WorldWideScience

Sample records for c2d spitzer spectroscopy

  1. c2d Spitzer IRS spectra of embedded low-mass young stars : gas-phase emission lines

    NARCIS (Netherlands)

    Lahuis, F.; van Dishoeck, E. F.; Jorgensen, J. K.; Blake, G. A.; Evans, N. J.

    Context. A survey of mid-infrared gas-phase emission lines of H(2), H(2)O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer "Cores to Disks" (c2d) legacy program. Aims. The environment of

  2. SHARC-II Mapping of Spitzer c2d Small Clouds and Cores

    Science.gov (United States)

    Wu, Jingwen; Dunham, Michael M.; Evans, Neal J., II; Bourke, Tyler L.; Young, Chadwick H.

    2007-04-01

    We present the results of a submillimeter survey of 53 low-mass dense cores with the Submillimeter High Angular Resolution Camera II (SHARC-II). The survey is a follow-up project to the Spitzer Legacy Program "From Molecular Cores to Planet-Forming Disks," with the purpose of creating a complete data set of nearby low-mass dense cores from the infrared to the millimeter. We present maps of 52 cores at 350 μm and three cores at 450 μm, two of which were observed at both wavelengths. Of these 52 cores, 41 were detected by SHARC-II; 32 contained one submillimeter source, while 9 contained multiple sources. For each submillimeter source detected, we report various source properties including source position, fluxes in various apertures, size, aspect ratio, and position angle. For the 12 cores that were not detected we present upper limits. The sources detected by SHARC-II have, on average, smaller sizes at the 2 σ contours than those derived from longer wavelength bolometer observations. We conclude that this is not caused by a failure to integrate long enough to detect the full extent of the core; instead it arises primarily from the fact that the observations presented in this survey are insensitive to smoothly varying extended emission. We find that SHARC-II observations of low-mass cores are much better suited to distinguishing between starless and protostellar cores than observations at longer wavelengths. Very low luminosity objects, a new class of objects being discovered by the Spitzer Space Telescope in cores previously classified as starless, look very similar at 350 μm to other cores with more luminous protostars.

  3. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M.; Arce, Hector G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Herzberg Institute, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Hatchell, Jennifer [Astrophysics Group, Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Merin, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Spezzi, Loredana, E-mail: michael.dunham@yale.edu [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-04-15

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L{sub bol} for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L{sub Sun} to 69 L{sub Sun }, and has a mean and median of 4.3 L{sub Sun} and 1.3 L{sub Sun }, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L{sub bol} {approx}< 0.5 L{sub Sun }) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 {mu}m <{lambda} < 850 {mu}m) and have L{sub bol} underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  4. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. IX. DISCOVERY OF A VERY LOW LUMINOSITY OBJECT DRIVING A MOLECULAR OUTFLOW IN THE DENSE CORE L673-7

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Evans, Neal J.; Bourke, Tyler L.; Myers, Philip C.; Huard, Tracy L.; Stutz, Amelia M.

    2010-01-01

    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 μm Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2to4.5 M sun . Millimeter continuum emission indicates a mass of ∼2 M sun , both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be L int = 0.01-0.045 L sun , with L int ∼ 0.04 L sun the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner. From the outflow properties and standard assumptions regarding the driving of outflows, we calculate the time-averaged protostellar mass accretion rate, total protostellar mass accreted, and expected accretion luminosity to be acc >≥1.2 x 10 -6 (sin i)/(co 2 i) M sun yr -1 , M acc ≥0.07 1/cos i M sun , and L acc ≥ 0.36 L sun , respectively. The discrepancy between this calculated L acc and the L int derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.

  5. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    International Nuclear Information System (INIS)

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas

    2011-01-01

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  6. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    Science.gov (United States)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  7. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (< 75 μm) silicates on Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  8. INFRARED SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3 USING THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Sitko, Michael L.; Whitney, Barbara A.; Wolff, Michael J.; Lisse, Carey M.; Kelley, Michael S.; Polomski, Elisha F.; Lynch, David K.; Russell, Ray W.; Kimes, Robin L.; Harker, David E.

    2011-01-01

    We have used the Spitzer Space Telescope Infrared Spectrograph (IRS) to observe the 5-37 μm thermal emission of comet 73P/Schwassmann-Wachmann 3 (SW3), components B and C. We obtained low spectral resolution (R ∼ 100) data over the entire wavelength interval, along with images at 16 and 22 μm. These observations provided an unprecedented opportunity to study nearly pristine material from the surface and what was until recently the interior of an ecliptic comet-the cometary surface having experienced only two prior perihelion passages, and including material that was totally fresh. The spectra were modeled using a variety of mineral types including both amorphous and crystalline components. We find that the degree of silicate crystallinity, ∼35%, is somewhat lower than most other comets with strong emission features, while its abundance of amorphous carbon is higher. Both suggest that SW3 is among the most chemically primitive solar system objects yet studied in detail, and that it formed earlier or farther from the Sun than the bulk of the comets studied so far. The similar dust compositions of the two fragments suggest that these are not mineralogically heterogeneous, but rather uniform throughout their volumes. The best-fit particle size distribution for SW3B has a form dn/da ∼ a -3.5 , close to that expected for dust in collisional equilibrium, while that for SW3C has dn/da ∼ a -4.0 , as seen mostly in active comets with strong directed jets, such as C/1995 O1 Hale-Bopp. The total mass of dust in the comae plus nearby tail, extrapolated from the field of view of the IRS peak-up image arrays, is (3-5) x 10 8 kg for B and (7-9) x 10 8 kg for C. Atomic abundances derived from the spectral models indicate a depletion of O compared to solar photospheric values, despite the inclusion of water ice and gas in the models. Atomic C may be solar or slightly sub-solar, but its abundance is complicated by the potential contribution of spectrally featureless mineral

  9. SPITZER SPECTROSCOPY OF CIRCUMSTELLAR DISKS IN THE 5 Myr OLD UPPER SCORPIUS OB ASSOCIATION

    International Nuclear Information System (INIS)

    Dahm, S. E.; Carpenter, John M.

    2009-01-01

    We present mid-infrared spectra between 5.2 and 38 μm for 26 disk-bearing members of the ∼5 Myr old Upper Scorpius OB association obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. We find clear evidence for changes in the spectral characteristics of dust emission between the early-type (B+A) and late-type (K+M) infrared excess stars. The early-type members exhibit featureless continuum excesses that become apparent redward of ∼8 μm. In contrast, 10 and 20 μm silicate features or polycyclic aromatic hydrocarbon emission are present in all but one of the late-type excess members of Upper Scorpius. The strength of silicate emission among late-type Upper Scorpius members is spectral-type dependent, with the most prominent features being associated with K5-M2-type stars. By fitting the spectral energy distributions (SED) of a representative sample of low-mass stars with accretion disk models, we find that the SEDs are consistent with models having inner disk radii ranging from ∼0.2 to 1.2 AU. Complementary high-resolution (R ∼ 33, 000) optical (λλ4800-9200) spectra for the Upper Scorpius excess stars were examined for signatures of gaseous accretion. Of the 35 infrared excess stars identified in Upper Scorpius, only seven (all late-type) exhibit definitive signatures of accretion. Mass-accretion rates for these stars were estimated to range from 10 -11 to 10 -8.9 M sun yr -1 . Compared to Class II sources in Taurus-Auriga, the disk population in Upper Scorpius exhibits reduced levels of near- and mid-infrared excess emission and an order of magnitude lower mass-accretion rates. These results suggest that the disk structure has changed significantly over the 2-4 Myr in age separating these two stellar populations. The ubiquity of depleted inner disks in the Upper Scorpius excess sample implies that such disks are a common evolutionary pathway that persists for some time.

  10. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    Science.gov (United States)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  11. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  12. CRYSTALLINE SILICATES IN EVOLVED STARS. I. SPITZER/INFRARED SPECTROGRAPH SPECTROSCOPY OF IRAS 16456-3542, 18354-0638, AND 23239+5754

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B. W.; Zhang, Ke [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Lisse, C. M., E-mail: bjiang@bnu.edu.cn, E-mail: kzhang@caltech.edu, E-mail: lia@missouri.edu, E-mail: carey.lisse@jhuapl.edu [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2013-03-01

    We report the Spitzer Infrared Spectrograph (IRS) observations of three evolved stars: IRAS 16456-3542, 18354-0638, and 23239+5754. The 9.9-37.2 {mu}m Spitzer/IRS high-resolution spectra of these three sources exhibit rich sets of enstatite-dominated crystalline silicate emission features. IRAS 16456-3542 is extremely rich in crystalline silicates, with >90% of its silicate mass in crystalline form, the highest to date ever reported for crystalline silicate sources.

  13. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  14. Spitzer Telemetry Processing System

    Science.gov (United States)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  15. Spitzer Spies Spectacular Sombrero

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.' Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well-known visible light image from the

  16. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  17. Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.

    2010-01-01

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject

  18. Hunting Elusive SPRITEs with Spitzer

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    were designated eSPecially Red Intermediate-luminosity Transient Events, or SPRITEs.SPRITEs are unusual infrared transients that lie in the luminosity gap between novae and supernovae, and they have no optical counterparts. They all occur in star-forming galaxies.Search for the CauseWhats the physical origin of these phenomena? The authors explore a number of possible sources, including obscured supernovae, stellar mergers with dusty winds, collapse of extreme stars, or even weak shocks in failed supernovae.Spitzer image of M83, one of the closest barred spiral galaxies in the sky. SPIRITS 14ajc was discovered in one of M83s spiral arms. [NASA/JPL-Caltech]In one case, SPIRITS 14ajc, the SPRITEs spectrum shows signs of excited molecular hydrogen lines, which are indicative of a shock. Based on the data, Kasliwal and collaborators propose that the shock might have been driven into a molecular cloud after it was triggered by the decay of a system of massive stars that either passed closely or collided and merged.The other SPRITEs may all have different origins, however, and in general the infrared photometric data isnt sufficient to identify which model fits each transient. Future technology, like spectroscopy with the James Webb Space Telescope, may help us to better understand the origins of these elusive transients, though. And future surveying with projects like SPIRITS will help us to discover more SPRITE-like events, expanding our understanding of the dynamic infrared sky.CitationMansi M. Kasliwal et al 2017 ApJ 839 88. doi:10.3847/1538-4357/aa6978

  19. Spitzer IRS Spectroscopy of the 10 Myr-Old EF Cha Debris Disk: Evidence for Phyllosilicate-Rich Dust in the Terrestrial Zone

    Science.gov (United States)

    Currie, Thayne; Lisse, Carey M.; Sicillia-Aguilar, Aurora; Rieke, George H.; Su, Kate Y. L.

    2011-01-01

    We describe Spitzer IRS spectroscopic observations of the approx. 10 Myr-old star, EF Chao Compositional modeling of the spectra from 5 micron to 35 micron confirms that it is surrounded by a luminous debris disk with L(sub D)/L(sub *) approx. 10(exp -3), containing dust with temperatures between 225 K and 430 K characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr-old luminous, warm debris disks (e.g. HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely-powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to pyroxene ratio of approx. 2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system.

  20. Scheduling Spitzer: The SIRPASS Story

    Science.gov (United States)

    Mittman, David S.; Hawkins, Robert

    2013-01-01

    NASA's Spitzer Space Telescope was launched on August 25, 2003 from Florida's Cape Canaveral Air Force Base. Drifting in a unique Earth-trailing orbit around the Sun, Spitzer sees an optically invisible universe dominated by dust and stars. Since 1997, the Spitzer Integrated Resource Planning and Scheduling System (SIRPASS) has helped produce spacecraft activity plans for the Spitzer Space Telescope. SIRPASS is used by members of the Observatory Planning and Scheduling Team to plan, schedule and sequence the Telescope from data made available to them from the science and engineering community. Because of the volume of data that needs to be scheduled, SIRPASS offers a variety of automated assistants to aid in this task. This paper will describe the functional elements of the SIRPASS software system -- emphasizing the role that automation plays in the system -- and will highlight lessons learned for the software developer from a decade of Spitzer Space Telescope operations experience.

  1. Fundamental and combination bands of CO2-C2H2 and CO2-C2D2 in the mid-infrared region

    Science.gov (United States)

    Rezaei, M.; George, J.; Welbanks, L.; Moazzen-Ahmadi, N.

    2014-09-01

    Spectra of the weakly bound CO2-C2H2 and CO2-C2D2 complexes are observed in the regions of CO2 ν3 (≈ 2349 cm-1) and C2D2 ν3 (≈ 2440 cm-1) fundamental vibrations, using an infrared optical parametric oscillator to probe a pulsed supersonic slit-jet expansion. Five bands are measured and analysed: the fundamental asymmetric stretch of the C2D2 component, two combination bands involving the out-of-plane torsional vibrations (C2D2 ν3 + torsion and CO2 ν3 + torsion) for CO2-C2D2, and two combination bands involving an intermolecular in-plane bending vibration for CO2-C2H2 and CO2-C2D2. The resulting intermolecular frequencies are 61.408(1), 54.5(5), 39.9(5), and 39.961(1) cm-1 for CO2-C2H2 and CO2-C2D2 in-plane vibrations, and CO2-C2D2 out-of-plane torsional vibrations in CO2 and C2D2 regions, respectively. This is the first experimental determination of these intermolecular vibrational frequencies.

  2. Spitzer Reveals Stellar 'Family Tree'

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds. W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours. Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars. This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  3. Spitzer Digs Up Galactic Fossil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the visible-light image (left) shows a dark sky speckled

  4. Spitzer - Hot & Colorful Student Activities

    Science.gov (United States)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  5. Spitzer Science Center within an Enterprise Architecture

    Science.gov (United States)

    Handley, T.

    2007-10-01

    The Spitzer Science Center's (SSC) evolutionary development approach, coupled with a flexible, scaleable hardware and software architecture has been key in Spitzer's ability to handle an explosion of data products, evolving data definitions, and changing data quality requirements. Spitzer is generating (depending on the campaign and instrument) about 10 TB of pre-archive data every 14 to 20 days. This generally reduces to between 3 TB and 6 TB of standard products, again depending on the campaign and instrument. This paper will discuss (1) the Spitzer Science Center's responses to evolving data, quality, and processing requirements and (2) how robust or not was the original architecture to allow Spitzer to accommodate on-going change.

  6. Early 2017 observations of TRAPPIST-1 with Spitzer

    Science.gov (United States)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  7. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    International Nuclear Information System (INIS)

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard

    2012-01-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Å emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  8. Assembly studies of six intestinal intermediate filament (IF) proteins B2, C1, C2, D1, D2, and E1 in the nematode C. elegans.

    Science.gov (United States)

    Karabinos, Anton; Schünemann, Jürgen; Parry, David A D

    2017-03-01

    The dimerisation properties of six intestine-expressed intermediate filament (IF) proteins (B2, C1, C2, D1, D2, E1) were analysed in blot overlay assay on membranes containing all of the eleven recombinant C. elegans IF proteins (A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, and E1). The interactions detected in the blot assays exclusively comprise intestine-expressed IF proteins and the protein A4, which is found in the dauer larva intestine. About 86% of these interactions are heterotypic, while the remaining interactions relate to C1, C2, and D2 homodimers. These multiple modes of interaction were also supported by calculations of the numbers of possible interchain ionic interactions derived from the individual rod sequences. The results predict that the six B2, C1, C2, D1, D2, and E1 IF proteins are able to form as many as eleven different heteropolymeric and three homopolymeric IFs in the C. elegans intestine. This simple model of the intestinal IF meshwork enables us to speculate that our previously reported triple RNAi worms arrested or decreased their growth because of feeding reduction due to morphological defects of the mechanically compromised intestine. © 2017 Wiley Periodicals, Inc.

  9. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. IV. LUPUS V AND VI OBSERVED WITH IRAC AND MIPS

    International Nuclear Information System (INIS)

    Spezzi, Loredana; Vernazza, Pierre; Merin, Bruno; Allen, Lori E.; Evans, Neal J. II; Harvey, Paul M.; Joergensen, Jes K.; Bourke, Tyler L.; Peterson, Dawn; Cieza, Lucas A.; Dunham, Michael M.; Huard, Tracy L.; Tothill, Nick F. H.

    2011-01-01

    We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer C ore to Disk(c2d) Legacy Survey. We found 43 young stellar object (YSO) candidates in Lupus V and 45 in Lupus VI, including two transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main-sequence star from previous optical, near-IR, and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ∼79% in Lupus V and ∼87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photoevaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lie below the star formation threshold (A V ∼ 8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myr older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of the Lupus clouds might solve the puzzle but require further observations.

  10. THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; McCabe, C.-E.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T.; Hillenbrand, L. A.; Stapelfeldt, K. R.; Angione, J. R.; Huard, T.; Terebey, S.; Audard, M.; Baldovin-Saavedra, C.; Monin, J.-L.; Menard, F.; Bouvier, J.; Fukagawa, M.; Guedel, M.; Knapp, G. R.; Allen, L. E.

    2010-01-01

    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in seven mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously identified members of the Taurus star-forming region in our ∼44 deg 2 map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bona fide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 new candidate members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, three probable new members, and 10 possible new members, an increase of 15%-20% in Taurus members. Of the objects for which we have spectroscopy, seven are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and active galactic nuclei.

  11. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    International Nuclear Information System (INIS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L.; Lacy, M.; Ciardullo, R.; Gronwall, C.; Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S.; Bassett, R.; Behroozi, P.; Blanc, G. A.; Jong, R. S. de; Gawiser, E.; Hopp, U.

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg 2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc 3 at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  12. Lyman Spitzer: Life, Times, and Science

    Indian Academy of Sciences (India)

    Lyman Spitzer was one of the major figures of twentieth centurytheoretical astrophysics. Over more than fifty years,he kept up sustained research of his own, on problems concerningthe interstellar medium, star formation, and galaxies.In addition he was a major influence on observationalprogrammes, and created a thriving ...

  13. Spitzer Parallax of OGLE-2015-BLG-0966

    DEFF Research Database (Denmark)

    Street, R. A.; Udalski, A.; Calchi Novati, S.

    2016-01-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real...

  14. Lyman Spitzer: Life, Times, and Science

    Indian Academy of Sciences (India)

    College, Cambridge, in the academic year 1935–36. It was com- mon in those days for promising students from the United States to spend some time in England or Europe – the precise opposite of the situation today! Cambridge exposed Spitzer to the most distinguished astrophysi- cist of that time – Arthur Eddington.

  15. An Experimental and Theoretical Study on the Kinetic Isotope Effect of C2H6 and C2D6 Reaction with OH

    KAUST Repository

    Khaled, Fathi

    2015-10-30

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800–1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE for alkanes asymptotes to a value of 1.4 at high temperatures.

  16. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  17. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  18. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  19. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  20. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  1. SPITZER SECONDARY ECLIPSES OF WASP-18b

    International Nuclear Information System (INIS)

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 μm and 5.8 μm bands on 2008 December 20, and in the 4.5 μm and 8.0 μm bands on 2008 December 24. We report eclipse depths of 0.30% ± 0.02%, 0.39% ± 0.02%, 0.37% ± 0.03%, 0.41% ± 0.02%, and brightness temperatures of 3100 ± 90, 3310 ± 130, 3080 ± 140, and 3120 ± 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered—as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  2. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  3. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  4. NEOs in the mid-infrared: from Spitzer to JWST

    Science.gov (United States)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  5. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    Science.gov (United States)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4formation and destruction processes. Our study will greatly enhance the scientific

  6. Spitzer IRS Observations of FU Orionis Objects

    Science.gov (United States)

    Green, J. D.; Hartmann, L.; Calvet, N.; Watson, D. M.; Ibrahimov, M.; Furlan, E.; Sargent, B.; Forrest, W. J.

    2006-09-01

    We present 5-35 μm spectra, taken with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope, of five FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, BBW 76, and V346 Nor. All but V346 Nor reveal amorphous silicate grains in emission at 10 and 20 μm, and show water-vapor absorption bands at 5.8 and 6.8 μm and SiO or possibly methane absorption at 8 μm. These absorption features closely match these bands in model stellar photospheres-signs of the gaseous photospheres of the inner regions of these objects' accretion disks. The continuum emission at 5-8 μm is also consistent with such disks, and, for FU Orionis and BBW 76, longer wavelength emission may be fit by a model that includes moderate disk flaring. V1057 Cyg and V1515 Cyg have much more emission at longer wavelengths than the others, perhaps evidence of a substantial remnant of their natal, infalling envelopes.

  7. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  8. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  9. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    International Nuclear Information System (INIS)

    Schombert, James M.

    2016-01-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  10. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Schombert, James M., E-mail: jschombe@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  11. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    Science.gov (United States)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  12. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Novati, S. Calchi; Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bryden, G.; Henderson, C. B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  13. On the mid-infrared variability of candidate eruptive variables (exors): A comparison between Spitzer and WISE data

    Energy Technology Data Exchange (ETDEWEB)

    Antoniucci, S.; Giannini, T.; Li Causi, G.; Lorenzetti, D., E-mail: simone.antoniucci@oa-roma.inaf.it, E-mail: teresa.giannini@oa-roma.inaf.it, E-mail: gianluca.licausi@oa-roma.inaf.it, E-mail: dario.lorenzetti@oa-roma.inaf.it [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio (Italy)

    2014-02-10

    Aiming to statistically study the variability in the mid-IR of young stellar objects, we have compared the 3.6, 4.5, and 24 μm Spitzer fluxes of 1478 sources belonging to the C2D (Cores to Disks) legacy program with the WISE fluxes at 3.4, 4.6, and 22 μm. From this comparison, we have selected a robust sample of 34 variable sources. Their variations were classified per spectral Class (according to the widely accepted scheme of Class I/flat/II/III protostars), and per star forming region. On average, the number of variable sources decreases with increasing Class and is definitely higher in Perseus and Ophiuchus than in Chamaeleon and Lupus. According to the paradigm Class ≡ Evolution, the photometric variability can be considered to be a feature more pronounced in less evolved protostars, and, as such, related to accretion processes. Moreover, our statistical findings agree with the current knowledge of star formation activity in different regions. The 34 selected variables were further investigated for similarities with known young eruptive variables, namely the EXors. In particular, we analyzed (1) the shape of the spectral energy distribution, (2) the IR excess over the stellar photosphere, (3) magnitude versus color variations, and (4) output parameters of model fitting. This first systematic search for EXors ends up with 11 bona fide candidates that can be considered as suitable targets for monitoring or future investigations.

  14. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  15. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  16. Robert Spitzer and psychiatric classification: technical challenges and ethical dilemmas.

    Science.gov (United States)

    Jacob, K S

    2016-01-01

    Dr Robert Leopold Spitzer (May 22, 1932-December 25, 2015), the architect of modern psychiatric diagnostic criteria and classification, died recently at the age of 83 in Seattle. Under his leadership, the American Psychiatric Association's (APA) Diagnostic and Statistical Manuals (DSM) became the international standard.

  17. A crossed molecular beams study on the reaction of C2D radicals with acetylene, C2H2, and methylacetylene, CH3CCH: A versatile pathway to form (substituted) diacetylenes in Titan's atmosphere

    Science.gov (United States)

    Asvany, O.; Lee, Y. T.; Kaiser, R. I.

    1999-09-01

    In Saturn's moon Titan, the C_2H((2Sigma (+)) ) radical is formed via photodissociation of acetylene, C_2H_2, by the solar ultraviolet radiation. Since C_2H is isoelectronic to the cyano radical, CN((2Sigma (+)) ), the reactions of C_2H with unsaturated hydrocarbons such as acetylene, C_2H_2, and methylacetylene, CH_3CCCH, are strongly expected as the key reactions to form (substituted) diacetylenes and their allene isomers in Titans atmosphere: (1) C_2H + C_2H_2 -> HCCCCH + H (2) C_2H + CH_3CCH -> CH_3CCCCHC_2H + H / H_2CCCHCCH + H Despite the crucial importance of these C_2H reactions in the understanding of Titan's atmospheric chemistry, only kinetic studies monitoring the decay of the C_2H radical have been performed. These investigation showed the reactions are very fast and proceed with almost unit collision efficiency close to gas kinetics; however, reaction products have never been identified. Here, we report on the very first systematic investigation of reactions (1) and (2) employing the crossed molecular beam technique with mass spectrometric detection. To facilitate the product identification we performed reactions with the deuterated radical C_2D instead of C_2H. Our results show that both reactions proceed through the formation of a long lived complex following the addition of C_2D radical to the pi system of the unsaturated hydrocarbon. Each complex decomposes to form the closed shell hydrocarbon molecule and a H atom. No D atom emission was observed indicating that the C_2D group is conserved in the reaction. This solid identification of the C_2D versus H atom exchange represents the first evidence that diacetylene HCCCCH can be formed via reaction (1) in Titan's atmosphere. Further, results of reaction (2) clearly indicate the formation of two distinct isomers, i.e. methyldiacetylene, CH_3CCCCH, and its allenic isomer H_2CCCHCCH. This exchange channel opens a versatile route to form highly unsaturated hydrocarbons in Titan's atmosphere. Most

  18. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  19. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  20. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  1. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  2. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  3. Albedo and Diameter Distributions of Asteroid Families Using the Spitzer Asteroid Catalog

    NARCIS (Netherlands)

    Enga, Marie-Therese; Trilling, D.; Mueller, M.; Wasserman, L.; Sykes, M.; Blaylock, M.; Stansberry, J.; Bhattacharya, B.; Spahr, T.

    2009-01-01

    The Spitzer Asteroid Catalog contains flux measurements of asteroidsserendipitously observed in publicly available Spitzer data. At present,this catalog contains some 10,000 measurements at 24 microns only, andwill ultimately contain 100,000 measurements or more. These measurements, along with with

  4. Multiple asteroid systems : Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    NARCIS (Netherlands)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the

  5. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  6. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    Science.gov (United States)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  7. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    Science.gov (United States)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  8. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    Science.gov (United States)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our

  9. VizieR Online Data Catalog: Spitzer photometric time series of HD 97658 (Van Grootel+, 2014)

    Science.gov (United States)

    Van Grootel, V.; Gillon, M.; Valencia, D.; Madhusudhan, N.; Dragomir, D.; Howe, A. R.; Burrows, A. S.; Demory, B.-O.; Deming, D.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Queloz, D.; Scuflaire, R.; Seager, S.; Segransan, D.; Udry, S.

    2017-07-01

    We monitored HD 97658 with Spitzer's IRAC camera on 2013 August 10 from 13:01:00 to 18:27:00 UT, corresponding to a transit window as computed from the MOST transit ephemeris (Dragomir et al. 2013, J/ApJ/772/L2). These Spitzer data were acquired in the context of the Cycle 9 program 90072 (PI: M. Gillon) dedicated to the search for the transits of RV-detected low-mass planets. They consist of 2320 sets of 64 individual subarray images obtained at 4.5 μm with an integration time of 0.08 s. They are available on the Spitzer Heritage Archive database under the form of 2320 Basic Calibrated Data files calibrated by the standard Spitzer reduction pipeline (version S19.1.0). (1 data file).

  10. Planck, Herschel & Spitzer unveil overdense z>2 regions

    Science.gov (United States)

    Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve

    2014-12-01

    At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST

  11. Spitzer identification of potentially active Near-Earth Asteroids

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard; Chesley, Steve; Emery, Josh; Farnocchia, Davide; Fazio, Giovanni; Harris, Alan; Mueller, Migo

    2017-04-01

    The separation between asteroids and comets has become less clear with the discovery of a small group of asteroids that display comet-like activity. While the activity is attributed to different mechanisms, some objects seem to activate close to the Sun. Near-Earth Asteroids (NEAs) come close to the Earth and the Sun, constituting a natural laboratory for the study of thermally induced activity. Two NEA sub-populations are especially suspected of being potentially active: dormant comets and near-Sun asteroids. We propose 12.4 hrs of Spitzer IRAC observations of 3 near-Sun asteroids and one dormant comet (3552) Don Quixote, about which we have already published. Our goals are (1) to search for activity in Don Quixote, which showed CO/CO2 activity during its previous apparition and (2) to search for activity and measure the diameters and albedos of the near-Sun asteroids. In combination with a funded ground-based observing program, our results will provide significant legacy value to the investigation of activity in near-Earth asteroids.

  12. Spitzer Observations of Massive, Red Galaxies at High Redshift

    Science.gov (United States)

    Papovich, C.; Moustakas, L. A.; Dickinson, M.; Le Floc'h, E.; Rieke, G. H.; Daddi, E.; Alexander, D. M.; Bauer, F.; Brandt, W. N.; Dahlen, T.; Egami, E.; Eisenhardt, P.; Elbaz, D.; Ferguson, H. C.; Giavalisco, M.; Lucas, R. A.; Mobasher, B.; Pérez-González, P. G.; Stutz, A.; Rieke, M. J.; Yan, H.

    2006-03-01

    We study massive galaxies at z~1-3.5 using HST optical imaging, ground-based near-IR imaging, and Spitzer observations at 3-24 μm. From Ks-selected galaxies in the ~=130 arcmin2 GOODS-S field, we identify 153 distant red galaxies (DRGs) with (J-Ks)Vega>=2.3. This sample is approximately complete in stellar mass for passively evolving galaxies above 1011 Msolar and z~4-6 mag) starbursts (at zmed~1.7). Very few DRGs (=1011 Msolar have specific star formation rates (SFRs per unit mass) including the reradiated far-IR emission that range from 0.2 to 10 Gyr-1. Based on the X-ray luminosities and rest-frame near-IR colors, roughly one-quarter of the DRGs contain AGNs, implying that the growth of supermassive black holes coincides with the formation of massive galaxies. At 1.5=1011 Msolar have an integrated specific SFR comparable to the global value of all galaxies. In contrast, galaxies at z~0.3-0.75 with M>=1011 Msolar have an integrated specific SFR less than the global value and more than an order of magnitude lower than that for massive DRGs. At zcontract 1407; on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555 and on observations collected at the Kitt Peak National Observatory (KPNO), National Optical Astronomical Observatory (NOAO), which is operated by AURA, Inc., under cooperative agreement with the National Science Foundation. Observations have also been carried out using the Very Large Telescope at the ESO Paranal Observatory under program ID LP168.A-0485.

  13. FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS

    International Nuclear Information System (INIS)

    Kovacs, A.; Omont, A.; Fiolet, N.; Beelen, A.; Dole, H.; Lagache, G.; Lonsdale, C.; Polletta, M.; Greve, T. R.; Borys, C.; Dowell, C. D.; Bell, T. A.; Cox, P.; De Breuck, C.; Farrah, D.; Menten, K. M.; Owen, F.

    2010-01-01

    We present SHARC-2 350 μm data on 20 luminous z ∼ 2 starbursts with S 1.2 m m > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S 350 μ m > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass-temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6 μm-2 mm measurements of local starbursts. We find characteristic single-component temperatures T 1 ≅ 35.5 ± 2.2 K and integrated infrared (IR) luminosities around 10 12.9±0.1 L sun for the SWIRE-selected sources. Molecular gas masses are estimated at ≅4 x 10 10 M sun , assuming κ 850 μ m = 0.15 m 2 kg -1 and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply ∼>2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 μm flux densities, provides an effective means for the study of SMGs at z ∼ 1.5-2.5.

  14. GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION

    International Nuclear Information System (INIS)

    Barmby, P.; Marengo, M.; Evans, N. R.; Huelsman, D.; Fazio, G. G.; Bono, G.; Su, K. Y. L.; Welch, D. L.

    2011-01-01

    A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was already known to possess extended infrared emission, while the extended emission around the other two stars (S Mus and δ Cep) is newly discovered in our observations. Four other stars (GH Lup, l Car, T Mon, and X Cyg) show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass-loss rate upper limits for S Mus and δ Cep are in the range from 10 -9 to 10 -8 M sun yr -1 , with the upper limit for RS Pup as high as 10 -6 M sun yr -1 . Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass-loss rate we estimate for our sources show that dusty mass loss can only account for part of the Cepheid mass-loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars and should be taken into account in the calibration of the Cepheid distance scale.

  15. Mid-infrared spectroscopy of starbursts : from Spitzer-IRS to JWST-MIRI

    NARCIS (Netherlands)

    Martínez-Galarza, Juan Rafael

    2012-01-01

    The Spectral Energy Distributions (SEDs) of star-forming regions and starburst galaxies are unique tracers of the star formation processes in these environments, since they contain information on the escaping and processed photons emitted by newly formed massive stars. Understanding these internal

  16. Analysis of Spitzer-IRS spectra of hyperluminous infrared galaxies

    Science.gov (United States)

    Ruiz, A.; Risaliti, G.; Nardini, E.; Panessa, F.; Carrera, F. J.

    2013-01-01

    Context. Hyperluminous infrared galaxies (HLIRG) are the most luminous persistent objects in the Universe. They exhibit extremely high star formation rates, and most of them seem to harbour an active galactic nucleus (AGN). They are unique laboratories for investigating the most extreme star formation and its connection to super-massive black hole growth. Aims: The relative AGN and starburst (SB) contributions to the total output in these objects is still debated. Our aim is to disentangle the AGN and SB emission of a sample of thirteen HLIRG. Methods: We studied the MIR low-resolution spectra of a sample of thirteen HLIRG obtained with the Infrared Spectrograph on board Spitzer. The 5-8 μm range is an optimal window for detecting AGN activity even in a heavily obscured environment. We performed an SB/AGN decomposition of the continuum using templates, which has been successfully applied for ULIRG in previous works. Results: The MIR spectra of all sources is largely dominated by AGN emission. By converting the 6 μm luminosity into IR luminosity, we found that ~80% of the sample shows an IR output dominated by the AGN emission. However, the SB activity is significant in all sources (mean SB contribution ~30%), showing star formation rates ~300-3000 M⊙ yr-1. With X-ray and MIR data we estimated the dust covering factor (CF) of these HLIRG, finding that a significant fraction presents a CF consistent with unity. Along with the high X-ray absorption shown by these sources, this suggests that large amounts of dust and gas enshroud the nucleus of these HLIRG, as also observed in ULIRG. Conclusions: Our results agree with previous studies of the IR SED of HLIRG using radiative transfer models, and we find strong evidence that all HLIRG harbour an AGN. Moreover, this work provides further support for the idea that AGN and SB are both crucial to understanding the properties of HLIRG. Our study of the CF supports the hypothesis that HLIRG can be divided into two

  17. Parallel MOPEX: Computing Mosaics of Large-Area Spitzer Surveys on a Cluster Computer

    Directory of Open Access Journals (Sweden)

    Joseph C. Jacob

    2007-01-01

    Full Text Available The Spitzer Science Center's MOPEX software is a part of the Spitzer Space Telescope's operational pipeline that enables detection of cosmic ray collisions with the detector array, masking of the corrupted pixels due to these collisions, subsequent mosaicking of image fields, and extraction of point sources to create catalogs of celestial objects. This paper reports on our experiences in parallelizing the parts of MOPEX related to cosmic ray rejection and mosaicking on a 1,024-processor cluster computer at NASA's Jet Propulsion Laboratory. The architecture and performance of the new Parallel MOPEX software are described. This work was done in order to rapidly mosaic the IRAC shallow survey data, covering a region of the sky observed with one of Spitzer's infrared instruments for the study of galaxy clusters, large-scale structure, and brown dwarfs.

  18. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  19. The Accuracy of the Warm Spitzer Near-Earth Object Survey

    NARCIS (Netherlands)

    Harris, Alan W.; Mommert, M.; Hora, J. L.; Mueller, M.; Trilling, D. E.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo', M.; Emery, J. P.; Fazio, G. G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    We report on observations of near-Earth objects (NEOs) performed with IRAC as part of our on-going (2009-2011) Warm Spitzer NEO survey ("ExploreNEOs"), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall

  20. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    DEFF Research Database (Denmark)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter s...

  1. HST and Spitzer point source and dust lane detection in powerful narrow-line radio galaxies

    Science.gov (United States)

    Ramírez, E. A.; Tadhunter, C. N.; Dicken, D.; Rose, M.; Axon, D. J.; Sparks, W.

    2014-10-01

    We present the analysis of infrared HST and Spitzer data for a sample of 13 FRII powerful radio galaxies at 0.03 scale toroidal structure when this is viewed edge-on (Barthel 1989, Antonucci 1993). Our high resolution infrared observations provide new information about the optical extinction, orientation, and direct AGN detection of the inner kpc-scale region of the AGN.

  2. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  3. Thermal properties of Trans-Neptunian objects and Centaurs from combined Herschel and Spitzer observations

    NARCIS (Netherlands)

    Santos-Sanz, P.; Lellouch, E.; Mommert, M.; Fornasier, S.; Stansberry, J.; Mueller, Th.; Kiss, C.; Vilenius, E.; Mueller, M.; Harris, A. W.; Delsanti, A.; Groussin, O.

    2012-01-01

    We present a study of the thermal properties of about 70 trans-Neptunian objects (TNOs) and Centaurs observed with Herschel Space Observatory [8] (either PACS or PACS and SPIRE) and Spitzer Space Telescope [12] (MIPS). We apply radiometric modeling techniques (NEATM [2]) to the measured fluxes to

  4. Thermal Properties Of Trans-neptunian Objects And Centaurs From Combined Herschel And Spitzer Observations

    NARCIS (Netherlands)

    Lellouch, Emmanuel; Santos-Sanz, P.; Mommert, M.; Fornasier, S.; Stansberry, J.; Müller, T.; Duffard, R.; Ortiz, J.; Kiss, C.; Vilenius, E.; Mueller, M.; Lacerda, P.; Harris, A.; TNOs are Cool Team, [No Value

    2012-01-01

    We present a study of the thermal properties of about 70 trans-Neptunian objects (TNOs) and Centaurs observed with Herschel Space Observatory (either PACS or PACS/SPIRE) and Spitzer (MIPS). The combined wavelength range is 24-160 μm and additionally up to 500 μm for a few targets. We apply

  5. Dust evolution in protoplanetary disks around Herbig Ae/Be stars—the Spitzer view

    NARCIS (Netherlands)

    Juhász, A.; Bouwman, J.; Henning, T.; Acke, B.; van den Ancker, M.E.; Meeus, G.; Dominik, C.; Min, M.; Tielens, A.G.G.M.; Waters, L.B.F.M.

    2010-01-01

    In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the

  6. Waters, dust evolution in protoplanetary disks around herbig ae/be stars—the spitzer view

    NARCIS (Netherlands)

    Juhász, A.; Bouwman, J.; Henning, Th.; Acke, B.; Van Den Ancker, M.; Meeus, G.; Dominik, C.; Min, M.|info:eu-repo/dai/nl/277318416; Tielens, A. G. G. M.; Waters, L.B.F.M.

    2010-01-01

    In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the

  7. Dust Evolution in Protoplanetary Disks Around Herbig Ae/Be Stars—the Spitzer View

    NARCIS (Netherlands)

    Juhasz, A.; Bouwman, J.; Henning, Th.; Acke, B.; van den Ancker, M. E.; Meeus, G.; Dominik, C.; Min, M.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    2010-01-01

    In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the

  8. The Spitzer IRS infrared spectrum and abundances of the planetary nebula IC 2448

    NARCIS (Netherlands)

    Guiles, S.; Bernard-Salas, J.; Pottasch, S. R.; Roellig, T. L.

    2007-01-01

    We present the mid-infrared spectrum of the planetary nebula IC 2448. In order to determine the chemical composition of the nebula, we use the infrared line fluxes from the Spitzer spectrum along with optical line fluxes from the literature and ultraviolet line fluxes from archival IUE spectra. We

  9. Visible photometry of NEOs in support of a Warm Spitzer program

    Science.gov (United States)

    Trilling, David E.; Jones, Sarah; Penprase, Bryan; Emery, Josh; Harris, Alan; Spahr, Tim; Delbo, Marco

    2009-08-01

    Near Earth Objects (NEOs) may act as dynamical and compositional tracers of the history of near-Earth space. However, despite their scientific importance, key characteristics of the NEO population -- such as the size distribution, mix of albedos and mineralogies, and contributions from so-called dead or dormant comets -- remain largely unexplored; some 99% of all presently known NEOs are essentially uncharacterized. We have been awarded 500 hours of Warm Spitzer time to study some 700 NEOs. The Spitzer data will allow us to measure thermal fluxes and, in combination with optical data, derive albedos and diameters for a large fraction of all known NEOs. Remarkably, the primary uncertainty in our Spitzer results will derive from a lack of good optical photometry for our targets. Fortunately, our targets are generally bright, and obtaining good V band measurements of them requires only a modest amount of time on modest aperture telescopes. We propose here for 36 hours of SMARTS 1.3-m time or 54 hours of SMARTS 0.9-m time to obtain visible photometry of the 72 southern moderately bright ``B'' semester targets in our Warm Spitzer program. These program is ideal for queue/service observing because each observation requires only ~30 minutes and our targets are all over the sky.

  10. Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey

    NARCIS (Netherlands)

    Kistler, John; Trilling, D. E.; Mueller, M.; Hora, J. L.; Harris, A. W.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Emery, J. P.; Fazo, G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    The Warm Spitzer NEO survey, ExploreNEOs, will observe approximately 700 Near Earth Asteroids. Several of these objects are known to be binary asteroid systems. Binary systems are interesting due to the unique opportunity they present for determining the masses and densities of their constituent

  11. Spitzer Photometry of WISE-selected Brown Dwarf and Hyper-luminous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen; Yan, Lin

    2012-11-01

    We present Spitzer 3.6 and 4.5 μm photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 μm ~ 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (>20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of ~7.33 × 105 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μm photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  12. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  13. New Results from Spitzer's Journey Through The Earth's Resonant Ring: 2004-2006

    Science.gov (United States)

    Jayaraman, Sumita; Grogan, K.; Bhattacharya, B.; Reach, W. T.

    2006-09-01

    The Spitzer Space Telescope, in its solar orbit, has been drifting away from the Earth - enabling it to trace a path through the Earth's Resonant Ring, specifically, traverse through the resonant dust cloud that follows the Earth. The dust cloud causes the mid-infrared flux in the sky to be higher in the trailing direction when viewed from the Earth. After launch, Spitzer has slowly entered into the dust cloud and has crossed over the peak dust density of the trailing dust cloud. This causes a change in the trailing/leading asymmetry in the background flux. Eventually the leading flux will be higher as Spitzer views the cloud from the opposite side at the end of the mission. We have designed a zodiacal background monitoring program for the ecliptic and north and south ecliptic poles to obtain absolutely calibrated data in the MIPS total power mode. This program includes observations from 2004 to 2006 and will continue into the next observation cycle. We present new results measuring the change in the zodiacal background radiation at 24 microns in combination with science calibration observation observations from IRAC during this period. Further comparison of the multi-wavelength measurements to models shows the detailed ring structure and the provide estimates of the ring dust density in the Resonant Ring. We would like to thank NASA/JPL for funding this program through the Spitzer GO Cycle. We would also like to thank the Spitzer Science Center for helping us to schedule the individual solar system observations after the MIPS campaign dates are fixed and contributing the IRAC calibration observations.

  14. New Software for Ensemble Creation in the Spitzer-Space-Telescope Operations Database

    Science.gov (United States)

    Laher, Russ; Rector, John

    2004-01-01

    Some of the computer pipelines used to process digital astronomical images from NASA's Spitzer Space Telescope require multiple input images, in order to generate high-level science and calibration products. The images are grouped into ensembles according to well documented ensemble-creation rules by making explicit associations in the operations Informix database at the Spitzer Science Center (SSC). The advantage of this approach is that a simple database query can retrieve the required ensemble of pipeline input images. New and improved software for ensemble creation has been developed. The new software is much faster than the existing software because it uses pre-compiled database stored-procedures written in Informix SPL (SQL programming language). The new software is also more flexible because the ensemble creation rules are now stored in and read from newly defined database tables. This table-driven approach was implemented so that ensemble rules can be inserted, updated, or deleted without modifying software.

  15. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  16. SPITZER INFRARED SPECTROMETER 16 μm OBSERVATIONS OF THE GOODS FIELDS

    International Nuclear Information System (INIS)

    Teplitz, Harry I.; Chary, Ranga; Elbaz, David; Le Floc'h, Emeric; Dickinson, Mark; Bridge, Carrie; Howell, Justin H.; Siana, Brian; Colbert, James; Scarlata, Claudia; Frayer, David T.; Koo, David C.; Phillips, Andrew; Papovich, Casey; Spinrad, Hyron; Stern, Daniel

    2011-01-01

    We present Spitzer 16 μm imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 arcmin 2 in each of the two GOODS fields (North and South), to an average 3σ depth of 40 and 65 μJy, respectively. We detect ∼1300 sources in both fields combined. We validate the photometry using the 3-24 μm spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields shows reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross-correlated with available Spitzer, Chandra, and Hubble Space Telescope data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI with improved uncertainties. We examine the 16-24 μm flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S 16 /S 24 >1.4 selects mostly sources which lie at 1.1 -2 sr -1 .

  17. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  18. Spitzer and Variable Young Stars: Shining a Spotlight on Circumstellar Disks

    Science.gov (United States)

    Cody, Ann Marie; CSI 2264 Team

    2014-01-01

    Since its launch in 2003, the Spitzer Space Telescope has helped to uncover hundreds of disk bearing young stars in clusters by detecting their infrared excesses. Study of the spectral energy distributions of these objects has shed light on disk evolution, dispersal, and the relationship to planet formation. With the start of the Warm Spitzer Mission, mid-infrared time series observations have opened up a new window into the dynamic nature of these systems. Not only are young stellar objects (YSOs) highly variable, but so are their disks! I will review recent findings on mid-infrared variability in young stars, highlighting the Young Stellar Object Variability project and the joint Spitzer/CoRoT Coordinated Synoptic Investigation of NGC 2264. These efforts have resulted in a comprehensive census and categorization of YSO flux behavior at 0.5 through 4.5 microns, on timescales from hours to months. We now have evidence for multiple simultaneous variability mechanisms, supporting the picture of a highly dynamic star-disk system.

  19. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Chen, Christine H.; Mittal, Tushar; Lisse, Carey M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005 (India); Watson, Dan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Nesvold, Erika; Kuchner, Marc [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  20. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  1. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  2. Spitzer/IRS Observations Of Multiple Main-Belt And Binary Near-Earth Asteroids

    Science.gov (United States)

    Enriquez, J. Emilio; Marchis, F.; Emery, J. P.; Im, S.

    2010-10-01

    Since the discovery of Ida's companion in 1993, 195 companions of asteroids have been discovered. To understand the formation process of these interesting bodies, their physical properties such as their bulk density, size, shape, and surface roughness need to be determined. During the Spitzer Cycle-4, we obtained IRS thermal emission spectra (5-42 um) of 23 known binary systems. The majority of asteroids are from the main-belt (16), while the rest are NEOs (7). After extracting the thermal spectra, we used a modified Standard Thermal Model (STM) to calculate their equivalent diameter (from 0.8 km to 237 km), their albedo (from 0.04 for C-type to 0.394 for a V-type) and their beaming factor related to the surface roughness and thermal inertia. We derive their emissivity spectra, which is useful to detect silicate features. Combining these measurements with 3D-models of these multiple asteroid systems obtained by lightcurve inversion, we should be able to derive an accurate estimate of their bulk-density and contrast them with their taxonomic classes. Preliminary studies by Marchis et al. (2008)1, suggested a relationship between bulk density and the taxonomic class of asteroids, which varies from 0.9 g/cc for C-complex to 2.4 g/cc for S-complex asteroids. The National Science Foundation supported this research under award number AAG-0807468. It was conducted with the Spitzer space telescope, which is operated by JPL under a contract with NASA. 1 Marchis et al. , 2008, "Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS", 40th DPS Meeting, Bulletin of the American Astronomical Society, 40, 508

  3. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    Science.gov (United States)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  4. Observations of V592 Cassiopeiae with the Spitzer Space Telescope - Dust in the Mid-Infrared

    OpenAIRE

    Hoard, D. W.; Kafka, Stella; Wachter, Stefanie; Howell, Steve B.; Brinkworth, Carolyn S.; Ciardi, David R.; Szkody, Paula; Belle, Kunegunda; Froning, Cynthia; van Belle, Gerard

    2008-01-01

    We present the ultraviolet-optical-infrared spectral energy distribution of the low inclination novalike cataclysmic variable (CV) V592 Cassiopeiae, including new mid-infrared observations from 3.5 to 24 μm obtained with the Spitzer Space Telescope. At wavelengths shortward of 8 μm, the spectral energy distribution of V592 Cas is dominated by the steady state accretion disk, but there is flux density in excess of the summed stellar components and accretion disk at longer wavelengths. Reproduc...

  5. Spitzer 3.6 and 5.8 micron Monitoring of the Seyfert 1 NGC 4051

    Science.gov (United States)

    Gorjian, Varoujan; Adkins, J.; Borders, K.; Kelly, S.; Martin, C.; Mendez, B.; Paradis, J.; Perreira, V.; Pittman, P.; Sepulveda, B.; NGC 4051 Monitoring Group

    2009-01-01

    We used the Spitzer Space Telescope Infrared Array Camera (IRAC) to monitor the Seyfert 1 active galactic nucleus NGC 4051. We took data at 3.6 and 5.8 microns every day for 10 days in June 2008. We also observed in the optical at B, V, and R bands starting a month before the IRAC observations with various ground based observatories, though we were unable to achieve daily coverage. We will present the IR and optical light curves and will search for correlated variability that may be evidence of dust reverberation. For the education and public outreach component of this program please see Sepulveda et al.

  6. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    International Nuclear Information System (INIS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-01-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  7. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    Science.gov (United States)

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Albedo Corrections for High Albedo Near Earth Objects Observed With Spitzer

    Science.gov (United States)

    Gustafsson, Annika; Trilling, David E.; Mommert, Michael; Hora, Joseph L.

    2017-10-01

    Thermal infrared observations are the most effective way to measure asteroid diameter and albedo. Major surveys like NEOWISE and NEOSurvey return a small fraction of objects with albedo values higher than that believed to exist in the near-Earth object (NEO) population. About 10% of Spitzer-observed NEOs have nominal albedo solutions greater than 0.5. There are many possible causes for these unrealistically high albedos, including thermal lightcurves (leading to a mis-estimate of asteroid diameter) or inaccurate absolute visual magnitudes (either from poor photometry or lightcurve effects). We present here the results of a ground-based optical photometric study of 36 high albedo NEOs from NEOSurvey (Trilling et al. 2016) using measurements from the Discovery Channel Telescope. Our findings indicate that uncertainty in the diameter has the most impact on the derived albedo of our targets, while the uncertainty in the H-magnitude and slope parameter have smaller effects. We supply corrected albedos for our target list, as well as a systematic offset dependent on the solar phase angle of the object (Mommert el al. 2017). These corrected albedo values will help constrain the albedo range in the population to better reflect its physical characteristics. This work is based in part on the observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  9. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  10. Spitzer IRAC mid-infrared photometry of 500-750 brown dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Saumon, Didier [Los Alamos National Laboratory; Leggett, Sandy K [GEMINI OBSERVATORY; Albert, Loic [CFH TELESCOPE; Artigau, Etienne [U OF MONTREAL; Burningham, Ben [HERTFORDSHIRE U; Delfosse, Xavier [OBS. GRENOBLE; Delorme, Philippe [ST. ANDREWS U.; Forveille, Thierry [OBS. GRENOBLE; Lucas, Philip W [HERTFORDSHIRE U; Marley, Mark S [NASA AMES; Pinfield, David J [HERTFORDSHIRE U.; Reyle, Celine [OBS. BESANCON; Smart, Richard L [OSS. ASTRON, TORINO; Warren, Stephen J [IMPERIAL COLLEGE LONDON

    2010-10-26

    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T{sub eff}) drops from 800K to 400K, the fraction of flux emitted beyond 3 {mu}m increases rapidly, from about 40% to > 75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon and Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T{sub eff} {approx} 500K to 750K.

  11. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V.; Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Friedmann, M. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hundertmark, M. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen K (Denmark); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Kerr, T.; Varricatt, W. [UKIRT, 660 N. Aohoku Place, University Park, Hilo, HI 96720 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  12. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    Science.gov (United States)

    Arendt, Richard G.; Dweek, Eli; Blair, William P.; Ghavamian, Parviz; Hwang, Una; Long, Knox X.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 micrometers shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  13. DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS-THE SPITZER VIEW

    International Nuclear Information System (INIS)

    Juhasz, A.; Bouwman, J.; Henning, Th.; Acke, B.; Waters, L. B. F. M.; Van den Ancker, M. E.; Meeus, G.; Min, M.; Dominik, C.; Tielens, A. G. G. M.

    2010-01-01

    In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standardized protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and silica. No other solid-state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating that grain growth and sedimentation decrease the disk flaring. We did not find, however, correlations between the value of crystallinity and any of the investigated system parameters. Our analysis shows that enstatite is more concentrated toward the warm inner disk than forsterite, in contrast to predictions of equilibrium condensation models. None of the three crystal formation mechanisms proposed so far can alone explain all our findings. It is very likely that all three play at least some role in the formation of crystalline silicates.

  14. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    Science.gov (United States)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  15. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    Science.gov (United States)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  16. SPITZER OBSERVATIONS OF DUST DESTRUCTION IN THE PUPPIS A SUPERNOVA REMNANT

    International Nuclear Information System (INIS)

    Arendt, Richard G.; Dwek, Eli; Blair, William P.; Hwang, Una; Ghavamian, Parviz; Long, Knox S.; Petre, Robert; Rho, Jeonghee; Winkler, P. Frank

    2010-01-01

    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 μm shows an extremely good correlation with X-ray emission, indicating that the SNR's IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains.

  17. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    Science.gov (United States)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  18. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD : HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    NARCIS (Netherlands)

    Oliveira, Isa; Pontoppidan, Klaus M.; Merin, Bruno; van Dishoeck, Ewine F.; Lahuis, Fred; Geers, Vincent C.; Jorgensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 mu m) spectra of a complete flux-limited sample (>= 3 mJy at 8 mu m) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and

  19. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    International Nuclear Information System (INIS)

    Xu, S.; Jura, M.

    2012-01-01

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs—J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have ∼1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  20. Discovery of hyperluminous infrared galaxies using Spitzer and SHARC-II

    Science.gov (United States)

    Borys, C.; Barnard, V.; Bian, C.; Blain, A. W.; Brown, M. J. I.; Dey, A.; Dowell, C. D.; Frayer, D. T.; Higdon, J.; Higdon, S.; Jannuzi, B.; Le Floch, E.; Soifer, B. T.; Phillips, T. G.

    2005-01-01

    We have used observations taken as part of the Bootes Spitzer GTO program to pre-select high redshift luminous star-forming galaxy candidates. Subsequent ground-based sub-millimeter imaging with SHARC-II at the Caltech Submillimeter Observatory detected several objects, including one particularly exotic one: An extremely bright infrared galaxy with an apparent luminosity in excess of 1013.5Lsolar. It has a spectral energy distribution similar to that of Arp 220, though appears to be at a much higher redshift. Although lensing is one possible explanation, this object has helped refine the selection method, and hints at a way to pre-select similar objects using mid-IR silicate absorption features.

  1. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  2. Spitzer ’s View of the Candidate Cluster and Protocluster Catalog (CCPC)

    Energy Technology Data Exchange (ETDEWEB)

    Franck, J. R.; McGaugh, S. S. [Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 (United States)

    2017-02-10

    The Candidate Cluster and Protocluster Catalog contains 218 galaxy overdensities composed of more than 2000 galaxies with spectroscopic redshifts spanning the first few Gyr after the Big Bang (2.0 ≤ z < 6.6). We use Spitzer archival data to track the underlying stellar mass of these overdense regions in various temporal cross sections by building rest-frame near-infrared luminosity functions (LFs) across the span of redshifts. This exercise maps the stellar growth of protocluster galaxies, as halos in the densest environments should be the most massive from hierarchical accretion. The characteristic apparent magnitude, m *( z ), is relatively flat from 2.0 ≤ z < 6.6, consistent with a passive evolution of an old stellar population. This trend maps smoothly to lower redshift results of cluster galaxies from other works. We find no difference in the LFs of galaxies in the field versus protoclusters at a given redshift apart from their density.

  3. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  4. Spitzer spectral line mapping of the HH211 outflow

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Cabrit, Sylvie

    2010-01-01

    of emission line diagnostics and an existing grid of molecular shock models. The physical properties of the warm gas are compared against other molecular jet tracers and to the results of a similar study towards the L1448-C outflow. Results: We have detected and mapped the v=0-0 S(0) - S(7) H2 lines and fine...... compared to solar abundances by a factor ~10-50. Conclusions: Spitzer spectral mapping observations reveal for the first time a cool H$_2$ component towards the CO jet of HH211 consistent with the CO material being fully molecular and warm at ~ 300 K. The maps also reveal for the first time the existence...... uncertainties on jet speed and shock conditions are too large for a definite conclusion....

  5. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku, E-mail: pcubillos@fulbrightmail.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  6. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  7. SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER /IRS SPECTRAL MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Nishimura, A.; Kohno, M. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, T.; Ohashi, S. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagayama, T.; Matsuo, M. [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Umemoto, T.; Minamidani, T.; Fujita, S. [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsuda, Y., E-mail: yamagish@ir.isas.jaxa.jp [Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042 (Japan)

    2016-12-20

    We present Spitzer /IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br γ and Nobeyama 45 m/FOREST {sup 13}CO ( J = 1–0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2  μ m. We find that the PAH emission features are bright in the region between the H ii region traced by Br γ and the molecular cloud traced by {sup 13}CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer /IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7  μ m/PAH 11.3  μ m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0  μ m, 12.7  μ m, 13.5  μ m, and 14.2  μ m features to the PAH 11.3  μ m feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  8. Spitzer and Chandra Observations of the Deep Impact Encounter with Comet 9P/Tempel 1

    Science.gov (United States)

    Lisse, C. M.; A'Hearn, M. F.; Belton, M. J. S.; Bodewits, D.; Christian, D. J.; VanCleve, J.; Combi, M.; Dennerl, K.; Farnham, T. L.; Fernandez, Y. R.; Groussin, O.; Hoekstra, R.; Makinen, T.; McFadden, L. A.; Meech, K. J.; Schultz, P.; Weaver, H.; Wolk, S.

    2005-12-01

    On July 4, 2005 NASA's discovery mission Deep Impact (hereafter DI) sent a 375 kg impactor into the nucleus of comet 9P/Tempel 1 at 10.2 km/s relative velocity (A'Hearn et al. 2005). In the IR, Spitzer observed the comet in the unique 5-38 μm spectral range provided by the IRS instrument, allowing direct determination of silicaceous dust, PAHs, carbonates, and aluminum and iron oxides/sulfides in the subsurface material. The Spitzer observations contrasted well with the 1-5 μm spectra obtained by the DI High Resolution Instrument's IR spectrometer and ground based measurements at 1-5 um from the Keck and IRTF observatories (Meech et al. 2005), enabling us to obtain full coverage of the comet's IR spectrum from 1.0 to 38 μm. In the x-ray, the DI experiment allowed for a controlled test of the charge exchange (CXE) emission mechanism that drives cometary x-ray emission (Lisse et al. 2001, Kharchenko and Dalgarno 2001, Krasnopolsky et al. 2002) using observations with the Chandra ACIS-S CCD. The Chandra spectra show a fresh amount of neutral material was injected into a finite volume of the extended atmosphere, or coma, of the comet. In the matter of minutes, this new material directly increased the emission measure for the comet by 30 production from other measurements. Additional contemporaneous measurements by the XMM and SWIFT low energy x-ray imagers provided complimentary lightcurve data points, providing a good long term estimate of the comet's gas emission before, during, and after the Deep Impact encounter. Over the longer term, the combined lightcurves showed evidence of multiple natural outbursts of neutral gas emission from the comet.

  9. Spitzer Observations of MAMBO Galaxies: Weeding Out Active Nuclei in Starbursting Protoellipticals

    Science.gov (United States)

    Ivison, R. J.; Greve, T. R.; Serjeant, S.; Bertoldi, F.; Egami, E.; Mortier, A. M. J.; Alonso-Herrero, A.; Barmby, P.; Bei, L.; Dole, H.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Huang, J.-S.; Le Floc'h, E.; Misselt, K. A.; Miyazaki, S.; Morrison, J. E.; Papovich, C.; Pérez-González, P. G.; Rieke, M. J.; Rieke, G. H.; Rigby, J.; Rigopoulou, D.; Smail, I.; Wilson, G.; Willner, S. P.

    2004-09-01

    We present 3.6-24 μm Spitzer observations of an unbiased sample of nine luminous, dusty galaxies selected at 1200 μm by MAMBO on the IRAM 30 m telescope, a population akin to the well-known submillimeter or SCUBA galaxies (hereafter SMGs). Owing to the coarse resolution of submillimeter/millimeter cameras, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multiwavelength catalogs to show that the overlap between 24 and 1200 μm must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4 σ SMGs have >=4 σ counterparts at 1.4 GHz, while the fraction drops to 7/9 using all >=3 σ SMGs. We show that combining mid-infrared (MIR) and marginal (>=3 σ) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the MIR continuum emission for several sources, confirming Spitzer's potential to weed out active galaxies. We demonstrate the power of an S24μm/S8μm versus S8μm/S4.5μm color-color plot as a diagnostic for this purpose. However, we conclude that the majority (~75%) of SMGs have rest-frame mid/far-IR spectral energy distributions commensurate with obscured starbursts. Sensitive 24 μm observations are clearly a useful route to identify and characterize reliable counterparts to high-redshift far-IR-bright galaxies, complementing what is possible via deep radio imaging.

  10. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  11. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  12. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.

    2013-01-01

    The late-stage evolution of the most massive stars such as η Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby (∼ 10 5 L ☉ in the IRAC bands (3.6 to 8.0 μm) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 ± 6 surviving candidates. Since we would detect true analogs of η Car for roughly 200 years post-eruption, this implies that the rate of eruptions like η Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M ☉ star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 μm, allowing identification of η Car analogs for millennia rather than centuries post-eruption.

  13. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  14. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  15. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Agol, E.; /Washington U., Seattle, Astron. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Cowan, Nicolas B.; /Washington U., Seattle, Astron. Dept.; Knutson, Heather A.; /UC, Berkeley, Astron. Dept.; Deming, Drake; /NASA, Goddard; Steffen, Jason H.; /Fermilab; Henry, Gregory W.; /Tennessee State U.; Charbonneau, David; /Harvard-Smithsonian Ctr. Astrophys.

    2010-07-01

    We present observations of six transits and six eclipses of the transiting planet system HD 189733 taken with the Spitzer Space Telescope IRAC camera at 8 microns, as well as a re-analysis of previously published data. We use several novel techniques in our data analysis, the most important of which is a new correction for the detector 'ramp' variation with a double-exponential function which performs better and is a better physical model for this detector variation. Our main scientific findings are: (1) an upper limit on the variability of the day-side planet flux of 2.7% (68% confidence); (2) the most precise set of transit times measured for a transiting planet, with an average accuracy of 3 seconds; (3) a lack of transit-timing variations, excluding the presence of second planets in this system above 20% of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the planet's phase variation, finding the night side is 64% as bright as the day side, as well as an upper limit on the night-side variability of 17% (68% confidence); (5) a better correction for stellar variability at 8 micron causing the phase function to peak 3.5 hours before secondary eclipse, confirming that the advection and radiation timescales are comparable at the 8 micron photosphere; (6) variation in the depth of transit, which possibly implies variations in the surface brightness of the portion of the star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit absorption measurements of planet atmospheres; (7) a measurement of the infrared limb-darkening of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of secondary eclipse of 69 seconds, which is mostly accounted for by a 31 second light travel time delay and 33 second delay due to the shift of ingress and egress by the planet hot spot; this confirms that the phase variation is due to an offset hot

  16. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  17. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    DEFF Research Database (Denmark)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier

    2018-01-01

    and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution......Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual...

  18. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  19. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    Science.gov (United States)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  20. Serendipity Observations of Far Infrared Cirrus Emission in the Spitzer Infrared Nearby Galaxies Survey: Analysis of Far-Infrared Correlations

    Science.gov (United States)

    Bot, Caroline; Helou, George; Boulanger, François; Lagache, Guilaine; Miville-Deschenes, Marc-Antoine; Draine, Bruce; Martin, Peter

    2009-04-01

    We present an analysis of far-infrared (FIR) dust emission from diffuse cirrus clouds. This study is based on serendipitous observations at 160 μm at high-galactic latitude with the Multiband Imaging Photometer onboard the Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey. These observations are complemented with IRIS data at 100 and 60 μm and constitute one of the most sensitive and unbiased samples of FIR observations at a small scale of diffuse interstellar clouds. Outside regions dominated by the cosmic infrared background fluctuations, we observe a substantial scatter in the 160/100 colors from cirrus emission. We compared the 160/100 color variations to 60/100 colors in the same fields and find a trend of decreasing 60/100 with increasing 160/100. This trend cannot be accounted for by current dust models by changing solely the interstellar radiation field. It requires a significant change of dust properties such as grain size distribution or emissivity or a mixing of clouds in different physical conditions along the line of sight. These variations are important as a potential confusing foreground for extragalactic studies. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  1. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  2. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. I. CATALOG

    International Nuclear Information System (INIS)

    Chen, Xi; Gan, Cong-Gui; Shen, Zhi-Qiang; Ellingsen, Simon P.; Titmarsh, Anita; He, Jin-Hua

    2013-01-01

    We have produced a catalog containing 98 newly identified massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects, or EGOs). These have been identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) II data set and our new identifications increase the number of known EGOs to ∼400 in our Galaxy, adding to the ∼300 previously identified EGOs reported by Cyganowski et al. from the GLIMPSE I survey. The high detection rate (∼70%) of 95 GHz class I methanol masers achieved in a survey toward 57 of these new EGOs with the Mopra 22 m radio telescope demonstrates that the new EGOs are associated with outflows. Investigations of the mid-infrared properties and physical associations with other star formation tracers (e.g., infrared dark clouds, class I and II methanol masers, and millimeter Bolocam Galactic Plane Survey sources) reveal that the newly identified EGOs are very similar in nature to those in the sample of Cyganowski et al. All of the observational evidence supports the hypothesis that EGOs correspond to MYSOs at the earliest evolutionary stage, with ongoing outflow activity, and active rapid accretion.

  3. SPITZER OBSERVATIONS OF EXTENDED LYMAN-α CLOUDS IN THE SSA22 FIELD

    International Nuclear Information System (INIS)

    Webb, T. M. A.; Gonzalez, M.; Yamada, T.; Huang, J.-S.; Ashby, M. L. N; Matsuda, Y.; Egami, E.; Hayashimo, T.

    2009-01-01

    We present the results of a Spitzer IRAC and MIPS 24 μm study of extended Lyman-α clouds (or Lyman-α Blobs, LABs) within the SSA22 filamentary structure at z = 3.09. We detect 6/26 LABs in all IRAC filters, four of which are also detected at 24 μm, and find good correspondence with the 850 μm measurements of Geach et al. An analysis of the rest-frame ultraviolet, optical, near- and mid-infrared colors reveals that these six systems exhibit signs of nuclear activity (active galactic nucleus (AGN)) and/or extreme star formation. Notably, they have properties that bridge galaxies dominated by star formation (Lyman-break galaxies (LBGs)) and those with AGNs (LBGs classified as QSOs). The LAB systems not detected in all four IRAC bands, on the other hand, are, as a group, consistent with pure star-forming systems, similar to the majority of the LBGs within the filament. These results indicate that the galaxies within LABs do not comprise a homogeneous population, though they are also consistent with scenarios in which the gas halos are ionized through a common mechanism such as galaxy-scale winds driven by the galaxies within them, or gravitational heating of the collapsing cloud itself.

  4. SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Herbst, William [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); DeMarchi, Lindsay [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Balog, Zoltan [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Megeath, S. Thomas [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Furlan, Elise [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Gutermuth, Robert [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-12-10

    Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring in ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.

  5. Stellar mass estimation based on IRAC photometry for Spitzer SWIRE-field galaxies

    International Nuclear Information System (INIS)

    Zhu Yinan; Wu Hong; Li Haining; Cao Chen

    2010-01-01

    We analyze the feasibility of estimating the stellar mass of galaxies by mid-infrared luminosities based on a large sample of galaxies cross-identified from Spitzer SWIRE fields and the SDSS spectrographic survey. We derived the formulae to calculate the stellar mass by using IRAC 3.6 μm and 4.5 μm luminosities. The mass-to-luminosity ratios of IRAC 3.6 μm and 4.5 μm luminosities are more sensitive to the star formation history of galaxies than to other factors, such as the intrinsic extinction, metallicity and star formation rate. To remove the effect of star formation history, we used g - r color to recalibrate the formulae and obtain a better result. Researchers must be more careful when estimating the stellar mass of low metallicity galaxies using our formulae. Due to the emission from dust heated by the hottest young stars, luminous infrared galaxies present higher IRAC 4.5 μm luminosities compared to IRAC 3.6 μm luminosities. For most of type-II AGNs, the nuclear activity cannot enhance 3.6 μm and 4.5 μm luminosities compared with normal galaxies. Star formation in our AGN-hosting galaxies is also very weak, almost all of which are early-type galaxies.

  6. VizieR Online Data Catalog: Spitzer h and {chi} Persei candidate members (Cloutier+, 2014)

    Science.gov (United States)

    Cloutier, R.; Currie, T.; Rieke, G. H.; Kenyon, S. J.; Balog, Z.; Jayawardhana, R.

    2017-08-01

    The IRAC (Fazio et al. 2004ApJS..154...39F) observed h and {chi} Persei on October 30, 2008 (AOR IDs 2182740, 21828608, 21828096, 21828864, 21828352, and 2182912). Solar activity was normal to below average. Zodical emission ranged between ~0.02 and 2 MJy/sr from 3.6 um to 8 um. Image processing and photometry were performed separately for the short-exposure and long-exposure frames. The MIPS (Rieke et al. 2004ApJS..154...25R) imaged h and {chi} Persei on 2008 March 15-16, 2008 October 25-26, and 2009 March 26 and 29 as a part of General Observation Programs 40690 and 50664 (PI: Scott Kenyon). To identify and characterize disks surrounding h and {chi} Persei stars, we combine Spitzer data with optical/near-IR data for likely cluster members, updating the list from Currie et al. (2010, J/ApJS/186/191) with a more accurate one of 13956 stars (Table 1). (3 data files).

  7. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  8. Investigating the Evolution of the Mass-Metallicity-SFR Relation at z<1.6 with Deep GALEX and Spitzer Imaging

    Science.gov (United States)

    Rigby, Jane

    The gas-phase metallicity of galaxies is a fossil tracer of what has happened physically in and around galaxies: gas inflows, star formation, mergers, and ``feedback'' from star formation. Therefore, measuring the dependence of metallicity on stellar mass, star formation rate (SFR), and redshift is a key test of galaxy evolution models. While metallicity studies have attempted to extend to higher redshifts, most of these studies have failed to study low-mass galaxies. This population is of great interest as stellar feedback effects, which are responsible for distributing the metals in galaxies, are expected to play a significant role in their evolution. Moreover, low-mass galaxies are the dominant population in the early universe, and are thought to produce most of the ionizing photons to reionize the universe. Here we propose to study the physical properties and evolution of emission-line selected galaxies at zstar-forming galaxies, the mass-metallicity and mass-metallicity-SFR relation over the past 8 billions years or 60% of cosmic time. Our second science objective is to determine the evolution of the stellar mass-SFR relation over the same cosmic period with a much larger sample, 9,000 emission-line galaxies. We will then use our determination of these relations to compare and constrain predictions from galaxy formation models that consider the balance between star formation and gas flows. To accomplish these goals, we will merge a unique combination of deep archival imaging from GALEX (ultraviolet) and Spitzer (infrared), existing ground-based optical through near-infrared imaging, and existing optical and near-infrared spectroscopy. The latter is a strength of our program, as we have more deep follow-up spectroscopy ( 1000) on low-mass and high specific SFR galaxies than any other metallicity study. These observations will allow us to acquire robust measures of stellar masses, dust attenuation, dust-corrected SFRs, and oxygen abundances. In particular, the

  9. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  10. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  11. Chemical spectroscopy

    International Nuclear Information System (INIS)

    Eckert, J.; Brun, T.O.; Dianoux, A.J.; Howard, J.; Rush, J.J.; White, J.W.

    1984-01-01

    The purpose of chemical spectroscopy with neutrons is to utilize the dependence of neutron scattering cross-sections on isotope and on momentum transfer (which probes the spatial extent of the excitation) to understand fundamental and applied aspects of the dynamics of molecules and fluids. Chemical spectroscopy is divided into three energy ranges: vibrational spectroscopy, 25-500 MeV, for which much of the work is done on Be-filter analyzer instruments; low energy spectroscopy, less than 25 MeV; and high resolution spectroscopy, less than 1 MeV, which typically is performed on backscattering spectrometers. Representative examples of measurements of the Q-depenence of vibrational spectra, higher energy resolution as well as extension of the Q-range to lower values at high energy transfers, and provisions of higher sensitivities in vibrational spectroscopy are discussed. High resolution, high sensitivity, and polarization analysis studies in low energy spectroscopy are discussed. Applications of very high resolution spectroscopy are also discussed

  12. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  13. Dissociation mechanisms and dynamics of doubly charged CD3CN observed by PEPIPICO spectroscopy

    International Nuclear Information System (INIS)

    Harada, C.; Tada, S.; Yamamoto, K.; Senba, Y.; Yoshida, H.; Hiraya, A.; Wada, S.; Tanaka, K.; Tabayashi, K.

    2006-01-01

    Dissociation of free acetonitrile-d 3 molecule, CD 3 CN induced by core level excitation was studied near the nitrogen K-edge by time-of-flight fragment mass spectroscopy. A variety of atomic and molecular fragment cations such as D + , CD n + , C 2 D n + , and CD n CN + were detected using the effusive CD 3 CN beam. Photoelectron-photoion-photoion coincidence technique was applied to analyse the dissociation mechanisms and dynamics of doubly charged CD 3 CN 2+ following the N(1s-π * ) excitation. The charge separation mechanisms of core-excited CD 3 CN were discussed in connection with Auger final state distributions

  14. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L.

    2010-01-01

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 μm in the UBVIJHK s +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 μm in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  15. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: quarkosmos@kasi.re.kr [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  16. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF T TAURI STARS IN TAURUS

    International Nuclear Information System (INIS)

    Furlan, E.; Luhman, K. L.; Espaillat, C.

    2011-01-01

    We present 161 Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars and young brown dwarfs in the Taurus star-forming region. All of the targets were selected based on their infrared excess and are therefore surrounded by protoplanetary disks; they form the complete sample of all available IRS spectra of T Tauri stars with infrared excesses in Taurus. We also present the IRS spectra of seven Class 0/I objects in Taurus to complete the sample of available IRS spectra of protostars in Taurus. We use spectral indices that are not significantly affected by extinction to distinguish between envelope- and disk-dominated objects. Together with data from the literature, we construct spectral energy distributions for all objects in our sample. With spectral indices derived from the IRS spectra we infer disk properties such as dust settling and the presence of inner disk holes and gaps. We find a transitional disk frequency, which is based on objects with unusually large 13-31 μm spectral indices indicative of a wall surrounding an inner disk hole, of about 3%, and a frequency of about 20% for objects with unusually large 10 μm features, which could indicate disk gaps. The shape and strength of the 10 μm silicate emission feature suggests weaker 10 μm emission and more processed dust for very low mass objects and brown dwarfs (spectral types M6-M9). These objects also display weaker infrared excess emission from their disks, but do not appear to have more settled disks than their higher-mass counterparts. We find no difference for the spectral indices and properties of the dust between single and multiple systems.

  17. MODELS OF THE η CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, J.; Beichman, C.; Millan-Gabet, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, G.; Mennesson, B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91107 (United States); Defrère, D. [Department of Astronomy, University of Arizona, 993 N. Cherry Avenue, Tucson, AZ, 85721 (United States); Boccaletti, A., E-mail: lebretoj@gmail.com [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  18. DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.

    2009-01-01

    We present observations in eight wavebands from 1.25 to 24 μm of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the young stellar object (YSO) population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded YSOs. L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7 x 10 -5 to 5 x 10 -4 L sun for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law toward each background star. These measurements are averaged spatially, to create χ 2 maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the χ 2 maps, we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroying the larger dust grains, thus altering the extinction law in those regions. On average, however, our extinction law is relatively flat from 3.6 to 24 μm for all ranges of extinction and in all four cores. From 3.6 to 8 μm, this law is consistent with a dust model that includes larger dust grains than the diffuse interstellar medium, which suggests grain growth has occurred in our cores. At 24 μm, our extinction law is two to four times higher than predicted by dust models. However, it is similar to other empirical measurements.

  19. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  20. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Arendt, R. [Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Barmby, P. [University of Western Ontario, London, ON N6A 3K7 (Canada); Barro, G.; Faber, S.; Guhathakurta, P. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bouwens, R. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Cattaneo, A. [Aix Marseille Universite, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388, Marseille (France); Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218 Hawthorn, VIC 3122 (Australia); Dave, R. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dunlop, J. S. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Egami, E. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Finlator, K. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, CK-2100 Copenhagen O (Denmark); Grogin, N. A., E-mail: mashby@cfa.harvard.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  1. A Spitzer search for transits of radial velocity detected super-Earths

    International Nuclear Information System (INIS)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.; Howard, A. W.; Laughlin, G. P.; Fortney, J. J.; Deming, D.; Todorov, K. O.; Agol, E.; Burrows, A.; Showman, A. P.; Lewis, N. K.

    2014-01-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  2. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    Science.gov (United States)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  3. Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC

    Science.gov (United States)

    Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.

    2010-01-01

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric

  4. PHOTOMETRIC MONITORING OF THE COLDEST KNOWN BROWN DWARF WITH THE SPITZER SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cushing, M. C.; Hardegree-Ullman, K. K.; Trucks, J. L.; Schneider, A. C. [Department of Physics and Astronomy, The University of Toledo, OH 43606 (United States); Burgasser, A. J., E-mail: taran.esplin@psu.edu [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States)

    2016-11-20

    Because WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (∼250 K) and one of the Sun’s closest neighbors (2.2 pc), it offers a unique opportunity to study a planet-like atmosphere in an unexplored regime of temperature. To detect and characterize inhomogeneities in its atmosphere (e.g., patchy clouds, hot spots), we have performed time-series photometric monitoring of WISE 0855-0714 at 3.6 and 4.5 μ m with the Spitzer Space Telescope during two 23 hr periods that were separated by several months. For both bands, we have detected variability with peak-to-peak amplitudes of 4%–5% and 3%–4% in the first and second epochs, respectively. The light curves are semiperiodic in the first epoch for both bands, but they are more irregular in the second epoch. Models of patchy clouds have predicted a large increase in mid-infrared (mid-IR) variability amplitudes (for a given cloud covering fraction) with the appearance of water ice clouds at T {sub eff} < 375 K, so if such clouds are responsible for the variability of WISE 0855-0714, then its small amplitudes of variability indicate a very small deviation in cloud coverage between hemispheres. Alternatively, the similarity in mid-IR variability amplitudes between WISE 0855-0714 and somewhat warmer T and Y dwarfs may suggest that they share a common origin for their variability (i.e., not water clouds). In addition to our variability data, we have examined other constraints on the presence of water ice clouds in the atmosphere of WISE 0855-0714, including the recent mid-IR spectrum from Skemer et al. (2016). We find that robust evidence of such clouds is not yet available.

  5. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  6. Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Binon, F.; Frere, J.M.; Peigneux, J.P.

    1989-01-01

    HADRON 89 is the third of a series of biennial conferences on hadron spectroscopy which are now replacing the former separate meson and baryon spectroscopy conferences. The first one, HADRON 85, was held at the University of Maryland. The second one, HADRON 87, has taken place at KEK in Tsukuba in Japan. This conference is divided into 7 sessions bearing on: - session 1 Light mesons and exotics (19 conferences) - session 2 Light mesons and exotics-theory-phonomenology (15 conferences) - session 3 Theoretical problems (14 conferences) - session 4 New detectors factories (9 conferences) - session 5 Baryons (7 conferences) - session 6 Heavy flavor spectroscopy (7 conferences) - session 7 Concluding hadron 89 (3 conferences)

  7. Electronic spectroscopies

    OpenAIRE

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is directly chemical since the outer shell electrons of the TMI are probed and provide information about the oxidation state and coordination environment of TMI on surfaces. Furthermore, the DRS technique ca...

  8. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  9. How to restore the fiduciary relationship. An interview with Eliot Spitzer. Interview by Louise O'Brien.

    Science.gov (United States)

    Spitzer, Eliot

    2004-05-01

    Eliot Spitzer's investigations into the mutual fund and investment-banking industries have made the New York State attorney general the de facto flag bearer of corporate reform. His exposure of conflicts of interest between investment bankers and research analyst in Wall Street firms led to the $1.4 billion global settlement between regulators and banking houses in 2003. In this interview, Spitzer describes the challenge of protecting public markets from conflicts of interest, paying particular attention to how such conflicts get institutionalized in an industry. "The cases that have gotten me and my fellow regulators most upset are the ones where we've seen senior management being tolerant of rank abuses," he says. "Because then you know that the entire structure is rotten." He also points the finger squarely at boards, maintaining that board members are drawn from pools of company and industry insiders. He cites "a void in values in a lot of boardrooms," holding up executive compensation as a powerful example. "Board compensation committees ... are self-selected and interwoven--it's a rigged marketplace." He continues, "It would be interesting to see what the world would look like if CEO pay packages had to be submitted to shareholder votes." Spitzer suggests that what's really needed is for all business leaders to reinstill throughout their organizations the critical notion of a fiduciary duty--whether it is to the shareholder or to the customer. Using the mutual fund industry as an example, he also contrasts the value of enforcement with that of regulation and articulates an important--and surprisingly limited--role for government in protecting free markets.

  10. The Demographics and Properties of Wide-Orbit, Planetary-Mass Companions from PSF Fitting of Spitzer/IRAC Images

    Science.gov (United States)

    Martinez, Raquel; Kraus, Adam L.

    2017-06-01

    Over the past decade, a growing population of planetary-mass companions ( 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces the observed characteristics of the PMCs will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are developing an automated pipeline to search for wide-orbit PMCs to young stars in Spitzer/IRAC images. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts χ2-minimizing instrumental PSFs, simultaneously measuring astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). In this work, we present the results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). We characterize the systems found to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be discussed. Once this computational foundation is optimized, the stage is set to quickly scour the nearby star-forming regions already imaged by Spitzer, identify potential candidates for further characterization with ground- or space-based telescopes, and increase the number of widely-separated PMCs known.

  11. Spitzer Observations of Comet 9P/Tempel 1 During Deep Impact : Water and Dust Production and Spatial Distribution

    Science.gov (United States)

    Gicquel, Adeline; Bockelée-Morvan, D.; Kelley, M. S.; Woodward, C. E.

    2009-09-01

    The Deep Impact (DI) spacecraft encountered comet 9P/Tempel 1 on July 4th, 2005 (rh = 1.506 AU). Spectral maps covering 20'' x 67'' (1.85''/pixel) were acquired with the IRS instrument on the Spitzer Space Telescope (ΔSpitzer = 0.72 AU) at different times around the Deep Impact event: twice before impact (TI-41.3hrs and TI-22.9hrs) and twelve times after impact (between TI+0.67hrs and TI+1027hrs). These IRS observations (Lisse et al 2006, Sciences 313, 635) were taken from the Spitzer data archive. We present the interpretation of 5.2-7.6 µm spectra obtained in the second order of the short-wavelength module (SL2). To reduce the contribution of artifacts in the spectra, 5x5 pixel extraction apertures (9.25''x9.25'') were used. On the first stage we studied the water ν2 vibrational band emission at 6.4µm, which is present in most spectra. The water production rate before impact is deduced ( 4.25e27 molecules/sec). In order to study both the amount and origin of the water molecules released after impact, we used extractions centered on the nucleus and along the length of the slit. We analyzed the spatial distribution of water and its time evolution with a time-dependent model which describes the evolution of the water cloud after impact. The underlying continuum in the spectra provides information on the evolution and color temperature of the dust ejecta. The dust mass and dust/gas ratio in the ejecta cloud are derived and compared with other values published in the literature.

  12. The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets

    Science.gov (United States)

    Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.

    2017-05-01

    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the

  13. The Spitzer survey of interstellar clouds in the Gould Belt. III. A multi-wavelength view of Corona Australis

    DEFF Research Database (Denmark)

    Peterson, Dawn E.; Caratti o Garatti, Alessio; Bourke, Tyler L.

    2011-01-01

    retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M sun Myr-1, similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main....... Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs...

  14. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Désert, Jean-Michel; Brown, Timothy M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bryson, Stephen T.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ford, Eric B. [University of Florida, Gainesville, FL 32611 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Seager, Sara, E-mail: desert@colorado.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  15. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  16. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  17. COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER INFRARED ARRAY CAMERA IMAGES: DATA PROCESSING AND ANALYSIS

    International Nuclear Information System (INIS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (∼>30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ∼1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (∼>1 nW m -2 sr -1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these

  18. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.

  19. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    International Nuclear Information System (INIS)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-01-01

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 (micro)m and 8.0 (micro)m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B ∼ 170 (micro)G in spot A, and B ∼ 270 (micro)G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to ∼ 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of ∼ 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies ∼> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets

  20. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    Science.gov (United States)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (gsim30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ~1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (gsim1 nW m-2 sr-1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these source

  1. SERENDIPITY OBSERVATIONS OF FAR INFRARED CIRRUS EMISSION IN THE SPITZER INFRARED NEARBY GALAXIES SURVEY: ANALYSIS OF FAR-INFRARED CORRELATIONS

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Boulanger, Francois; Lagache, Guilaine; Miville-Deschenes, Marc-Antoine; Draine, Bruce; Martin, Peter

    2009-01-01

    We present an analysis of far-infrared (FIR) dust emission from diffuse cirrus clouds. This study is based on serendipitous observations at 160 μm at high-galactic latitude with the Multiband Imaging Photometer onboard the Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey. These observations are complemented with IRIS data at 100 and 60 μm and constitute one of the most sensitive and unbiased samples of FIR observations at a small scale of diffuse interstellar clouds. Outside regions dominated by the cosmic infrared background fluctuations, we observe a substantial scatter in the 160/100 colors from cirrus emission. We compared the 160/100 color variations to 60/100 colors in the same fields and find a trend of decreasing 60/100 with increasing 160/100. This trend cannot be accounted for by current dust models by changing solely the interstellar radiation field. It requires a significant change of dust properties such as grain size distribution or emissivity or a mixing of clouds in different physical conditions along the line of sight. These variations are important as a potential confusing foreground for extragalactic studies.

  2. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  3. OBSERVATIONAL 5-20 μm INTERSTELLAR EXTINCTION CURVES TOWARD STAR-FORMING REGIONS DERIVED FROM SPITZER IRS SPECTRA

    International Nuclear Information System (INIS)

    McClure, M.

    2009-01-01

    Using Spitzer Infrared Spectrograph observations of G0-M4 III stars behind dark clouds, I construct 5-20 μm empirical extinction curves for 0.3 ≤ A K V between ∼3 and 50. For A K K > 1, the curve exhibits lower contrast between the silicate and absorption continuum, develops ice absorption, and lies closer to the Weingartner and Draine R V = 5.5 Case B curve, a result which is consistent with that of Flaherty et al. and Chiar et al. Recently, work using Spitzer Infrared Array Camera data by Chapman et al. independently reaches a similar conclusion that the shape of the extinction curve changes as a function of increasing A K . By calculating the optical depths of the 9.7 μm silicate and 6.0, 6.8, and 15.2 μm ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is a coagulation of ice-mantled grains rather than ice-mantled grains alone.

  4. Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

    Science.gov (United States)

    Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin

    2018-04-01

    Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

  5. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Science.gov (United States)

    Cappelluti, N.; Arendt, R.; Kashlinsky, A.; Li, Y.; Hasinger, G.; Helgason, K.; Urry, M.; Natarajan, P.; Finoguenov, A.

    2017-09-01

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer-IRAC cosmic infrared background and Chandra-ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ˜12 Ms of Chandra data collected over a total area of 0.3 deg2. We report the first (>5σ) detection of a cross-power signal on large angular scales >20″ between [0.5-2] keV and the 3.6 and 4.5 μm bands, at ˜5σ and 6.3σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  6. SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Mróz, P.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gould, A.; Zhu, W.; Pogge, R. W. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Calchi Novati, S. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We combine Spitzer and ground-based observations to measure the microlens parallax vector π{sub E}, and thus the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses of m ∼ 0.5 M {sub jup} and M ∼ 0.7 M {sub ☉} and are separated by a ∼ 3.1 AU in projection. The main source of uncertainty in all of these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius θ{sub E}, rather than uncertainty in π{sub E}, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the π{sub E} measurement, but also the first independent test of a ground-based π{sub E} measurement.

  7. A Search to Uncover the Infrared Excess (IRXS) Sources in the Spitzer Enhanced Imaging Products (SEIP) Catalog

    Science.gov (United States)

    Rowe, Jamie Lynn; Duranko, Gary; Gorjian, Varoujan; Lineberger, Howard; Orr, Laura; Adewole, Ayomikun; Bradford, Eric; Douglas, Alea; Kohl, Steven; Larson, Lillia; Lascola, Gus; Orr, Quinton; Scott, Mekai; Walston, Joseph; Wang, Xian

    2018-01-01

    The Spitzer Enhanced Imaging Products catalog (SEIP) is a collection of nearly 42 million point sources obtained by the Spitzer Space Telescope during its 5+ year cryogenic mission. Strasburger et al (2014) isolated sources with a signal-to-noise ratio (SNR) >10 in five infrared (IR) wavelength channels (3.6, 4.5, 5.8, 8 and 24 microns) to begin a search for sources with infrared excess (IRXS). They found 76 objects that were never catalogued before. Based on this success, we intend to dig deeper into the catalog in an attempt to find more IRXS sources, specifically by lowering the SNR on the 3.6, 4.5, and 24 micron channels. The ultimate goal is to use this large sample to seek rare astrophysical sources that are transitional in nature and evolutionarily very important.Our filtering of the database at SNR > 5 yielded 461,000 sources. This was further evaluated and reduced to only the most interesting based on source location on a [3.6]-[4.5] vs [4.5]-[24] color-color diagram. We chose a sample of 985 extreme IRXS sources for further inspection. All of these candidate sources were visually inspected and cross-referenced against known sources in existing databases, resulting in a list of highly reliable IRXS sources.These sources will prove important in the study of galaxy and stellar evolution, and will serve as a starting point for further investigation.

  8. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  9. Emission spectroscopy

    International Nuclear Information System (INIS)

    Barnes, R.M.

    1978-01-01

    This 16th article in the series of biennial reviews of emission spectroscopy surveys with emphasis the emission spectrochemical literature appearing in referred publications during 1976 and 1977. Books and general reviews of emission spectroscopy and closely related subjects are considered in the first section, whereas specific reviews and texts are included in each of the five tropical sections. Spectral descriptions and classifications are examined in the second section. An abbreviated instrumentation section follows, and standards, samples, calibrations, and calculations are evaluated in the fourth section. The emphasis on excitation sources reflects the size of section five. In the sixth section, important applications are explored

  10. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  11. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  12. The X-ray properties of five galactic supernova remnants detected by the Spitzer glimpse survey

    International Nuclear Information System (INIS)

    Pannuti, Thomas G.; Moffitt, William P.; Rho, Jeonghee; Heinke, Craig O.

    2014-01-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5–0.3, G346.6–0.2, CTB 37A (G348.5+0.1), and G348.5–0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5–0.3, and G346.6–0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5–0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5–0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5–0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ∼ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5–383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density n e , radiative age t rad and swept-up mass M X for each of the four X-ray-detected SNRs. Each of these values

  13. LOCAL BENCHMARKS FOR THE EVOLUTION OF MAJOR-MERGER GALAXIES-SPITZER OBSERVATIONS OF A K-BAND SELECTED SAMPLE

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Cheng Yiwen; Lu Nanyao; Mazzarella, Joseph M.; Cutri, Roc; Domingue, Donovan; Huang Jiasheng; Gao Yu; Sun, W.-H.; Surace, Jason

    2010-01-01

    We present Spitzer observations for a sample of close major-merger galaxy pairs (KPAIR sample) selected from cross-matches between the Two Micron All Sky Survey and Sloan Digital Sky Survey Data Release 3. The goals are to study the star formation activity in these galaxies and to set a local bench mark for the cosmic evolution of close major mergers. The Spitzer KPAIR sample (27 pairs, 54 galaxies) includes all spectroscopically confirmed spiral-spiral (S+S) and spiral-elliptical (S+E) pairs in a parent sample that is complete for primaries brighter than K = 12.5 mag, projected separations of 5 h -1 kpc ≤ s ≤ 20 h -1 kpc, and mass ratios ≤2.5. The Spitzer data, consisting of images in seven bands (3.6, 4.5, 5.8, 8, 24, 70, 160 μm), show very diversified IR emission properties. Compared to single spiral galaxies in a control sample, only spiral galaxies in S+S pairs show significantly enhanced specific star formation rate (sSFR = SFR/M), whereas spiral galaxies in S+E pairs do not. Furthermore, the SFR enhancement of spiral galaxies in S+S pairs is highly mass-dependent. Only those with M ∼> 10 10.5 M sun show significant enhancement. Relatively low-mass (M ∼ 10 10 M sun ) spirals in S+S pairs have about the same SFR/M compared to their counterparts in the control sample, while those with 10 11 M sun have on average a ∼3 times higher SFR/M than single spirals. There is evidence for a correlation between the global star formation activities (but not the nuclear activities) of the component galaxies in massive S+S major-merger pairs (the H olmberg effect ) . There is no significant difference in the SFR/M between the primaries and the secondaries, nor between spirals of SEP KPAIR =2.54 x 10 -4 (M sun yr -1 Mpc -3 ).

  14. A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    Science.gov (United States)

    Lanotte, A. A.; Gillon, M.; Demory, B.-O.; Fortney, J. J.; Astudillo, N.; Bonfils, X.; Magain, P.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Neves, V.; Pepe, F.; Queloz, D.; Santos, N.; Udry, S.

    2014-12-01

    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims: We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods: We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 μm. Adding the high-precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar effects on the flux variation. Results: We present a refined radius estimate of RP = 4.10 ± 0.16 R⊕ , mass MP = 25.4 ± 2.1 M⊕, and eccentricity e = 0.162 ± 0.004 for GJ 436b. Our measured transit depths remain constant in time and wavelength, in disagreement with the results of previous studies. In addition, we find that the post-occultation flare-like structure at 3.6 μm that led to divergent results on the occultation depth measurement is spurious. We obtain occultation depths at 3.6, 5.8, and 8.0 μm that are shallower than in previous works, in particular at 3.6 μm. However, these depths still appear consistent with a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although perhaps less than previously thought. We could not detect a significant orbital modulation in the 8 μm phase curve. We find no evidence of a potential planetary companion, stellar activity, or a stellar spin-orbit misalignment. Conclusions: Recent theoretical

  15. The SAURON project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies : colours, colour gradients and inverted scaling relations

    NARCIS (Netherlands)

    Peletier, Reynier F.; Kutdemir, Elif; van der Wolk, Guido; Falcon-Barroso, Jesus; Bacon, Roland; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; de Zeeuw, P. Tim; Emsellem, Eric; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Sarzi, Marc; Scott, Nicholas; Shapiro, Kristen L.; van den Bosch, Remco C. E.; van de Ven, Glenn

    We investigate the [3.6]-[4.5] Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in

  16. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Delgado, R. Gonzalez; Groves, B.

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05

  17. "TNOs are Cool" : A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations

    NARCIS (Netherlands)

    Lellouch, E.; Santos-Sanz, P.; Lacerda, P.; Mommert, M.; Duffard, R.; Ortiz, J. L.; Müller, T. G.; Fornasier, S.; Stansberry, J.; Kiss, Cs.; Vilenius, E.; Mueller, M.; Peixinho, N.; Moreno, R.; Groussin, O.; Delsanti, A.; Harris, A. W.

    2013-01-01

    Aims: The goal of this work is to characterize the ensemble thermal properties of the Centaurs / trans-Neptunian population. Methods: Thermal flux measurements obtained with Herschel/PACS and Spitzer/MIPS provide size, albedo, and beaming factors for 85 objects (13 of which are presented here for

  18. Flexoelectric spectroscopy.

    Science.gov (United States)

    Scott, J F

    2013-08-21

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals.

  19. Flexoelectric spectroscopy

    International Nuclear Information System (INIS)

    Scott, J F

    2013-01-01

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals. (viewpoint)

  20. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  1. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr

    International Nuclear Information System (INIS)

    We have analyzed Spitzer and NASA/IRTF 2-35 μm spectra of the warm, ∼350 K circumstellar dust around the nearby MS star η Corvi (F2V, 1.4 ± 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ∼3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 × 10 18 kg of 0.1-100 μm warm dust is present in a collisional equilibrium distribution with dn/da ∼ a –3.5 , the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm 3 density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at ∼150 AU. At ∼1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s –1 with a rocky planetary body of mass ≤M Earth at ∼3 AU, delivering large amounts of water (>0.1% of M Earth'sOceans ) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  2. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  3. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  4. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    Science.gov (United States)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  5. Spitzer Evidence for a Late Heavy Bombardment and the Formation of Urelites in {eta}Corvi at Approximately 1 Gyr

    Science.gov (United States)

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L.

    2011-01-01

    We have analyzed Spitzer and NASA/IRTF 2 - 35 micrometer spectra of the warm, 350 K circumstellar dust around the nearby MS star eta Corvi (F2V, 1.4 plus or minus 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at 3 AU from the central star, in the system's Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10(exp 18) kg of 0.1 - 100 micrometer warm dust is present in a collisional equilibrium distribution with dn/da a(exp -3.5), the equivalent of a 130 km radius KBO of 1.0 grams per cubic centimeter density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the system's lifetime and preserved it in deep freeze at approximately 150 AU. At approximately 1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 kilometers per second with a rocky planetary body of mass less than or equal to M(sub Earth at approximately 3 AU, delivering large amounts of water (greater than 0.1 % of M(sub Earth's Oceans)) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  6. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN {eta} CORVI At {approx}1 Gyr

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morlok, A. [Department of Earth and Planetary Sciences, The Open University, Milton-Keynes (United Kingdom); Watson, D. M.; Manoj, P.; Sheehan, P. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Currie, T. M. [NASA-GSFC, Code 667, Greenbelt, MD 20771 (United States); Thebault, P. [Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Sitko, M. L., E-mail: carey.lisse@jhuapl.edu, E-mail: wyatt@ast.cam.ac.uk, E-mail: cchen@stsci.edu, E-mail: a.morlok@open.ac.uk, E-mail: dmw@pas.rochester.edu, E-mail: manoj@pas.rochester.edu, E-mail: psheeha2@mail.rochester.edu, E-mail: thayne.m.currie@nasa.gov, E-mail: philippe.thebault@obspm.fr, E-mail: sitko@spacescience.org [Space Science Institute, 475 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2012-03-10

    We have analyzed Spitzer and NASA/IRTF 2-35 {mu}m spectra of the warm, {approx}350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 {+-} 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at {approx}3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 Multiplication-Sign 10{sup 18} kg of 0.1-100 {mu}m warm dust is present in a collisional equilibrium distribution with dn/da {approx} a{sup -3.5}, the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm{sup 3} density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at {approx}150 AU. At {approx}1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s{sup -1} with a rocky planetary body of mass {<=}M{sub Earth} at {approx}3 AU, delivering large amounts of water (>0.1% of M{sub Earth'sOceans}) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  7. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H.; Bitner, Martin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pecaut, Mark; Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Su, Kate Y. L., E-mail: cchen@stsci.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.

  8. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  9. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  10. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  11. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  12. Psychometric evaluation of a brazilian portuguese version of the spitzer quality of life index in patients with low back pain Evaluación de las calidades psicométricas de una versión brasileña del spitzer quality of life index en pacientes con dolor lumbar Avaliação das qualidades psicométricas de uma versão brasileira do spitzer quality of life index em pacientes com dor lombar

    Directory of Open Access Journals (Sweden)

    Rafaela Cunha Matheus Rodrigues Toledo

    2008-12-01

    Full Text Available The purpose of this study was to adapt the Spitzer Quality of Life Index and evaluate its reliability in patients with low back pain. The following steps were followed: translation, back-translation, evaluation by a committee, and pretest. The reliability was estimated through stability and homogeneity assessment. The validity was tested comparing scores of the Spitzer (QLI with the SF-36 and the Roland-Morris. The psychometric properties were evaluated by the self-application on 120 patients. Results showed that the Cronbach's Alpha was 0.77. Intraclass correlation coefficient for test-retest reliability was 0.960 (pEste estudio tuvo como objetivo realizar la adaptación cultural del Spitzer Quality of Life Index y evaluar su confiabilidad en pacientes portadores de dolor lumbar crónico. Se siguieron las siguientes etapas: traducción, retrotraducción, evaluación por un comité y pre-prueba. La validez fue obtenida por medio de la correlación entre los puntajes del Spitzer (QLI, del SF-36 y del Roland-Morris. Las propiedades psicométricas fueron evaluadas en 120 pacientes. Los resultados demostraron un coeficiente alfa de Cronbach=0,77. En una nueva pre-prueba, se encontró un coeficiente de correlación intraclases ICC=0,960 (pEste estudo teve como objetivo realizar a adaptação cultural do Spitzer Quality of Life Index, e avaliar sua confiabilidade em pacientes portadores de dor lombar crônica. Foram seguidas as seguintes etapas: tradução, retro-tradução, avaliação por um comitê e pré-teste. A confiabilidade foi avaliada por meio da consistência interna e da estabilidade. A validade foi obtida por meio da correlação entre os escores do Spitzer (QLI, do SF-36 e do Roland-Morris. As propriedades psicométricas foram avaliadas em 120 pacientes. Os resultados demonstraram coeficiente alfa de Cronbach=0,77. No teste-reteste, encontrou-se coeficiente de correlação intraclasse ICC=0,960 (p<0,001; IC 95%: 0,943; 0,972. Coeficiente

  13. Spitzer Phase Curve Constraints for WASP-43b at 3.6 and 4.5 μm

    Science.gov (United States)

    Stevenson, Kevin B.; Line, Michael R.; Bean, Jacob L.; Désert, Jean-Michel; Fortney, Jonathan J.; Showman, Adam P.; Kataria, Tiffany; Kreidberg, Laura; Feng, Y. Katherina

    2017-02-01

    Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet’s highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P = 0.813 days) at 3.6 and 4.5 μm. The first 3.6 μm visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day-night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet’s cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating (≲ 1 day) planets, this may explain an observed trend connecting measured day-night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance (2.5× {10}-5{--}1.1× {10}-4 at 1σ confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4-1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3-1.7× solar. This is the first time that precise abundance and metallicity constraints have been determined from multiple molecular

  14. Thermal-Infrared Surveys of Near-Earth Object Diameters and Albedos with Spitzer and IRTF/MIRSI

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph L.; Chesley, Steven; Emery, Josh; Fazio, Giovanni; Harris, Alan W.; Moskovitz, Nick; Mueller, Michael; Smith, Howard

    2015-08-01

    More than 12000 Near-Earth Objects (NEOs) have been discovered over the past few decades and current discovery surveys find on average 4 new NEOs every night. In comparison to asteroid discovery, the physical characterization of NEOs lags far behind: measured diameters and albedos exist only for roughly 10% of all known NEOs. We describe a current and a future observing program that provide diameter and albedo measurements of a large number of NEOs.In our Spitzer Space Telescope Exploration Science program 'NEOSurvey', we are performing a fast and efficient flux-limited survey in which we measure the diameters and albedos of ~600 NEOs in a total of 710 hrs of observing time. We measure the thermal emission of our targets at 4.5 micron and combine these measurements with optical data in a thermal model. Our diameters and albedos come with highly realistic uncertainties that account for a wide range of potential asteroid properties. Our primary goal is to create a large and uniform catalog of NEO properties, including diameters, albedos, and flux density data. This catalog is publicly accessible and provides the latest results usually within 2 weeks after the observation.Starting in 2016, we will also make use of the refurbished and recommissioned MIRSI mid-infrared imaging camera on NASA's InfraRed Telescope Facility (IRTF) to derive the diameters and albedos of up to 750 NEOs over a period of 3 yrs. MIRSI will be equipped with an optical camera that will allow for simultaneous optical imaging, which will improve our thermal modeling results. With MIRSI, we will focus on newly discovered NEOs that are close to Earth and hence relatively bright.The results from both programs, together with already exisiting diameter and albedo results from the literature, will form the largest database of NEO physical properties available to date. With this data set, we will be able to refine the size distribution of small NEOs and the corresponding impact frequency, and compare the

  15. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  16. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  17. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  18. Amateur spectroscopy

    Science.gov (United States)

    Gavin, M. V.

    1998-06-01

    (The 1997 Presidential Address to the British Astronomical Association.) Auguste Comte is remembered for an unfortunate remark. In 1825 he said the chemical composition of stars would never be revealed. Within a decade or so the heart of the atom was being explored in remote stars through the science of spectroscopy. In simplistic terms one can regard the atom as a miniature solar system, but with the novel option that electrons (representing planets) having the ability to 'jump' from one orbit to another. In 'falling' to a lower orbit a photon of light of precise wavelength is released to travel outwards. When the electron 'jumps' to a higher orbit a photon of light is absorbed. This is taking place on a vast scale which we observe as lines in the spectrum - their position and prominence relates to the particular atomic element, temperature and pressure within the stellar atmosphere. It is beyond the scope of this Address to discuss the various processes that affect spectra, or to provide a mathematical explanation which can be found elsewhere. In any case the lack of a deep understanding does not preclude enjoyable or useful observations. Methods and results from amateurs conducting such observations are discussed in this paper.

  19. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  20. THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Fressin, Francois; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Deming, Drake [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Caldwell, Douglas [SETI Institute, Mountain View, CA 94043 (United States); Ford, Eric B. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Marcy, Geoffrey W. [Berkeley Astronomy Department, University of California, Berkeley, CA 94720 (United States); Seager, Sara, E-mail: jdesert@cfa.harvard.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2011-11-01

    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near-infrared with Warm-Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broadband emergent photometric data for individual planets. For both targets, the occultations are detected at the 3{sigma} level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T{sub Spitzer} = 1930 {+-} 100 K and T{sub Spitzer} = 1660 {+-} 120 K for Kepler-5b and Kepler-6b, respectively. We measure optical geometric albedos A{sub g} in the Kepler bandpass and find A{sub g} = 0.12 {+-} 0.04 for Kepler-5b and A{sub g} = 0.11 {+-} 0.04 for Kepler-6b, leading to upper an limit for the Bond albedo of A{sub B} {<=} 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the nightside of these planets.

  1. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Directory of Open Access Journals (Sweden)

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  2. Young Stars in the Camelopardalis Dust and Molecular Clouds. VI. YSOs Verified by Spitzer and Akari Infrared Photometry

    Directory of Open Access Journals (Sweden)

    Straižys V.

    2010-06-01

    Full Text Available Using photometric data of infrared surveys, young stellar object (YSO status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic coordinates (l, b = (132-158°, ±12°. The area includes the known star- forming regions in the emission nebulae W3, W4 and W5 and the massive YSO AFGL490. Spectral energy distribution (SED curves between 700 nm and 160 μm, constructed from the GSC 2, 2MASS, IRAS, MSX, Spitzer and AKARI data, are used to estimate the evolutionary stages of these stars. We confirm the YSO status for most of the objects. If all of the investigated objects were YSOs, 45% of them should belong to Class I, 41% to class II and 14% to Class III. However, SEDs of some of these objects can be affected by nearby extended infrared sources, like compact H II regions, infrared clusters or dusty galaxies.

  3. Laboratory Studies of Solid CO2 Ices at Different Temperatures and Annealing Times in Support of Spitzer Space Telescope Observations

    Science.gov (United States)

    White, Douglas; Gerakines, P. A.

    2007-12-01

    The infrared absorption features of solid carbon dioxide have been detected by space observatories in nearly all lines of sight probing the dense interstellar medium (ISM). It has also been shown that the absorption feature of solid CO2 near 658 cm-1 (15.2 μm) should be a sensitive indicator of the physical conditions of the ice (e.g., temperature and composition). However, the profile structure of this feature is not well understood, and previous laboratory studies have concentrated on a limited range of temperatures and compositions for comparisons to observed spectra from both the Infrared Space Observatory and the Spitzer Space Telescope. In the laboratory study described here, the infrared spectra of ices bearing H2O, CH3OH, and CO2 have been measured with systematically varying compositions and temperatures that span the range of the values expected in the interstellar medium. The mid-infrared spectra (λ = 2.5-25 µm) were measured for 47 different ice compositions at temperatures ranging from 5 K to evaporation (at 5 K intervals). Additionally, annealing experiments of some of these ice compositions have been investigated. These data may be used to determine thermal histories of interstellar ices. This research was supported by NASA award NNG05GE44G under the Astronomy and Physics Research & Analysis Program (APRA).

  4. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Trilling, David E.; Mommert, Michael [Department of Physics and Astronomy, PO Box 6010, Northern Arizona University, Flagstaff, AZ 86011 (United States); Hora, Joseph; Fazio, Giovanni; Smith, Howard [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-65, Cambridge, MA 02138-1516 (United States); Chesley, Steve [Jet Propulsion Laboratory, California Institute of Technology, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Emery, Joshua [Department of Earth and Planetary Science, University of Tennessee, 306 EPS Building, 1412 Circle Drive, Knoxville, TN 37996 (United States); Harris, Alan [German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstrasse 2, 12489, Berlin (Germany); Mueller, Michael [SRON, Netherlands Institute for Space Research, PO Box 800, 9700AV Groningen (Netherlands)

    2016-12-01

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.

  5. EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Flateau, Davin [Department of Planetary Sciences, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Showman, Adam P. [Department of Planetary Sciences, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Metchev, Stanimir [The University of Western Ontario, Department of Physics and Astronomy, Centre for Planetary Science and Exploration, 1151 Richmond St., London, ON N6A 3K7 (Canada); Buenzli, Esther [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Burgasser, Adam J., E-mail: haoyang@email.arizona.edu, E-mail: apai@arizona.edu [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States)

    2016-07-20

    We present Spitzer /Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope ( HST )/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.

  6. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    Science.gov (United States)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  7. SPITZER- AND HERSCHEL-BASED SPECTRAL ENERGY DISTRIBUTIONS OF 24 μm BRIGHT z ∼ 0.3-3.0 STARBURSTS AND OBSCURED QUASARS

    International Nuclear Information System (INIS)

    Sajina, Anna; Yan Lin; Fadda, Dario; Dasyra, Kalliopi; Huynh, Minh

    2012-01-01

    In this paper, we characterize the infrared spectral energy distributions (SEDs) of mid-IR-selected z ∼ 0.3-3.0 and L IR ∼ 10 11 -10 13 L ☉ galaxies, and study how their SEDs differ from those of local and high-z analogs. Infrared SEDs depend both on the power source (AGN or star formation) and the dust distribution. Therefore, differences in the SEDs of high-z and local galaxies provide clues as to differences in their physical conditions. Our mid-IR flux-limited sample of 191 sources is unique in size, and spectral coverage, including Spitzer mid-IR spectroscopy. Here, we add Herschel photometry at 250 μm, 350 μm, and 500 μm, which allows us, through fitting an empirical SED model, to obtain accurate total IR luminosities, as well as constrain the relative contributions of AGNs and starbursts to those luminosities. Our sample includes three broad categories of SEDs: ∼23% of the sources are AGNs (i.e., where the AGN contributes >50% of L IR ), ∼30% are starbursts where an AGN contributes IR , and the mid-IR spectra are starburst-like (i.e., strong polycyclic aromatic hydrocarbon features); and the largest group (∼47%) are composites which show both significant AGN and starburst activity. The AGN-dominated sources divide into ones that show a strong silicate 9.7 μm absorption feature, implying highly obscured systems, and ones that do not. The high-τ 9.7 sources are half of our z > 1.2 AGNs, but show SEDs that are extremely rare among local AGNs. The 30% of the sample that are starbursts, even the z ∼ 2, L IR ∼ 10 13 L ☉ ones, have lower far-IR to mid-IR continuum ratios than local Ultra Luminous Infrared Galaxies (ULIRGs) or the z ∼ 2 sub-mm galaxies—effectively the SEDs of our z ∼ 2 starburst-dominated ULIRGs are much closer to those of local Luminous Infrared Galaxies than ULIRGs. This is consistent with our earlier finding that, unlike local ULIRGs, our high-z starbursts are typically only in the early stages of a merger. The SEDs

  8. A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    Energy Technology Data Exchange (ETDEWEB)

    Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Athanassoula, E.; Bosma, A. [Aix Marseille Universite, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Knapen, Johan H. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna (Spain); Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Comerón, Sébastien [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FI-90014 (Finland); Elmegreen, Debra [Vassar College, Deparment of Physics and Astronomy, Poughkeepsie, NY 12604 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Zaritsky, Dennis; Hinz, Joannah L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Courtois, Helene [Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire, Lyon (France); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Paz, Armando Gil de [Departmento de Astrofisica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Menéndez-Delmestre, Karín [University of Rio de Janeiro, Observatorio de Valongo, Ladeira Pedro Antonio, 43, CEP 20080-090, Rio de Janeiro (Brazil); and others

    2015-04-15

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S{sup 4}G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S{sup 4}G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of “stellar structures” seen in mid-IR galaxy morphology.

  9. Spitzer observations of the type IA supernova remnant N103B: Kepler's older cousin?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695-8202 (United States); Ghavamian, Parviz [Department of Physics, Chemistry, and Geosciences, Towson University, Towson, MD 21252 (United States); Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Long, Knox S. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Sankrit, Ravi [SOFIA Science Center, NASA AMES Research Center, M/S N211-3, Moffett Field, CA 94035 (United States); Winkler, P. Frank [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Hendrick, Sean P., E-mail: brian.j.williams@nasa.gov [Physics Department, Millersville University, P.O. Box 1002, Millersville, PA 17551 (United States)

    2014-08-01

    We report results from Spitzer observations of SNR 0509-68.7, also known as N103B, a young Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC) that shows interaction with a dense medium in its western hemisphere. Our images show that N103B has strong IR emission from warm dust in the post-shock environment. The post-shock gas density we derive, 45 cm{sup –3}, is much higher than in other Type Ia remnants in the LMC, though a lack of spatial resolution may bias measurements toward regions of higher than average density. This density is similar to that in Kepler's SNR, a Type Ia interacting with a circumstellar medium (CSM). Optical images show Hα emission along the entire periphery of the western portion of the shock, with [O III] and [S II] lines emitted from a few dense clumps of material where the shock has become radiative. The dust is silicate in nature, though standard silicate dust models fail to reproduce the '18 μm' silicate feature that peaks instead at 17.3 μm. We propose that the dense material is circumstellar material lost from the progenitor system, as with Kepler. If the CSM interpretation is correct, this remnant would become the second member, along with Kepler, of a class of Type Ia remnants characterized by interaction with a dense CSM hundreds of years post-explosion. A lack of N enhancement eliminates symbiotic asymptotic giant branch progenitors. The white dwarf companion must have been relatively unevolved at the time of the explosion.

  10. DEEP SPITZER 24 μm COSMOS IMAGING. I. THE EVOLUTION OF LUMINOUS DUSTY GALAXIES-CONFRONTING THE MODELS

    International Nuclear Information System (INIS)

    Le Floc'h, Emeric; Ilbert, Olivier; Riguccini, Laurie; Kartaltepe, Jeyhan; Sanders, David; Aussel, Herve; Feruglio, Chiara; Frayer, David T.; Salvato, Mara; Capak, Peter; Scoville, Nick; Arnouts, Stephane; Surace, Jason; Sheth, Kartik; Yan Lin; Rodighiero, Giulia; Heinis, Sebastien; McCracken, Henry Joy; Thompson, David; Koekemoer, Anton

    2009-01-01

    We present the first results obtained from the identification of ∼30,000 sources in the Spitzer/24 μm observations of the COSMOS field at S 24μm ∼> 80 μJy. Using accurate photometric redshifts (σ z ∼ 0.12 at z ∼ 2 for 24 μm sources with i + ∼ 2) contribute only marginally to the cosmic infrared background. Assuming flux-limited selections at optical wavelengths, we also find that the fraction of i + -band sources with 24 μm detection strongly increases up to z ∼ 2 as a consequence of the rapid evolution that star-forming galaxies have undergone with look-back time. Nonetheless, this rising trend shows a clear break at z ∼ 1.3, probably due to k-correction effects implied by the complexity of spectral energy distributions in the mid-infrared. Finally, we compare our results with the predictions from different models of galaxy formation. We note that semianalytical formalisms currently fail to reproduce the redshift distributions observed at 24 μm. Furthermore, the simulated galaxies at S 24μm > 80 μJy exhibit R-K colors much bluer than observed and the predicted K-band fluxes are systematically underestimated at z ∼> 0.5. Unless these discrepancies mainly result from an incorrect treatment of extinction in the models they may reflect an underestimate of the predicted density of high-redshift massive sources with strong ongoing star formation, which would point to more fundamental processes and/or parameters (e.g., initial mass function, critical density to form stars, feedback,...) that are still not fully controlled in the simulations. The most recent backward evolution scenarios reproduce reasonably well the flux/redshift distribution of 24 μm sources up to z ∼ 3, although none of them is able to exactly match our results at all redshifts.

  11. NEW MEASUREMENTS OF THE COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER/IRAC SURVEY DATA AND THEIR COSMOLOGICAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kashlinsky, A. [SSAI, Lanham MD 20706 (United States); Arendt, R. G.; Mather, J.; Moseley, S. H. [Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ashby, M. L. N.; Fazio, G. G., E-mail: alexander.kashlinsky@nasa.gov [Center for Astrophysics, Cambridge, MA 02138 (United States)

    2012-07-01

    We extend previous measurements of cosmic infrared background (CIB) fluctuations to {approx}< 1 Degree-Sign using new data from the Spitzer Extended Deep Survey. Two fields with depths of {approx_equal} 12 hr pixel{sup -1} over three epochs are analyzed at 3.6 and 4.5 {mu}m. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of mag{sub AB} {approx_equal} 25, as indicated by the level of the remaining shot noise. The maps were then Fourier transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 {mu}m power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to >10 times those of known galaxy populations on angular scales out to {approx}< 1 Degree-Sign . The low shot-noise levels remaining in the diffuse maps indicate that the large-scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model ({Lambda}CDM) at epochs coinciding with the first stars era.

  12. A Snapshot Imaging Survey of Spitzer-selected Young Stellar Objects in Nearby Star Formation Regions*.t23

    Science.gov (United States)

    Stapelfeldt, Karl

    2015-10-01

    Young circumstellar disks are the dusty reservoirs in which planetary systems may eventually form. Previous HST imaging surveys have spatially resolved about twenty circumstellar disks around young stars in nearby molecular clouds. Providing key measurements of disk inclinations, outer radii, asymmetries, vertical thicknesses, and dust properties, these observations have supplied valuable constraints on theories of star and planet formation. Most of this prior work was based on source identifications made 30 years ago by the IRAS survey. With its improved sensitivity and spatial resolution, the Spitzer Space Telescope identified numerous new members of nearby star-forming regions that are optically visible, not yet observed with HST, and which possess infrared excess > 40 mJy at 24 microns (5 times fainter than the IRAS survey 25 micron sensitivity). This group of objects consists of low mass stars, young brown dwarfs, transition disks, and edge-on disks that obscure their central sources. We propose a high dynamic range ACS snapshot survey of this lower-luminosity young star population. Our goals are (1) to determine the frequency of disk detections in scattered light; (2) to measure disk sizes, internal structures, and constituent dust properties in order to test theories of protoplanetary disk evolution; (3) to identify the nearly edge-on systems which are particularly favorable for studies of disk geometry; and (4) to discover faint substellar companion objects. This survey will extend previous HST young star imaging of protoplanetary environments from a solar mass down to the substellar limit, revealing their nature and frequency in the galaxy.

  13. Polycyclic Aromatic Hydrocarbon Emission in Spitzer /IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2017-03-10

    We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.

  14. A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100-hr Spitzer Campaign

    Science.gov (United States)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Berta-Thompson, Zachory K.; Newton, Elisabeth R.

    2017-10-01

    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of GJ 1132b. We collected 21 transit observations of GJ 1132b with the MEarth-South array. We obtained 100 near-continuous hours of observations with the Spitzer Space Telescope, including two transits of GJ 1132b and spanning 60% of the orbital phase of the maximum (6.9-day) period at which bodies coplanar with GJ 1132b would transit. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7%. We find that the planet-to-star radius ratio inferred from the MEarth and Spitzer light curves are discrepant at the 3.7σ level, which we ascribe to the effects of starspots and faculae. When we combine the mass estimate of the star (obtained from its parallax and apparent K s band magnitude) with the stellar density inferred from our high-cadence Spitzer light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be {0.2105}-0.0085+0.0102 {R}⊙ , and we refine the radius measurement of GJ 1132b to 1.130+/- 0.056 {R}\\oplus . Combined with HARPS RV measurements, we determine the density of GJ 1132b to be 6.2 ± 2.0 g cm-3. We refine the ephemeris of the system (improving the period determination by an order of magnitude) and find no evidence for transit timing variations, which would be expected if there was a second planet near an orbital resonance with GJ 1132b.

  15. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    Science.gov (United States)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  16. The CO2 Abundance in Comets C2012 K1 (PanSTARRS), C2012 K5 (LINEAR), and 290P Jager as Measured with Spitzer

    Science.gov (United States)

    McKay, Adam J.; Kelley, Michael S.P.; Cochran, Anita L.; Bodewits, Dennis; DiSanti, Michael A.; Dello Russo, Neil; Lisse, Carey M.

    2015-01-01

    Carbon dioxide is one of the most abundant ices present in comets and is therefore important for understanding cometary composition and activity. We present analysis of observations of CO2 and [O I] emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of [O I] emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of [O I] emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-m telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantly larger than the average abundance. From the coma morphology observed in PanSTARRS and the assumed gas expansion velocity, we derive a rotation period for the nucleus of about 9.2 h. Comparison of H2O production rates derived from ARCES and Swift data, as well as other observations, suggest the possibility of sublimation from icy grains in the inner coma. We evaluate the possibility that the [O I] emission can be employed as a proxy for CO2 by comparing CO2/H2O ratios inferred from the [O I] lines to those measured directly by Spitzer. We find that for PanSTARRS we can reproduce the observed CO2 abundance to an accuracy of approximately 20%. For LINEAR and Jager, we were only able to obtain upper limits on the CO2 abundance inferred from the [O I] lines. These upper limits are consistent with the CO2 abundances

  17. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  18. Progress in K spectroscopy

    International Nuclear Information System (INIS)

    Leith, D.W.G.S.

    1977-07-01

    The progress in the field of K* spectroscopy is reviewed within the framework of the simple harmonic oscillator quark model, and contrasted with the recent progress made in the charmonium spectroscopy

  19. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  20. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  1. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  2. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  3. The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification - III

    Science.gov (United States)

    Jones, O. C.; Woods, P. M.; Kemper, F.; Kraemer, K. E.; Sloan, G. C.; Srinivasan, S.; Oliveira, J. M.; van Loon, J. Th.; Boyer, M. L.; Sargent, B. A.; McDonald, I.; Meixner, M.; Zijlstra, A. A.; Ruffle, P. M. E.; Lagadec, E.; Pauly, T.; Sewiło, M.; Clayton, G. C.; Volk, K.

    2017-09-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H II regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample.

  4. CSO CO (2–1) and Spitzer IRAC observations of a bipolar outflow in high-mass star-forming region IRAS 22506+5944

    Science.gov (United States)

    Xie, Ze-Qiang; Qiu, Ke-Ping

    2018-02-01

    We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.

  5. Coherent Raman spectroscopy

    CERN Document Server

    Eesley, G L

    1981-01-01

    Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  7. Spectroscopy of Burn Wounds

    Science.gov (United States)

    1990-04-01

    first task was to select and purchase a Visible/Near- infrared spectrophotometer suitable for non-contacting spectroscopy of biological tissues...FiLE COPY AD 0 NContract No: DAMD17-88-C-8125 N Title: Spectroscopy of Burn Wounds I Principal Investigator: Martin A. Afromowitz, Ph.D. PI Address...Include Security Classification) SPECTROSCOPY OF BURN WOUNDS 12. PERSONAL AUTHOR(S) Martin A. Afromowitz, Ph.D., and James B. Callis, Ph.D. 13a. TYPE OF

  8. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  9. Temporal Evolution of Water and Dust in Comet 9P/Tempel 1 after the Deep Impact Event, as Observed from Spitzer

    Science.gov (United States)

    Gicquel, Adeline; Bockelée-Morvan, D.; Kelley, M. S.; Woodward, C. E.; Wooden, D. H.

    2010-10-01

    The Deep Impact (DI) spacecraft encountered comet 9P/Tempel 1 on July 4th, 2005. The spacecraft released an impactor that collided with the comet nucleus and excavated (possibly unprocessed) cometary material in a prominent ejecta plume. Spectral maps covering 20'' x 67'' (1.85''/pixel) were acquired with the IRS instrument on the Spitzer Space Telescope at different times around the DI event: twice before impact (TI-41.3hrs and TI-22.9hrs) and twelve times after impact (between TI+0.67hrs and TI+1027hrs). These IRS observations are stored in the Spitzer data archive and presented by Lisse et al. (2006, Science 313, 635). We present the interpretation of 5.2-7.6 micrometer spectra obtained in the second order of the short-wavelength module (SL2). To reduce the contribution of artifacts in the spectra, 5x5 pixel extraction apertures (9.25''x9.25'') were used. The underlying continuum in the spectra provides information on the grain size distribution and color temperature of the dust ejecta. In order to determine the grain size distribution, we assumed that ejecta consist of a composition of both amorphous carbon and silicates. The grains are assumed to be spherical with sizes in range from 0.1 to 100 micrometers. We used the Mie theory to calculate the optical properties of each material and the temperature of the grain. We constrained the grain size distribution and velocities from the spectra and the temporal evolution of the dust flux. The dust mass and dust/gas ratio in the ejecta cloud are also derived and compared with other values published in the literature.

  10. Heterodyned holographic spectroscopy

    NARCIS (Netherlands)

    Douglas, NG

    In holographic spectroscopy an image of an interference pattern is projected onto a detector and transformed back to the input spectrum. The general characteristics are similar to those of Fourier transform spectroscopy, but the spectrum is obtained without scanning. In the heterodyned arrangement

  11. Hadron spectroscopy: Workshop summary

    International Nuclear Information System (INIS)

    Comyn, M.

    1993-01-01

    The hadron spectroscopy sessions of the Working Group on Hadron and Nuclear Spectroscopy are summarized. The present status of the field is discussed, along with the main priorities and open questions for the future. The required characteristics of optimum future facilities are outlined

  12. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule spectroscopy. (SMS), confocal microscopy,. FCS, sm-FRET, FLIM. 1 High-resolution spectrum re- fers to a spectrum consisting of very sharp lines. The sharp lines clearly display transitions to ...

  13. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  14. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  15. Grism Spectroscopy Of The Eclipse Of Corot-2b At 1.1-1.7μM

    Science.gov (United States)

    Wilkins, Ashlee N.; Deming, D.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Désert, J.; Gilliland, R.; Knutson, H.; Mandell, A.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Here we present HST eclipse spectroscopy spanning 1.1 to 1.7 μm of the CoRoT-2 system using the G141 grism on WFC3. These near-infrared data serve to complement the pre-existing and already-published optical CoRoT data and warm Spitzer infrared observations. CoRoT-2b, the sole planet known in the system, is a member of the Very Hot Jupiter (VHJ) class of exoplanets, and the secondary eclipse was measured with three separate HST visits. We find the albedo of CoRoT-2b upon comparison of optical data, which comprises both thermal and reflected spectral components, and the thermal spectrum as constrained by the Spitzer and WFC3 infrared data. Analysis of the data required characterization of the persistence on the WFC3 detector as it manifests for these observations; it is not insignificant. After compiling results of flux patterns for the majority of the seventeen exoplanets studied in this HST program, we find the extent of the persistence, a linear, additive effect that is strongly dependent upon stimulating flux and time of/since exposure, and subtract it to leave only the true flux received from the CoRoT-2 system in and out of secondary eclipse.

  16. Quantum-limit spectroscopy

    CERN Document Server

    Ficek, Zbigniew

    2017-01-01

    This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...

  17. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  18. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  19. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.

    2002-01-01

    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  20. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    ARTICLE. Electron Paramagnetic Resonance Spectroscopy. Biological Applications. B G Hegde. Recently, electron paramagnetic resonance (EPR) spectros- copy has emerged as a powerful tool to study the structure and dynamics of biological macromolecules such as proteins, protein aggregates ... research interests are.

  1. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  2. Charmonium spectroscopy, 1987

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1987-01-01

    The state of charmonium spectroscopy is reviewed. All analyses proceed from a spin-dependent, non-relativistic Schroedinger equation. Many of the possible branching ratios for charm like states are investigated. 17 refs

  3. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  4. Fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Verveer, P.J.

    2015-01-01

    Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the

  5. Methods of laser spectroscopy

    International Nuclear Information System (INIS)

    Prior, Y.; Ben-Reuven, A.; Rosenbluh, M.

    1986-01-01

    This book presents information on the following topics: the one-atom maser and cavity quantum electrodynamics; Rydberg atoms and radiation; investigation of nonthermal population distributions with femtosecond optical pulses; intra- and intermolecular energy transfer of large molecules in solution after picosecond excitation; new techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses; spectral linewidth of semiconductor lasers; the hydrogen atom in a new light; laser frequency division and stabilization; modified optical Bloch equations for solids; CARS spectroscopy of transient species; off resonant laser induced ring emission; UV laser ionization spectroscopy and ion photochemistry; laser spectroscopy of proton-transfer in microsolvent clusters; recent advances in intramolecular electronic energy transfer; and photoionization and dissociation of the H 2 molecule near the ionization threshold

  6. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  7. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  8. Spitzer/MIPS 24 μm Observations of HD 209458b: Three Eclipses, Two and a Half Transits, and a Phase Curve Corrupted by Instrumental Sensitivity Variations

    Science.gov (United States)

    Crossfield, Ian J. M.; Knutson, Heather; Fortney, Jonathan; Showman, Adam P.; Cowan, Nicolas B.; Deming, Drake

    2012-06-01

    We report the results of an analysis of all Spitzer/MIPS 24 μm observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% ± 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% ± 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 ± 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 ± 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos ω to be 0.00004 ± 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s-1 (3σ) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual ~0.2% decrease in flux over ~30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 μm array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough understanding of detector-related instrumental effects on

  9. Spitzer/MIPS 24 {mu}m OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crossfield, Ian J. M. [Department of Physics, and Astronomy, University of California, Los Angeles, CA 90095 (United States); Knutson, Heather [Caltech Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake, E-mail: ianc@astro.ucla.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-06-20

    We report the results of an analysis of all Spitzer/MIPS 24 {mu}m observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% {+-} 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% {+-} 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 {+-} 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 {+-} 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos {omega} to be 0.00004 {+-} 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s{sup -1} (3{sigma}) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual {approx}0.2% decrease in flux over {approx}30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 {mu}m array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough

  10. Transmission spectroscopy of the hot Jupiter WASP-12b from 0.7 to 5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Kevin B.; Bean, Jacob L.; Seifahrt, Andreas; Kreidberg, Laura [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Désert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, MC 170-25 1200, East California Boulevard, Pasadena, CA 91125 (United States); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States); Bergmann, Marcel [National Optical Astronomy Observatory (NOAO), Tucson, AZ 85719 (United States); Homeier, Derek, E-mail: kbs@uchicago.edu [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 Allée d' Italie, F-69364 Lyon Cedex 07 (France)

    2014-06-01

    Since the first report of a potentially non-solar carbon-to-oxygen ratio (C/O) in its dayside atmosphere, the highly irradiated exoplanet WASP-12b has been under intense scrutiny and the subject of many follow-up observations. Additionally, the recent discovery of stellar binary companions ∼1'' from WASP-12 has obfuscated interpretation of the observational data. Here we present new ground-based multi-object transmission-spectroscopy observations of WASP-12b that we acquired over two consecutive nights in the red optical with Gemini-N/GMOS. After correcting for the influence of WASP-12's stellar companions, we find that these data rule out a cloud-free H{sub 2} atmosphere with no additional opacity sources. We detect features in the transmission spectrum that may be attributed to metal oxides (such as TiO and VO) for an O-rich atmosphere or to metal hydrides (such as TiH) for a C-rich atmosphere. We also reanalyzed NIR transit-spectroscopy observations of WASP-12b from HST/WFC3 and broadband transit photometry from Warm Spitzer. We attribute the broad spectral features in the WFC3 data to either H{sub 2}O or CH{sub 4} and HCN for an O-rich or C-rich atmosphere, respectively. The Spitzer data suggest shallower transit depths than the models predict at infrared wavelengths, albeit at low statistical significance. A multi-instrument, broad-wavelength analysis of WASP-12b suggests that the transmission spectrum is well approximated by a simple Rayleigh scattering model with a planet terminator temperature of 1870 ± 130 K. We conclude that additional high-precision data and isolated spectroscopic measurements of the companion stars are required to place definitive constraints on the composition of WASP-12b's atmosphere.

  11. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  12. Plasmon enhanced spectroscopy.

    Science.gov (United States)

    Aroca, Ricardo F

    2013-04-21

    Surface enhanced spectroscopy encompasses a broad field of linear and nonlinear optical techniques that arose with the discovery of the surface-enhanced Raman scattering (SERS) effect. SERS enabled ultrasensitive and single molecule detection with molecular fingerprint specificity, opening the door for a large variety of chemical sensing applications. Basically, from the beginning it was realized that the necessary condition for SERS to be observed was the presence of a metallic nanostructure, and with this condition, the optical enhancement found a home in the field of plasmonics. Although plasmonic practitioners claim that SERS is "the most spectacular application of plasmonics", perhaps it is more appropriate to say that the spectacular development of plasmonics is due to SERS. Here is a brief recollection from surface enhanced spectroscopy to plasmon enhanced spectroscopy.

  13. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  14. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Kim, Taehyun; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; Zaritsky, Dennis; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; De Swardt, Bonita; Comerón, Sébastien; Regan, Michael W.; Menéndez-Delmestre, Karín; De Paz, Armando Gil

    2012-01-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T ≤ 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes ∼3%-10% to the total 3.6 μm luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  15. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  16. Roman Jakobson contre Leo Spitzer : militantisme critique et défense d’une méthode

    Directory of Open Access Journals (Sweden)

    Daniel Maira

    2016-05-01

    Full Text Available Toute critique militante suppose, d’une part, une prise de position contre une thèse hégémonique ou bien consolidée qu’il faut rejeter pour en montrer les limites, et, d’autre part, une nouvelle réflexion théorique qui doit néanmoins être expliquée et illustrée. Des méthodologies différentes appliquées aux mêmes objets littéraires peuvent dès lors engager des analyses textuelles discordantes. Nous aimerions étudier les lectures que Leo Spitzer et Roman Jakobson proposent du sonnet CXIII de l’Olive de Joachin Du Bellay (1550, en les contextualisant d’abord dans le débat théorique des années 1960-1970. Les essais des deux critiques militent en faveur d’une « défense et illustration » de leur méthode en matière d’analyse littéraire. 

  17. The First Simultaneous Microlensing Observations by Two Space Telescopes: Spitzer and Swift Reveal a Brown Dwarf in Event OGLE-2015-BLG-1319

    Science.gov (United States)

    Shvartzvald, Y.; Li, Z.; Udalski, A.; Gould, A.; Sumi, T.; Street, R. A.; Calchi Novati, S.; Hundertmark, M.; Bozza, V.; Beichman, C.; hide

    2016-01-01

    Simultaneous observations of microlensing events from multiple locations allow for the breaking of degeneracies between the physical properties of the lensing system, specifically by exploring different regions of the lens plane and by directly measuring the "microlens parallax". We report the discovery of a 30-65M J brown dwarf orbiting a K dwarf in the microlensing event OGLE-2015-BLG-1319. The system is located at a distance of approximately 5 kpc toward the Galactic Bulge. The event was observed by several ground-based groups as well as by Spitzer and Swift, allowing a measurement of the physical properties. However, the event is still subject to an eight-fold degeneracy, in particular the well-known close-wide degeneracy, and thus the projected separation between the two lens components is either approximately 0.25 au or approximately 45 au. This is the first microlensing event observed by Swift, with the UVOT camera. We study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift could not measure the microlens parallax with respect to ground-based observations for this event, it can be important for other events. Specifically, it is important for detecting nearby brown dwarfs and free-floating planets in high magnification events.

  18. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tothill, Nicholas F. H. [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Nutter, David [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DiFrancesco, James [National Research Council Herzberg Astronomy and Astrophysics, Victoria, BC, V9E 2E7 (Canada); Jørgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-DK-2100 Copenhagen Ø. (Denmark); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merín, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2014-05-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg{sup 2} with IRAC and 10.47 deg{sup 2} with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  19. CENSUS OF SELF-OBSCURED MASSIVE STARS IN NEARBY GALAXIES WITH SPITZER: IMPLICATIONS FOR UNDERSTANDING THE PROGENITORS OF SN 2008S-LIKE TRANSIENTS

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.; Thompson, Todd A.; Beacom, J. F.; Prieto, J. L.

    2010-01-01

    A new link in the causal mapping between massive stars and potentially fatal explosive transients opened with the 2008 discovery of the dust-obscured progenitors of the luminous outbursts in NGC 6946 and NGC 300. Here, we carry out a systematic mid-IR photometric search for massive, luminous, and self-obscured stars in four nearby galaxies: M33, NGC 300, M81, and NGC 6946. For detection, we use only the 3.6 μm and 4.5 μm IRAC bands, as these can still be used for multi-epoch Spitzer surveys of nearby galaxies (∼<10 Mpc). We combine familiar point-spread function and aperture photometry with an innovative application of image subtraction to catalog the self-obscured massive stars in these galaxies. In particular, we verify that stars analogous to the progenitors of the NGC 6946 (SN 2008S) and NGC 300 transients are truly rare in all four galaxies: their number may be as low as ∼1 per galaxy at any given moment. This result empirically supports the idea that the dust-enshrouded phase is a very short lived phenomenon in the lives of many massive stars and that these objects constitute a natural extension of the asymptotic giant branch sequence. We also provide mid-IR catalogs of sources in NGC 300, M81, and NGC 6946.

  20. The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud Observed with IRAC and MIPS

    Science.gov (United States)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.; hide

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.

  1. THE UNUSUAL VERTICAL MASS DISTRIBUTION OF NGC 4013 SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.; Sheth, Kartik; Munoz-Mateos, Juan-Carlos; Kim, Taehyun; Mizusawa, Trisha; Hinz, Joannah L.; Regan, Michael W.; Gil de Paz, Armando; Menendez-Delmestre, KarIn; Seibert, Mark; Ho, Luis C.; Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Gadotti, Dimitri A.

    2011-01-01

    NGC 4013 is a nearby Sb edge-on galaxy known for its 'prodigious' H I warp and its 'giant' tidal stream. Previous work on this unusual object shows that it cannot be fitted satisfactorily by a canonical thin+thick disk structure. We have produced a new decomposition of NGC 4013, considering three stellar flattened components (thin+thick disk plus an extra and more extended component) and one gaseous disk. All four components are considered to be gravitationally coupled and isothermal. To do so, we have used the 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. We find evidence for NGC 4013 indeed having a thin and a thick disk and an extra flattened component. This smooth and extended component (scale height z EC ∼ 3 kpc) could be interpreted as a thick disk or as a squashed ellipsoidal halo and contains ∼20% of the total mass of all three stellar components. We argue it is unlikely to be related to the ongoing merger or due to the off-plane stars from a warp in the other two disk components. Instead, we favor a scenario in which the thick disk and the extended component were formed in a two-stage process, in which an initially thick disk has been dynamically heated by a merger soon enough in the galaxy history to have a new thick disk formed within it.

  2. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  3. Infrared spectroscopy of stars

    Science.gov (United States)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  4. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  5. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Astronomical Spectroscopy -24 ...

    Indian Academy of Sciences (India)

    in Mendeleev's Periodic Table when the latter was formulated in. 1869. Cesium was discovered ten years earlier, in 1859; it is the first element discovered by spectroscopy. Kirchhoff and Bunsen continued their search; another new element was discovered in. 1860. It was named rubidium, and it filled up another slot in the.

  7. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  8. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  9. Charmonium spectroscopy - A review

    Indian Academy of Sciences (India)

    to a renewed interest in the precision spectroscopy of charmonium. These are the successful exploitation of proton-antiproton annihilation in the /× = 2 9-4.0. GeV range at Fermilab (FNAL experiments E760, E835), and the BEs spectrometer program at BEPC, the electron positron collider at Beijing. Both these experiments.

  10. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Charmonium spectroscopy - A review

    Indian Academy of Sciences (India)

    A review is presented of the latest developments in the spectroscopy of char- monium. Keywords. Charmonium ... More than half the decays measured have errors larger than 30%. The bound states,. ' (21Л0) and .... at sLAC claimed to have found it, but no other past experiment succeeded in confirming it. E760 and E835 ...

  12. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    essential to understand their structure. Membrane-bound proteins are generally not amenable to crystallization and often their sizes are so large that conventional techniques such as X-ray crystal- lography and nuclear magnetic resonance (NMR) spectroscopy will have limited applications in deciphering their structure. In.

  13. Spectroscopy of new particles

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1977-08-01

    A review of the spectroscopy of the ''psions'' with hidden charm or charm quantum number ch = o is followed by a discussion of charmed mesons and baryons. The anomalous C-μ events and the heavy lepton hypothesis are briefly considered

  14. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE. February 2015. GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule ..... Resonance Energy. Transfer (FRET) is an elegant technique to measure the distance between a donor and an acceptor molecule. FRET refers to the.

  15. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  16. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! ... Author Affiliations. Kankan Bhattacharyya1. Department of Physical Chemistry, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700 032 India.

  17. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  18. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  19. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  20. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  1. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  2. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  3. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  4. Combining Spitzer Parallax and Keck II Adaptive Optics Imaging to Measure the Mass of a Solar-like Star Orbited by a Cold Gaseous Planet Discovered by Microlensing

    Science.gov (United States)

    Beaulieu, J.-P.; Batista, V.; Bennett, D. P.; Marquette, J.-B.; Blackman, J. W.; Cole, A. A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Fukui, A.; Koshimoto, N.; Lončarić, K.; Morales, J. C.; Sumi, T.; Suzuki, D.; Henderson, C.; Shvartzvald, Y.; Beichman, C.

    2018-02-01

    To obtain accurate mass measurements for cold planets discovered by microlensing, it is usually necessary to combine light curve modeling with at least two lens mass–distance relations. The physical parameters of the planetary system OGLE-2014-BLG-0124L have been constrained thanks to accurate parallax effect between ground-based and simultaneous space-based Spitzer observations. Here, we resolved the source+lens star from sub-arcsecond blends in H-band using adaptive optics (AO) observations with NIRC2 mounted on Keck II telescope. We identify additional flux, coincident with the source to within 160 mas. We estimate the potential contributions to this blended light (chance-aligned star, additional companion to the lens or to the source) and find that 85% of the NIR flux is due to the lens star at H L = 16.63 ± 0.06 and K L = 16.44 ± 0.06. We combined the parallax constraint and the AO constraint to derive the physical parameters of the system. The lensing system is composed of a mid-late type G main sequence star of M L = 0.9 ± 0.05 M ⊙ located at D L = 3.5 ± 0.2 kpc in the Galactic disk. Taking the mass ratio and projected separation from the original study leads to a planet of M p = 0.65 ± 0.044 M Jupiter at 3.48 ± 0.22 au. Excellent parallax measurements from simultaneous ground-space observations have been obtained on the microlensing event OGLE-2014-BLG-0124, but it is only when they are combined with ∼30 minutes of Keck II AO observations that the physical parameters of the host star are well measured.

  5. SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Neves, Vasco; Santos, Nuno [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Rogers, Leslie [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gillon, Michaeel [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17, Bat. B5C, Liege 1 (Belgium); Horch, Elliott [Department of Physics, 501 Crescent Street, Southern Connecticut State University, New Haven, CT 06515 (United States); Sullivan, Peter [Department of Physics and Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States); Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Lovis, Christophe; Mayor, Michel; Udry, Stephane [Observatoire de Geneve, Universite de Geneve, 51 ch. des Maillettes, CH-1290 Versoix (Switzerland); Smalley, Barry, E-mail: demory@mit.edu [Astrophysics Group, Keele University, Staffordshire, ST55BG (United Kingdom)

    2013-05-10

    We present Spitzer/IRAC 4.5 {mu}m transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M{sub *}= 0.539{sup +0.047}{sub -0.043} M{sub sun} and a radius of R{sub *}= 0.568{sup +0.037}{sub -0.031} R{sub sun}. We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 {+-} 0.10 and an effective temperature of T{sub eff} = 3600 {+-} 100 K. The revised stellar parameters yield a planetary radius R{sub p}= 4.83{sub -0.21}{sup +0.22} R{sub Circled-Plus} that is 13% larger than the value previously reported in the literature. We find a planetary mass M{sub p}= 13.9{sup +1.5}{sub -1.4} M{sub Circled-Plus} that translates to a very low planetary density, {rho}{sub p}= 0.72{sup +0.13}{sub -0.12} g cm{sup -3}, which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies.

  6. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail: khhuang@ucdavis.edu, E-mail: astrokuang@gmail.com [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  7. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Myers, P. C.; Fazio, G. G.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Pipher, J. L.; Stauffer, J.; Young, E. T.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc −2 to over 10,000 pc −2 , with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc −2 , we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions

  8. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Martha L.; Sonneborn, George [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Barmby, Pauline [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Gordon, Karl D.; Meixner, Margaret [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Lagadec, Eric [Laboratoire Lagrange, UMR7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06300 Nice (France); Lennon, Daniel [ESA-European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDonald, Iain; Zijlstra, Albert [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Sloan, G. C. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Van Loon, Jacco Th., E-mail: martha.boyer@nasa.gov [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  9. BATSE spectroscopy detector calibration

    Science.gov (United States)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  10. Hadron spectroscopy with COMPASS

    CERN Document Server

    Bernhard, Johannes

    2010-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy is a fixed target experiment at the CERN SPS accelerator. In the past two years hadron spectroscopy was brought into focus. A huge amount of data was taken, using hadronic beams at a momentum of 190 GeV$/c$ impinging on hydrogen, lead, nickel and tungsten targets. The primary goal for the hadron programme is the study of resonance production by diractive scattering, central production and photon exchange. To bring clarity in the intriguing question about the existence of exotic states, such as glueballs and hybrids, the analysis of several channels have been started. We present here a selective overview of the current status.

  11. Visible spectroscopy on ASDEX

    International Nuclear Information System (INIS)

    Hofmann, J.V.

    1991-12-01

    In this report visible spectroscopy and impurity investigations on ASDEX are reviewed and several sets of visible spectra are presented. As a basis for identification of metallic impurity lines during plasma discharges spectra from a stainless steel - Cu arc have been recorded. In a next step a spectrum overview of ASDEX discharges is shown which reveals the dominating role of lines from light impurities like carbon and oxygen throughout the UV and visible range (2000 A ≤ λ ≤ 8000 A). Metallic impurity lines of neutrals or single ionized atoms are observed near localized surfaces. The dramatic effect of impurity reduction by boronization of the vessel walls is demonstrated in a few examples. In extension to some ivesti-gations already published, further diagnostic applications of visible spectroscopy are presented. Finally, the hardware and software system used on ASDEX are described in detail. (orig.)

  12. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  13. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  14. Hadron spectroscopy in LHCb

    CERN Document Server

    Palano, Antimo

    2018-01-01

    The LHCb experiment is designed to study the properties and decays of heavy flavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the first charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the confirmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of five new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.

  15. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  16. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  17. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  18. Infrared spectroscopy in astronomy

    Science.gov (United States)

    Houck, J. R.

    1981-01-01

    The use of infrared spectroscopy in astronomy has increased dramatically in the past ten years. The broad design considerations are discussed in terms of wavelength coverage and resolution. Three rough resolution ranges, lambda/Delta lambda of approximately 100, 1000 and 10,000, are identified in which various types of astronomical problems can be studied. Numerous existing systems are briefly discussed and references are given to more complete descriptions.

  19. Secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Sroubek, Z.; Zavadil, J.; Kubec, F.

    1977-01-01

    Secondary ion mass spectroscopy is one of the modern methods suitable for the analysis of thin films and solid state surfaces. The method is capable of providing the compositional information with a depth resolution below 0.1 μm and a sensitivity of the order of 10 -3 ppm for some impurities. The review article contains a description of the method, a list of typical applications and a short account of relevant theories. (author)

  20. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  1. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  2. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  3. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  4. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  5. SPITZER SECONDARY ECLIPSE DEPTHS WITH MULTIPLE INTRAPIXEL SENSITIVITY CORRECTION METHODS OBSERVATIONS OF WASP-13b, WASP-15b, WASP-16b, WASP-62b, AND HAT-P-22b

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, Brian M.; Tucker, Gregory S. [Department of Physics, Box 1843, Brown University, Providence, RI 02904 (United States); Lewis, Nikole K. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Kataria, Tiffany [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ingalls, James G.; Krick, Jessica E., E-mail: brian_kilpatrick@brown.edu, E-mail: nlewis@stsci.org, E-mail: tiffany.kataria@jpl.nasa.gov, E-mail: ddeming@astro.umd.edu, E-mail: krick@ipac.caltech.edu [Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States)

    2017-01-01

    We measure the 4.5 μ m thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope . Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the measurement of exoplanet secondary eclipses. We determine eclipse depths by first correcting the raw data using three independent data reduction methods. The Pixel Gain Map (PMAP), Nearest Neighbors (NNBR), and Pixel Level Decorrelation (PLD) each correct for the intrapixel sensitivity effect in Spitzer photometric time-series observations. The results from each methodology are compared against each other to establish if they reach a statistically equivalent result in every case and to evaluate their ability to minimize uncertainty in the measurement. We find that all three methods produce reliable results. For every planet examined here NNBR and PLD produce results that are in statistical agreement. However, the PMAP method appears to produce results in slight disagreement in cases where the stellar centroid is not kept consistently on the most well characterized area of the detector. We evaluate the ability of each method to reduce the scatter in the residuals as well as in the correlated noise in the corrected data. The NNBR and PLD methods consistently minimize both white and red noise levels and should be considered reliable and consistent. The planets in this study span equilibrium temperatures from 1100 to 2000 K and have brightness temperatures that require either high albedo or efficient recirculation. However, it is possible that other processes such as clouds or disequilibrium chemistry may also be responsible for producing these brightness temperatures.

  6. NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST /WFC3 SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Desert, Jean-Michel [University of Amsterdam (Netherlands); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Diamond-Lowe, Hannah [Department of Astronomy, Harvard Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2016-12-01

    The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2 σ confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1–0.001 bars at 7.7 σ confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06–10 × solar) and carbon-to-oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.

  7. Moessbauer spectroscopy on actinides

    International Nuclear Information System (INIS)

    Boge, M.

    1988-01-01

    The wide spatial extend of the 5f electrons leads a broad spectrum of chemical and physical properties, in particular magnetic, in compounds of light actinides. Their behaviour goes from the localized magnetism of lanthanides to the itinerant magnetism often found in transition metals compounds. One parameter which strongly influences the magnetic character is the actinide-actinide distance. Moessbauer spectroscopy of the 59.5 KeV resonance in 237 Np allows a detailed study of local magnetic properties of the Np ion. Some results are presented on compounds of different crystallographic structure, showing the large variety of magnetic properties

  8. MR spectroscopy in dementia

    International Nuclear Information System (INIS)

    Hauser, T.; Gerigk, L.; Giesel, F.; Schuster, L.; Essig, M.

    2010-01-01

    With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer's dementia, in Alzheimer's dementia, frontotemporal dementia, vascular dementia and Lewy body dementia. (orig.) [de

  9. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  10. Plasma polarization spectroscopy

    CERN Document Server

    Iwamae, Atsushi

    2008-01-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment.

  11. DISCOVERY OF BROAD MOLECULAR LINES AND OF SHOCKED MOLECULAR HYDROGEN FROM THE SUPERNOVA REMNANT G357.7+0.3: HHSMT, APEX, SPITZER , AND SOFIA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rho, J. [SETI Institute, 189 N. Bernardo Ave., Mountain View, CA 94043 (United States); Hewitt, J. W. [CRESST/University of Maryland, Baltimore County, Baltimore, MD 21250 and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bieging, J. [Steward Observatory, The University of Arizona, Tucson AZ 85721 (United States); Reach, W. T. [Universities Space Research Association, SOFIA Science Center, NASA Ames Research Center, MS 232, Moffett Field, CA 94034 (United States); Andersen, M. [Gemini Observatory, Casilla 603, La Serena (Chile); Güsten, R., E-mail: jrho@seti.org, E-mail: john.w.hewitt@unf.edu, E-mail: jbieging@as.arizona.edu, E-mail: wreach@sofia.usra.edu, E-mail: manderse@gemini.edu, E-mail: guesten@mpifr-bonn.mpg.de [Max Planck Institut für Radioastronomie, Auf dem Hugel 69, D-53121 Bonn (Germany)

    2017-01-01

    We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), {sup 13}CO (2-1), and {sup 13}CO (3-2), HCO{sup +}, and HCN using the Heinrich Hertz Submillimeter Telescope, the Arizona 12 m Telescope, APEX, and the MOPRA Telescope. The widths of the broad lines are 15–30 km s{sup −1}, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.′5 × 5′). We also present the detection of shocked H{sub 2} emission in the mid-infrared but lacking ionic lines using Spitzer /IRS observations to map a few-arcminute area. The H{sub 2} excitation diagram shows a best fit with a two-temperature local thermal equilibrium model with the temperatures of ∼200 and 660 K. We observed [C ii] at 158 μ m and high- J CO(11-10) with the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on the Stratospheric Observatory for Infrared Astronomy. The GREAT spectrum of [C ii], a 3 σ detection, shows a broad line profile with a width of 15.7 km{sup −1} that is similar to those of broad CO molecular lines. The line width of [C ii] implies that ionic lines can come from a low-velocity C-shock. Comparison of H{sub 2} emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n (H{sub 2}) = 1.7 × 10{sup 4} cm{sup −3}, N(CO) = 5.6 × 10{sup 16} cm{sup −2}, and T  = 75 K can reproduce the observed millimeter CO brightnesses.

  12. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions

  13. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  14. Meson and baryon spectroscopy

    International Nuclear Information System (INIS)

    Lanius, K.

    1977-01-01

    Some of the essential results are given of the hadron spectroscopy which have been obtained in the last two years. The progress in meson spectroscopy originates in high statistics and in the extensive use of partial wave analysis. The resonances established fill the major meson multiplets. The rotational excitation (α)=0 multiplet is complete. With regard to the gaps in the 1 ++ and 1 +- nonets of the α=1 multiplet there are some good condidates, like Q 2 (1400) and D(1285). Concerning the α=2 and 3 multiplets, there are only very few established states. The reactions that should be studied in searching for the missing states are exclusive channels with multiparticle final state. Both the new evidence about meson resonances and the non-evidence for exotic states, which cannot be represented as a bound q anti q pair, show that the general pattern of meson states is in agreement with the naive nonrelativistic quark model. The summary of SU(6)xO(3) multiplets, as far as it belongs to the distribution of the observed resonances among the different multiplets, can be changed in future. Only the [56.0 + ] can be considered as well established concerning the distribution of the states. As far as it belongs to the [56.1 - ], [70.2 + ] and the second [56.2 + ], additional confirmations are necessary

  15. Handbook of High Resolution Spectroscopy

    OpenAIRE

    2011-01-01

    The field of High resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy laser technology chemical computation and experiments Handbook of High resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today with emphasis on the recent developments. This essential handbook for advanced research students graduate students and researchers takes a systematic approach through the rang...

  16. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  17. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  18. Mass Spectroscopy/Mass Spectroscopy Method for Quantitative ...

    African Journals Online (AJOL)

    Purpose: To determine naproxen levels in human plasma using a new liquid chromatography-Mass spectroscopy/Mass spectroscopy (LC-MS/MS) method that involves a simple and single step extraction procedure using low-cost reagents. Method: A novel liquid chromatography.tandem mass spectrometry method for the ...

  19. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  20. Scanning image correlation spectroscopy.

    Science.gov (United States)

    Digman, Michelle A; Gratton, Enrico

    2012-05-01

    Molecular interactions are at the origin of life. How molecules get at different locations in the cell and how they locate their partners is a major and partially unresolved question in biology that is paramount to signaling. Spatio-temporal correlations of fluctuating fluorescently tagged molecules reveal how they move, interact, and bind in the different cellular compartments. Methods based on fluctuations represent a remarkable technical advancement in biological imaging. Here we discuss image analysis methods based on spatial and temporal correlation of fluctuations, raster image correlation spectroscopy, number and brightness, and spatial cross-correlations that give us information about how individual molecules move in cells and interact with partners at the single molecule level. These methods can be implemented with a standard laser scanning microscope and produce a cellular level spatio-temporal map of molecular interactions. Copyright © 2012 WILEY Periodicals, Inc.

  1. Electromagnetic induction spectroscopy

    Science.gov (United States)

    Won, I. J.; Keiswetter, Dean A.

    1998-09-01

    An object, made partly or wholly of metals, has a distinct combination of electrical conductivity, magnetic permeability, and geometrical shape and size. When the object is exposed to a low-frequency electromagnetic field, it produces a secondary magnetic field. By measuring the secondary field in a broadband spectrum, we obtain a distinct spectral signature that may uniquely identify the object. Based on the response spectrum, we attempt to 'fingerprint' the object. This is the basic concept of Electromagnetic Induction Spectroscopy (EMIS). EMIS technology may be particularly useful for detecting buried landmines and unexploded ordnance. By fully characterizing and identifying an object without excavation. We should be able to reduce significantly the number of false targets. EMIS should be fully applicable to many other problems where target identification and recognition (without intrusive search) are important. For instance, an advanced EMIS device at an airport security gate may be able to recognize a particular weapon by its maker and type.

  2. NMR-spectroscopy

    International Nuclear Information System (INIS)

    Lundin, A.G.; Fedin, Eh.I.

    1986-01-01

    Physical foundations are given and the most important areas of nuclear magnetic resonance (NMR) application in physics, chemistry, biology are described. A detailed review of the investigations conducted and the NMR applications in different science and technology fields is presented. The method basic experimental variants, including such new ones as high resolution in a solid body; rare isotope resonance; two-dimensional and multi-quantum fourier-spectroscopy; large molecule NMR; NMR tomography and NMR intrascopy etc. are considered. The instruments are briefly described. NMR is characterized as one of the most important investigation methods of the material composition, its molecular and crystal structure, visualization of the living organism and nonmetallic object inner structure

  3. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  4. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  5. Heavy meson spectroscopy

    International Nuclear Information System (INIS)

    Chakrabarty, S.

    1989-08-01

    In this article we give a review of certain aspects of the present understanding of spectroscopy of heavy mesons and constituent quark masses in the light of non-relativistic potential model approach motivated by quantum chromodynamics. We find that the one gluon exchange at short distance and colour-confining interaction at large distance which is pure scalar (or scalar-vector admixture with dominant scalar interaction) under the Lorentz transformation, can explain only partially the present data on 1P states of cc-bar and bb-bar states. The S-wave data, that are available at present, however can be understood with both scalar confinement or scalar-vector admixture with scalar-dominant interaction. (author). 44 refs, 13 tabs

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  7. Superconductivity for mass spectroscopy

    International Nuclear Information System (INIS)

    Ohkubo, Masataka

    2007-01-01

    Time-of-Flight Mass Spectroscopy (TOF-MS) with super-conducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described. (author)

  8. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  9. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Science.gov (United States)

    Mandell, Avram Max; Haynes, Korey N.; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 nano meter most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  10. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    In Raman spectroscopy, inelastic scattering of photons from an atom or molecule in chemical entities is utilized to analyze the composition of solids, liquids and gases. However, the low cross-section limits its applications. The introduction of sur- face-enhanced Raman spectroscopy in 1974 has attracted a lot of attention ...

  11. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...... evaluation of the technique for defense and civil security applications....

  12. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  13. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  14. Industrial applications of Raman spectroscopy

    Science.gov (United States)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  15. Partial symmetries in nuclear spectroscopy

    International Nuclear Information System (INIS)

    Leviatan, A.

    1996-01-01

    The notions of exact, dynamical and partial symmetries are discussed in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. (Author)

  16. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  17. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  18. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Melbourne, J.; Soifer, B. T. [Caltech Optical Observatories, Division of Physics, Mathematics and Astronomy, Mail Stop 320-47, California Institute of Technology, Pasadena, CA 91125 (United States); Desai, Vandana; Armus, Lee [Spitzer Science Center, Mail Stop 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Pope, Alexandra; Alberts, Stacey [University of Massachusetts, Astronomy Department, Amherst, MA (United States); Dey, Arjun; Jannuzi, B. T. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Bussmann, R. S., E-mail: jmel@caltech.edu, E-mail: bts@submm.caltech.edu, E-mail: bts@ipac.caltech.edu, E-mail: lee@ipac.caltech.edu, E-mail: vandesai@gmail.com, E-mail: pope@astro.umass.edu, E-mail: dey@noao.edu, E-mail: jannuzi@noao.edu, E-mail: rbussmann@cfa.harvard.edu [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs

  19. Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

    Science.gov (United States)

    Dionatos, O.; Jørgensen, J. K.; Green, J. D.; Herczeg, G. J.; Evans, N. J.; Kristensen, L. E.; Lindberg, J. E.; van Dishoeck, E. F.

    2013-10-01

    Context. Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. Different mechanisms for the origin of these lines have been proposed, including shocks induced by protostellar jets and radiation or heating by the embedded protostar of its immediate surroundings. Aims: By studying of the most important molecular and atomic coolants, we aim at constraining the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measuring the CO/H2 ratio in warm gas. Methods: Spectro-imaging observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) provide an almost complete wavelength coverage between 5 and 200 μm. Within this range, emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants of excited gas are detected. Emission line maps reveal the morphology of the observed emission and indicate associations between the different species. The excitation conditions for molecular species are assessed through rotational diagrams. Emission lines from major coolants are compared to the results of steady-state C- and J-type shock models. Results: Line emission tends to peak at distances of ~10-20″ from the protostellar sources with all but [CII] peaking at the positions of outflow shocks seen in near-IR and sub-millimeter interferometric observations. The [CII] emission pattern suggests that it is most likely excited from energetic UV radiation originating from the nearby flat-spectrum source SMM6. Excitation analysis indicates that H2 and CO originate in gas at two distinct rotational temperatures of ~300 K and 1000 K, while the excitation temperature for H2O and OH is ~100-200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism, which allows direct

  20. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  1. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  2. Hadron Spectroscopy in COMPASS

    CERN Document Server

    Grube, Boris

    2012-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied ...

  3. Meson spectroscopy with COMPASS

    CERN Document Server

    Nerling, Frank

    2011-01-01

    The COMPASS fixed-target experiment at CERN SPS is dedicated to the study of hadron structure and dynamics. In the physics programme using hadron beams, the focus is on the detection of new states, in particular the search for $J^{PC}$ exotic states and glueballs. After a short pilot run in 2004 (190 GeV/c negative pion beam, lead target), we started our hadron spectroscopy programme in 2008 by collecting an unprecedented statistics with a negative hadron beam (190 GeV/c) on a liquid hydrogen target. A similar amount of data with positive hadron beam (190 GeV/c) has been taken in 2009, as well as some additional data with negative beam on nuclear targets. The spectrometer features a large angular acceptance and high momentum resolution and also good coverage by electromagnetic calorimetry, crucial for the detection of final states involving $\\pi^0$ or $\\eta$. A first important result is the observation of a significant $J^{PC}$ spin exotic signal consistent with the disputed $\\pi_1(1600)$ in the pilot run dat...

  4. Meson Spectroscopy at COMPASS

    CERN Document Server

    Grube, Boris

    2016-11-29

    The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...

  5. Taurid Compex reflectance spectroscopy

    Science.gov (United States)

    Birlan, M.; Popescu, M.; Nedelcu, A.

    2014-07-01

    The Taurid complex is a massive stream of material in the inner part of the Solar System. Its name is related to the Taurid meteor shower. This complex is characterized by a cluster of objects having low-inclination (i < 12°), large-eccentricity (0.64--0.85) orbits with semimajor axes spanning the range 1.8--2.6 au. The largest body of the Taurid Complex is the comet P/Encke, and this complex contains more than 20 near-Earth asteroids (NEAs). There is an important lack of information concerning the physical parameters of the Taurid complex. The observational campaign for observing NEAs of the Taurid complex was started in 2011 in order to provide valuable spectroscopic data for characterizing the surfaces of the complex members. The paper presents near-infrared spectroscopy using IRTF/SpeX obtained remotely from Paris Observatory and Bucharest Observatory for the following asteroids: (2201) Oljato, (4183) Cuno, (4486) Mithra, (5243) Heracles, (6063) Jason, and (269690) 1996 RG_3. We will present a detailed analysis of these spectra which allows their association with several minerals and laboratory spectra of meteorites.

  6. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-01-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. (I) Hidden flavor states, i.e. c bar c and b bar b onium states. (II) Open flavor states (a) the D, D s , B, B s , and B c meson systems; (b) Charm and beauty flavored baryons. In this brief note the authors emphasize that there are many missing (undiscovered) states in both categories - states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to the authors would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular status. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner B decay remains to be seen. The authors suggest however that the richness of the excited B-system may undetermine the efficacy of self-tagging schemes

  7. Heavy quark spectroscopy

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-10-01

    New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs

  8. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  9. Moessbauer spectroscopy in space

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Held, P.; Teucher, R.; Schlichting, F.; Foh, J.; Kankeleit, E.

    1995-01-01

    Nearly 40 years after the discovery of the Moessbauer effect for the first time a Moessbauer spectrometer will leave our planet to explore in situ the surface of another solar system body: the red planet Mars [1]. We are currently developing a miniaturized Moessbauer spectrometer (MIMOS) which is part of the scientific payload of the Russian Mars96 mission, to be launched within the next 2-4 years [2,3]. To fulfill the requirements for a space mission to the planet Mars, all parts of the spectrometer had to be extremely miniaturized and ruggedized to withstand the space flight and Mars environmental conditions. The relevant parts (e.g. drive, detector system, electronics etc.) will be described in more detail and its characteristics compared to standard systems. Because of this new development there now is a growing interest to include a Moessbauer (MB) instrument in future space missions to other solar system bodies as for instance Venus, the terrestrial Moon, and a comet nucleus. Because of extremely different environmental conditions (e.g. nearly zero gravity on the surface of a comet nucleus, high pressure and temperature on the surface of Venus, etc.) different instrument designs and concepts are required for different missions. We will present some ideas for various types of missions, as well as the motivation for using Moessbauer spectroscopy in these cases. (orig.)

  10. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  11. Recon Spectroscopy with TRES

    Science.gov (United States)

    Latham, David W.; TRES Team

    2018-01-01

    The Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory on Mount Hopkins has been a workhorse for reconnaissance spectroscopy of transiting-planet candidates identified by a variety of ground- and space-based photometric surveys, including Vulcan, TrES, HATNet, KELT, QES, Kepler, and K2. In support of NASA missions, quick-look classifications of effective temperature, surface gravity, metallicity, line broadening due to rotation, and absolute radial velocity have been uploaded to ExoFOP at NExScI on a timely schedule. More careful results derived using the Stellar Parameter Classification (SPC) tool can be provided in support of publications. For example, SPC results for effective temperature and metallicity have been used extensively to help constrain asteroseismic analyses of Kepler and K2 targets. TRES has also been used effectively for orbital solutions, Rossiter-McLaughlin observations, and Doppler tomography of large planets orbiting brighter. We look forward to continuing this work on TESS Objects of Interest.

  12. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  13. Self-Powered Optical Spectroscopy

    Science.gov (United States)

    2015-08-27

    UV   spectroscopy  using   visible  light  detectors,  we   developed...physical  structures.  In  many  ways,   absorption  and   transmission   spectroscopy  are  fundamentally  connected  to  the... spectroscopy  in  the   UV   and  infrared  regimes  –  although  outside  the  bandwidth  of  the  human

  14. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  15. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  16. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  17. Spectroscopy: Mapping spins in flatland

    Science.gov (United States)

    Aharonovich, Igor; Jelezko, Fedor

    2017-04-01

    Nuclear quadrupole resonance spectroscopy is used to map the properties of atomically thin hexagonal boron nitride, with the help of the nitrogen-vacancy colour centres engineered in a diamond layer placed under the 2D material.

  18. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  19. Dual Comb Fourier Transform Spectroscopy

    Science.gov (United States)

    Hänsch, T. W.; Picqué, N.

    2010-06-01

    The advent of laser frequency combs a decade ago has already revolutionized optical frequency metrology and precision spectroscopy. Extensions of laser combs from the THz region to the extreme ultraviolet and soft x-ray frequencies are now under exploration. Such laser combs have become enabling tools for a growing tree of applications, from optical atomic clocks to attosecond science. Recently, the millions of precisely controlled laser comb lines that can be produced with a train of ultrashort laser pulses have been harnessed for highly multiplexed molecular spectroscopy. Fourier multi-heterodyne spectroscopy, dual comb spectroscopy, or asynchronous optical sampling spectroscopy with frequency combs are emerging as powerful new spectroscopic tools. Even the first proof-of-principle experiments have demonstrated a very exciting potential for ultra-rapid and ultra-sensitive recording of complex molecular spectra. Compared to conventional Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. Longer recording times allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. The spectral structure of sharp lines of a laser comb can be very useful even in the recording of broadband spectra without sharp features, as they are e.g. encountered for molecular gases or in the liquid phase. A second frequency comb of different line spacing permits the generation of a comb of radio frequency beat notes, which effectively map the optical spectrum into the radio frequency regime, so that it can be recorded with a single fast photodetector, followed by digital signal analysis. In the time domain, a pulse train of a mode-locked femtosecond laser excites some molecular medium at regular time intervals. A second pulse train of different repetition

  20. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  1. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  2. No Thermal Inversion and a Solar Water Abundance for the Hot Jupiter HD 209458b from HST/WFC3 Spectroscopy

    Science.gov (United States)

    Line, Michael R.; Stevenson, Kevin B.; Bean, Jacob; Desert, Jean-Michel; Fortney, Jonathan J.; Kreidberg, Laura; Madhusudhan, Nikku; Showman, Adam P.; Diamond-Lowe, Hannah

    2016-12-01

    The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2σ confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1-0.001 bars at 7.7σ confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06-10 × solar) and carbon-to-oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.

  3. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  4. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  5. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  6. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  7. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  8. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  9. Quantum Spectroscopy of Plasmonic Nanostructures

    Directory of Open Access Journals (Sweden)

    Dmitry A. Kalashnikov

    2014-03-01

    Full Text Available We use frequency-entangled photons, generated via spontaneous parametric down conversion, to measure the broadband spectral response of an array of gold nanoparticles exhibiting Fano-type plasmon resonance. Refractive-index sensing of a liquid is performed by measuring the shift of the array resonance. This method is robust in excessively noisy conditions compared with conventional broadband transmission spectroscopy. Detection of a refractive-index change is demonstrated with a noise level 70 times higher than the signal, which is shown to be inaccessible with the conventional transmission spectroscopy. Use of low-photon fluxes makes this method suitable for measurements of photosensitive biosamples and chemical substances.

  10. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  11. Industrial Applications of Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Berry, Frank J.

    2002-01-01

    The historical development of the use of Moessbauer spectroscopy in industrial applications is briefly outlined. The power of the technique for the study of commercially important materials and its capacity to make contributions as a research tool, in quality control, and for in-service evaluation are reviewed. The disadvantages of the technique in the industrial setting are considered. The power of Moessbauer spectroscopy when used to approach specific industrial problems is illustrated by its use in monitoring the nature of corrosion resistant coated steel for automobile manufacture and the in situ characterization of Fischer-Tropsch catalysts.

  12. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  13. Optical Spectroscopy of Single Nanowires

    OpenAIRE

    Trägårdh, Johanna

    2008-01-01

    This thesis describes optical spectroscopy on III-V semiconductor nanowires. The nanowires were grown by metal-organic vapor phase epitaxy (MOVPE) and chemical beam epitaxy (CBE). Photoluminescence and photocurrent spectroscopy are used as tools to investigate issues such as the size of the band gap, the effects of surface states, and the charge carrier transport in core-shell nanowires. The band gap of InAs1-xPx nanowires with wurtzite crystal structure is measured as a function of ...

  14. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  15. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  16. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Alexandra [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO2 and NO3) and unstable neutral species ([IHI] and [FH2]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  17. Laboratory infrared spectroscopy of PAHs

    NARCIS (Netherlands)

    Oomens, J.; Joblin, C.; Tielens, A.G.G.M.

    2011-01-01

    The hypothesis that polyaromatic molecules are the carriers of the infrared interstellar emission bands has spurred the laboratory spectroscopy of this class of molecules. Here we will give an overview of the infrared spectroscopic methods that have been applied over the past two decades to

  18. More seminars on muonium spectroscopy

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1984-12-01

    The paper concerns topics which illustrate the use of muonium spectroscopy in four major areas. The experimental method -muon spin rotation (muSR) is employed in the four topics, which include: muSR studies in magnetism, muons in metals and metal hydrides, muonium in semiconductors and muSR studies in chemistry. (U.K.)

  19. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  20. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... c Indian Academy of Sciences. Vol. 57, No. 1. — journal of. July 2001 physics pp. 175–179. High spin spectroscopy of. 139. Pr. S CHANDA. ½. , SARMISHTHA BHATTACHARYYA. ¾. , TUMPA BHATTACHARJEE .... which is configured under LINUX platform. Around 90 x10 two and higher fold events were ...

  1. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    near-ultraviolet range of electromagnetic spectra. The shift in energy in Raman effect gives information about the ... Raman spectroscopy is commonly used in chemistry, since vibrational information is very specific for the ... in polarizability is compatible with preservation of the center of symmetry. Thus, in a centrosymmetric ...

  2. Fluorescence Spectroscopy and its Applications

    Indian Academy of Sciences (India)

    TECS

    derstanding of the chemical kinetics and molecular dynamics of the excited molecule. This special issue contains eighteen articles dealing with many dif- ferent aspects of fluorescence spectroscopy and applications in chemistry, which I hope would be useful to both chemists and spectroscopists. I thank the Indian Academy ...

  3. Moessbauer spectroscopy of implanted sources

    International Nuclear Information System (INIS)

    Niesen, L.

    1983-01-01

    A review is given of the field of Moessbauer spectroscopy of ion-implanted sources. After an introduction to the various aspects of the ion-implantation method, the following topics are treated: final site selection of implanted impurities; trapping of defects at implanted ions; on-line implantation; implantation in metals, semiconductors and insulators. (Auth.)

  4. High resolution X ray spectroscopy

    International Nuclear Information System (INIS)

    Bartiromo, R.

    1987-01-01

    This paper is devoted to a detailed discussion of the physical processes which are responsible for the emission spectra of H-like and He-like ion of high Z impurities in low density plasmas. The application of high resolution X-ray spectroscopy to the diagnostic of tokamak plasmas is also discussed and examples of the results obtained are presented

  5. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  6. Rotational tunnelling spectroscopy with neutrons

    International Nuclear Information System (INIS)

    Carlile, C.J.; Prager, M.

    1993-04-01

    Neutron tunnelling spectroscopy has been a very fruitful field for almost two decades and is still expanding into new areas, both experimentally and theoretically. The development of the topic is reviewed from the theoretical point of view, highlighting new approaches, and selected examples of more recent experimental work are presented. A brief discussion of instrument performance and experimental requirements is given. (author)

  7. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  8. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  9. High-spin nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  10. Photoemission Electron Spectroscopy IV: Angle-resolved photoemission spectroscopy

    OpenAIRE

    Lee, J. D.; Nagatomi, T. (Translator); Mizutani, G. (Translator); Endo, K. (Translation Supervisor)

    2010-01-01

    The angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental tool to probe themomentum-resolved electronic structure, i.e., the electronic band dispersion ε(k), of solids and their surfaces. ARPES is also an ideal tool to address the question concerning the electron correlation effect on quasiparticle excitations in the low-dimensional (one- or two-dimensional) correlated electron systems. In this issue, we briefly introduce representative studies of ARPES and their fruitf...

  11. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF/sub 2/ as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states. (GHT)

  12. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  13. Design and development of a spectroscopy amplifier

    International Nuclear Information System (INIS)

    Ahmad, N.; Khalaf, M.A.

    1998-01-01

    Spectroscopy amplifier is an integral part of my detection system used for the measurement and spectroscopy of nuclear radiations. Its performance determination the contribution of the electronics to the energy resolution of the system. A spectroscopy amplifier has been designed and developed using locally available components. The design and description of this unit is discussed in this article. (author)

  14. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular ...

  15. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  16. Laser spectroscopy of sputtered atoms

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Calaway, W.F.

    1985-01-01

    The use of laser radiation to study the sputtering process is of relatively recent origin. Much has been learned from this work about the basic physics of the sputtering process itself through measurements of velocity and excited state distributions of sputtered atoms and the effects of adsorbates on substrate sputtering yields. Furthermore, the identification, characterization, and sensitive detection of sputtered atoms by laser spectroscopy has led to the development of in situ diagnostics for impurity fluxes in the plasma edge regions of tokamaks and of ultrasensitive methods (ppB Fe in Si) for surface analysis with ultralow (picocoulomb) ion fluences. The techniques involved in this work, laser fluorescence and multiphoton resonance ionization spectroscopy, will be described and illustrations given of results achieved up to now. 55 refs., 5 figs., 1 tab

  17. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  18. Light hadron spectroscopy at BESIII

    Science.gov (United States)

    Xu, Lei; Besiii Collaboration

    2017-01-01

    J / ψ (ψ 3686) decay is an ideal place to study light hadron spectroscopy. BESIII has collected the largest J / ψ , ψ (3686) samples in the world, including 1.31 billion J / ψ events and 0.5 billion ψ (3686) events. In this paper, latest experimental results at BESIII about the p p ‾ mass threshold enhancement and X (1835) are presented, which help us to understood the nature of the states around 1.8 GeV. Results of a model independent partial wave analysis of J / ψ → γπ0π0 and a partial wave analysis of J / ψ → γϕϕ are also presented, which may contribute to the search for possible scalar, pseudoscalar or tensor glueballs. More experimental results about light hadron spectroscopy at BESIII are expected.

  19. Heavy quark spectroscopy and decay

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  20. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  1. Optical spectroscopy and tooth decay

    Science.gov (United States)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  2. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  3. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... High spin states; nuclear structure; gamma-ray spectroscopy;. ½¿. Pr energy levels. PACS Nos 21.10.-k; 23.20.-g; 27.60.+j; 29.30.Kv. 1. Introduction. The transitional nuclei in the A. ½ ¼ region with N between 77 and 81 are interesting as it offer good scope to look for possible shape changes, similar to ...

  4. Decoherence Spectroscopy for Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Raisa Trubko

    2016-08-01

    Full Text Available Decoherence due to photon scattering in an atom interferometer was studied as a function of laser frequency near an atomic resonance. The resulting decoherence (contrast-loss spectra will be used to calibrate measurements of tune-out wavelengths that are made with the same apparatus. To support this goal, a theoretical model of decoherence spectroscopy is presented here along with experimental tests of this model.

  5. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  6. Compressive spectroscopy by spectral modulation

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2017-05-01

    We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.

  7. Heavy quark production and spectroscopy

    International Nuclear Information System (INIS)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation

  8. Distortion of ethyne on formation of a π complex with silver chloride: C2H2⋯Ag-Cl characterised by rotational spectroscopy and ab initio calculations.

    Science.gov (United States)

    Stephens, Susanna L; Mizukami, Wataru; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2012-11-07

    C(2)H(2)⋯Ag-Cl was formed from ethyne and AgCl in the gas phase and its rotational spectrum observed by both the chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. Reaction of laser-ablated silver metal with CCl(4) gave AgCl which then reacted with ethyne to give the complex. Ground-state rotational spectra of the six isotopologues (12)C(2)H(2)⋯(107)Ag(35)Cl, (12)C(2)H(2)⋯(109)Ag(35)Cl, (12)C(2)H(2)⋯(107)Ag(37)Cl, (12)C(2)H(2)⋯(109)Ag(37)Cl, (13)C(2)H(2)⋯(107)Ag(35)Cl, and (13)C(2)H(2)⋯(109)Ag(35)Cl were analysed to yield rotational constants A(0), B(0), and C(0), centrifugal distortion constants Δ(J), Δ(JK), and δ(J), and Cl nuclear quadrupole coupling constants χ(aa)(Cl) and χ(bb)(Cl)-χ(cc)(Cl). A less complete analysis was possible for (12)C(2)D(2)⋯(107)Ag(35)Cl and (12)C(2)D(2)⋯(109)Ag(35)Cl. Observed principal moments of inertia were interpreted in terms of a planar, T-shaped geometry of C(2v) symmetry in which the AgCl molecule lies along a C(2) axis of ethyne and the Ag atom forms a bond to the midpoint (∗) of the ethyne π bond. r(0) and r(m)(1) geometries and an almost complete r(s)-geometry were established. The ethyne molecule distorts on complex formation by lengthening of the C≡C bond and movement of the two H atoms away from the C≡C internuclear line and the Ag atom. The r(m)(1) bond lengths and angles are as follows: r(∗⋯Ag) = 2.1800(3) Å, r(C-C) = 1.2220(20) Å, r(Ag-Cl) = 2.2658(3) Å and the angle H-C≡∗ has the value 187.79(1)°. Ab initio calculations at the coupled-cluster singles and doubles level of theory with a perturbative treatment of triples (F12∗)∕cc-pVTZ yield a r(e) geometry in excellent agreement with the experimental r(m)(1) version, including the ethyne angular distortion.

  9. Raman spectroscopy of bone metastasis

    Science.gov (United States)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  10. Surface-Induced Dissociation and Chemical Reactions of C2D4+ on Stainless Steel, Carbon (HOPG), and Two Different Diamond Surfaces

    Czech Academy of Sciences Publication Activity Database

    Feketeová, L.; Žabka, Ján; Zappa, F.; Grill, V.; Scheier, P.; Märk, T. D.; Herman, Zdeněk

    2009-01-01

    Roč. 20, č. 6 (2009), s. 927-938 ISSN 1044-0305 Institutional research plan: CEZ:AV0Z40400503 Keywords : surface-induced process * diamond surfaces * chemical reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.391, year: 2009

  11. Scattering of low-energy (5-12 eV) C2D4.sup..+./sup. ions from room-temperature carbon surfaces

    Czech Academy of Sciences Publication Activity Database

    Pysanenko, Andriy; Žabka, Ján; Herman, Zdeněk

    2008-01-01

    Roč. 73, 6-7 (2008), s. 755-770 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ion-surface scattering * Low-energy collisions * Ethylene cation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  12. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  13. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  14. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  15. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  16. Development of MEMS photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  17. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  18. Supraconductor magnet for optical spectroscopy

    International Nuclear Information System (INIS)

    Levy, G.; Buhler, S.

    1985-01-01

    A superconductive magnet system for optic spectroscopy has been built. It includes an elaborate support structure, a LN2/LHe cryostat with its supplies and controls and a superconductive magnet of the split pole type equipped with a superconductive switch. A vertically introduced sample in the LHe bath, on request subcooled down to 2.2K is observed through two optical passages. Magnet characteristics are as follows : - clear bore 35mm - clear split 20mm - central field 6.33 Teslas - homogeneity over 10mm D.S.V.: 1% [fr

  19. General Remarks about mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Mirzababayev, R.M.

    2001-01-01

    More than forty years have passed since the discovery of Mossbauer effect; one of the most brilliant findings in modern physics. This effect proved itself to be the powerful tool in almost all disciplines of the natural sciences and technology. Its unique feature is that it gives the possibility to get the results which cannot be obtained by any other physical methods. Mossbauer effect has been used as a key to unlock some basic physical, chemical and biological phenomena, as a guide for finding the new ways of solving applied scientific and technical problems of electronics, metallurgy, civil engineering, and even fine arts and archaeology. Very few scientific techniques can claim entry into as many countries as Mossbauer spectroscopy. Due to its wide application in an education and research processes the community of Mossbauer spectroscopists extends to almost 100 different countries. Laboratory equipment necessary for conducting gamma resonance spectroscopy, do not require large investments, premises, personnel. The spectrometer is rather small in size and could be installed on the ordinary laboratory table. That is why Mossbauer effect is widely used at numerous Universities all over the world as an universal instrument for tuition and research

  20. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  1. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  2. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  3. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  4. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  5. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  6. THE VOLATILE COMPOSITION OF COMET C/2003 K4 (LINEAR) AT NEAR-IR WAVELENGTHS—COMPARISONS WITH RESULTS FROM THE NANÇAY RADIO TELESCOPE AND FROM THE ODIN, SPITZER, AND SOHO SPACE OBSERVATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P., E-mail: lucas.paganini@nasa.gov [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States)

    2015-07-20

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  7. Doppler-free Fourier transform spectroscopy.

    Science.gov (United States)

    Meek, Samuel A; Hipke, Arthur; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2018-01-01

    Sub-Doppler broadband multi-heterodyne spectroscopy is proposed and experimentally demonstrated. Using two laser frequency combs of slightly different repetition frequencies, we have recorded Doppler-free two-photon dual-comb spectra of atomic rubidium resonances of a width of 6 MHz, while simultaneously interrogating a spectral span of 10 THz. The atomic transitions are uniquely identified via the intensity modulation of the observed fluorescence radiation. To the best of our knowledge, these results represent the first demonstration of Doppler-free Fourier transform spectroscopy and extend the range of applications of broadband spectroscopy towards precision nonlinear spectroscopy.

  8. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  9. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  10. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  11. Screening spectroscopy of prostate cancer

    Science.gov (United States)

    Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.

    2015-11-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.

  12. Terahertz spectroscopy of plasmonic fractals.

    Science.gov (United States)

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  13. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  14. The COMPASS Hadron Spectroscopy Programme

    CERN Document Server

    Austregesilo, A

    2011-01-01

    COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

  15. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  16. Programmable spectroscopy enabled by DLP

    Science.gov (United States)

    Rose, Bjarke; Rasmussen, Michael; Herholdt-Rasmussen, Nicolai; Jespersen, Ole

    2015-03-01

    Ibsen Photonics has since 2012 worked to deploy Texas Instruments DLP® technology to high efficiency, fused silica transmission grating based spectrometers and programmable light sources. The use of Digital Micromirror Devices (DMDs) in spectroscopy, allows for replacement of diode array detectors by single pixel detectors, and for the design of a new generation of programmable light sources, where you can control the relative power, exposure time and resolution independently for each wavelength in your spectrum. We present the special challenges presented by DMD's in relation to stray light and optical throughput, and we comment on the possibility for instrument manufacturers to generate new, dynamic measurement schemes and algorithms for increased speed, higher accuracy, and greater sample protection. We compare DMD based spectrometer designs with competing, diode array based designs, and provide suggestions for target applications of the technology.

  17. Decay spectroscopy of $^{178}$Au

    CERN Document Server

    Whitmore, B

    In this thesis, the neutron-deficient nucleus $^{178}$Au is investigated through decay spectroscopy. Si and HPGe detectors were used to analyse the decay radiation of $^{178}$Au and its daughter nuclei. Previous studies have been unable to distinguish decay radiation from different isomeric states of this nucleus. This thesis represents the first time such isomeric discrimination has been achieved, and presents tentative spin assignments of both the ground state and an isomer. The neutron-deficient gold isotopes are an area of interest for the study of shape coexistence. This is the phenomenon exhibited by nuclei able to exist at a number of close lying energy minima, each reflecting a distinct type of deformation. It is hoped that studies such as this can help identify the evolution of nuclear deformation in this region of the nuclear chart.

  18. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-01-01

    Conventional spectroscopy is reexamined in a search for puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles. These may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, beyond the single-quark transition--the Zweig rule mystery, new particles and old symmetries, the f--A2 interference, and tests of the Zweig rule by rho--ω and f--A2--f' interference are considered

  19. Visible and UV emission spectroscopy

    International Nuclear Information System (INIS)

    Monier-Garbet, P.

    1991-01-01

    Visible and ultra-violet emission spectroscopy is a well established plasma diagnostic technique extensively used in contemporary fusion experiments. Theoretical plasma models are required to derive the relevant physical parameters. These models are reviewed in the first part of this paper. They allow spectral line intensities and radiative power losses to be calculated from the knowledge of the detailed atomic physics processes occurring in the plasma. In tokamak plasma experiments, impurity contamination and transport are important concerns. Basic spectroscopic methods used in their understanding are described. They include the determination of impurity concentrations either by line emission modelling (through the use of an impurity transport code), or by direct charge-exchange recombination measurement. They also include the evaluation of neutral particle fluxes at the plasma periphery. Finally, the experimental techniques used in the derivation of impurity transport coefficients are reported

  20. Photon correlation spectroscopy in ophthalmology

    Science.gov (United States)

    Rovati, L.

    2011-05-01

    On the basis of the theory of light scattering, photon correlation spectroscopy has been used for more than three decades to study ocular tissues. From first in-vitro experiments to study cataractogenesis, this approach has been extended to characterize semi-quantitatively in-vivo all the ocular tissues from cornea to retina and choroids. In order to acquire high quality measurement data from the experiments, serious attention has to be paid to the detector and processing system performance. Detector noise, sensitivity, dead time and afterpulsing lead to a direct or indirect corruption of the acquired correlation function whereas counting range and resolution should be optimized to take into account the wide variability of the ocular tissue optical characteristics.

  1. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations....... energy metabolism, loss of neurones, and lactate production in a large number of brain diseases. Furthermore, 31P and 1H MRS may be particularly clinically useful in evaluation of various disorders in skeletal muscle. In the heart 31P MRS seems at the moment the most suitable for evaluation of global...

  2. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  3. Spectroscopy of family gauge bosons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    2014-09-01

    Full Text Available Spectroscopy of family gauge bosons is investigated based on a U(3 family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3=(e,μ,τ, while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3, under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.

  4. A Century of Galaxy Spectroscopy

    Science.gov (United States)

    Rubin, Vera C.

    1995-10-01

    The first successful spectrum of a galaxy, M31, was obtained in 1898 and published in a two-page paper in the young Astrophysical Journal (Scheiner 1899). Thus the first century of galaxy spectroscopy and the first century of the Astrophysical Journal are almost coincident; I celebrate both in this paper. I describe the very early history of the determination of internal kinematics in spiral galaxies, often by quoting the astronomers' own published words. By mid-century, observations with improved optical and radio telescopes offered evidence that much of the matter in a galaxy is dark. As the century ends, research interests have enlarged to include study of spheroidal and disk galaxies with complex nuclear (and other) kinematics. These complicated velocity patterns are understood as the result of interactions, acquisitions, and mergers, and offer clear evidence of the important role of gravitational effects in galaxy evolution.

  5. Materials characterization by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Nascente, P.A.P.

    2010-01-01

    Low energy electrons are suitable for investigating surfaces due to their low mean free path in solids, which correspond to a few atomic layers (0.5 to 3.0 nm), and could be used in one of the following ways: incident electrons cause the emission of backscattered and secondary electrons and the electrons are excited by irradiated photons. The first case includes the emission of Auger electrons, while photoemission corresponds to the second case. X-ray photoelectron spectroscopy (XPS) is one of the most used surface analysis techniques since it is able to identify not only the surface constituents but also their chemical states. XPS can be employed in several areas of science and engineering, but in this report it will be presented only few examples of its use in the characterization of metallic materials, with an emphasis on thin films of noble and transition metals. (author)

  6. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  7. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations.......MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... energy metabolism, loss of neurones, and lactate production in a large number of brain diseases. Furthermore, 31P and 1H MRS may be particularly clinically useful in evaluation of various disorders in skeletal muscle. In the heart 31P MRS seems at the moment the most suitable for evaluation of global...

  8. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  9. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... VB photoelectron spectroscopy with low energy photons is an important tool to access mostly sur- face specific electronic changes. Indeed, near ambient pressure (NAP) ultraviolet photoelectron spectroscopy. (NAP-UPS) is fully relevant to explore silver-oxygen interaction, since Ag 4d and O 2p orbitals ...

  10. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    Modulation spectroscopy; saturation absorption spectroscopy; Zeeman splitting. PACS Nos 42.62.Fi; 32.60.+i; 33.55. ... easily circumvent the usual problem of laser intensity fluctuation and offer en suite phase-sensitive detection of the ..... Faraday effect can contribute to the signal profile. It has been established that optical.

  11. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  12. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  13. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.

    2013-01-01

    in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  14. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  15. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  16. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  17. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    solution makes NMR more suitable for studying the dynamic behavior of macromolecules. The first high resolution protein structure by NMR spectroscopy was carried out in mid-1980s [3]. Before the beginning of this millennium, NMR spectroscopy was limited to solving 3D struc- tures of proteins with molecular masses less ...

  18. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  19. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  20. Structure, optical spectroscopy and dispersion parameters of ZnGa2Se4 thin films at different annealing temperatures

    Science.gov (United States)

    Fadel, M.; Yahia, I. S.; Sakr, G. B.; Yakuphanoglu, F.; Shenouda, S. S.

    2012-06-01

    Thin films of ZnGa2Se4 were deposited by thermal evaporation method of pre-synthesized ingot material onto highly cleaned microscopic glass substrates. The chemical composition of the investigated compound thin film form was determined by means of energy-dispersive X-ray spectroscopy. X-ray diffraction XRD analysis revealed that the powder compound is polycrystalline and the as-deposited and the annealed films at Ta = 623 and 673 K have amorphous phase, while that annealed at Ta = 700 K is polycrystalline with a single phase of a defective chalcopyrite structure similar to that of the synthesized material. The unit-cell lattice parameters were determined and compared with the reported data. Also, the crystallite size L, the dislocation density δ and the main internal strain ɛ were calculated. Analyses of the AFM images confirm the nanostructure of the prepared annealed film at 700 K. The refractive index n and the film thickness d were determined from optical transmittance data using Swanepoel's method. It was found that the refractive index dispersion data obeys the single oscillator model from which the dispersion parameters were determined. The electric susceptibility of free carriers and the carrier concentration to the effective mass ratio were determined according to the model of Spitzer and Fan. The analysis of the optical absorption revealed both the indirect and direct energy gaps. The indirect optical gaps are presented in the amorphous films (as-deposited, annealed at 623 and 673 K), while the direct energy gap characterized the polycrystalline film at 700 K. Graphical representations of ɛ1, ɛ2, tan δ, - Im[1/ɛ*] and - Im[(1/ɛ* + 1)] are also presented. ZnGa2Se4 is a good candidate for optoelectronic and solar cell devices.

  1. Active beam spectroscopy for ITER

    International Nuclear Information System (INIS)

    Von Hellermann, M.; Giroud, C.; Jaspers, R.; Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D.; Krasilnikov, A.; Tugarinov, S.; Lotte, P.; Malaquias, A.; Rachlew, E.

    2003-01-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV

  2. Anelastic spectroscopy in superconducting oxides

    International Nuclear Information System (INIS)

    Albuquerque Gimenez, J.M. de; Grandini, C.R.; Santos, D.L. dos; Cunha, A.G. da

    2005-01-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  3. Anelastic spectroscopy in superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Gimenez, J.M. de [USP, Inst. de Fisica de Sao Carlos, Sao Carlos, SP (Brazil); UNESP, Dept. de Fisica, Bauru, SP (Brazil); Grandini, C.R.; Santos, D.L. dos [UNESP, Dept. de Fisica, Bauru, SP (Brazil); Cunha, A.G. da [UFES, Dept. de Fisica, Vitoria, ES (Brazil)

    2005-07-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  4. Fourier Spectroscopy: A Bayesian Way

    Directory of Open Access Journals (Sweden)

    Stefan Schmuck

    2017-01-01

    Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

  5. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  6. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  7. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  8. Fluorescence Spectroscopy in a Shoebox

    Science.gov (United States)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  9. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  10. Raman spectroscopy of skin neoplasms

    Science.gov (United States)

    Moryatov, A. A.; Kozlov, S. V.; Kaganov, O. I.; Orlov, A. E.; Zaharov, V. P.; Batrachenko, I. A.; Artemiev, D. N.; Blinov, N. V.

    2017-09-01

    Skin melanoma is spread inhomogeneously worldwide, particularly in Samara region there are high figures of skin neoplasms sick rate as well—18.6%. Research goal: to develop a new method of early non-invasive differential diagnostics of skin neoplasms. Registration of Raman spectrum was implemented in the distance of 3-4 mm, the spectrum registration from pathologically changed zone was subsequently conducted, then from healthy skin zone. The test time for 1 patient was no longer than 3-5 min. In a range of experiments ex vivo there were the following results: melanoma—24, basal cell cancer—25, squamosus cell sarcinoma—7, nevus pigmentosis—9, other malignant neoplasms—6; in vivo: melanoma—9, basal cell cancer—8, nevus pigmentosis—2, other benign neoplasms—2. The first results of the research dedicated to studying permissive opportunities of Raman spectroscopy, with successive two-phase analysis of received parameters display high efficiency of method of differential diagnostic for skin melanoma and other malignant neoplasms, pigment and benign skin neoplasms. Safety and rapidity of the research reveal a high potential of the technique.

  11. Molecular spectroscopy of interstellar medium

    International Nuclear Information System (INIS)

    Varshalovich, D.A.; Khersonskij, V.K.

    1980-01-01

    Experimental data obtained in the investigation into molecules of interstellar medium by molecular-spectroscopic methods are discussed generally. Ion-molecule reactions play a significant part in the formation of multiatom molecules in the interstellar medium as well as reactions proceeding on the surface of interstellar dust. More than 50 types of molecules have been detected in the interstellar medium at present. In a wide range of wave lengths over 500 spectral lines belonging to various molecules and molecular fragments have been recorded. Interstellar molecules permit to investigate interstellar gas from all the sides. They are a suitable indicator of the isotope composition of interstellar gas. Radio observations of interstellar molecules make it possible to effectively investigate kinematics and space structure both separate gas-dust complexes and total gas distribution in Galaxy. It is noted that achievements of molecular spectroscopy of the interstellar medium radically change representations of the chemical composition of interstellar gas, of isotope abundance and organic substance in the Universe

  12. Planetary gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1978-01-01

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed

  13. Spectroscopy Division: progress report for 1990

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1991-01-01

    This report summarises the work done by members of the Spectroscopy Division both within BARC as well as in scientific institutions elsewhere during the calendar year 1990. Main areas of research activity include atomic spectroscopy for hyperfine structure and isotope shift determination, theoretical and experimental studies of diatomic molecules, infrared and Raman spectroscopy of polyatomic molecules, design and fabrication of beam line optics for INDUS-I synchrotron radiation source, beam foil spectroscopy and laser spectroscopy of various atomic and molecular systems. Major experimental facilities that have been utilised include a fourier transform spectrometer, an excimer laser pumped dye-laser and a continous wave argon-ion laser. The report also includes the spectroscopic analytical service rendered for various DAE units and describes briefly some new analytical facilities like laser enhanced ionization in flames and resonance ionization mass spectroscopy using pulsed lasers which are being set up. The above activites were reported by members of the Spectroscopy Division via invited lectures, papers presented in various national and international conferences and publication in scientific journals. Details of these are given at the end of the report. (author). figs., tabs

  14. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    Science.gov (United States)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  15. Vibrational Spectroscopy and Search for Extraterrestrial Life

    Science.gov (United States)

    Girish, T. E.; Sony, K. S.

    2008-11-01

    Vibrational spectroscopy is one of the vital tools in astrobiology. In this paper we have studied the role of IR spectroscopy in the detection of plant and animal life elsewhere in our galaxy. Using relevant astrophysical data of nearby extrasolar planets we have calculated the detection limits of IR spectra of life related chemical compounds from these objects. The probability of detection of methane and plant pigments is found to relatively higher near M type stars compared to G type stars. A list of Jupiter size extrasolar planets discovered around G type stars which are potential objects for possible detection of plant life through IR reflection spectroscopy is also prepared.

  16. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  17. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  18. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  19. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  20. UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications

    Science.gov (United States)

    Salma, Bejaoui; Salama, Farid

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in