells treated with flavonoids of C. platymamma. Further, protein expression of Bcl-XL, Bax, caspase-3 and -9 were also modulated by C. platymamma flavonoids treatment indicating that cell death is through intrinsic apoptotic pathway. Moreover, C. platymamma flavonoids also regulated the phosphorylation of MAPKs, PI3K, and Akt in Hep3B cells. Relevant to inhibiting metastasis, C. platymamma treatment reduced wound closure of Hep3B cells and the protein expression of matrix metalloproteinase-2 and -9 were reduced in C. platymamma treated cells. The results show that C. platymamma flavonoids induce cell cycle arrest and apoptosis following activation of MAPKs and suppression of PI3K/Akt pathway which eventually inhibits cell migration in Hep3B cells. The finding provides evidence on biochemical activities of C. platymamma Hort.et Tanaka, which would be an essential agent for hepatocellular carcinoma (HCC) treatment.

  19. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line.

    Science.gov (United States)

    Mohammadi, Saeed; Seyedhosseini, Fakhri Sadat; Behnampour, Nasser; Yazdani, Yaghoub

    2017-10-01

    The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.

  20. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2013-10-01

    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.