WorldWideScience

Sample records for c2d spitzer spectroscopic

  1. The c2d Spitzer Spectroscopic Survey of Ices Around Low-Mass Young Stellar Objects. IV. NH3 and CH3OH

    CERN Document Server

    Bottinelli, Sandrine; Bouwman, Jordy; Beckwith, Martha; van Dishoeck, Ewine F; Oberg, Karin I; Pontoppidan, Klaus M; Linnartz, Harold; Blake, Geoffrey A; Evans, Neal J; Lahuis, Fred

    2010-01-01

    NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and HCOOCH3. Despite a number of recent studies, little is known about their abundances in the solid state. (...) In this work, we investigate the ~ 8-10 micron region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 micron silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH3- and CH3OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ~9 micron in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH3 nu_2 umbrella mode, and derive abundances with respect to w...

  2. The c2d Spitzer Spectroscopic Survey of Ices Around Low-Mass Young Stellar Objects: I. H2O and the 5-8 um Bands

    CERN Document Server

    Boogert, A; Knez, C; Lahuis, F; Kessler-Silacci, J; van Dishoeck, E; Blake, G; Augereau, J; Bisschop, S; Bottinelli, S; Brooke, T; Brown, J; Crapsi, A; Evans, N; Fraser, H; Geers, V; Huard, T; Jorgensen, J; Oberg, K; Allen, L; Harvey, P; Koerner, D; Mundy, L; Padgett, D; Sargent, A; Stapelfeldt, K

    2008-01-01

    With the goal to study the physical and chemical evolution of ices in solar-mass systems, a spectral survey is conducted of a sample of 41 low luminosity YSOs using 3-38 um Spitzer and ground-based spectra. The long-known 6.0 and 6.85 um bands are detected toward all sources, with the Class 0-type YSOs showing the deepest bands ever observed. In almost all sources the 6.0 um band is deeper than expected from the bending mode of pure solid H2O. The depth and shape variations of the remaining 5-7 um absorption indicate that it consists of 5 independent components, which, by comparison to laboratory studies, must be from at least 8 different carriers. Simple species are responsible for much of the absorption in the 5-7 um region, at abundances of 1-30% for CH3OH, 3-8% for NH3, 1-5% for HCOOH, ~6% for H2CO, and ~0.3% for HCOO- with respect to solid H2O. The 6.85 um band likely consists of one or two carriers, of which one is less volatile than H2O because its abundance relative to H2O is enhanced at lower H2O/tau...

  3. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IV. Lupus Observed with MIPS

    CERN Document Server

    Chapman, Nicholas L; Mundy, Lee G; Evans, Neal J; Brooke, Timothy Y; Cieza, Lucas A; Spiesman, William J; Rebull, Luisa M; Stapelfeldt, Karl R; Noriega-Crespo, Alberto; Lanz, Lauranne; Allen, Lori E; Blake, Geoffrey A; Bourke, Tyler L; Harvey, Paul M; Huard, Tracy L; Jørgensen, Jes K; Koerner, David W; Myers, Philip C; Padgett, Deborah L; Sargent, Annelia I; Teuben, Peter; van Dishoeck, Ewine F; Wahhaj, Zahed; Young, Kaisa E

    2007-01-01

    We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and $160\\:\\mu$m. They were made with the Spitzer Space Telescope's Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, ``From Molecular Cores to Planet-Forming Disks'' (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates. ...

  4. VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)

    Science.gov (United States)

    Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.

    2014-05-01

    This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).

  5. The Spitzer c2d Legacy Results: Star Formation Rates and Efficiencies; Evolution and Lifetimes

    CERN Document Server

    Evans, Neal J; Jørgensen, Jes K; Enoch, Melissa L; Merín, Bruno; van Dishoeck, Ewine F; Alcalá, Juan M; Myers, Philip C; Stapelfeldt, Karl R; Huard, Tracy L; Allen, Lori E; Harvey, Paul M; van Kempen, Tim; Blake, Geoffrey A; Koerner, David W; Mundy, Lee G; Padgett, Deborah L; Sargent, Anneila I

    2008-01-01

    (Abridged) The c2d Spitzer Legacy project obtained images and photometry with both IRAC and MIPS instruments for five large, nearby molecular clouds. This paper combines information drawn from studies of individual clouds into a combined and updated statistical analysis of star formation rates and efficiencies, numbers and lifetimes for SED classes, and clustering properties. Current star formation efficiencies range from 3% to 6%. Taken together, the five clouds are producing about 260 solar masses of stars per Myr. The star formation surface density is more than an order of magnitude larger than would be predicted from the Kennicutt relation used in extragalactic studies. Measured against the dense gas probed by the maps of dust continuum emission, the efficiencies are much higher, and the current stock of dense cores would be exhausted in 1.8 Myr on average. The derived lifetime for the Class I phase is 0.44 to 0.54 Myr, considerably longer than some estimates. Similarly, the lifetime for the Class 0 SED c...

  6. c2d Spitzer IRS spectra of embedded low-mass young stars : gas-phase emission lines

    NARCIS (Netherlands)

    Lahuis, F.; van Dishoeck, E. F.; Jorgensen, J. K.; Blake, G. A.; Evans, N. J.

    2010-01-01

    Context. A survey of mid-infrared gas-phase emission lines of H(2), H(2)O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer "Cores to Disks" (c2d) legacy program. Aims. The environment of embed

  7. C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition

    Science.gov (United States)

    Olofsson, J.; Augereau, J.-C.; van Dishoeck, E. F.; Merín, B.; Grosso, N.; Ménard, F.; Blake, G. A.; Monin, J.-L.

    2010-09-01

    Context. Dust particles evolve in size and lattice structure in protoplanetary disks, due to coagulation, fragmentation and crystallization, and are radially and vertically mixed in disks due to turbulent diffusion and wind/radiation pressure forces. Aims: This paper aims at determining the mineralogical composition and size distribution of the dust grains in planet forming regions of disks around a statistical sample of 58 T Tauri stars observed with Spitzer/IRS as part of the Cores to Disks (c2d) Legacy Program. Methods: We present a spectral decomposition model, named “B2C”, that reproduces the IRS spectra over the full spectral range (5-35 μm). The model assumes two dust populations: a warm component responsible for the 10 μm emission arising from the disk inner regions (≲1 AU) and a colder component responsible for the 20-30 μm emission, arising from more distant regions (≲10 AU). The fitting strategy relies on a random exploration of parameter space coupled with a Bayesian inference method. Results: We show evidence for a significant size distribution flattening in the atmospheres of disks compared to the typical MRN distribution, providing an explanation for the usual flat, boxy 10 μm feature profile generally observed in T Tauri star spectra. We reexamine the crystallinity paradox, observationally identified by Olofsson et al. (2009 , A&A, 507, 327), and we find a simultaneous enrichment of the crystallinity in both the warm and cold regions, while grain sizes in both components are uncorrelated. We show that flat disks tend to have larger grains than flared disk. Finally our modeling results do not show evidence for any correlations between the crystallinity and either the star spectral type, or the X-ray luminosity (for a subset of the sample). Conclusions: The size distribution flattening may suggests that grain coagulation is a slightly more effective process than fragmentation (helped by turbulent diffusion) in disk atmospheres, and that

  8. The Spitzer c2d Survey of Weak-line T Tauri Stars II: New Constraints on the Timescale for Planet Building

    CERN Document Server

    Cieza, Lucas; Stapelfeldt, Karl R; Augereau, Jean-Charles; Harvey, Paul; Evans, Neal J; II,; Merin, Bruno; Koerner, David W; Sargent, Anneila; van Dishoeck, Ewine F; Allen, Lori; Blake, G A; Brooke, Timothy; Chapman, Nicholas; Huard, Tracy; Lai, Shih-Ping; Mundy, Lee; Myers, Philip C; Spiesman, William; Wahhaj, Zahed

    2007-01-01

    One of the central goals of the Spitzer Legacy Project ``From Molecular Cores to Planet-forming Disks'' (c2d) is to determine the frequency of remnant circumstellar disks around weak-line T Tauri stars (wTTs) and to study the properties and evolutionary status of these disks. Here we present a census of disks for a sample of over 230 spectroscopically identified wTTs located in the c2d IRAC (3.6, 4.5, 4.8, and 8.0 um) and MIPS (24 um) maps of the Ophiuchus, Lupus, and Perseus Molecular Clouds. We find that ~20% of the wTTs in a magnitude limited subsample have noticeable IR-excesses at IRAC wavelengths indicating the presence of a circumstellar disk. The disk frequencies we find in these 3 regions are ~3-6 times larger than that recently found for a sample of 83 relatively isolated wTTs located, for the most part, outside the highest extinction regions covered by the c2d IRAC and MIPS maps. The disk fractions we find are more consistent with those obtained in recent Spitzer studies of wTTs in young clusters s...

  9. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds: VII. Ophiuchus Observed with MIPS

    CERN Document Server

    Padgett, Deborah L; Stapelfeldt, Karl R; Chapman, Nicholas L; Lai, Shih-Ping; Mundy, Lee G; Evans, Neal J; Brooke, Timothy Y; Cieza, Lucas A; Spiesman, William J; Noriega-Crespo, Alberto; McCabe, Caer-Eve; Allen, Lori E; Blake, Geoffrey A; Harvey, Paul M; Huard, Tracy L; Jorgensen, Jes K; Koerner, David W; Myers, Philip C; Sargent, Anneila I; Teuben, Peter; van Dishoeck, Ewine F; Wahhaj, Zahed; Young, Kaisa E

    2007-01-01

    We present maps of 14.4 deg^2 of the Ophiuchus dark clouds observed by the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). These high quality maps depict both numerous point sources as well as extended dust emission within the star-forming and non-star-forming portions of these clouds. Using PSF-fitting photometry, we detect 5779 sources at 24 um and 81 sources at 70 um at the 10 sigma level of significance. Three hundred twenty-three candidate young stellar objects (YSOs) were identified according to their positions on the MIPS/2MASS K versus K$-$[24] color-magnitude diagrams as compared to 24 um detections in the SWIRE extragalactic survey. We find that more than half of the YSO candidates, and almost all the ones with protostellar Class I spectral energy distributions, are confined to the known cluster and aggregates.

  10. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. XI. Lupus Observed With IRAC and MIPS

    CERN Document Server

    Merin, Bruno; Spezzi, Loredana; Alcala, Juan M; Evans, Neal J; Harvey, Paul M; Chapman, Nicholas; Huard, Tracy; van Dishoeck, Ewine F; Comeron, Fernando

    2008-01-01

    We present c2d Spitzer/IRAC observations of the Lupus I, III and IV dark clouds and discuss them in combination with optical and near-infrared and c2d MIPS data. With the Spitzer data, the new sample contains 159 stars, 4 times larger than the previous one. It is dominated by low- and very-low mass stars and it is complete down to M $\\approx$ 0.1M$_\\odot$. We find 30-40 % binaries with separations between 100 to 2000 AU with no apparent effect in the disk properties of the members. A large majority of the objects are Class II or Class III objects, with only 20 (12%) of Class I or Flat spectrum sources. The disk sample is complete down to ``debris''-like systems in stars as small as M $\\approx$ 0.2 M$_\\odot$ and includes sub-stellar objects with larger IR excesses. The disk fraction in Lupus is 70 -- 80%, consistent with an age of 1 -- 2 Myr. However, the young population contains 20% optically thick accretion disks and 40% relatively less flared disks. A growing variety of inner disk structures is found for l...

  11. c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    CERN Document Server

    Lahuis, Fred; Jørgensen, Jes K; Blake, Geoffrey A; Evans, Neal J

    2010-01-01

    A survey of mid-IR gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer "Cores to Disks" (c2d) legacy program. The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. A key point is to spatially resolve the emission in the Spitzer-IRS spectra. An optimal extraction method is used to separate both spatially unresolved (compact, up to a few 100 AU) and spatially resolved (extended, 1000 AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Both compact and extended emission features are observed. Warm (Tex few 100 K) H2, observed through the pure rotatio...

  12. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds: VI. Perseus Observed with MIPS

    CERN Document Server

    Rebull, L M; II, N J E; Jørgensen, J K; Harvey, P M; Brooke, T Y; Bourke, T L; Padgett, D L; Chapman, N L; Lai, S P; Spiesmann, W J; Noreiga-Crespo, A; Merin, B; Huard, T; Allen, L E; Blake, G A; Jarrett, T; Körner, D W; Mundy, L G; Myers, P C; Sargent, A I; Van Dishoeck, E F; Wahhaj, Z; Young, K E

    2007-01-01

    We present observations of 10.6 square degrees of the Perseus molecular cloud at 24, 70, and 160 microns with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). The image mosaics show prominent, complex extended emission dominated by illuminating B stars on the East side of the cloud, and by cold filaments of 160 micron emission on the West side. Of 3950 point sources identified at 24 microns, 1141 have 2MASS counterparts. A quarter of these populate regions of the Ks vs. Ks-[24] diagram that are distinct from stellar photospheres and background galaxies, and thus are likely to be cloud members with infrared excess. Nearly half (46%) of these 24 micron excess sources are distributed outside the IC 348 and NGC 1333 clusters. NGC 1333 shows the highest fraction of stars with flat or rising spectral energy distributions (28%), while Class II SEDs are most common in IC 348. These results are consistent with previous relative age determinations for the two clusters. The intercluster regio...

  13. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds VIII. Serpens Observed with MIPS

    CERN Document Server

    Harvey, Paul M; Brooke, Tim; Spiesman, William J; Chapman, Nicholas; Huard, Tracy L; Evans, Neal J; Cieza, Lucas; Lai, Shih-Ping; Allen, Lori E; Mundy, Lee G; Padgett, Deborah L; Sargent, Anneila I; Stapelfeldt, Karl R; Myers, Philip C; van Dishoeck, Ewine F; Blake, Geoffrey A; Koerner, David W

    2007-01-01

    We present maps of 1.5 square degrees of the Serpens dark cloud at 24, 70, and 160\\micron observed with the Spitzer Space Telescope MIPS Camera. More than 2400 compact sources have been extracted at 24um, nearly 100 at 70um, and 4 at 160um. We estimate completeness limits for our 24um survey from Monte Carlo tests with artificial sources inserted into the Spitzer maps. We compare source counts, colors, and magnitudes in the Serpens cloud to two reference data sets, a 0.50 deg^2 set on a low-extinction region near the dark cloud, and a 5.3 deg^2 subset of the SWIRE ELAIS N1 data that was processed through our pipeline. These results show that there is an easily identifiable population of young stellar object candidates in the Serpens Cloud that is not present in either of the reference data sets. We also show a comparison of visual extinction and cool dust emission illustrating a close correlation between the two, and find that the most embedded YSO candidates are located in the areas of highest visual extinct...

  14. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. I. Chamaeleon II Observed with MIPS

    CERN Document Server

    Young, K E; Allen, L E; Bertoldi, F; Blake, G A; Bourke, T L; Brooke, T Y; Chapman, N; Harvey, P M; Kauffmann, J; Körner, D W; Lai, S P; Mundy, L G; Myers, P C; Padgett, D L; Salinas, A; Sargent, A I; Spiesman, W; Stapelfeldt, K R; Teuben, P; Van Dishoeck, E F; Wahhaj, Z

    2005-01-01

    We present maps of over 1.5 square degrees in Chamaeleon (Cha) II at 24, 70, and 160 micron observed with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) and a 1.2 square degree millimeter map from SIMBA on the Swedish-ESO Submillimetre Telescope (SEST). The c2d Spitzer Legacy Team's data reduction pipeline is described in detail. Over 1500 24 micron sources and 41 70 micron sources were detected by MIPS with fluxes greater than 10-sigma. More than 40 potential YSOs are identified with a MIPS and 2MASS color-color diagram and by their spectral indices, including two previously unknown sources with 24 micron excesses. Our new SIMBA millimeter map of Cha II shows that only a small fraction of the gas is in compact structures with high column densities. The extended emission seen by MIPS is compared with previous CO observations. Some selected interesting sources, including two detected at 1 mm, associated with Cha II are discussed in detail and their SEDs presented. The classificatio...

  15. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC

    CERN Document Server

    Jørgensen, J K; Evans, N J; Huard, T L; Allen, L E; Porras, A; Blake, G A; Bourke, T L; Chapman, N; Cieza, L; Körner, D W; Lai, S P; Mundy, L G; Myers, P C; Padgett, D L; Rebull, L M; Sargent, A I; Spiesman, W; Stapelfeldt, K R; Van Dishoeck, E F; Wahhaj, Z; Young, K E; Jorgensen, Jes K.; Harvey, Paul M.; II, Neal J. Evans; Huard, Tracy L.; Allen, Lori E.; Porras, Alicia; Blake, Geoffrey A.; Bourke, Tyler L.; Chapman, Nicholas; Cieza, Lucas; Koerner, David W.; Lai, Shih-Ping; Mundy, Lee G.; Myers, Philip C.; Padgett, Deborah L.; Rebull, Luisa; Sargent, Anneila I.; Spiesman, William; Stapelfeldt, Karl R.; Dishoeck, Ewine F. van; Wahhaj, Zahed; Young, Kaisa E.

    2006-01-01

    We present observations of 3.86 sq. deg. of the Perseus molecular cloud complex with the Spitzer Space Telescope Infrared Array Camera (IRAC). The maps show strong extended emission arising from shocked H2 in outflows in the region and from polycyclic aromatic hydrocarbon features. More than 120,000 sources are extracted toward the cloud. Based on their IRAC colors and comparison to off-cloud and extragalactic fields, we identify 400 candidate young stellar objects. About two thirds of these are associated with the young clusters IC348 and NGC1333, while the last third is distributed over the remaining cloud. We classify the young stellar objects according to the traditional scheme based on the slope of their spectral energy distributions. Significant differences are found for the numbers of embedded Class I objects relative to more evolved Class II objects in IC348, NGC1333 and the remaining cloud with the embedded Class I and "flat spectrum" YSOs constituting 14%, 36% and 47% of the total number of YSOs ide...

  16. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M.; Arce, Hector G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Herzberg Institute, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Hatchell, Jennifer [Astrophysics Group, Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Merin, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Spezzi, Loredana, E-mail: michael.dunham@yale.edu [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-04-15

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L{sub bol} for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L{sub Sun} to 69 L{sub Sun }, and has a mean and median of 4.3 L{sub Sun} and 1.3 L{sub Sun }, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L{sub bol} {approx}< 0.5 L{sub Sun }) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 {mu}m <{lambda} < 850 {mu}m) and have L{sub bol} underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  17. The c2d Spitzer spectroscopy survey of ices around low-mass young stellar objects, III: CH4

    CERN Document Server

    Oberg, Karin I; Pontoppidan, Klaus M; Blake, Geoffrey A; Evans, Neal J; Lahuis, Fred; van Dishoeck, Ewine F

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high mass star forming regions. Spitzer/IRS now provides a unique opportunity to probe solid CH4 toward low mass star forming regions as well. Infrared spectra from the Spitzer Space Telescope are presented to determine the solid CH4 abundance toward a large sample of low mass young stellar objects. 25 out of 52 ice sources in the $c2d$ (cores to disks) legacy have an absorption feature at 7.7 um, attributed to the bending mode of solid CH4. The solid CH4 / H2O abundances are 2-8%, except for three sources with abundances as high as 11-13%. These latter sources have relatively large uncertainties due to small total ice column densities. Toward sources with H2O column densities above 2E18 cm-2, the CH4 abundances (20 out of 25) are nearly constant at 4.7+/-1.6%. Correlation plots with solid H2O, CH3OH, CO2 and CO column densities and abundances relative to H2O reveal a closer...

  18. c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    Science.gov (United States)

    Lahuis, F.; van Dishoeck, E. F.; Jørgensen, J. K.; Blake, G. A.; Evans, N. J.

    2010-09-01

    Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer “Cores to Disks” (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. The mid-IR spectral range hosts a suite of diagnostic lines which can distinguish them. A key point is to spatially resolve the emission in the Spitzer-IRS spectra to separate extended PDR and shock emission from compact source emission associated with the circumstellar disk and jets. Methods: An optimal extraction method is used to separate both spatially unresolved (compact, up to a few hundred AU) and spatially resolved (extended, thousand AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Results: Both compact and extended emission features are observed. Warm (T_ex few hundred K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S i] 25 μm emission is observed primarily in the extended component. [S i] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (T_ex ⪆ 700 K) H2, observed primarily through the S(4) line, and [Ne ii] emission is seen mostly in the spatially unresolved component. [Fe ii] and [Si ii] lines are observed in both spatial components. Hot H2O emission is found in the spatially unresolved component of some sources. Conclusions: The observed emission on ≥1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded

  19. AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens region

    CERN Document Server

    Scaife, Anna M M; Ainsworth, Rachael E; Buckle, Jane V; Davies, Matthew; Franzen, Thomas M O; Grainge, Keith J B; Hobson, Michael P; Hurley-Walker, Natasha; Lasenby, Anthony N; Olamaie, Malak; Perrott, Yvette C; Pooley, Guy G; Richer, John S; Rodriguez-Gonzalvez, Carmen; Saunders, Richard D E; Schammel, Michel P; Scott, Paul F; Shimwell, Timothy; Titterington, David; Waldram, Elizabeth

    2011-01-01

    We present deep radio continuum observations of the cores identified as deeply embedded young stellar objects in the Serpens molecular cloud by the Spitzer c2d programme at a wavelength of 1.8cm with the Arcminute Microkelvin Imager Large Array (AMI-LA). These observations have a resolution of ~30arcsec and an average sensitivity of 19microJy/beam. The targets are predominantly Class I sources, and we find the detection rate for Class I objects in this sample to be low (18%) compared to that of Class 0 objects (67%), consistent with previous works. For detected objects we examine correlations of radio luminosity with bolometric luminosity and envelope mass and find that these data support correlations found by previous samples, but do not show any indiction of the evolutionary divide hinted at by similar data from the Perseus molecular cloud when comparing radio luminosity with envelope mass. We conclude that envelope mass provides a better indicator for radio luminosity than bolometric luminosity, based on t...

  20. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. XII. The Perseus YSO Population as Observed with IRAC and MIPS

    CERN Document Server

    Young, Kaisa E; Lai, Shih-Ping; Dunham, Michael M; Evans, Neal J

    2015-01-01

    The Spitzer Space Telescope mapped the Perseus molecular cloud complex with IRAC and MIPS as part of the c2d Spitzer Legacy project. This paper combines the observations from both instruments giving an overview of low-mass star formation across Perseus from 3.6 to 70 micron. We provide an updated list of young stellar objects with new classifications and source fluxes from previous works, identifying 369 YSOs in Perseus with the Spitzer dataset. By synthesizing the IRAC and MIPS maps of Perseus and building on the work of previous papers in this series (Jorgensen et al. 2006, Rebull et al. 2007), we present a current census of star formation across the cloud and within smaller regions. 67% of the YSOs are associated with the young clusters NGC 1333 and IC 348. The majority of the star formation activity in Perseus occurs in the regions around the clusters, to the eastern and western ends of the cloud complex. The middle of the cloud is nearly empty of YSOs despite containing regions of high visual extinction....

  1. The Spitzer c2d Survey of Weak-Line T Tauri Stars. III. The Transition from Primordial Disks to Debris Disks

    CERN Document Server

    Wahhaj, Zahed; Stapelfeldt, Karl R; Padgett, Deborah L; Koerner, David W; Case, April; Keller, James R; Merín, Bruno; Evans, Neal J; Harvey, Paul; Sargent, Anneila; van Dishoeck, Ewine F; Allen, Lori; Blake, Geoff; Brooke, Tim; Chapman, Nicholas; Mundy, Lee; Myers, Philip C

    2010-01-01

    We present 3.6 to 70 {\\mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTS) in the Chamaeleon, Lupus, Ophiuchus and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars (CTTS) which are located in the same star forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {\\mu}m) and the 24 {\\mu}m MIPS band. In the 70 {\\mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTS survey in the mid to far infrared to date, and reveal the frequency of outer disks (r = 3-50 AU) around WTTS. The 70 {\\mu}m photometry for half the c2d WTTS sample (the on-cloud objects), which were not included in the earlier papers in this series, Padgett et al. (2006) and Cieza et al. (2007), are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTS, but just 5% for...

  2. SSGSS : The Spitzer-SDSS-GALEX Spectroscopic Survey

    NARCIS (Netherlands)

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stephane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; van der Hulst, J. M.

    2011-01-01

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z <0.2 with unprecedented multi-wavelength coverage. New mid-to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, includin

  3. AST/RO 13CO(J=2-1) and 12CO(J=4-3) Mapping of Southern Spitzer c2d Small Clouds and Cores

    CERN Document Server

    Löhr, A; Lane, A P; Myers, P C; Parshley, S C; Stark, A A; Tothill, N F H

    2007-01-01

    Forty molecular cloud cores in the southern hemisphere from the initial Spitzer Space Telescope Cores-to-Disks (c2d) Legacy program source list have been surveyed in 13CO(2-1), 12CO(4-3), and 12CO(7-6) with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO). The cores, ten of which contain embedded sources, are located mostly in the Vela, Ophiuchus, Lupus, Chamaeleon, Musca, and Scorpius complexes. 12CO(7-6) emission was undetected in all 40 clouds. We present data of 40 sources in 13CO(2-1) and 12CO(4-3), significant upper limits of 12CO(7-6), as well as a statistical analysis of the observed properties of the clouds. We find the typical 13CO(2-1) linewidth to be 2.0 km/s for cores with embedded stars, and 1.8 km/s for all others. The typical 12CO(4-3) linewidth is 2.6 to 3.7 km/s for cores with known embedded sources, and 1.6 to 2.3 km/s for all others. The average 13CO column density derived from the line intensities was found to be 1.9 x 10^15 cm^(-2) for cores with embedded stars, and ...

  4. THE c2d SPITZER SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH3 AND CH3OH

    NARCIS (Netherlands)

    Bottinelli, Sandrine; Boogert, A. C. Adwin; Bouwman, Jordy; Beckwith, Martha; van Dishoeck, Ewine F.; Oberg, Karin I.; Pontoppidan, Klaus M.; Linnartz, Harold; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred

    2010-01-01

    NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and CH3OCH3. Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protosta

  5. The Spitzer Spectroscopic Survey of S-type Stars

    CERN Document Server

    Smolders, K; Blommaert, J A D L; Hony, S; Van Winckel, H; Decin, L; Van Eck, S; Sloan, G C; Cami, J; Uttenthaler, S; Degroote, P; Barry, D; Feast, M; Groenewegen, M A T; Matsuura, M; Menzies, J; Sahai, R; van Loon, J Th; Zijlstra, A A; Acke, B; Bloemen, S; Cox, N; de Cat, P; Desmet, M; Exter, K; Ladjal, D; Ostensen, R; Saesen, S; van Wyk, F; Verhoest, T; Zima, W

    2012-01-01

    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can...

  6. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    CERN Document Server

    Mata, Héctor; Guerrero, Martin A; Nigoche-Netro, Alberto; Toalá, Jesús A; Fang, Xuan; Rubio, Gabriel M; Kemp, Simon N; Navarro, Silvana G; Corral, Luis J

    2016-01-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of eleven planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 {\\mu}m that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ~900+/-70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon (PAH) features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  7. Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope

    CERN Document Server

    Houck, J R; Weedman, D; Higdon, S J U; Higdon, J L; Herter, T; Brown, M J I; Dey, A; Jannuzi, B T; Le Floc'h, E; Rieke, M; Armus, L; Charmandaris, V; Brandl, B R; Tepliitz, H I

    2005-01-01

    We have surveyed a field covering 9.0 degrees^2 within the NOAO Deep Wide-Field Survey region in Bootes with the Multiband Imaging Photometer on the Spitzer Space Telescope (SST) to a limiting 24 um flux density of 0.3 mJy. Thirty one sources from this survey with F(24um) > 0.75 mJy which are optically very faint (R > 24.5 mag) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. Redshifts derived primarily from strong silicate absorption features are reported here for 17 of these sources; 10 of these are optically invisible (R > 26 mag), with no counterpart in B_W, R, or I. The observed redshifts for 16 sources are 1.7 < z < 2.8. These represent a newly discovered population of highly obscured sources at high redshift with extreme infrared to optical ratios. Using IRS spectra of local galaxies as templates, we find that a majority of the sources have mid-infrared spectral shapes most similar to ultraluminous infrared galaxies powered primarily by AGN. Assuming the sam...

  8. The Spitzer Spectroscopic Survey of the Small Magellanic Cloud (S4MC): Probing the Physical State of Polycyclic Aromatic Hydrocarbons in a Low-Metallicity Environment

    CERN Document Server

    Sandstrom, Karin M; Bot, Caroline; Draine, B T; Ingalls, James G; Israel, Frank P; Jackson, James M; Leroy, Adam K; Li, Aigen; Rubio, Mónica; Simon, Joshua D; Smith, J D T; Stanimirović, Snežana; Tielens, A G G M; van Loon, Jacco Th

    2011-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud from the Spitzer Spectroscopic Survey of the SMC (S4MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 micron features relative to the 11.3 micron feature and weak 8.6 and 17.0 micron features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted towards sm...

  9. THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S{sup 4}MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Karin M. [Max Planck Institut fuer Astronomie, D-69117 Heidelberg (Germany); Bolatto, Alberto D. [Department of Astronomy and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Bot, Caroline [Universite de Strasbourg, Observatoire Astronomique de Strasbourg, F-67000 Strasbourg (France); Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ingalls, James G. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Israel, Frank P.; Tielens, A. G. G. M. [Sterrewacht Leiden, Leiden University, 2300 RA Leiden (Netherlands); Jackson, James M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65213 (United States); Rubio, Monica [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Smith, J. D. T. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43603 (United States); Stanimirovic, Snezana [Department of Astronomy, University of Wisconsin, Madison, Madison, WI 53703 (United States); Van Loon, Jacco Th., E-mail: sandstrom@mpia.de [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2012-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S{sup 4}MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 {mu}m features relative to the 11.3 {mu}m feature and weak 8.6 and 17.0 {mu}m features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies-namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

  10. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of Acetylene 12C2D2

    Science.gov (United States)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Two hundred and fifty-one 12C2D2 transitions have been measured in the 0.2-1.6 THz region of its ν5-ν4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12C2D2 molecules were generated under room temperature by passing 120-150 mTorr D2O vapor through calcium carbide (CaC2) powder. A multistate analysis was carried out for the bending vibrational modes ν4 and ν5 of 12C2D2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2D2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  11. Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic switch in adipose tissue environments.

    Science.gov (United States)

    Xie, Linglin; Fu, Qiang; Ortega, Teresa M; Zhou, Lun; Rasmussen, Dane; O'Keefe, Jacy; Zhang, Ke K; Chapes, Stephen K

    2014-01-01

    Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.

  12. What Powers the 12 μm Luminosities in AGNs: Spitzer/IRS Spectroscopic Study of the 12 μm Seyfert Sample

    Science.gov (United States)

    Wu, Y.; Huang, J.; Charmandaris, V.

    2009-10-01

    We present a mid-IR study of the 12 μm Seyfert sample, using 5-35 μm low-resolution spectroscopy from Spitzer/IRS. Sources in this sample display a wide variety of spectral shapes. We perform an analysis of the continuum emission, the strength of the Polycyclic Aromatic Hydrocarbon (PAH) emission, as well as fine-structure lines, in order to study the mid-IR properties of the local Seyfert galaxies. We find that the equivalent widths of PAHs decrease with increasing dust temperature. We also propose a method to estimate the AGN contribution to the integrated 12 μm emission of the galaxy.

  13. 用李代数方法构造C2D2分子的势能面

    Institute of Scientific and Technical Information of China (English)

    王晓艳; 丁世良; 王德华

    2004-01-01

    利用相干态基把C2D2(D—C≡C—D)分子的代数Hamiltonian经典化而导出C2D2分子的势能面,给出了势能面的立体图及相应的等高线。并具体计算了力常数、解离能等,与实验值相当符合。

  14. Machine Learning Energies of 2 Million Elpasolite (A B C2D6) Crystals

    Science.gov (United States)

    Faber, Felix A.; Lindmaa, Alexander; von Lilienfeld, O. Anatole; Armiento, Rickard

    2016-09-01

    Elpasolite is the predominant quaternary crystal structure (AlNaK2F6 prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ˜2 ×106 pristine A B C2D6 elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV /atom for a training set consisting of 10 ×103 crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2 ×106 crystals, 90 unique structures are predicted to be on the convex hull—among which is NFAl2Ca6, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

  15. 用李代数方法构造C2D2分子的势能面

    Institute of Scientific and Technical Information of China (English)

    王晓艳; 丁世良; 王德华

    2004-01-01

    利用相干态基把C2D2(D-C≡C-D)分子的代数Hamiltonian 经典化而导出C2D2分子的势能面, 给出了势能面的立体图及相应的等高线. 并具体计算了力常数、解离能等, 与实验值相当符合.

  16. Near-Infrared Spectroscopy of Warm Spitzer-observed Near-Earth Objects

    NARCIS (Netherlands)

    Thomas, Cristina A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2013-01-01

    We have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. ExploreNEOs or “The Warm Spitzer NEO Survey: Exploring the history of the inner Solar System and near-Earth space” was allocated 500 hours over two years (2009-2011) to determine diameters and al

  17. High resolution analysis of C2D4 in the region of 600-1150 cm-1

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Fomchenko, A. L.; Zhang, Fangce; Sydow, C.; Maul, C.; Bauerecker, S.

    2016-10-01

    High-accurate Fourier-transform infrared spectra of C2D4 were recorded and analyzed in the region of 600-1150 cm-1 where the bands ν7(B1u), ν10(B2u), ν12(B3u) are located as well as the ν4(Au) band which is forbidden by the symmetry of the molecule. The ground state rotational structure was re-analyzed by the use of ground state combination differences obtained on the basis of infrared transitions of the ν12 and ν7 absorption bands. This gave us the possibility to considerably improve the rotational and centrifugal parameters of the ground vibrational state. The analysis of the experimental data and the subsequent weighted-fit procedure of the Hamiltonian parameters allowed us to reproduce the initial 4405 "experimental" ro-vibrational energy values with the drms = 2.1 ×10-4cm-1.

  18. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  19. Central stars of mid-infrared nebulae discovered with Spitzer and WISE

    CERN Document Server

    Gvaramadze, V V

    2016-01-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  20. Z>~7 galaxies with red Spitzer/IRAC [3.6]-[4.5] colors in the full CANDELS data set: the brightest-known galaxies at Z~7-9 and a probable spectroscopic confirmation at Z=7.48

    CERN Document Server

    Roberts-Borsani, G W; Oesch, P A; Labbe, I; Smit, R; Illingworth, G D; van Dokkum, P; Holden, B; Gonzalez, V; Stefanon, M; Holwerda, B; Wilkins, S

    2015-01-01

    We identify 4 unusually bright (H~7.5. As Y-band observations are not available over the full CANDELS program to perform a standard Lyman-break selection of z>7 galaxies, here we employ an alternate strategy using the deep Spitzer/IRAC data. We identify z~7.1-9.1 galaxies by selecting z>~6 galaxies from the HST CANDELS data that show quite red IRAC [3.6]-[4.5] colors, indicating a strong [OIII] line in the 4.5mu band. This selection strategy was validated using a modest sample for which we have deep Y-band coverage. Here we focus on using this criterion to select the brightest z>~7 sources. Applying the IRAC criteria to all HST-selected optical-dropout galaxies over the full ~900 arcmin**2 of the 5 CANDELS fields revealed four unusually bright z~7.1, 7.6, 7.9 and 8.6 candidates. The median [3.6]-[4.5] color of our selected z~7.1-9.1 sample is consistent with rest-frame [OIII]+Hbeta EWs of ~1600A in the [4.5] band. Keck/MOSFIRE spectroscopy has already been reported for one of our selected sources EGS-zs8-1, s...

  1. Chemical abundances in Galactic Planetary Nebulae with Spitzer spectra

    CERN Document Server

    Garcia-Hernandez, D A

    2014-01-01

    We present new low-resolution (R~800) optical spectra of 22 Galactic PNe with Spitzer spectra. These data are combined with recent optical spectroscopic data available in the literature to construct representative samples of compact (and presumably young) Galactic disc and bulge PNe with Spitzer spectra. Attending to the nature of the dust features seen in their Spitzer spectra, Galactic disc and bulge PNe are classified according to four major dust types (oxygen chemistry or OC, carbon chemistry or CC, double chemistry or DC, featureless or F) and subtypes (amorphous and crystalline, and aliphatic and aromatic). Nebular gas abundances of He, N, O, Ne, S, Cl and Ar, as well as plasma parameters (e.g. Ne, Te) are homogeneously derived and we study the median chemical abundances and nebular properties in Galactic disc and bulge PNe depending on their Spitzer dust types and subtypes. A comparison of the derived median abundance patterns with AGB nucleosynthesis predictions show mainly that: i) DC PNe, both with ...

  2. The Spitzer Survey of Interstellar Clouds in the Gould Belt. IV. Lupus V and VI Observed with IRAC and MIPS

    CERN Document Server

    Spezzi, Loredana; Merın, Bruno; Allen, Lori E; Evans, Neal J; Jørgensen, Jes K; Bourke, Tyler L; Cieza, Lucas A; Dunham, Michael M; Harvey, Paul M; Huard, Tracy L; Peterson, Dawn; Tothill, Nick F H

    2011-01-01

    We present Gould's Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spitzer "Core to Disk" (c2d) Legacy Survey. We found 43 Young Stellar Object (YSO) candidates in Lupus V and 45 in Lupus VI, including 2 transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main sequence star from previous optical, near-IR and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ~79% in Lupus V and ~87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photo-evapo...

  3. Spectroscopic properties of Young Stellar Objects in the Lupus Molecular Clouds

    CERN Document Server

    Mortier, Annelies; van Dishoeck, Ewine F

    2011-01-01

    The results of an optical spectroscopic survey of a sample of young stellar objects (YSOs) and pre-main sequence (PMS) stars in the Lupus Clouds are presented. 92 objects were observed with VLT/FLAMES. All of those objects show IR excess as discovered by the Spitzer Legacy Program "From Molecular Cores to Planet-Forming Disks" (c2d). After reduction, 54 spectra with good signal-to-noise ratio are spectrally classified. Effective temperatures and luminosities are derived for these objects, and used to construct H-R diagrams for the population. The sample consists mostly of M-type stars, with 10% K-type stars. Individual ages and masses are inferred for the objects according to theoretical evolutionary models. The mean population age is found to be between 3.6 and 4.4 Myr, depending on the model, while the mean mass is found to be ~0.3 M for either model. Together with literature data, the distribution of spectral types is found to be similar to that in Chamaeleon I and IC348. The H{\\alpha} line in emission, fo...

  4. Spitzer IRS 16 micron Observations of the GOODS Fields

    CERN Document Server

    Teplitz, Harry I; Elbaz, David; Dickinson, Mark; Bridge, Carrie; Colbert, James; Floc'h, Emeric Le; Frayer, David T; Howell, Justin H; Koo, David C; Papovich, Casey; Phillips, Andrew; Scarlata, Claudia; Siana, Brian; Spinrad, Hyron; Stern, Daniel

    2010-01-01

    We present Spitzer 16 micron imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 square arcminutes in each of the two GOODS fields (North and South), to an average 3 sigma depth of 40 and 65 micro-Jy respectively. We detect about 1300 sources in both fields combined. We validate the photometry using the 3-24 micron spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields show reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross correlated with available Spitzer, Chandra, and HST data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI, with improved uncertainties. We examine the 16 to 24 micron flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S_{16}/S_{24}>1.4 selects mostly sources which lie a...

  5. SACS: Spitzer Archival Cluster Survey

    Science.gov (United States)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 star formation and AGN activity out to z~2, and to study the effect of star-forming galaxies and AGNs on cosmological results from ongoing Sunyaev-Zel'dovich (SZ) and X-ray cluster surveys. The identified clusters will be valuable for both astrophysics and cosmology. In terms of astrophysics, the redshift probed

  6. The Spitzer ice legacy: Ice evolution from cores to protostars

    CERN Document Server

    Oberg, Karin I; Pontoppidan, Klaus M; Broek, Saskia van den; van Dishoeck, Ewine F; Bottinelli, Sandrine; Blake, Geoffrey A; Evans, Neal J

    2011-01-01

    Ices regulate much of the chemistry during star formation and account for up to 80% of the available oxygen and carbon. In this paper, we use the Spitzer c2d ice survey, complimented with data sets on ices in cloud cores and high-mass protostars, to determine standard ice abundances and to present a coherent picture of the evolution of ices during low- and high-mass star formation. The median ice composition H2O:CO:CO2:CH3OH:NH3:CH4:XCN is 100:29:29:3:5:5:0.3 and 100:13:13:4:5:2:0.6 toward low- and high-mass protostars, respectively, and 100:31:38:4:-:-:- in cloud cores. In the low-mass sample, the ice abundances with respect to H2O of CH4, NH3, and the component of CO2 mixed with H2O typically vary by <25%, indicative of co-formation with H2O. In contrast, some CO and CO2 ice components, XCN and CH3OH vary by factors 2-10 between the lower and upper quartile. The XCN band correlates with CO, consistent with its OCN- identification. The origin(s) of the different levels of ice abundance variations are cons...

  7. A Study of the Star-forming Dwarf Galaxy NGC 855 with Spitzer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present a study of the dwarf elliptical galaxy NGC 855 using the narrow-band Ha and Spitzer data. Both the Ha and Spitzer IRAC images confirm star-forming activity in the center of NGC 855. We obtained a star formation rate (SFR) of 0.022 and 0.025 M☉yr-1, respectively, from the Spitzer IRAC 8.0 μm and MIPS 24 μm emission data. The HI observa tion suggests that the star-forming activity might be triggered by a minor merger. We also find that there is a distinct IR emission region in 5.8 and 8.0μm bands, located at about 10 "away from the nucleus of NGC 855. Given the strong 8.0μm but faint Hα emission, we expect that it is a heavily obscured star-forming region, which needs to be confirmed by further optical spectroscopic observations.

  8. Spitzer Reveals Stellar 'Family Tree'

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours. Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars. This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities. This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  9. Spitzer Space Telescope proposal process

    Science.gov (United States)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  10. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    CERN Document Server

    Griffith, Roger L; Eisenhardt, Peter R M; Gelino, Christopher R; Cushing, Michael C; Benford, Dominic; Blain, Andrew; Bridge, Carrie R; Cohen, Martin; Cutri, Roc M; Donoso, Emilio; Jarrett, Thomas H; Lonsdale, Carol; Mace, Gregory; Mainzer, A; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E; Skrutskie, Michael F; Stanford, Spencer A; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L; Wu, Jingwen; Yan, Lin

    2012-01-01

    We present Spitzer 3.6 and 4.5 $\\mu$m photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 $\\mu$m $\\sim$ 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf c...

  11. Spitzer Digs Up Hidden Stars

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4 Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope. The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image. The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is currently being

  12. Spitzer Observations of IC 2118

    CERN Document Server

    Guieu, S; Stauffer, J R; Vrba, F J; Noriega-Crespo, A; Spuck, T; Moody, T Roelofsen; Sepulveda, B; Weehler, C; Maranto, A; Cole, D M; Flagey, N; Laher, R; Penprase, B; Ramirez, S; Stolovy, S

    2010-01-01

    IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, ~5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this region in 7 mid- and far-infrared bands using the Spitzer Space Telescope and in 4 bands in the optical using the U. S. Naval Observatory 40-inch telescope. We find infrared excesses in 4 of the 6 previously-known T Tauri stars in our combined infrared maps, and we find 6 entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the "head" of the nebula, within the most massive molecular cloud of the region.

  13. An Experimental and Theoretical Study on the Kinetic Isotope Effect of C2H6 and C2D6 Reaction with OH

    KAUST Repository

    Khaled, Fethi

    2015-10-30

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800–1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE for alkanes asymptotes to a value of 1.4 at high temperatures.

  14. SpIES: The Spitzer IRAC Equatorial Survey

    CERN Document Server

    Timlin, John D; Richards, Gordon T; Lacy, Mark; Ryan, Erin L; Stone, Robert B; Bauer, Franz E; Brandt, W N; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D; Schneider, Donald P; Urry, C Megan; Wollack, Edward J; Zakamska, Nadia L

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its 'warm' mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for "feedback" from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{\\sigma} depths of 6.13 {\\mu}Jy (21.93 AB magnitude) and 5.75 {\\mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES reco...

  15. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    Science.gov (United States)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  16. Luminosity Functions of Spitzer Identified Protostars in Nine Nearby Molecular Clouds

    CERN Document Server

    Kryukova, E; Gutermuth, R A; Pipher, J; Allen, T S; Allen, L E; Myers, P C; Muzerolle, J

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending ...

  17. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    Science.gov (United States)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4formation and destruction processes. Our study will greatly enhance the scientific

  18. Spitzer observations of hydrogen deuteride

    CERN Document Server

    Neufeld, D A; Hollenbach, D J; Sonnentrucker, P; Melnick, G J; Bergin, E A; Snell, R L; Forrest, W J; Watson, D M; Kaufman, M J; Neufeld, David A.; Green, Joel D.; Hollenbach, David J.; Sonnentrucker, Paule; Melnick, Gary J.; Bergin, Edwin A.; Snell, Ronald L.; Forrest, William J.; Watson, Dan M.; Kaufman, and Michael J.

    2006-01-01

    We report the detection of interstellar hydrogen deuteride (HD) toward the supernova remnant IC443, and the tentative detection of HD toward the Herbig Haro objects HH54 and HH7 and the star forming region GGD37 (Cepheus A West). Our detections are based upon spectral line mapping observations of the R(3) and R(4) rotational lines of HD, at rest wavelengths of 28.502 and 23.034 micron respectively, obtained using the Infrared Spectrograph onboard the Spitzer Space Telescope. The HD R(4)/R(3) line intensity ratio promises to be a valuable probe of the gas pressure in regions where it can be observed. The derived HD/H2 abundance ratios are 1.19(+0.35/-0.24)E-5, 1.80(+0.54/-0.32)E-5, and 1.41(+0.46/-0.33)E-5 respectively (68.3% confidence limits, based upon statistical errors alone) for IC443 (clump C), HH54, and HH7. If HD is the only significant reservoir of gas-phase deuterium in these sources, the inferred HD/H2 ratios are all consistent with a gas-phase elemental abundance [n(D)/n(H)](gas) ~ 7.5E-6, a facto...

  19. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  20. A study of the ground states of CaC2H+2,CaC2D+2 and CaC2H+4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The geometries, vibrational frequencies and bind energies are reported for the ground states of CaC2H+2, CaC2D+2 and CaC2H+4. CaC2H+2 and CaC2H+4 equilibrium geometries have C2v symmetry with the metal ion lying in the perpendicular bisector of the C-C bond. The ground state in both CaC2H+2 and CaC2H+4 molecules ia a 2A1 state and the binding in the ground state is mainly electrostatic. For both CaC2H+2 and CaC2H+4 the ligand is only slightly distorted from its free ligand structure, the C-C distance has hardly increased and there is only a very small bending of the H atom away from the Ca atom. This is consistent with the electrostatic nature of the bonding. Two different approaches-Hartree-Fock(HF) and density functional theory methods(DFT)-are used and basis sets here used is 6-311+G(3df,2p). The DFT results are in good agreement with experiments, namely, DFT methods provide the benefits that some more expensive ab initio methods can do, but at essentially HF cost. So it is important to include electron correlation for accurate results in this study.

  1. The Spitzer Data Fusion : Contents, Construction and Applications to Galaxy Evolution Studies

    CERN Document Server

    Vaccari, Mattia

    2016-01-01

    We present the Spitzer Data Fusion, a database incorporating far-ultraviolet to far-infrared flux measurements as well as photometric and spectroscopic redshifts for 4.4 million IRAC-selected sources detected over 8 extragalactic fields covering 65 deg$^2$ observed by Spitzer in all IRAC and MIPS bands during its cryogenic mission. Deeper Spitzer observations carried out during its warm mission over 5 sub-fields as part of the SERVS project are also presented and analysed in a similar fashion, detecting 2.8 million IRAC-selected sources over 18 deg$^2$ and merging them with multi-wavelength catalogues within the SERVS Data Fusion. When combined with Herschel SPIRE surveys and radio continuum observations over the same fields, the Spitzer Data Fusion and the SERVS Data Fusion provide an invaluable resource for multi-wavelength galaxy formation and evolution studies at infrared/millimetre/radio wavelengths. The catalogues and their future updates will be released at \\url{http://www.mattiavaccari.net/df/} and on...

  2. Spitzer v. K2: Part II

    Science.gov (United States)

    Werner, Michael; Crossfield (Deputy PI), Ian; Akeson, Rachel; Beichman, Charles; Benneke, Bjoern; Christiansen, Jessie; Ciardi, David; Deck, Katherine; Dressing, Courtney; Howard, Andrew; Howell, Steve; Knutson, Heather; Krick, Jessica; Livingston, John; Morales, Farisa; Petigura, Erik; Schlieder, Joshua; Gorjian, Varoujan

    2016-08-01

    We propose to build on our Cycles 11-12 program of Spitzer photometry of planets from the K2 survey by enlarging our sample to interesting exoplanets from the continuing K2 mission. Our team has shown that we can carry out this program end to end, starting with finding interesting candidate stars/planets in the K2 data stream, validating them using both proven Kepler techniques and ground-based observations, selecting and executing the Spitzer observations, and analyzing the Spitzer data in conjunction with the K2 data. To date we have observed or scheduled 38 transits/eclipses of 27 exoplanets. We will observe stars in K2 fields 0 through 15 and foresee executing over 60 AOR's on over 40 exoplanets. In the end, we expect to have a greatly improved characterization of exoplanets and their orbits than would be possible from the K2 data alone. This will be vital for JWST follow-up. In addition to improvements in ephemerides, these Spitzer observations will look for transit timing variations, analyze exoplanet atmospheres, study young exoplanets, and provde early TESS follow-up. This work will add substantially to the extensive exoplanet legacy of the Spitzer mission. This is a Generic Target proposal: The fields to be studied and their visibility windows are known, but until the K2 data is analyzed and the targets vetted, we cannot specify exact AORs.

  3. Optical Spectroscopy and Nebular Oxygen Abundances of the Spitzer/SINGS Galaxies

    CERN Document Server

    Moustakas, John; Jr.,; Tremonti, Christy A; Dale, Daniel A; Smith, John-David T; Calzetti, Daniela

    2010-01-01

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publically available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGN), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star-forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of...

  4. The Spitzer Deep, Wide-Field Survey

    CERN Document Server

    Ashby, M L N; Brodwin, M; Griffith, R; Eisenhardt, P; Kozlowski, S; Kochanek, C S; Bock, J J; Borys, C; Brand, K; Brown, M J I; Cool, R; Cooray, A R; Croft, S; Dey, A; Eisenstein, D; González, A H; Gorjian, V; Grogin, N A; Ivison, R J; Jacob, J; Jannuzi, B T; Mainzer, A; Moustakas, L A; Röttgering, H J A; Seymour, N; Smith, H A; Stanford, S A; Stauffer, J R; Sullivan, I; Van Breugel, W; Willner, S P; Wright, E L

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of ten square degrees in the Bootes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Cycle four Spitzer Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit -- for the first time -- the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z~3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS datasets will thus be especially useful for characterizing galaxy evolution beyond z~1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly-released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.9...

  5. SPITZER PARALLAX of OGLE-2015-BLG-0966

    DEFF Research Database (Denmark)

    Street, R. A.; Udalski, A.; Novati, S. Calchi

    2016-01-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real...

  6. Observations of Near Earth Objects with Spitzer

    Science.gov (United States)

    Trilling, David E.; Mommert, Michael; Hora, Joseph L.; Chesley, Steven R.; Emery, Joshua P.; Fazio, Giovanni G.; Harris, Alan; Mueller, Michael; Smith, Howard Alan

    2016-10-01

    We are carrying out an Exploration Science Warm Spitzer program entitled NEOSurvey in which we are observing 550 Near Earth Objects in 710 hours of Spitzer time. For each object we use a thermal model to derive diameter and albedo. For each object we also derive a (partial) lightcurve; total elapsed observing times range from 15 minutes to 3.2 hours. This catalog of 500+ NEO lightcurves is a substantial increase over the number of NEO lightcurves presently known. In addition to creating a large catalog of NEO properties, we are also able to study the properties of individual NEOs, including those with low delta V values (i.e., accessible asteroids) and those that might be dead comets. The final observations in this program will be obtained by 30 Sept 2016, so at the DPS meeting we will present a first look at our entire catalog of results. All results are posted at nearearthobjects.nau.edu usually within days of the data being released by the Spitzer Science Center. This work was supported in part by funding from the Spitzer Science Center.

  7. VizieR Online Data Catalog: SAGE-Spec Spitzer legacy program (Kemper+, 2010)

    Science.gov (United States)

    Kemper, F.; Woods, P. M.; Antoniou, V.; Bernard, J.-P.; Blum, R. D.; Boyer, M. L.; Chan, J.; Chen, C.-H. R.; Cohen, M.; Dijkstra, C.; Engelbracht, C.; Galametz, M.; Galliano, F.; Gielen, C.; Gordon, K. D.; Gorjian, V.; Harris, J.; Hony, S.; Hora, J. L.; Indebetouw, R.; Jones, O.; Kawamura, A.; Lagadec, E.; Lawton, B.; Leisenring, J. M.; Madden, S. C.; Marengo, M.; Matsuura, M.; McDonald, I.; McGuire, C.; Meixner, M.; Mulia, A. J.; O'Halloran, B.; Oliveira, J. M.; Paladini, R.; Paradis, D.; Reach, W. T.; Rubin, D.; Sandstrom, K.; Sargent, B. A.; Sewilo, M.; Shiao, B.; Sloan, G. C.; Speck, A. K.; Srinivasan, S.; Szczerba, R.; Tielens, A. G. G. M.; van Aarle, E.; van Dyk, S. D.; van Loon, J. T.; van Winckel, H.; Vijh, U. P.; Volk, K.; Whitney, B. A.; Wilkins, A. N.; Zijlstra, A. A.

    2010-11-01

    The Spitzer SAGE-Spec program (PID: 40159) consists of 224.6hr of spectroscopic observations of targets in the LMC. The targets included point sources and extended regions, both of which were observed using the IRS low-resolution and MIPS SED modes. Observations were done in the IRS staring mode for 196 point sources, and 48 point sources were observed in MIPS SED mode. In addition, 10 extended regions were mapped in both the MIPS SED and IRS observing modes. (4 data files).

  8. The Spitzer Atlas of Stellar Spectra

    CERN Document Server

    Ardila, David R; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D W; Wachter, Stefanie

    2010-01-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 mic; R~100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstell...

  9. Lyman Spitzer: Life, Times, and Science

    Indian Academy of Sciences (India)

    2016-11-01

    Lyman Spitzer was one of the major figures of twentieth centurytheoretical astrophysics. Over more than fifty years,he kept up sustained research of his own, on problems concerningthe interstellar medium, star formation, and galaxies.In addition he was a major influence on observationalprogrammes, and created a thriving school of theoretical astrophysicsat Princeton University along with a strong plasmaphysics programme. This article brings out his contributions,placing them in context.

  10. SHELA: The Spitzer-HETDEX Exploratory Large Area Survey

    Science.gov (United States)

    Papovich, Casey J.; Gebhardt, K.; Behroozi, P.; Bender, R.; Blanc, G. A.; Ciardullo, R.; DePoy, D.; de Jong, R.; Drory, N.; Evans, N.; Fabricius, M.; Finkelstein, S.; Gawiser, E.; Greene, J.; Gronwall, C.; Hill, G.; Hopp, U.; Jogee, S.; Lacy, M.; Landriau, M.; Marshall, J.; Tuttle, S.; Somerville, R.; Steinmetz, M.; Suntzeff, N.; Tran, K.; Wechsler, R.; Wisotzki, L.

    2012-01-01

    We present an overview of our Spitzer Exploratory survey to obtain IRAC imaging in a 28 sq deg field with deep optical imaging lying within the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Survey. Our goal is to explore the relationship between galaxy stellar mass, dark-matter halo mass, and environment during the important cosmic epoch (redshifts 2deep IRAC and optical imaging in our program will provide a uniquely powerful dataset enabling these goals. Working in blind spectroscopic mode, HETDEX will obtain redshifts in this field for approximately 200,000 galaxies and map out the cosmic web at redshifts 1.9web, representative of field, groups, and proto-clusters. The IRAC data will provide the key missing ingredient by allowing us to measure galaxy stellar masses down to values well below the characteristic mass of the stellar mass function at these redshifts. By combining the IRAC data with the halo mass and local density (environment) measured from clustering statistics in the spectroscopic and associated trained photometric dataset, we will obtain a detailed view of how galaxies grow their stellar mass within different dark matter halos and as a function of environment. Ultimately, this study will advance our understanding of the physical processes that drive the formation of stars in galaxies and the build up of stellar mass over cosmic time. In the spirit of Exploratory programs, SHELA will enable a broad range of scientific explorations beyond our immediate goals by delivering all science products (images, catalogs, spectra, and redshifts) to the public.

  11. The SAGE-Spec Spitzer Legacy program: The life-cycle of dust and gas in the Large Magellanic Cloud

    CERN Document Server

    Kemper, F; Antoniou, V; Bernard, J -P; Blum, R D; Boyer, M L; Chan, J; Chen, C -H R; Cohen, M; Dijkstra, C; Engelbracht, C; Galametz, M; Galliano, F; Gielen, C; Gordon, Karl D; Gorjian, V; Harris, J; Hony, S; Hora, J L; Indebetouw, R; Jones, O; Kawamura, A; Lagadec, E; Lawton, B; Leisenring, J M; Madden, S C; Marengo, M; Matsuura, M; McDonald, I; McGuire, C; Meixner, M; Mulia, A J; O'Halloran, B; Oliveira, J M; Paladini, R; Paradis, D; Reach, W T; Rubin, D; Sandstrom, K; Sargent, B A; Sewilo, M; Shiao, B; Sloan, G C; Speck, A K; Srinivasan, S; Szczerba, R; Tielens, A G G M; van Aarle, E; Van Dyk, S D; van Loon, J Th; Van Winckel, H; Vijh, Uma P; Volk, K; Whitney, B A; Wilkins, A N; Zijlstra, A A

    2010-01-01

    The SAGE-Spec Spitzer Legacy program is a spectroscopic follow-up to the SAGE-LMC photometric survey of the Large Magellanic Cloud carried out with the Spitzer Space Telescope. We present an overview of SAGE-Spec and some of its first results. The SAGE-Spec program aims to study the life cycle of gas and dust in the Large Magellanic Cloud, and to provide information essential to the classification of the point sources observed in the earlier SAGE-LMC photometric survey. We acquired 224.6 hours of observations using the InfraRed Spectrograph and the SED mode of the Multiband Imaging Photometer for Spitzer. The SAGE-Spec data, along with archival Spitzer spectroscopy of objects in the Large Magellanic Cloud, are reduced and delivered to the community. We discuss the observing strategy, the specific data reduction pipelines applied and the dissemination of data products to the scientific community. Initial science results include the first detection of an extragalactic "21 um" feature towards an evolved star and...

  12. Spitzer Observations of Tidal Dwarf Galaxies

    CERN Document Server

    Higdon, Sarah J U

    2007-01-01

    We present Spitzer observations of Tidal Dwarf Galaxies (TDGs) in three interacting systems: NGC 5291, Arp105 and Stephan's Quintet. The spectra show bright emission from polyaromatic hydrocarbons (PAHs), nebular lines and warm molecular hydrogen, characteristic of recent episodes of star formation. The PAH emission that falls in the IRAC 8.0 micron band leads to the TDGs having an extremely red IRAC color, with [4.5] - [8.0] > 3. The emission from PAHs is characterized by a model with mainly neutral 100-C PAH atoms.

  13. Cosmic Star Formation from 0.5Spitzer

    Science.gov (United States)

    Chary, Ranga-Ram

    2006-01-01

    This viewgraph presentation reviews some findings from the Spitzer telescope about star formation. The presentation shows charts summarizing information from the Spitzer Telescope and other observations.

  14. A systematic search for the spectra with features of crystalline silicates in the Spitzer IRS Enhanced Products

    CERN Document Server

    Chen, Rui; Liu, Jiaming; Jiang, Biwei

    2016-01-01

    The crystalline silicates features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicates features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicate. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST)/DR2. The average spectrum of young stellar objects show a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB and planetary nebulae. They are identified optically as early-type stars, evolved stars...

  15. Spitzer Secondary Eclipses of WASP-18b

    CERN Document Server

    Nymeyer, Sarah; Hardy, Ryan A; Stevenson, Kevin B; Campo, Christopher J; Madhusudhan, Nikku; Collier-Cameron, Andrew; Blecic, Jasmina; Bowman, William C; Britt, Christopher B T; Cubillos, Patricio; Hellier, Coel; Gillon, Michael; Maxted, Pierre F L; Hebb, Leslie; Wheatley, Peter J; Pollacco, Don; Anderson, David

    2010-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets (WASP) project. The \\textit{Spitzer}\\ Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using \\textit{Spitzer}'s Infrared Array Camera (IR\\ AC) in the 3.6-{\\micron} and 5.8-{\\micron} bands on 2008 December 20, and in the 4.5-{\\micron} and 8.0-{\\micron} bands on 2008 Dece\\ mber 24. We report eclipse depths of \\math{0.31\\pm{0.02}, 0.38\\pm{0.03}, 0.41\\pm{0.02}, 0.43\\pm{0.03}\\%}, and brightness temperatu\\ res of 2920 \\pm {90}, 3150 \\pm {130}, 3040 \\pm {130} and 2960 \\pm {130} K, respectively. WASP-18b is one of the hottest planets ye\\ t discovered - as hot as an M-class star. The planet's pressure-temperature profile features a thermal inversion. The observation\\ s also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day-side to the night side of the \\ planet.

  16. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    Science.gov (United States)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4–10), C n H2n (n = 2–12, 14, 16), C n H2n‑2 (n = 3–12, 14, 16), C n H2n‑4 (n = 4–12, 14, 16), C n H2n‑6 (n = 4–10, 12), C n H2n‑8 (n = 6–10), and C n H2n‑10 (n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  17. RR Lyrae period luminosity relations with Spitzer

    Science.gov (United States)

    Neeley, Jillian R.; Marengo, Massimo; CRRP Team

    2017-01-01

    RR Lyrae variable stars have long been known to be valuable distance indicators, but only recently has a well defined period luminosity relationship been utilized at infrared wavelengths. In my thesis, I am combining Spitzer Space Telescope data of RR Lyrae stars obtained as part of the Carnegie RR Lyrae Program with ground based NIR data to characterize the period-luminosity-metallicity (PLZ) relation and provide an independent Population II calibration of the cosmic distance scale. I will discuss the ongoing efforts to calibrate this relation using objects such as M4 and NGC 6441 and how the first data release from the Gaia mission impacts our findings. I will also compare my preliminary empirical relations to theoretical PLZ relations derived from stellar pulsation models.

  18. Keck spectroscopy of z=1-3 ULIRGs from the Spitzer SWIRE survey

    CERN Document Server

    Berta, S; Siana, B; Farrah, D; Smith, H E; Polletta, M; Franceschini, A; Fritz, J; Pérez-Fournon, I; Rowan-Robinson, M; Shupe, D; Surace, J

    2007-01-01

    (Abridged) High-redshift ultra luminous infrared galaxies contribute the bulk of the cosmic IR background and are the best candidates for very massive galaxies in formation at z>1.5. We present Keck/LRIS optical spectroscopy of 35 z>1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary targets belong to the ``IR-peak'' class of galaxies, having the 1.6 micron (restframe) stellar feature detected in the IRAC Spitzer channels.The spectral energy distributions of the main targets are thoroughly analyzed, by means of spectro-photometric synthesis and multi-component fits (stars + starburst dust + AGN torus). The IR-peak selection technique is confirmed to successfully select objects above z=1.4, though some of the observed sources lie at lower redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62% host an AGN component, two thirds being type-1 and one third type-2 objects. The selection, limi...

  19. Spitzer spectral line mapping of supernova remnants: I. Basic data and principal component analysis

    CERN Document Server

    Neufeld, David A; Kaufman, Michael J; Snell, Ronald L; Melnick, Gary J; Bergin, Edwin A; Sonnentrucker, Paule

    2007-01-01

    We report the results of spectroscopic mapping observations carried out toward small (1 x 1 arcmin) regions within the supernova remnants W44, W28, IC443, and 3C391 using the Infrared Spectrograph of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, have led to the detection of a total of 15 fine structure transitions of Ne+, Ne++, Si+, P+, S, S++, Cl+, Fe+, and Fe++; the S(0) - S(7) pure rotational lines of molecular hydrogen; and the R(3) and R(4) transitions of hydrogen deuteride. In addition to these 25 spectral lines, the 6.2, 7.7, 8.6, 11.3 and 12.6 micron PAH emission bands were also observed. Most of the detected line transitions have proven strong enough to map in several sources, providing a comprehensive picture of the relative distribution of the various line emissions observable in the Spitzer/IRS bandpass. A principal component analysis of the spectral line maps reveals that the observed emission lines fall into five distinct groups, each of which may...

  20. Modeling Spitzer observations of VV Ser. I. The circumstellar disk of a UX Orionis star

    CERN Document Server

    Pontoppidan, K M; Blake, G A; Boogert, A C A; Van Dishoeck, E F; Evans, N J; Kessler-Silacci, J; Lahuis, F; Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Blake, Geoffrey A.; Dishoeck, Ewine F. van; Evans, Neal J.; Kessler-Silacci, Jacqueline; Lahuis, Fred

    2006-01-01

    We present mid-infrared Spitzer-IRS spectra of the well-known UX Orionis star VV Ser. We combine the Spitzer data with interferometric and spectroscopic data from the literature covering UV to submillimeter wavelengths. The full set of data are modeled by a two-dimensional axisymmetric Monte Carlo radiative transfer code. The model is used to test the prediction of (Dullemond et al. 2003) that disks around UX Orionis stars must have a self-shadowed shape, and that these disks are seen nearly edge-on, looking just over the edge of a puffed-up inner rim, formed roughly at the dust sublimation radius. We find that a single, relatively simple model is consistent with all the available observational constraints spanning 4 orders of magnitude in wavelength and spatial scales, providing strong support for this interpretation of UX Orionis stars. The grains in the upper layers of the puffed-up inner rim must be small (0.01-0.4 micron) to reproduce the colors (R_V ~ 3.6) of the extinction events, while the shape and s...

  1. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  2. A Hidden Population of Massive Stars with Circumstellar Shells Discovered with the Spitzer Space Telescope

    CERN Document Server

    Wachter, S; Van Dyk, S D; Hoard, D W; Kafka, S; Morris, P W

    2010-01-01

    We have discovered a large number of circular and elliptical shells at 24 microns around luminous central sources with the MIPS instrument on-board the Spitzer Space Telescope. Our archival follow-up effort has revealed 90% of these circumstellar shells to be previously unknown. The majority of the shells is only visible at 24 microns, but many of the central stars are detected at multiple wavelengths from the mid- to the near-IR regime. The general lack of optical counterparts, however, indicates that these sources represent a population of highly obscured objects. We obtained optical and near-IR spectroscopic observations of the central stars and find most of these objects to be massive stars. In particular, we identify a large population of sources that we argue represents a narrow evolutionary phase, closely related or identical to the LBV stage of massive stellar evolution.

  3. Spitzer IRAC Photometry for Time Series in Crowded Fields

    CERN Document Server

    Novati, S Calchi; Yee, J C; Beichman, C; Bryden, G; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, C B; Pogge, R W; Shvartzvald, Y; Wibking, B; Zhu, W; Udalski, A; Poleski, R; Pawlak, M; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Ulaczyk, K

    2015-01-01

    We develop a new photometry algorithm that is optimized for $Spitzer$ time series in crowded fields and that is particularly adapted to faint and/or heavily blended targets. We apply this to the 170 targets from the 2015 $Spitzer$ microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of $Spitzer$'s instrumental characteristics that drive the specific features of this algorithm are shared by $Kepler$ and $WFIRST$, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  4. Spitzer Observations Confirm and Rescue the Habitable-Zone Super-Earth K2-18b for Future Characterization

    CERN Document Server

    Benneke, Björn; Petigura, Erik; Knutson, Heather; Dressing, Courtney; Crossfield, Ian J M; Schlieder, Joshua E; Livingston, John; Beichman, Charles; Christiansen, Jessie; Krick, Jessica; Gorjian, Varoujan; Howard, Andrew W; Sinukoff, Evan; Ciardi, David R; Akeson, Rachel L

    2016-01-01

    The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the Solar System. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using HST and JWST. Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33-day orbit and ruling out the alternative scenario of two similarly-sized, long-period planets transiting only once within the 75-day K2 observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hours (7-sigma) before the predicted transit time. Our joint analy...

  5. Transits and secondary eclipses of HD 189733 with Spitzer

    OpenAIRE

    2008-01-01

    We present limits on transit timing variations and secondary eclipse depth variations at 8 microns with the Spitzer Space Telescope IRAC camera. Due to the weak limb darkening in the infrared and uninterrupted observing, Spitzer provides the highest accuracy transit times for this bright system, in principle providing sensitivity to secondary planets of Mars mass in resonant orbits. Finally, the transit data provides tighter constraints on the wavelength- dependent atmospheric absorption by t...

  6. Transits and secondary eclipses of HD 189733 with Spitzer

    CERN Document Server

    Agol, Eric; Bushong, James; Knutson, Heather; Charbonneau, David; Deming, Drake; Steffen, Jason H

    2008-01-01

    We present limits on transit timing variations and secondary eclipse depth variations at 8 microns with the Spitzer Space Telescope IRAC camera. Due to the weak limb darkening in the infrared and uninterrupted observing, Spitzer provides the highest accuracy transit times for this bright system, in principle providing sensitivity to secondary planets of Mars mass in resonant orbits. Finally, the transit data provides tighter constraints on the wavelength- dependent atmospheric absorption by the planet.

  7. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    Science.gov (United States)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  8. Colors of Ellipticals from GALEX to Spitzer

    CERN Document Server

    Schombert, J

    2016-01-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from GALEX, SDSS, 2MASS and Spitzer to cover the filters NUV, ugri, JHK and 3.6mum. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are *not* composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyrs stellar population with no evidence of stars younger than 10 Gyrs. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics dedu...

  9. Spitzer Observations Confirm and Rescue the Habitable-zone Super-Earth K2-18b for Future Characterization

    Science.gov (United States)

    Benneke, Björn; Werner, Michael; Petigura, Erik; Knutson, Heather; Dressing, Courtney; Crossfield, Ian J. M.; Schlieder, Joshua E.; Livingston, John; Beichman, Charles; Christiansen, Jessie; Krick, Jessica; Gorjian, Varoujan; Howard, Andrew W.; Sinukoff, Evan; Ciardi, David R.; Akeson, Rachel L.

    2017-01-01

    The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the solar system. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using the Hubble Space Telescope (HST)and James Webb Space Telescope (JWST). Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33 day orbit, ruling out the alternative scenario of two similarly sized, long-period planets transiting only once within the 75 day Kepler Space Telescope (K2) observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hr (7σ ) before the predicted transit time. Our joint analysis of the Spitzer and K2 photometry reveals that this early occurrence of the transit is not caused by transit timing variations, but the result of an inaccurate ephemeris due to a previously undetected data anomaly in the K2 photometry. We refit the ephemeris and find that K2-18b would have been lost for future atmospheric characterizations with HST and JWST if we had not secured its ephemeris shortly after the discovery. We caution that immediate follow-up observations as presented here will also be critical for confirming and securing future planets discovered by the Transiting Exoplanet Survey Satellite (TESS), in particular if only two transit events are covered by the relatively short 27-day TESS campaigns.

  10. On the mid-infrared variability of candidate eruptive variables (exors): A comparison between Spitzer and WISE data

    Energy Technology Data Exchange (ETDEWEB)

    Antoniucci, S.; Giannini, T.; Li Causi, G.; Lorenzetti, D., E-mail: simone.antoniucci@oa-roma.inaf.it, E-mail: teresa.giannini@oa-roma.inaf.it, E-mail: gianluca.licausi@oa-roma.inaf.it, E-mail: dario.lorenzetti@oa-roma.inaf.it [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio (Italy)

    2014-02-10

    Aiming to statistically study the variability in the mid-IR of young stellar objects, we have compared the 3.6, 4.5, and 24 μm Spitzer fluxes of 1478 sources belonging to the C2D (Cores to Disks) legacy program with the WISE fluxes at 3.4, 4.6, and 22 μm. From this comparison, we have selected a robust sample of 34 variable sources. Their variations were classified per spectral Class (according to the widely accepted scheme of Class I/flat/II/III protostars), and per star forming region. On average, the number of variable sources decreases with increasing Class and is definitely higher in Perseus and Ophiuchus than in Chamaeleon and Lupus. According to the paradigm Class ≡ Evolution, the photometric variability can be considered to be a feature more pronounced in less evolved protostars, and, as such, related to accretion processes. Moreover, our statistical findings agree with the current knowledge of star formation activity in different regions. The 34 selected variables were further investigated for similarities with known young eruptive variables, namely the EXors. In particular, we analyzed (1) the shape of the spectral energy distribution, (2) the IR excess over the stellar photosphere, (3) magnitude versus color variations, and (4) output parameters of model fitting. This first systematic search for EXors ends up with 11 bona fide candidates that can be considered as suitable targets for monitoring or future investigations.

  11. On the mid-IR variability of candidate eruptive variables (EXors): a comparison between Spitzer and WISE data

    CERN Document Server

    Antoniucci, S; Causi, G Li; Lorenzetti, D

    2014-01-01

    Aiming at statistically studying the variability in the mid-IR of young stellar objects (YSOs), we have compared the 3.6, 4.5, and 24 um Spitzer fluxes of 1478 sources belonging to the C2D (Cores to Disks) legacy program with the WISE fluxes at 3.4, 4.6, and 22 um. From this comparison we have selected a robust sample of 34 variable sources. Their variations were classified per spectral Class (according to the widely accepted scheme of Class I/flat/II/III protostars), and per star forming region. On average, the number of variable sources decreases with increasing Class and is definitely higher in Perseus and Ophiuchus than in Chamaeleon and Lupus. According to the paradigm Class Evolution, the photometric variability can be considered to be a feature more pronounced in less evolved protostars, and, as such, related to accretion processes. Moreover, our statistical findings agree with the current knowledge of the star formation activity in different regions. The 34 selected variables were further investigate...

  12. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  13. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Novati, S. Calchi; Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bryden, G.; Henderson, C. B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  14. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    Science.gov (United States)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  15. Downsizing a great observatory: reinventing Spitzer in the warm mission

    Science.gov (United States)

    Storrie-Lombardi, Lisa J.; Dodd, Suzanne R.

    2010-07-01

    The Spitzer Space Telescope transitioned from the cryogen mission to the IRAC warm mission during 2009. This transition involved changing several areas of operations in order to cut the mission annual operating costs to 1/3 of the cryogen mission amount. In spite of this substantial cut back, Spitzer continues to have one of the highest science return per dollar ratio of any of NASA's extended missions. This paper will describe the major operational changes made for the warm mission and how they affect the science return. The paper will give several measures showing that warm Spitzer continues as one of the most scientifically productive mission in NASA's portfolio. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  16. Time for a relook at Spitzer's laws of neonatology?

    Science.gov (United States)

    Gou, P; Ryan, C A

    2013-11-01

    Thirty years ago, 20 tongue-in-cheek aphorisms relating to the practice of neonatology were published and became known as Spitzer's laws of neonatology (SLN). They became widely cited, perhaps because they resonated with some of the experiences of practicing neonatologists at that time. The purpose of this study was to see if Spitzer's laws still resonated with doctors currently practicing in neonatology. A questionnaire containing the 20 Spitzer's laws was distributed to 17 pediatric doctors during their neonatology placement. Each statement has the options of it being noted as rubbish, funny, intuitively correct or evidence based. Respondents were allowed to give more than one opinion for each statement. Less than a quarter (23.5%, n=4) of 17 doctors had previously heard of Spitzer's laws. Of the 355 opinions on Spitzer's statements, almost half (42%) were said to be rubbish, less than a third (31%) were intuitively correct and one-fifth (21%) were said to be funny. Only 5% were thought to be evidence based. Statement 7 'The milder the RDS, the sooner the infant will find himself on 100% oxygen and maximal ventilatory support', scored the highest as being the most rubbish statement (94%). It was also felt to be neither evidence based (0%), funny (0%) nor intuitively correct (6%). The aphorism,'The month you are on service always has three times as many days as any other month on the calendar', scored the highest (45%) as being the funniest. Statement 16, 'If they ain't breathin', they may be seizin'' was considered the aphorism most likely to be evidence based (35%, n=7). A third (35%) of the doctors said they would use Spitzer's laws for teaching future medical students. Many current neonatal practitioners still find SLN humorous but largely irrelevant and not evidence based.

  17. The Spitzer Archival Far-InfraRed Extragalactic Survey

    CERN Document Server

    Hanish, D; Teplitz, H; Desai, V; Armus, L; Brinkworth, C; Brooke, T; Colbert, J; Edwards, L; Fadda, D; Frayer, D; Huynh, M; Lacy, M; Murphy, E; Noriega-Crespo, A; Paladini, R; Scarlata, C; Shenoy, S

    2015-01-01

    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of far-infrared data in two wavelength bands (70 um and 160 um) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.

  18. THE SPITZER ARCHIVAL FAR-INFRARED EXTRAGALACTIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Hanish, D. J.; Capak, P.; Teplitz, H. I.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 E California Blvd., Pasadena, CA 91125 (United States); Edwards, L. [Astronomy Department, 260 Whitney Avenue, Yale University, New Haven, CT 06511 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Huynh, M. [International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009 (Australia); Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Murphy, E. [The Observatories of the Carnegie Institution for Science, CA 91101 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Shenoy, S., E-mail: danish@alumni.caltech.edu [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States)

    2015-03-15

    We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160 μm) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.

  19. ExploreNEOs: The Warm Spitzer Near Earth Object survey

    NARCIS (Netherlands)

    Mueller, M.; Trilling, D. E.; Hora, J. L.; Harris, A. W.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbó, M.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Kistler, J. L.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2011-01-01

    We are carrying out the ExploreNEOs project in which we observe more than 600 near Earth Objects (NEOs) at 3.6 and 4.5 microns with Warm Spitzer. For each NEO we derive diameter and albedo. We present our results to date, which include studies of individual objects, results for our entire observed s

  20. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  1. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archive

  2. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    Science.gov (United States)

    Kasliwal, Mansi; Cao, Yi; Surace, Jason; Helou, George; Williams, Robert; Kulkarni, Shri; Smith, Nathan; Armus, Lee; Bond, Howard; Cantiello, Matteo; Gehrz, Robert; Kobulnicky, Chip; Langer, Norbert; Levesque, Emily; Masci, Frank; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; Tang, Sumin; van Dyk, Schuyler; Whitelock, Patricia

    2013-10-01

    The dynamic mid-infrared sky is hitherto largely unexplored. We propose the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 242 nearby galaxies within 20 Mpc, on timescales ranging between a day to a year, to a depth of 20 mag. In preparation for SPIRITS, we undertook three pilot programs: searching the WISE data stream for variables in nearby galaxies, mining the Spitzer Heritage Archive, and Spitzer follow-up of optically discovered transients. Our results are encouraging and motivate our design of SPIRITS to fill in missing pieces in our understanding of the end points of stellar evolution. We expect to discover explosive transients (ILRT, LRN, CNe, SNe), eruptive variables (LBV, RSG, YSG, AGB, RSG) and possibly new phenomena. SPIRITS will be the definitive study to ascertain the rate and origin of two new classes of red gap transients, quantify the contribution of classical novae to galactic chemical evolution and uncover supernovae buried in starbursts. SPIRITS will also systematically probe mass loss rates and dust formation in the most massive stars. SPIRITS will yield a census of supergiant variability and asymptotic giant branch variability in diverse galaxy environments. SPIRITS will likely discover the first extragalactic 'Born Again Giant' stars. The SPIRITS team is committed to a concomitant ground-based NIR and optical survey and extensive, panchromatic follow-up: 110 nights of near-IR imaging, 66 nights of optical imaging and 60 nights of spectroscopy annually. Follow-up will serve to maximize the discovery potential of our requested 994 hrs of Spitzer/IRAC observing time. We believe it is time that the Spitzer Great Observatory add another time-domain jewel in its crown.

  3. A Spitzer Census of the IC 348 Nebula

    Science.gov (United States)

    Muench, August A.; Lada, Charles J.; Luhman, K. L.; Muzerolle, James; Young, Erick

    2007-07-01

    Spitzer mid-infrared surveys enable an accurate census of young stellar objects by sampling large spatial scales, revealing very embedded protostars, and detecting low-luminosity objects. Taking advantage of these capabilities, we present a Spitzer-based census of the IC 348 nebula and embedded star cluster, covering a 2.5 pc region and comparable in extent to the Orion Nebula. Our Spitzer census supplemented with ground-based spectra has added 42 Class II T Tauri sources to the cluster membership and identified ~20 Class 0/I protostars. The population of IC 348 likely exceeds 400 sources after accounting statistically for unidentified diskless members. Our Spitzer census of IC 348 reveals a population of Class I protostars that is anticorrelated spatially with the Class II/III T Tauri members, which comprise the centrally condensed cluster around a B star. The protostars are instead found mostly at the cluster periphery about ~1 pc from the B star and spread out along a filamentary ridge. We further find that the star formation rate in this protostellar ridge is consistent with that rate which built the older exposed cluster, while the presence of 15 cold, starless, millimeter cores intermingled with this protostellar population indicates that the IC 348 nebula has yet to finish forming stars. Moreover, we show that the IC 348 cluster is of order 3-5 crossing times old, and, as evidenced by its smooth radial profile and confirmed mass segregation, is likely relaxed. While it seems apparent that the current cluster configuration is the result of dynamical evolution and its primordial structure has been erased, our finding of a filamentary ridge of Class I protostars supports a model in which embedded clusters are built up from numerous smaller subclusters. Finally, the results of our Spitzer census indicate that the supposition that star formation must progress rapidly in a dark cloud should not preclude these observations that show it can be relatively long lived.

  4. Keck spectroscopy of z = 1-3 ULIRGs from the Spitzer SWIRE survey

    Science.gov (United States)

    Berta, S.; Lonsdale, C. J.; Siana, B.; Farrah, D.; Smith, H. E.; Polletta, M. C.; Franceschini, A.; Fritz, J.; Perez-Fournon, I.; Rowan-Robinson, M.; Shupe, D.; Surace, J.

    2007-05-01

    Context: High-redshift ultra luminous infrared galaxies contribute the bulk of the cosmic IR background and are the best candidates for very massive galaxies in formation at z>1.5. Aims: It is necessary to identify the energy source for their huge luminosities, starburst or AGN activity, in order to correctly interpret the role of ULIRGs in galaxy evolution, and compute reliable estimates of their star formation rates, stellar masses, and accretion luminosities. Methods: We present Keck/LRIS optical spectroscopy of 35 z≥1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary targets belong to the "IR-peak" class of galaxies, having the 1.6 μm (restframe) stellar feature detected in the IRAC Spitzer channels. The spectral energy distributions of the main targets are thoroughly analyzed, by means of spectro-photometric synthesis and multi-component fits (stars + starburst dust + AGN torus). Results: The IR-peak selection technique is confirmed to successfully select objects above z=1.4, though some of the observed sources lie at lower redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62% host an AGN component, two thirds being type-1 and one third type-2 objects. The selection, limited to r'1011 M_⊙) galaxies. The presence of an AGN component provides a plausible explanation for the spectroscopic/photometric redshift discrepancies, as the torus produces an apparent shift of the peak to longer wavelengths. These sources are analyzed in IRAC and optical-IR color spaces. In addition to the IR-peak galaxies, we present redshifts and spectral properties for 150 objects, out of a total of 301 sources on slits. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and made possible by the generous financial support of

  5. Transit spectrophotometry of the exoplanet HD189733b. II. New Spitzer observations at 3.6 microns

    CERN Document Server

    Desert, J -M; Vidal-Madjar, A; Hebrard, G; Ehrenreich, D; Etangs, A Lecavelier des; Parmentier, V; Ferlet, R; Henry, G W

    2010-01-01

    We present a new primary transit observation of the hot-jupiter HD189733b, obtained at 3.6 microns with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations. We use a high S/N Spitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 microns. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength. We obtained the following system parameters: R_p/R_\\star=0.15566+0.00011-...

  6. A Combined Spitzer and Herschel Infrared Study of Gas and Dust in the Circumbinary Disk Orbiting V4046 Sgr

    CERN Document Server

    Rapson, Valerie A; Sacco, G Germano; Kastner, Joel H; Wilner, David; Rosenfeld, Katherine; Andrews, Sean; Herczeg, Gregory; van der Marel, Nienke

    2015-01-01

    We present results from a spectroscopic Spitzer and Herschel mid-to-far-infrared study of the circumbinary disk orbiting the evolved (age ~12-23 Myr) close binary T Tauri system V4046 Sgr. Spitzer IRS spectra show emission lines of [Ne II], H_2 S(1), CO_2 and HCN, while Herschel PACS and SPIRE spectra reveal emission from [O I], OH, and tentative detections of H_2O and high-J transitions of CO. We measure [Ne III]/[Ne II] < 0.13, which is comparable to other X-ray/EUV luminous T Tauri stars that lack jets. We use the H_2 S(1) line luminosity to estimate the gas mass in the relatively warm surface layers of the inner disk. The presence of [O I] emission suggests that CO, H_2O, and/or OH is being photodissociated, and the lack of [C I] emission suggests any excess C may be locked up in HCN, CN and other organic molecules. Modeling of silicate dust grain emission features in the mid-infrared indicates that the inner disk is composed mainly of large (r~5 um) amorphous pyroxene and olivine grains (~86% by mass)...

  7. Mid-to-Far Infrared Spectral Energy Distribution of Galaxies in the Spitzer First Look Survey Field

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qing Wen; Hong Wu; Chen Cao; Xiao-Yang Xia

    2007-01-01

    We made model fitting to the mid-to-far infrared spectral energy distributions (SEDs) for different categories of galaxies in the main extragalactic field of the Spitzer First Look Survey with the aid of spectroscopic information from the Sloan Digital Sky Survey.We find that the mid-to-far infrared SEDs of HII galaxies, mixture type galaxies and LINERs can be well fitted by the one-parameter (α) dust model of Dale et al. plus the 13 Gyr dust-free elliptical galaxy model. The statistics of α values indicates that all these galaxies tend to be quiescent, although the HII galaxies are relatively more active than the LINERs. The midinfrared SEDs of absorption galaxies are well fitted simply by the 13 Gyr dust-free elliptical galaxy template, and the near-to-mid infrared SEDs of QSOs can be represented by AGN NGC 5506.

  8. A Spitzer/IRS spectral study of a sample of galactic carbon-rich proto-planetary nebulae

    CERN Document Server

    Zhang, Yong; Hrivnak, Bruce J

    2010-01-01

    Recent infrared spectroscopic observations have shown that proto-planetary nebulae (PPNs) are sites of active synthesis of organic compounds in the late stages of stellar evolution. This paper presents a study of Spitzer/IRS spectra for a sample of carbon-rich PPNs, all except one of which show the unidentified 21 micron emission feature. The strengths of the aromatic infrared band (AIB), 21 micron, and 30 micron features are obtained by decomposition of the spectra. The observed variations in the strengths and peak wavelengths of the features support the model that the newly synthesized organic compounds gradually change from aliphatic to aromatic characteristics as stars evolve from PPNs to planetary nebulae.

  9. Spitzer Phase Curve Constraints for WASP-43b at 3.6 and 4.5 microns

    CERN Document Server

    Stevenson, Kevin B; Bean, Jacob L; Desert, Jean-Michel; Fortney, Jonathan J; Showman, Adam P; Kataria, Tiffany; Kreidberg, Laura; Feng, Y Katherina

    2016-01-01

    Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) show considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and temperature for tidally-locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b at 3.6 and 4.5 microns. The first 3.6 micron visit exhibits spurious nightside emission that requires invoking unphysical conditions in our atmospheric retrievals. The two other visits exhibit strong day-night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within...

  10. TRACSSS-2: Tracing More Cold Stellar Streams with Spitzer

    Science.gov (United States)

    Grillmair, Carl; Kupper, Andreas; Sesar, Branimir; Pearson, Sarah; Rich, Jeffrey; Scowcroft, Vicky; Price-Whelan, Adrian; Johnston, Kathryn

    2016-08-01

    Stellar debris streams may be the most sensitive probes we have of the size and shape of the Milky Way's dark matter distribution. Using the remarkably precise infrared period-luminosity relation for RR Lyrae, Spitzer has already demonstrated the ability to measure distances to better than 2% over nearly the entire volume of the Galaxy. By measuring very accurate mean magnitudes for RR Lyrae in the Anticenter and Styx streams, we will immediately be able to put tighter constrains on the mass and shape of the Galactic halo. These measurements will become still more important in coming years, when they can be used to turn Gaia proper motion measurements into accurate transverse space velocities. These measurements are unlikely to be improved upon in the foreseeable future and may ultimately rank among Spitzer's most enduring legacies.

  11. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    Science.gov (United States)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ˜0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ˜0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  12. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    CERN Document Server

    Stauffer, J R; Gizis, J E; Rebull, L M; Carey, S J; Krick, J; Ingalls, J G; Lowrance, P; Glaccum, W; Kirkpatrick, J D; Simon, A A; Wong, M H

    2016-01-01

    We have used the Spitzer Space Telescope in February 2016 to obtain high cadence, high signal-to-noise, 17-hour duration light curves of Neptune at 3.6 and 4.5 $\\mu$m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 $\\mu$m and 0.6 mag at 4.5 $\\mu$m. We have also extracted sparsely sampled 18-hour light curves of Neptune at W1 (3.4 $\\mu$m) and W2 (4.6 $\\mu$m) from the WISE/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude $\\sim$0.02 mag) or at 845 nm with the Hubble Space Telescope in 2015 and at 763 nm in 2016 (amplitude $\\sim$ 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in N...

  13. The Spitzer-HETDEX Exploratory Large-Area Survey

    CERN Document Server

    Papovich, Casey; Mehrtens, N; Lanham, C; Lacy, M; Ciardullo, R; Finkelstein, S L; Bassett, R; Behroozi, P; Blanc, G A; de Jong, R S; DePoy, D L; Drory, N; Gawiser, E; Gebhardt, K; Gronwall, C; Hill, G J; Hopp, U; Jogee, S; Kawinwanichakij, L; Marshall, J L; McLinden, E; Cooper, E Mentuch; Somerville, R S; Steinmetz, M; Tran, K -V; Tuttle, S; Viero, M; Wechsler, R; Zeimann, G

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 micron with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers $\\sim$deg$^2$ of the Sloan Digital Sky Survey "Stripe 82" region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R $\\sim$ 800 spectroscopy will produce $\\sim$ 200,000 redshifts from the Lyman-$\\alpha$ emission for galaxies in the range 1.9 < z < 3.5, and an additional $\\sim$200,000 redshifts from the [OII] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, AGN, and environment over a co-moving volume of $\\sim$0.5 Gpc$^3$ at 1.9 < z < 3.5. Here, we discuss the properties o...

  14. MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT

    CERN Document Server

    Kniazev, A Y; Berdnikov, L N

    2016-01-01

    In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011--2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009--2011 this star has brightened by approx 0.9 and 1 mag in the V and I_c bands, respectively, then faded by approx 1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and sugge...

  15. Uncovering the Near-IR Dwarf Galaxy Population of the Coma Cluster with Spitzer IRAC

    CERN Document Server

    Jenkins, L P; Mobasher, B; Alexander, D M; Bauer, F E

    2007-01-01

    We present the first results of a Spitzer IRAC (Infrared Array Camera) wide-field survey of two regions of the Coma cluster, in which we detect a large population of dwarf galaxies. The observations cover two fields of different galaxy densities; the first is a 0.733 deg^2 region in the core of the cluster (Coma 1), the second a 0.555 deg^2 off-center region located ~57 arcmin (1.7 Mpc) south-west from the center (Coma 3). The observations, although short 70-90 second exposures, are very sensitive; we detect ~29200 sources at 3.6 micron over the total ~1.3 deg^2 survey area. After identifying and excluding foreground stars, we construct 3.6 micron galaxy luminosity functions (LFs) for each field using selection functions based on spectroscopic redshifts to account for background objects. At the bright end, the LFs are well modeled by a traditional Schechter function; [M^star (3.6 micron), alpha_1] = [-25.17, -1.18] and [-24.69, -1.30] for Coma 1 and Coma 3 respectively. However, at the faint end M(3.6 micron)...

  16. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  17. MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2016-07-01

    In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011-2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009-2011 this star has brightened by ≈0.9 and 1 mag in the V and Ic bands, respectively, then faded by ≈1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the H II region IRAS 16455-4531 or the young massive star cluster Westerlund 1.

  18. Moderate Resolution Spitzer Infrared Spectrograph (IRS) Observations of M, L, and T Dwarfs

    CERN Document Server

    Mainzer, A K; Saumon, D; Marley, M S; Cushing, M C; Sloan, G C; Kirkpatrick, J D; Leggett, S K; Wilson, J C; Roellig, Thomas L.; Marley, Mark S.; Cushing, Michael C.; Wilson, John C.

    2007-01-01

    We present 10 - 19 um moderate resolution spectra of ten M dwarfs, one L dwarf, and two T dwarf systems obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The IRS allows us to examine molecular spectroscopic features/lines at moderate spectral resolution in a heretofore untapped wavelength regime. These R~600 spectra allow for a more detailed examination of clouds, non-equilibrium chemistry, as well as the molecular features of H2O, NH3, and other trace molecular species that are the hallmarks of these objects. A cloud-free model best fits our mid-infrared spectrum of the T1 dwarf epsilon Indi Ba, and we find that the NH3 feature in epsilon Indi Bb is best explained by a non-equilibrium abundance due to vertical transport in its atmosphere. We examined a set of objects (mostly M dwarfs) in multiple systems to look for evidence of emission features, which might indicate an atmospheric temperature inversion, as well as trace molecular species; however, we found no evidence of eit...

  19. Mid-Infrared Variability from the Spitzer Deep, Wide-Field Survey

    CERN Document Server

    Kozlowski, Szymon; Stern, Daniel; Ashby, Matthew L N; Assef, Roberto J; Bock, J J; Borys, C; Brand, K; Brodwin, M; Brown, M J I; Cool, R; Cooray, A; Croft, S; Dey, Arjun; Eisenhardt, P R; Gonzalez, A; Gorjian, V; Griffith, R; Grogin, N; Ivison, R; Jacob, J; Jannuzi, B T; Mainzer, A; Moustakas, L; Rottgering, H; Seymour, N; Smith, H A; Stanford, S A; Stauffer, J R; Sullivan, I S; van Breugel, W; Willner, S P; Wright, E L

    2010-01-01

    We use the multi-epoch, mid-infrared Spitzer Deep, Wide-Field Survey to investigate the variability of 474,179 objects in 8.1 deg^2 of the NDWFS Bootes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 micron bands. We find that 1.1% of the studied sample meet our standard selection criteria for being classed as a variable source. We require that the 3.6 and 4.5 micron light-curves are strongly correlated (r>0.8) and that their joint variance exceeds that for all sources with the same magnitude by 2 sigma. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBootes survey, radio catalogs, 24 micron-selected AGN candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects. Most of the s...

  20. The SAGE-Spec Spitzer Legacy program: Identification of Spitzer-IRS staring mode targets in the Large Magellanic Cloud

    Science.gov (United States)

    Jones, Olivia; Sage-Spec Team

    2017-01-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed over 1000 point sources in the Large Magellanic Cloud (LMC). As a follow up to the SAGE-Spec legacy program (Kemper et al. 2010), we have now extended the initial classification of 197 sources in the LMC (Woods et al. 2011) to all 1000 Spitzer-IRS staring mode targets in the SAGE footprint. We classify these point sources into evolutionary and chemical types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership, and variability information. This spectral classification will allow us improve our understanding of the stellar populations in the LMC, study the composition, and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. Finally we discuss the application of mid-IR spectral and photometric classifications to data that will be obtained from the MIRI instrument on JWST.

  1. Mean Halpha+[NII]+[SII] EW Inferred for Star-Forming Galaxies at z=5.1-5.4 Using High-Quality Spitzer/IRAC Photometry

    CERN Document Server

    Rasappu, N; Labbe, I; Bouwens, R; Stark, D; Ellis, R; Oesch, P

    2015-01-01

    Recent Spitzer/InfraRed Array Camera (IRAC) photometric observations have revealed that rest-frame optical emission lines contribute signficantly to the broadband fluxes of high-redshift galaxies. Specifically, in the narrow redshift range z~5.1-5.4 the [3.6]-[4.5] color is expected to be very red, due to contamination of the 4.5-micron band by the dominant Halpha line, while the 3.6-micron filter is free of nebular emission lines. We take advantage of new reductions of deep Spitzer/IRAC imaging over the GOODS-North+South fields (Labbe+2015) to obtain a clean measurement of the mean Halpha equivalent width from the [3.6]-[4.5] color in the redshift range z=5.1-5.4. The selected sources either have measured spectroscopic redshifts (13 sources) or lie very confidently in the redshift range z=5.1-5.4 based on the photometric redshift likelihood intervals (11 sources). Our z_{phot}=5.1-5.4 sample and z_{spec}=5.10-5.40 spectroscopic sample have a mean [3.6]-[4.5] color of 0.31+/-0.05 mag and 0.35+/-0.07 mag, impl...

  2. NEOLegacy: The ultimate Spitzer survey of Near Earth Objects

    Science.gov (United States)

    Trilling, David; Mommert, Michael; Hora, Joseph; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Michael; Smith, Howard

    2016-08-01

    Near Earth Objects (NEOs) are bodies whose orbits bring them close to the Earth's orbit. NEOs are valuable tracers of the evolution of our Solar System, and are also key components of current and future space exploration. Finally, the study of NEOs is relevant for civil defense through understanding the impact threat. We propose here an efficient and comprehensive survey to measure the diameters, albedos, and lightcurves of 1154 NEOs. We include only targets that are too faint to be detected by NEOWISE. This catalog will complete a database of diameters and albedos for nearly 3000 NEOs -- more than 20% of all known objects. Our primary goal, in line with the planetary science priorities for Spitzer Cycle 13, is to create a large and uniform catalog of NEO properties. From this catalog we will calculate an independent estimate of the NEO size distribution, addressing a current controversy, and measure the compositional distribution of NEOs as a function of size. We will increase by up to a factor of five the number of NEO lightcurves with relatively well known periods and amplitudes. The legacy value of this project is most evident in the fact that there will not ever in the foreseeable future be another opportunity to measure thousands of NEO diameters and carry out the type of science described above. Our online database will be the single most valuable resource of NEO diameters and albedos for years to come. Only Spitzer is sensitive and efficient enough to create such an important catalog of this scale. Our team has unmatched experience observing NEOs with Spitzer.

  3. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  4. Spitzer/IRS Mapping of Local Luminous Infrared Galaxies

    CERN Document Server

    Pereira-Santaella, Miguel; Rieke, George H; Colina, Luis

    2008-01-01

    We present results of our program Spitzer/IRS Mapping of local Luminous Infrared Galaxies (LIRGs). The maps cover the central 20"x20" or 30"x 30" regions of the galaxies, and use all four IRS modules to cover the full 5-38 microns spectral range. We have built spectral maps of the main mid-IR emission lines, continuum and PAH features, and extracted 1D spectra for regions of interest in each galaxy. The final goal is to fully characterize the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts.

  5. A Spitzer/IRAC Survey of the Orion Molecular Clouds

    OpenAIRE

    Megeath, S. T.; Flaherty, K M; Hora, J.; Allen, L E; Fazio, G. G.; Hartmann, L.; Myers, P. C.; J. Muzerolle; Pipher, J. L.; Siegler, N.; J. R. Stauffer; Young, E.

    2005-01-01

    We present initial results from a survey of the Orion A and B molecular clouds made with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. This survey encompasses a total of 5.6 square degrees with the sensitivity to detect objects below the hydrogen burning limit at an age of 1 Myr. These observations cover a number of known star forming regions, from the massive star forming clusters in the Orion Nebula and NGC 2024, to small groups of low mass stars in the L1641. We com...

  6. Spitzer IRS Spectra of Luminous 8 micron Sources in the Large Magellanic Cloud: Testing color-based classifications

    CERN Document Server

    Buchanan, Catherine L; Hrivnak, Bruce J; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer IRS spectra of 19 luminous 8 micron selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on 2MASS/MSX (J, H, K, and 8 micron) colors in order to test the "JHK8" classification scheme (Kastner et al. 2008). The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich enve...

  7. Albedo and Diameter Distributions of Asteroid Families Using the Spitzer Asteroid Catalog

    NARCIS (Netherlands)

    Enga, Marie-Therese; Trilling, D.; Mueller, M.; Wasserman, L.; Sykes, M.; Blaylock, M.; Stansberry, J.; Bhattacharya, B.; Spahr, T.

    2009-01-01

    The Spitzer Asteroid Catalog contains flux measurements of asteroidsserendipitously observed in publicly available Spitzer data. At present,this catalog contains some 10,000 measurements at 24 microns only, andwill ultimately contain 100,000 measurements or more. These measurements, along with with

  8. Spitzer observations of the thermal emission from WASP-43b

    CERN Document Server

    Blecic, Jasmina; Madhusudhan, Nikku; Stevenson, Kevin B; Hardy, Ryan A; Cubillos, Patricio E; Hardin, Matthew; Nymeyer, Sarah; Anderson, David R; Hellier, Coel; Smith, Alexis M S; Cameron, Andrew Collier

    2013-01-01

    WASP-43b (Hellier et al.; Gillon et al.) is one of the closest-orbiting hot Jupiters, with a semimajor axis a = 0.01526 +/- 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (K7V, Tstar = 4520 +/- 120 K), giving the planet a modest equilibrium temperature of Teq = 1440 +/- 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. This has resulted in strong signal-to-noise-ratio (S/N) observations and deep eclipses in both Warm Spitzer channels (3.6 and 4.5 microns). The eclipse depths and brightness temperatures from our jointly fit model are 0.346 +/- 0.013% and 1684 +/- 24 K at 3.6 microns and 0.382 +/- 0.015% and 1485 +/- 24 K at 4.5 microns. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347459 +/- 2.1x10-7 days) compared to Gillon et al. and put an upper limit on the eccentricity (e = 0.007+0.013-0.004). We use our Spitzer eclipse depths with two previously reported ground-based ...

  9. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Price-Whelan, Adrian M.; Johnston, Kathryn V., E-mail: adrn@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W 120th St., New York, NY 10027 (United States)

    2013-11-20

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  10. Completing the Legacy of Spitzer/IRAC over COSMOS

    Science.gov (United States)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  11. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  12. Using The Cornell Atlas of Spitzer/IRS Sources

    Science.gov (United States)

    Samsonyan, A. L.

    2016-06-01

    I summarize my research studying details of the emission line profiles of the mid infrared [NeII] 12.8 microns and [NeIII] 15.6 microns emission lines. Observations are from the Spitzer Infrared Spectrograph (IRS) (Houck et al. 2004), so I illustrate use of the archive of these spectra. The IRS team developed the Cornell Atlas of Spitzer IRS Sources (CASSIS) found at cassis.sirtf.com. At present, all low resolution (Lebouteiller et al. 2011) and high resolution (Lebouteiller et al. 2015) staring observations with the IRS are available (more than 20,000 spectra of about 15,000 distinct sources). Spectra are provided in various formats to enable easy viewing or measurements. Spectra cover 5 microns to 37 microns in low resolution (R ˜ 60 to 125) and 10 microns to 37 microns in high resolution (R ˜ 600) modes. CASSIS is intended as a long term resource for the astronomical community so that this fundamental data base of mid-infrared spectra will be easily usable perpetually, and I demonstrate some examples of its use.

  13. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    CERN Document Server

    Lim, Wanggi; Tan, Jonathan C

    2015-01-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan (2014) developed methods of FIR extinction mapping of this source using ${\\it Spitzer}$-MIPS ${\\rm 24\\mu m}$ and ${\\it Herschel}$-PACS ${\\rm 70\\mu m}$ images, and by comparing to MIR ${\\it Spitzer}$-IRAC $3$--${\\rm 8\\mu m}$ extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction (SIREX) mapping using ${\\it Spitzer}$-IRS (14 to ${\\rm 38\\mu m}$) data of the same IRDC. These methods allow us to first measure the SED of the diffuse Galactic ISM that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the $\\sim{\\rm 12\\mu m}$ an...

  14. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Carey, Sean J. [Infrared Processing Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  15. Mid-infrared Variability from the Spitzer Deep Wide-field Survey

    Science.gov (United States)

    Kozłowski, Szymon; Kochanek, Christopher S.; Stern, Daniel; Ashby, Matthew L. N.; Assef, Roberto J.; Bock, J. J.; Borys, C.; Brand, K.; Brodwin, M.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, Arjun; Eisenhardt, P. R.; Gonzalez, A.; Gorjian, V.; Griffith, R.; Grogin, N.; Ivison, R.; Jacob, J.; Jannuzi, B. T.; Mainzer, A.; Moustakas, L.; Röttgering, H.; Seymour, N.; Smith, H. A.; Stanford, S. A.; Stauffer, J. R.; Sullivan, I. S.; van Breugel, W.; Willner, S. P.; Wright, E. L.

    2010-06-01

    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg2 of the NOAO Deep Wide Field Survey Boötes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r>0.8) and that their joint variance (σ12) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBoötes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S 0 ~= 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

  16. Spitzer spectral line mapping of the HH211 outflow

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Cabrit, Sylvie;

    2010-01-01

    Aims: We employ archival Spitzer slit-scan observations of the HH211 outflow in order to investigate its warm gas content, assess the jet mass flux in the form of H2 and probe for the existence of an embedded atomic jet. Methods: Detected molecular and atomic lines are interpreted by means......-structure lines of S, Fe+, and Si+. H2 is detected down to 5" from the source and is characterized by a "cool" T~300K and a "warm" T~1000 K component, with an extinction Av ~ 8 mag. The amount of cool H2 towards the jet agrees with that estimated from CO assuming fully molecular gas. The warm component is well...

  17. A Spitzer Spectrum of the Exoplanet HD 189733b

    CERN Document Server

    Grillmair, C J; Burrows, A; Armus, L; Stauffer, J; Meadows, V; van Cleve, J; Levine, D

    2007-01-01

    We report on the measurement of the 7.5-14.7 micron spectrum for the transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph on the Spitzer Space Telescope. Though the observations comprise only 12 hours of telescope time, the continuum is well measured and has a flux ranging from 0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of the parent star. The variation in the measured fractional flux is very nearly flat over the entire wavelength range and shows no indication of significant absorption by water or methane, in contrast with the predictions of most atmospheric models. Models with strong day/night differences appear to be disfavored by the data, suggesting that heat redistribution to the night side of the planet is highly efficient.

  18. On-Orbit Performance of the Spitzer Space Telescope

    Science.gov (United States)

    Roellig, Thomas; Werner, Michael; Gallagher, David; Irace, William; Fazio, Giovanni; Houck, James; Rieke, George; Wilson, Robert; Soifer, Thomas

    2004-01-01

    The Spitzer Space Telescope (formally known as SIRTF) was successfully launched on August 25, 2003, and has completed its initial in-orbit checkout and science validation and calibration period. The measured performance of the observatory has met or exceeded all of its high-level requirements, it has entered normal operations, and is beginning to return high-quality science data. A superfluid-helium cooled 85 cm diameter telescope provides extremely low infrared backgrounds and feeds three science instruments covering wavelengths ranging from 3.2 to 180 microns. The telescope optical quality is excellent, providing diffraction-limited performance down to wavelengths below 6.5 microns. Based on the first helium mass and boil-off rate measurements, a cryogenic lifetime in excess of 5 years is expected. This presentation will provide a summary of the overall performance of the observatory, with an emphasis on those performance parameters that have the greatest impact on its ultimate science return.

  19. The opaque nascent starburst in NGC 1377: Spitzer SINGS observations

    CERN Document Server

    Roussel, H; Bendo, G J; Dale, D A; Draine, B T; Engelbracht, C W; Gordon, K D; Helou, G; Hollenbach, D J; Kennicutt, R C; Meyer, M J; Moustakas, J; Murphy, E J; Regan, M W; Rieke, G H; Sheth, K; Smith, J D; Spoon, H W; Walter, F

    2006-01-01

    We analyze extensive data on NGC1377 from the Spitzer Infrared Nearby Galaxies Survey (SINGS). Within the category of nascent starbursts, that we previously selected by their infrared to radio continuum ratios in large excess of the average and their hot dust, NGC1377 has the largest infrared excess yet measured. Optical imaging reveals a morphological distortion suggestive of a recent accretion event. Infrared spectroscopy reveals a compact and opaque source dominated by a hot, self-absorbed continuum (tau ~ 20 in the 10 micron silicate band). We provide physical evidence against non-stellar activity being the heating source. HII regions are detected through the single [NeII] line, probing 85% of ionizing photons are suppressed by dust. The only other detected emission features are molecular hydrogen lines, arguably excited mainly by shocks, besides photodissociation regions, and weak aromatic bands. The new observations support our interpretation in terms of an extremely young starburst (<1 Myr). More ge...

  20. Spitzer Observations of Exoplanets Discovered with The Kepler K2 Mission

    CERN Document Server

    Beichman, Charles; Werner, Michael; Gorjian, Varoujan; Krick, Jessica; Deck, Katherine; Knutson, Heather; Wong, Ian; Petigura, Erik A; Christiansen, Jessie; Ciardi, David; Greene, Thomas P; Schlieder, Joshua E; Line, Mike; Crossfield, Ian; Howard, Andrew; Sinukoff, Evan

    2016-01-01

    We have used the {\\it Spitzer Space Telescope} to observe two transiting planetary systems orbiting low mass stars discovered in the \\Kepler \\Ktwo mission. The system K2-3 (EPIC 201367065) hosts three planets while EPIC 202083828 (K2-26) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with \\Spitzer will be critical for future observations of these and other \\Ktwo targets. For K2-3b we find marginally significant evidence for a Transit Timing Variation between the \\Ktwo and \\Spitzer\\ epochs.

  1. The exohedral Diels-Alder reactivity of the titanium carbide endohedral metallofullerene Ti2C2@D(3h)-C78: comparison with D(3h)-C78 and M3N@D(3h)-C78 (M=Sc and Y) reactivity.

    Science.gov (United States)

    Garcia-Borràs, Marc; Osuna, Sílvia; Luis, Josep M; Swart, Marcel; Solà, Miquel

    2012-06-04

    The chemical functionalization of endohedral (metallo)fullerenes has become a main focus of research in the last few years. It has been found that the reactivity of endohedral (metallo)fullerenes may be quite different from that of the empty fullerenes. Encapsulated species have an enormous influence on the thermodynamics, kinetics, and regiochemistry of the exohedral addition reactions undergone by these species. A detailed understanding of the changes in chemical reactivity due to incarceration of atoms or clusters of atoms is essential to assist the synthesis of new functionalized endohedral fullerenes with specific properties. Herein, we report the study of the Diels-Alder cycloaddition between 1,3-butadiene and all nonequivalent bonds of the Ti(2)C(2)@D(3h)-C(78) metallic carbide endohedral metallofullerene (EMF) at the BP86/TZP//BP86/DZP level of theory. The results obtained are compared with those found by some of us at the same level of theory for the D(3h)-C(78) free cage and the M(3)N@D(3h)-C(78) (M=Sc and Y) metallic nitride EMFs. It is found that the free cage is more reactive than the Ti(2)C(2)@D(3h)-C(78) EMF and this, in turn, has a higher reactivity than M(3)N@D(3h)-C(78). The results indicate that, for Ti(2)C(2)@D(3h)-C(78), the corannulene-type [5,6] bonds c and f, and the type B [6,6] bond 3 are those thermodynamically and kinetically preferred. In contrast, the D(3h)-C(78) free cage has a preference for addition to the [6,6] 1 and 6 bonds and the [5,6] b bond, whereas M(3)N@D(3h)-C(78) favors additions to the [6,6] 6 (M=Sc) and [5,6] d (M=Y) bonds. The reasons for the regioselectivity found in Ti(2)C(2)@D(3h)-C(78) are discussed.

  2. Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy

    CERN Document Server

    Hebrard, G; Diaz, R F; Boisse, I; Bouchy, F; Etangs, A Lecavelier des; Moutou, C; Ehrenreich, D; Arnold, L; Bonfils, X; Delfosse, X; Desort, M; Eggenberger, A; Forveille, T; Gregorio, J; Lagrange, A -M; Lovis, C; Pepe, F; Perrier, C; Pont, F; Queloz, D; Santerne, A; Santos, N C; Segransan, D; Sing, D K; Udry, S; Vidal-Madjar, A

    2010-01-01

    We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the full transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to a...

  3. The Spitzer Survey of the Small Magellanic Cloud (S3MC): Insights into the Life-Cycle of Polycyclic Aromatic Hydrocarbons

    CERN Document Server

    Sandstrom, Karin M; Draine, Bruce; Bot, Caroline; Stanimirovic, Snezana

    2010-01-01

    We present the results of modeling dust SEDs across the SMC with the aim of mapping the distribution of PAHs in a low-metallicity environment. Using Spitzer Survey of the SMC (S3MC) photometry from 3.6-160 um over the main star-forming regions of the Wing and Bar along with spectral mapping from 5-38 um from the Spitzer Spectroscopic Survey of the SMC (S4MC) in selected regions, we model the dust SED and emission spectrum to determine the fraction of dust in PAHs across the SMC. We use the regions of overlapping photometry and spectroscopy to test the reliability of the PAH fraction as determined from SED fits alone. The PAH fraction in the SMC is low compared to the Milky Way and variable--with relatively high fractions (q_PAH~1-2%) in molecular clouds and low fractions in the diffuse ISM (=0.6%). We use the map of PAH fraction across the SMC to test a number of ideas regarding the production, destruction and processing of PAHs in the ISM. We find weak or no correlation between the PAH fraction and the distr...

  4. A nearby GRB host prototype for z~7 Lyman-break galaxies: Spitzer-IRS and X-shooter spectroscopy of the host galaxy of GRB031203

    CERN Document Server

    Watson, D; Christensen, L; O'Halloran, B; Michałowski, M; Hjorth, J; Malesani, D; Fynbo, J P U; Gordon, K D; Cerón, J M Castro

    2010-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG031203. It is one of the nearest GRB hosts at z=0.1055, allowing both low and high-resolution spectroscopy with Spitzer-IRS. Medium resolution UV-to-K-band spectroscopy with the X-shooter spectrograph on the VLT is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and sub-mm observations. These data allow us to construct a UV-to-radio spectral energy distribution with almost complete spectroscopic coverage from 0.3-35 micron of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionisation fine structure line emission indicative of a hard radiation field in the galaxy, suggestive of strong ongoing star-formation and a very young stellar population. The selection of HG031203 via the presence of a GRB suggests that it might be a use...

  5. The SAGE-Spec Spitzer Legacy program: The life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification I

    CERN Document Server

    Woods, Paul M; Kemper, F; van Loon, J Th; Sargent, B A; Matsuura, M; Szczerba, R; Volk, K; Zijlstra, A A; Sloan, G C; Lagadec, E; McDonald, I; Jones, O; Gorjian, V; Kraemer, K E; Gielen, C; Meixner, M; Blum, R D; Sewi\\lo, M; Riebel, D; Shiao, B; Chen, C -H R; Boyer, M L; Indebetouw, R; Antoniou, V; Bernard, J -P; Cohen, M; Dijkstra, C; Galametz, M; Galliano, F; Gordon, Karl D; Harris, J; Hony, S; Hora, J L; Kawamura, A; Lawton, B; Leisenring, J M; Madden, S; Marengo, M; McGuire, C; Mulia, A J; O'Halloran, B; Olsen, K; Paladini, R; Paradis, D; Reach, W T; Rubin, D; Sandstrom, K; Soszyński, I; Speck, A K; Srinivasan, S; Tielens, A G G M; van Aarle, E; Van Dyk, S D; Van Winckel, H; Vijh, Uma P; Whitney, B; Wilkins, A N

    2010-01-01

    We present the classification of 197 point sources observed with the Infrared Spectrograph in the SAGE-Spec Legacy program on the Spitzer Space Telescope. We introduce a decision-tree method of object classification based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership, and variability information, which is used to classify the SAGE-Spec sample of point sources. The decision tree has a broad application to mid-infrared spectroscopic surveys, where supporting photometry and variability information are available. We use these classifications to make deductions about the stellar populations of the Large Magellanic Cloud and the success of photometric classification methods. We find 90 asymptotic giant branch (AGB) stars, 29 young stellar objects, 23 post-AGB objects, 19 red supergiants, eight stellar photospheres, seven background galaxies, seven planetary nebulae, two HII regions and 12 other objects, seven of which remain unclassified.

  6. Spectroscopic Dosimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analysis of Phase I test data demonstrates that the Photogenics Spectroscopic Dosimeter will detect neutron energies from 0.8 up to 600 MeV. The detector...

  7. The Brightest Galaxies at Cosmic Dawn: Securing the Largest Samples of z=9-11 galaxies for JWST by leveraging the HST archive with Spitzer/IRAC.

    Science.gov (United States)

    Bouwens, Rychard; Trenti, Michele; Calvi, Valentina; Bernard, Stephanie; Labbe, Ivo; Oesch, Pascal; Coe, Dan; Holwerda, Benne; Bradley, Larry; Mason, Charlotte; Schmidt, Kasper; Illingworth, Garth

    2015-10-01

    Hubble's WFC3 has been a game changer for studying early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources up to z~10, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Despite these efforts, the size of the highest redshift galaxy samples (z >9 and especially z > 10) is still very small, particularly at high luminosities (L > L*). To deliver transformational results, much larger numbers of bright z > 9 galaxies are needed both to map out the bright end of the luminosity/mass function and for spectroscopic follow-up (with JWST and otherwise). One especially efficient way of expanding current samples is (1) to leverage the huge amounts of pure-parallel data available with HST to identify large numbers of candidate z ~ 9 - 11 galaxies and (2) to follow up each candidate with shallow Spitzer/IRAC observations to distinguish the bona- fide z ~ 9 - 11 galaxies from z ~ 2 old, dusty galaxies. For this program we are requesting shallow Spitzer/IRAC follow-up of 20 candidate z ~ 9 - 11 galaxies we have identified from 130 WFC3/IR pointings obtained from more than 4 separate HST programs with no existing IRAC coverage. Based on our previous CANDELS/GOODS searches, we expect to confirm 5 to 10 sources as L > L* galaxies at z >= 9. Our results will be used to constrain the bright end of the LF at z >= 9, to provide targets for Keck spectroscopy to constrain the ionization state of the z > 8 universe, and to furnish JWST with bright targets for spectroscopic follow-up studies.

  8. Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer

    CERN Document Server

    Gvaramadze, V V; Kniazev, A Y; Schnurr, O; Shenar, T; Sander, A; Hainich, R; Langer, N; Hamann, W -R; Chu, Y -H; Gruendl, R A

    2014-01-01

    We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by approx 2 arcsec (or approx 0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analyzed the spectrum of the binary system using the non-LTE Potsdam Wolf-Rayet (PoWR) code, confirming that the WR component is a very hot (approx 90 kK) WN sta...

  9. Spitzer Observations of Spacecraft Target 162173 (1999 JU3)

    CERN Document Server

    Campins, H; Kelley, M; Fernandez, Y; Licandro, J; Delbo, M; Barucci, A; Dotto, E; 10.1051/0004-6361/200912374

    2009-01-01

    Near-Earth asteroid 162173 (1999 JU3) is the primary target of the Hayabusa-2 sample return mission, and a potential target of the Marco Polo sample return mission. Earth-based studies of this object are fundamental to these missions. We present a mid-infrared spectrum (5-38 microns) of 1999 JU3 obtained with NASA's Spitzer Space Telescope in May 2008. These observations place new constraints on the surface properties of this asteroid. To fit our spectrum we used the near-Earth asteroid thermal model (NEATM) and the more complex thermophysical model (TPM). However, the position of the spin-pole, which is uncertain, is a crucial input parameter for constraining the thermal inertia with the TPM; hence, we consider two pole orientations. In the extreme case of an equatorial retrograde geometry we derive a lower limit to the thermal inertia of 150 J/m^2/K/s^0.5. If we adopt the pole orientation of Abe et al. (2008a) our best-fit thermal model yields a value for the thermal inertia of 700+/-200 J/m^2/K/s^0.5 and e...

  10. Spitzer's Last Look at the Small Magellanic Cloud

    Science.gov (United States)

    Sloan, Greg; Kraemer, Kathleen; Kraemer, K. E.; Kirkpatrick, J. D.; Gordon, K. D.; Bolatto, A. D.; Boyer, M. L.; Groenewegen, M.; Jones, O. C.; Kemper, F.; Lloyd, J. P.; McDonald, I.; Meixner, M.; Oliveira, J. M.; Sargent, B. A.; Sewilo, M.; Srinivasan, S.; van Loon, J. Th.; Zijlstra, A. A.

    2016-08-01

    We will map 30 square degrees of sky covering the Small Magellanic Cloud (SMC) and the Bridge toward the LMC at 3.6 and 4.5 um, in two epochs in late 2017. Coupled with similar maps obtained in 2008 and surveys in the core of the SMC starting in 2005, the new epochs will give us a temporal baseline of 12 years in the heart of the SMC and 9 years in its outer regions. The Spitzer observations probe deeper than WISE and at higher resolution, allowing us to study fainter sources and sources in more crowded regions in this nearby metal-poor dwarf galaxy. We will use these data to better characterize how variability and dust production are intertwined in the final evolutionary stages of a star's lifetime. The long temporal baseline also enables searches for brown dwarfs near the Sun which are undetectable with Gaia or WISE, and the crowded background formed by the SMC makes any newly discovered brown dwarfs excellent candidates for microlensing studies which would reveal their masses. The long baseline may also reveal transients in star-forming regions in the SMC and in the population of background galaxies. We request 172.1 hours, with no proprietary period, to complete this project.

  11. A Spitzer IRAC Measure of the Zodiacal Light

    CERN Document Server

    Krick, Jessica E; Carey, Sean J; Lowrance, Patrick J; Surace, Jason A; Ingalls, James G; Hora, Joseph L; Reach, William T

    2012-01-01

    The dominant non-instrumental background source for space-based infrared observatories is the zo- diacal light. We present Spitzer Infrared Array Camera (IRAC) measurements of the zodiacal light at 3.6, 4.5, 5.8, and 8.0 {\\mu}m, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole (NEP) over the period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the zodiacal light. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment (COBE DIRBE) data and a zodiacal light model based thereon. Our data show a few percent discrepancy from the Kelsall et al. (1998) model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth...

  12. Spitzer Transit and Secondary Eclipse Photometry of GJ 436b

    CERN Document Server

    Deming, Drake; Laughlin, Gregory; Seager, Sara; Navarro, Sarah B; Bowman, William C; Horning, Karen

    2007-01-01

    We report the results of infrared (8 micron) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ436b using Spitzer. The nearly photon-limited precision of these data allow us to measure an improved radius for the planet, and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/-0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star radius ratio (0.0839 +/-0.0005), independent of the stellar properties. However, we obtain the planetary radius, as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M-dwarfs (M=R). We find Rs=Ms=0.47 +/-0.02 in solar units, and Rp=27,600 +/-1170 km (4.33 +/-0.18 Earth radii). This radius significantly exceeds the radius of a naked ocean planet, and requires a gasesous hydrogen-helium envelope. The secondary eclipse occurs at phase 0.587 +/-0.005, proving a significant orbital eccentricity (e=0.15 +/-...

  13. A Spitzer/IRAC Survey of the Orion Molecular Clouds

    CERN Document Server

    Megeath, S T; Hora, J; Allen, L E; Fazio, G G; Hartmann, L; Myers, P C; Muzerolle, J; Pipher, J L; Siegler, N; Stauffer, J R; Young, E

    2005-01-01

    We present initial results from a survey of the Orion A and B molecular clouds made with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. This survey encompasses a total of 5.6 square degrees with the sensitivity to detect objects below the hydrogen burning limit at an age of 1 Myr. These observations cover a number of known star forming regions, from the massive star forming clusters in the Orion Nebula and NGC 2024, to small groups of low mass stars in the L1641. We combine the IRAC photometry with photometry from the 2MASS point source catalog and use the resulting seven band data to identify stars with infrared excesses due to dusty disks and envelopes. Using the presence of an infrared excess as an indicator of youth, we show the distribution of young stars and protostars in the two molecular clouds. We find that roughly half of the stars are found in dense clusters surrounding the two regions of recent massive star formation in the Orion clouds, NGC 2024 and the Orion Nebula.

  14. The Top Ten Spitzer YSOs in 30 Doradus

    CERN Document Server

    Walborn, Nolan R; Sewilo, Marta M

    2013-01-01

    The most luminous Spitzer point sources in the 30 Doradus triggered second generation are investigated coherently in the 3-8 micron region. Remarkable diversity and complexity in their natures are revealed. Some are also among the brightest JHK sources, while others are not. Several of them are multiple when examined at higher angular resolutions with HST NICMOS and WFPC2/WFC3 as available, or with VISTA/VMC otherwise. One is a dusty compact H II region near the far northwestern edge of the complex, containing a half dozen bright I-band sources. Three others appear closely associated with luminous WN stars and causal connections are suggested. Some are in the heads of dust pillars oriented toward R136, as previously discussed from the NICMOS data. One resides in a compact cluster of much fainter sources, while another appears monolithic at the highest resolutions. Surprisingly, one is the brighter of the two extended "mystery spots" associated with Knot 2 of Walborn et al. Masses are derived from YSO models f...

  15. SPITZER SAGE Observations of Large Magellanic Cloud Planetary Nebulae

    CERN Document Server

    Hora, J L; Ellis, R G; Meixner, M; Blum, R D; Latter, W B; Whitney, B A; Meade, M R; Indebetouw, R; Gordon, K; For, B -Q; Block, M; Misselt, K; Vijh, U; Leitherer, C

    2007-01-01

    We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the...

  16. Spitzer, Gaia, and the Potential of the Milky Way

    CERN Document Server

    Price-Whelan, Adrian M

    2013-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ~10 kpc. This "horizon" for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of ten in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The succ...

  17. Spitzer/IRS investigation of MIPSGAL 24 microns compact bubbles

    CERN Document Server

    Flagey, N; Billot, N; Carey, S J

    2011-01-01

    The MIPSGAL 24 $\\mu$m Galactic Plane Survey has revealed more than 400 compact-extended objects. Less than 15% of these MIPSGAL bubbles (MBs) are known and identified as evolved stars. We present Spitzer observations of 4 MBs obtained with the InfraRed Spectrograph to determine the origin of the mid-IR emission. We model the mid-IR gas lines and the dust emission to infer physical conditions within the MBs and consequently their nature. Two MBs show a dust-poor spectrum dominated by highly ionized gas lines of [\\ion{O}{4}], [\\ion{Ne}{3}], [\\ion{Ne}{5}], [\\ion{S}{3}] and [\\ion{S}{4}]. We identify them as planetary nebulae with a density of a few 10$^3\\ \\rm{cm^{-3}}$ and a central white dwarf of $\\gtrsim 200,000$ K. The mid-IR emission of the two other MBs is dominated by a dust continuum and lower-excitation lines. Both of them show a central source in the near-IR (2MASS and IRAC) broadband images. The first dust-rich MB matches a Wolf-Rayet star of $\\sim 60,000$ K at 7.5 kpc with dust components of $\\sim170$ ...

  18. Spitzer Spectroscopy of the Transition Object TW Hya

    CERN Document Server

    Najita, Joan R; Strom, Stephen E; Watson, Dan M; Pascucci, Ilaria; Hollenbach, David; Gorti, Uma; Keller, Luke

    2010-01-01

    We report sensitive Spitzer IRS spectroscopy in the 10-20 micron region of TW Hya, a nearby T Tauri star. The unusual spectral energy distribution of the source, that of a transition object, indicates that the circumstellar disk in the system has experienced significant evolution, possibly as a result of planet formation. The spectrum we measure is strikingly different from that of other classical T Tauri stars reported in the literature, displaying no strong emission features of water, acetylene, or HCN. The difference indicates that the inner planet formation region (within 5 AU) of the gaseous disk has evolved physically and/or chemically away from the classical T Tauri norm. Nevertheless, TW Hya does show a rich spectrum of emission features of atoms (HI, [NeII], and [NeIII]) and molecules (H2, OH, CO2, HCO+, and possibly CH3), some of which are also detected in classical T Tauri spectra. The properties of the neon emission are consistent with an origin for the emission in a disk irradiated by X-rays (wit...

  19. Spitzer Mapping of PAHs and H2 in Photodissociation Regions

    CERN Document Server

    Fleming, Brian T; Lupu, Roxana E; McCandliss, Stephan R

    2010-01-01

    The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs) and the lowest pure rotational states of molecular hydrogen (H2); two species which are probes of the physical properties of gas and dust in intense UV radiation fields. We utilize the high angular resolution of the Infrared Spectrograph on the Spitzer Space Telescope to construct spectral maps of the PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023, NGC 2023 and IC 63. We present spatially resolved maps of the physical properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We also present evidence for PAH dehydrogenation, which may support theories of H2 formation on PAH surfaces, and a detection of preferential self-shielding of ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2 column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios of ~ 1.8. We find th...

  20. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    Science.gov (United States)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our

  1. NEOs in the mid-infrared: from Spitzer to JWST

    Science.gov (United States)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  2. PSF subtraction to search for distant Jupiters with SPITZER

    Science.gov (United States)

    Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles

    2015-12-01

    In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.

  3. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  4. Spitzer Phase Curve Constraints for WASP-43b at 3.6 and 4.5 μm

    Science.gov (United States)

    Stevenson, Kevin B.; Line, Michael R.; Bean, Jacob L.; Désert, Jean-Michel; Fortney, Jonathan J.; Showman, Adam P.; Kataria, Tiffany; Kreidberg, Laura; Feng, Y. Katherina

    2017-02-01

    Previous measurements of heat redistribution efficiency (the ability to transport energy from a planet’s highly irradiated dayside to its eternally dark nightside) show considerable variation between exoplanets. Theoretical models predict a positive correlation between heat redistribution efficiency and temperature for tidally locked planets; however, recent Hubble Space Telescope (HST) WASP-43b spectroscopic phase curve results are inconsistent with current predictions. Using the Spitzer Space Telescope, we obtained a total of three phase curve observations of WASP-43b (P = 0.813 days) at 3.6 and 4.5 μm. The first 3.6 μm visit exhibits spurious nightside emission that requires invoking unphysical conditions in our cloud-free atmospheric retrievals. The two other visits exhibit strong day–night contrasts that are consistent with the HST data. To reconcile the departure from theoretical predictions, WASP-43b would need to have a high-altitude, nightside cloud/haze layer blocking its thermal emission. Clouds/hazes could be produced within the planet’s cool, nearly retrograde mid-latitude flows before dispersing across its nightside at high altitudes. Since mid-latitude flows only materialize in fast-rotating (≲ 1 day) planets, this may explain an observed trend connecting measured day–night contrast with planet rotation rate that matches all current Spitzer phase curve results. Combining independent planetary emission measurements from multiple phases, we obtain a precise dayside hemisphere H2O abundance (2.5× {10}-5{--}1.1× {10}-4 at 1σ confidence) and, assuming chemical equilibrium and a scaled solar abundance pattern, we derive a corresponding metallicity estimate that is consistent with being solar (0.4–1.7). Using the retrieved global CO+CO2 abundance under the same assumptions, we estimate a comparable metallicity of 0.3–1.7× solar. This is the first time that precise abundance and metallicity constraints have been determined from multiple

  5. The X-ray properties of five galactic supernova remnants detected by the Spitzer glimpse survey

    Energy Technology Data Exchange (ETDEWEB)

    Pannuti, Thomas G.; Moffitt, William P. [Space Science Center, Department of Earth and Space Sciences, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Rho, Jeonghee [SETI Institute and SOFIA Science Center, NASA Ames Research Center, MS 211-3, Mountain View, CA 94035 (United States); Heinke, Craig O., E-mail: t.pannuti@moreheadstate.edu, E-mail: w.moffitt@moreheadstate.edu, E-mail: jrho@sofia.usra.edu, E-mail: heinke@ualberta.ca [Department of Physics, CCIS 4-183, University of Alberta, Edmonton, AB T6G 2E1 (Canada)

    2014-03-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5–0.3, G346.6–0.2, CTB 37A (G348.5+0.1), and G348.5–0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5–0.3, and G346.6–0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5–0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5–0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5–0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ∼ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5–383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density n{sub e} , radiative age t {sub rad} and swept-up mass M{sub X} for each of the four X-ray-detected SNRs. Each

  6. Shell model and spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Poves, P. [Madrid Univ. Autonoma and IFT, UAM/CSIC, E-28049 (Spain)

    2007-07-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  7. Spitzer-HETDEX Exploratory Large Area (SHELA) Survey

    Science.gov (United States)

    Papovich, Casey; Gebhardt, Karl; Adams, Josh; Behroozi, Peter; Bender, Ralf; Blanc, Guillermo; Ciardullo, Robin; Depoy, Darren; de Jong, Roelof; Drory, Niv; Evans, Neal; Fabricius, Maximilian; Finkelstein, Steven; Gawiser, Eric; Greene, Jenny; Gronwall, Caryl; Hill, Gary; Hopp, Ulrich; Jogee, Shardha; Lacy, Mark; Landriau, Martin; Marshall, Jennifer; Tuttle, Sarah; Somerville, Rachel; Steinmetz, Matthias; Suntzeff, Nicholas; Tran, Kim-Vy; Wechsler, Risa; Wisotzki, Lutz

    2011-05-01

    We propose IRAC imaging of a 28 sq deg field with deep optical imaging lying within the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Survey. Our goal is to explore the relationship between galaxy stellar mass, dark halo mass, and environment during the important cosmic epoch (redshifts 2deep IRAC and optical imaging in our program will provide a uniquely powerful dataset enabling these goals. Working in blind spectroscopic mode, HETDEX will obtain redshifts in this field for approximately 200,000 galaxies and map out the cosmic web at redshifts 1.9web, representative of field, groups, and proto-clusters. The IRAC data will provide the key missing ingredient by allowing us to measure galaxy stellar masses down to values well below the characteristic mass of the stellar mass function at these redshifts. By combining the IRAC data with the halo mass and local density (environment) measured from clustering statistics in the spectroscopic and associated trained photometric dataset, we will obtain a detailed view of how galaxies grow their stellar mass within different dark matter halos and as a function of environment. Ultimately, this study will advance our understanding of the physical processes that drive the formation of stars in galaxies and the build up of stellar mass over cosmic time. In the spirit of Exploratory programs, SHELA will enable a broad range of scientific explorations beyond our immediate goals by delivering all science products (images, catalogs, spectra, and redshifts) to the public.

  8. Spitzer IRS mapping of the central kpc of Centaurus A

    CERN Document Server

    Quillen, Alice C; Green, Joel; Smith, J D; Prasad, D Amelia; Alonso-Herrero, Almudena; Brookes, Mairi H; Cleary, Kieran; Lawrence, Charles R

    2007-01-01

    We report on the results of infrared spectroscopic mapping observations carried out in the nuclear region of Centaurus A (NGC5128). The 500 pc bipolar dust shell discovered by Quillen et al.(2006) is even more clearly seen in the 11.3 micron dust emission feature than previous broad band imaging. The pure rotational lines of molecular hydrogen other than the S(0) line are detected above the dusty disk and associated with the oval dust shell. The molecular hydrogen transitions indicate the presence of warm gas at temperatures 250--720K. The ratio of the dust emission features at 7.7 and 11.3 micron and the ratio of the [NeII](12.8) and 11.3 dust emission feature are lower in the 500 pc dust shell than in the star forming disk. The clearer shell morphology at 11.3 micron, warm molecular hydrogen emission in the shell, and variation in line ratios in the shell compared to those in the disk, confirm spectroscopically that this shell is a separate coherent entity and is unlikely to be a chance superposition of dus...

  9. Palomar/TripleSpec observations of {\\it Spitzer}/MIPSGAL~24\\mic\\ circumstellar shells: unveiling the nature of their central sources

    CERN Document Server

    Flagey, Nicolas; Petric, Andreea O; Geballe, Tom R

    2014-01-01

    We present near-IR spectroscopic observations of the central sources in 17 circumstellar shells from a sample of more than 400 "bubbles" discovered in the Spitzer/MIPSGAL 24um survey of the Galactic plane and in the Cyg-X region. To identify these shells, we have obtained J, H, and K band spectra with a resolution ~2600 of the stars at their centers. We observed 14 MIPSGAL bubbles (MBs), WR149, and 2 objects in the Cyg-X region (WR138a and BD+43 3710), our sample being about 2.5 mag fainter in K band than previous studies of the central sources of MBs. We use spectroscopic diagnostics and spectral libraries to constrain the natures of our targets. We find five late type giants. The equivalent widths of their CO 2.29um features allow us to determine their spectral types and hence derive extinction along the line of sight, distance, and physical size of the shells. We also find twelve early type stars, in nine MBs and the 3 comparison objects. We find that the subtype inferred from the near-IR for WR138a (WN9h)...

  10. Parallel MOPEX: Computing Mosaics of Large-Area Spitzer Surveys on a Cluster Computer

    Directory of Open Access Journals (Sweden)

    Joseph C. Jacob

    2007-01-01

    Full Text Available The Spitzer Science Center's MOPEX software is a part of the Spitzer Space Telescope's operational pipeline that enables detection of cosmic ray collisions with the detector array, masking of the corrupted pixels due to these collisions, subsequent mosaicking of image fields, and extraction of point sources to create catalogs of celestial objects. This paper reports on our experiences in parallelizing the parts of MOPEX related to cosmic ray rejection and mosaicking on a 1,024-processor cluster computer at NASA's Jet Propulsion Laboratory. The architecture and performance of the new Parallel MOPEX software are described. This work was done in order to rapidly mosaic the IRAC shallow survey data, covering a region of the sky observed with one of Spitzer's infrared instruments for the study of galaxy clusters, large-scale structure, and brown dwarfs.

  11. The Spitzer-South Pole Telescope Deep Field: Survey Design and IRAC Catalogs

    CERN Document Server

    Ashby, M L N; Brodwin, M; Gonzalez, A H; Martinez, J; Bartlett, J G; Benson, B A; Bleem, L E; Crawford, T M; Dey, A; Dressler, A; Eisenhardt, P R M; Galametz, A; Jannuzi, B T; Marrone, D P; Mei, S; Muzzin, A; Pacaud, F; Pierre, M; Stern, D; Vieira, J D

    2013-01-01

    The Spitzer-South Pole Telescope Deep Field (SSDF) is a wide-area survey using Spitzer's Infrared Array Camera (IRAC) to cover 94 square degrees of extragalactic sky, making it the largest IRAC survey completed to date outside the Milky Way midplane. The SSDF is centered at 23:30,-55:00, in a region that combines observations spanning a broad wavelength range from numerous facilities. These include millimeter imaging from the South Pole Telescope, far-infrared observations from Herschel/SPIRE, X-ray observations from the XMM XXL survey, near-infrared observations from the VISTA Hemisphere Survey, and radio-wavelength imaging from the Australia Telescope Compact Array, in a panchromatic project designed to address major outstanding questions surrounding galaxy clusters and the baryon budget. Here we describe the Spitzer/IRAC observations of the SSDF, including the survey design, observations, processing, source extraction, and publicly available data products. In particular, we present two band-merged catalogs...

  12. The IC 5146 star forming complex and its surroundings with 2MASS, WISE and Spitzer

    CERN Document Server

    Nunes, N A; Bica, E

    2016-01-01

    Throughout the last decade sensitive infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of YSOs associated with nearby molecular clouds. With such a census recent studies have characterized pre-main sequence stars (PMS) and determined parame- ters from different wavelengths. Given the restricted Spitzer coverage of some of these clouds, relative to their extended regions, these YSO populations may represent a limited view of star formation in these regions. We are taking advantage of mid-infrared observations from the NASA Wide Field Infrared Survey Explorer (WISE), which provides an all sky view and therefore full coverage of the nearby clouds, to assess the degree to which their currently known YSO population may be representative of a more complete population. We extend the well established classification method of the Spitzer Legacy teams to archived WISE observations. We have adopted 2MASS photometry as a standard catalogue for comparisons. Besides ...

  13. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    Science.gov (United States)

    Lim, Wanggi; Carey, Sean J.

    2014-07-01

    We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  14. Dust in Intermediate Polars: Light Curves from the Spitzer Space Telescope

    Science.gov (United States)

    Belle, Kunegunda E.; Hoard, D. W.; Howell, S. B.

    2010-12-01

    Here we present Spitzer 4.5 μm light curves of two intermediate polars (IPs)-DQ Her and EX Hya-obtained with Cycle 6 observations. Our initial evaluation of the light curves of DQ Her and EX Hya shows that these two IPs exhibit similar behavior as that seen in non-magnetic systems (specifically WZ Sge). The binary eclipses seen in the Spitzer light curves of DQ Her and EX Hya are about three times longer than their optical counterparts, indicating that a reservoir of dust extends beyond the outer edge of the optically visible accretion disk.

  15. Identification of Spitzer-IRS staring mode targets in the Magellanic Clouds

    CERN Document Server

    Ruffle, Paul M E; Kemper, F

    2011-01-01

    The SAGE-LMC, SAGE-SMC and HERITAGE surveys have mapped the Magellanic Clouds in the infrared using the Spitzer and Herschel Space Telescopes. Over 8.5 million point sources were detected and catalogued in the LMC alone. Staring mode observations using the InfraRed Spectrograph (IRS) on board Spitzer have been obtained for 1,000 positions in the LMC and ~250 in the SMC. From the infrared spectroscopy we have identified the nature of the sources for which spectroscopy is available. These IRS staring mode targets represent an important contribution to the SED of these dwarf galaxies. Here we report on our latest results.

  16. Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey

    NARCIS (Netherlands)

    Kistler, John; Trilling, D. E.; Mueller, M.; Hora, J. L.; Harris, A. W.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Emery, J. P.; Fazo, G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    The Warm Spitzer NEO survey, ExploreNEOs, will observe approximately 700 Near Earth Asteroids. Several of these objects are known to be binary asteroid systems. Binary systems are interesting due to the unique opportunity they present for determining the masses and densities of their constituent bod

  17. SPITZER OBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES

    DEFF Research Database (Denmark)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter s...

  18. The IC 5146 star forming complex and its surroundings with 2MASS, WISE and Spitzer

    Science.gov (United States)

    Nunes, N. A.; Bonatto, C.; Bica, E.

    2016-02-01

    Throughout the last decade sensitive infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of YSOs associated with nearby molecular clouds. With such a census recent studies have characterized pre-main sequence stars (PMS) and determined parameters from different wavelengths. Given the restricted Spitzer coverage of some of these clouds, relative to their extended regions, these YSO populations may represent a limited view of star formation in these regions. We are taking advantage of mid-infrared observations from the NASA Wide Field Infrared Survey Explorer (WISE), which provides an all sky view and therefore full coverage of the nearby clouds, to assess the degree to which their currently known YSO population may be representative of a more complete population. We extend the well established classification method of the Spitzer Legacy teams to archived WISE observations. We have adopted 2MASS photometry as a "standard catalogue" for comparisons. Besides the massive embedded cluster IC 5146 we provide a multiband view of five new embedded clusters in its surroundings that we discovered with WISE. In short, the analysis involves the following for the presently studied cluster sample: (i) extraction of 2MASS/WISE/Spitzer photometry in a wide circular region; (ii) field-star decontamination to enhance the intrinsic Colour-magnitude diagram (CMD) morphology (essential for a proper derivation of reddening, age, and distance from the Sun); and (iii) construction of Colour-magnitude filters, for more contrasted stellar radial density profiles (RDPs).

  19. Thermal Properties Of Trans-neptunian Objects And Centaurs From Combined Herschel And Spitzer Observations

    NARCIS (Netherlands)

    Lellouch, Emmanuel; Santos-Sanz, P.; Mommert, M.; Fornasier, S.; Stansberry, J.; Müller, T.; Duffard, R.; Ortiz, J.; Kiss, C.; Vilenius, E.; Mueller, M.; Lacerda, P.; Harris, A.; TNOs are Cool Team, [No Value

    2012-01-01

    We present a study of the thermal properties of about 70 trans-Neptunian objects (TNOs) and Centaurs observed with Herschel Space Observatory (either PACS or PACS/SPIRE) and Spitzer (MIPS). The combined wavelength range is 24-160 μm and additionally up to 500 μm for a few targets. We apply radiometr

  20. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  1. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NARCIS (Netherlands)

    Lim, L. F.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.; Burt, B. J.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy [1]. Analysis of its visible/near-IR spectrum [2] led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-

  2. Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS

    NARCIS (Netherlands)

    Marchis, Franck; Emery, J. P.; Iglesias, J.; Pollock, J.; Mueller, M.; Harris, A. W.; Michalowski, T.; Berthier, J.; Descamps, P.

    2008-01-01

    To date, 162 asteroids are known to be binary or multiple systems. Insights, such as the size and shape of their components, the nature of their surface, their bulk density are the key to understanding how these multiple asteroidal systems formed. We obtained 19.9h of observations using the Spitzer/

  3. Near-infrared Spectroscopy Of NEOs: Characterization Of Targets Of The ExploreNEOs (Spitzer) Program

    NARCIS (Netherlands)

    Emery, Joshua P.; Thomas, C. A.; Trilling, D. E.; Dave, R.; Delbo, M.; Mueller, M.

    2010-01-01

    In order to complement the ExploreNEOs program, we are characterizing surface compositions of near-Earth objects (NEOs) with near-infrared (NIR) spectroscopy (0.7 to 2.5 microns). The core ExploreNEOs program is an ambitious exploration of the history of near-Earth space using NASA's Spitzer space t

  4. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  5. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a targ

  6. Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars

    NARCIS (Netherlands)

    Ignace, R.; Cassinelli, J.P.; Tracy, G.; Churchwell, E.B.; Lamers, H.J.G.L.M.

    2007-01-01

    We report on neon abundances derived from Spitzer high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [Ne III] 15.56 μm. Our targets include four WN stars of subtypes 4-7, and four WC stars of subtypes 4-7. We derive ion fraction abundances γ of Ne2+ for the wind

  7. Spitzer Space Telescope spectroscopy of ices toward low-mass embedded protostars

    NARCIS (Netherlands)

    Boogert, ACA; Pontoppidan, KM; Lahuis, F; Jorgensen, JK; Augereau, JC; Blake, GA; Brooke, TY; Dullemond, CP; Evans, NJ; Geers, [No Value; Hogerheijde, MR; Kessler-Silacci, J; Knez, C; Morris, P; Noriega-Crespo, A; Schoier, FL; van Dishoeck, EF; Allen, LE; Harvey, PM; Koerner, DW; Mundy, LG; Myers, PC; Padgett, DL; Sargent, AI; Stapelfeldt, KR

    2004-01-01

    Sensitive 5-38 mum Spitzer Space Telescope and ground-based 3-5 mum spectra of the embedded low-mass protostars B5 IRS1 and HH 46 IRS show deep ice absorption bands superposed on steeply rising mid-infrared continua. The ices likely originate in the circumstellar envelopes. The CO2 bending mode at 1

  8. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    G.E. de Messières; R.W. O'Connell; B.R. McNamara; M. Donahue; P.E.J. Nulsen; G.M. Voit; M.W. Wise; B. Smith; J. Higdon; S. Higdon; N. Bastian

    2009-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  9. Thermal properties of Trans-Neptunian objects and Centaurs from combined Herschel and Spitzer observations

    NARCIS (Netherlands)

    Santos-Sanz, P.; Lellouch, E.; Mommert, M.; Fornasier, S.; Stansberry, J.; Mueller, Th.; Kiss, C.; Vilenius, E.; Mueller, M.; Harris, A. W.; Delsanti, A.; Groussin, O.

    2012-01-01

    We present a study of the thermal properties of about 70 trans-Neptunian objects (TNOs) and Centaurs observed with Herschel Space Observatory [8] (either PACS or PACS and SPIRE) and Spitzer Space Telescope [12] (MIPS). We apply radiometric modeling techniques (NEATM [2]) to the measured fluxes to de

  10. Linking stellar mass and star formation in Spitzer MIPS 24 mu m galaxies

    NARCIS (Netherlands)

    Caputi, KI; Dole, H; Lagache, G; McLure, RJ; Puget, JL; Rieke, GH; Dunlop, JS; Le Floc'h, E; Papovich, C; Perez-Gonzalez, PG

    2006-01-01

    We present deep K-s <21: 5 (Vega) identifications, redshifts, and stellar masses for most of the sources composing the bulk of the 24 mu m background in the GOODS/CDFS. Our identified sample consists of 747 Spitzer MIPS 24 mu m objects and includes similar to 94% of all the 24 mu m sources in the GO

  11. Impact Summary: The Spitzer Space Telescope Research Program for Teachers and Students

    Science.gov (United States)

    Spuck, Timothy; Pompea, S.; Rebull, L.; Gorjian, V.; Howell, S.; Johnson, C.; Kennedy, S.; Thomas, B.; Walentosky, M.; Wheeler, S.; Spitzer Teacher Program Team

    2010-01-01

    The Spitzer Space Telescope Research Program for Teachers and Students was a four-year joint project between the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO) that concluded in 2009. Through the program, teams of teachers and students were provided with unique opportunities to observe with the Spitzer Space Telescope and work with Spitzer and NOAO scientists. This study finds evidence of significant success. From the eleven major research projects sponsored by the program, 31 scientific posters have been presented, and a number of scientific papers have been published. Records indicate there have been nearly 100 newspaper, radio, and TV reports, and numerous Internet articles reporting on various aspects of teacher and student involvement in the project, and over 100 students feel the program has influenced them to pursue careers in science. This highly successful program has now become the NASA/IPAC Teacher Archive Research Project (NITARP), with funding from the NASA ADP program and the archives at IPAC.

  12. First study of the ro-vibrational structure of the g-symmetry vibrational states of C2D4 from the analysis of hot bands: The ν7 +ν10 -ν10 and ν10 +ν12 -ν10 bands

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Fomchenko, A. L.; Sydow, C.; Maul, C.; Bauerecker, S.

    2017-01-01

    The two strongest absorption "hot" bands of C2D4, ν7 +ν10 -ν10 and ν10 +ν12 -ν10 were analyzed for the first time on the basis of high resolution infrared spectra recorded with a Bruker high resolution Fourier transform spectrometer. About 740 and 550 transitions (233 and 174 upper state ro-vibrational energy values) with Jmax. = 25, Kamax = 18 and Jmax. = 20, Kamax. = 10 for the bands ν7 +ν10 -ν10 and ν10 +ν12 -ν10 were assigned. The obtained upper ro-vibrational energies were used then in the weighted fit of parameters of the effective Hamiltonian which takes into account resonance interactions between the vibrational states (v7 =v10 = 1) and (v10 =v12 = 1), on the one hand, and eight other closely located vibrational states, on the other hand. A set of 46 varied parameters was obtained from the fit, which reproduces the initial experimental data with the rms deviation of 2.5 ×10-4cm-1 and which is close to experimental uncertainties.

  13. Mean Hα+[N ii]+[S ii] EW inferred for star-forming galaxies atz ˜ 5.1-5.4 using high-qualitySpitzer/IRAC photometry

    Science.gov (United States)

    Rasappu, N.; Smit, R.; Labbé, I.; Bouwens, R. J.; Stark, D. P.; Ellis, R. S.; Oesch, P. A.

    2016-10-01

    Recent Spitzer/InfraRed Array Camera (IRAC) photometric observations have revealed that rest-frame optical emission lines contribute significantly to the broad-band fluxes of high-redshift galaxies. Specifically, in the narrow redshift range z ˜ 5.1-5.4 the [3.6]-[4.5] colour is expected to be very red, due to contamination of the 4.5 μm band by the dominant Hα line, while the 3.6 μm filter is free of nebular emission lines. We take advantage of new reductions of deep Spitzer/IRAC imaging over the Great Observatories Origins Deep Survey-North+South fields (Labbé et al. 2015) to obtain a clean measurement of the mean Hα equivalent width (EW) from the [3.6]-[4.5] colour in the redshift range z = 5.1-5.4. The selected sources either have measured spectroscopic redshifts (13 sources) or lie very confidently in the redshift range z = 5.1-5.4 based on the photometric redshift likelihood intervals (11 sources). Our zphot = 5.1-5.4 sample and zspec = 5.10-5.40 spectroscopic sample have a mean [3.6]-[4.5] colour of 0.31 ± 0.05 and 0.35 ± 0.07 mag, implying a rest-frame EW (Hα+[N II]+[S II]) of 665 ± 53 and 707 ± 74 Å, respectively, for sources in these samples. These values are consistent albeit slightly higher than derived by Stark et al. at z ˜ 4, suggesting an evolution to higher values of the Hα+[N II]+[S II] EW at z > 2. Using the 3.6 μm band, which is free of emission line contamination, we perform robust spectral energy distribution fitting and find a median specific star formation rate of sSFR = 17_{-5}^{+2} Gyr-1, 7_{-2}^{+1}× higher than at z ˜ 2. We find no strong correlation (<2σ) between the Hα+[N II]+[S II] EW and the stellar mass of sources. Before the advent of JWST, improvements in these results will come through an expansion of current spectroscopic samples and deeper Spitzer/IRAC measurements.

  14. Spitzer Infrared Spectrographic point source classification in the Small Magellanic Cloud

    CERN Document Server

    Ruffle, Paul M E; Jones, O C; Sloan, G C; Kraemer, K E; Woods, Paul M; Boyer, M L; Srinivasan, S; Antoniou, V; Lagadec, E; Matsuura, M; McDonald, I; Oliveira, J M; Sargent, B A; Sewilo, M; Szczerba, R; van Loon, J Th; Volk, K; Zijlstra, A A

    2015-01-01

    The Magellanic clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust.We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects (YSOs), 4 post-AGB objects, 22 Red Super...

  15. Spitzer IRAC Color Diagnostics for Extended Emission in Star Forming Regions

    CERN Document Server

    Ybarra, Jason E; Román-Zúñiga, Carlos G; Lada, Elizabeth A

    2014-01-01

    The infrared data from the Spitzer Space Telescope has provided an invaluable tool for identifying physical processes in star formation. In this study we calculate the IRAC color space of UV fluorescent molecular hydrogen (H$_2$) and Polycyclic Aromatic Hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine & Li 2007. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV excited and shock excited H$_2$ emission. To test this method we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  16. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  17. Spitzer Microlensing Program as a Probe for Globular Cluster Planets. Analysis of OGLE-2015-BLG-0448

    CERN Document Server

    Poleski, Radosław; Christie, Grant W; Udalski, Andrzej; Gould, Andrew; Bachelet, Etienne; Skottfelt, Jesper; Novati, Sebastiano Calchi; Szymański, M K; Soszyński, I; Pietrzyński, G; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Kozłowski, Szymon; Skowron, J; Mróz, P; Pawlak, M; Beichman, C; Bryden, G; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, C B; Pogge, R W; Shvartzvald, Y; Wibking, B; Yee, J C; Beatty, T G; Eastman, J D; Drummond, J; Friedmann, M; Henderson, M; Johnson, J A; Kaspi, S; Maoz, D; McCormick, J; McCrady, N; Natusch, T; Ngan, H; Porritt, I; Relles, H M; Sliski, D H; Tan, T -G; Wittenmyer, R A; Wright, J T; Street, R A; Tsapras, Y; Bramich, D M; Horne, K; Snodgrass, C; Steele, I A; Menzies, J; Jaimes, R Figuera; Wambsganss, J; Schmidt, R; Cassan, A; Ranc, C; Mao, S; Bozza, V; Dominik, M; Hundertmark, M P G; Jørgensen, U G; Andersen, M I; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Gu, S -H; Hinse, T C; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Southworth, G Scarpetta J; Surdej, J; Unda-Sanzana, E; Verma, P; von Essen, C; Wang, Y -B; Wertz, O

    2015-01-01

    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ($\\mu_{\\rm cl}$(N,E) = (+0.36+-0.10, +1.42+-0.10) mas/yr) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using OGLE photometry is consistent with the value found based on the light curve displacement between Earth and Spitzer.

  18. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk

    CERN Document Server

    Street, R A; Novati, S Calchi; Hundertmark, M P G; Zhu, W; Gould, A; Yee, J; Tsapras, Y; Bennett, D P; Project, The RoboNet; Jorgensen, U G; Dominik, M; Andersen, M I; Bachelet, E; Bozza, V; Bramich, D M; Burgdorf, M J; Cassan, A; Ciceri, S; D'Ago, G; Dong, Subo; Evans, D F; Gu, Sheng-hong; Harkonnen, H; Hinse, T C; Horne, Keith; Jaimes, R Figuera; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Menzies, J; Mao, S; Peixinho, N; Popovas, A; Rabus, M; Rahvar, S; Ranc, C; Rasmussen, R Tronsgaard; Scarpetta, G; Schmidt, R; Skottfelt, J; Snodgrass, C; Southworth, J; Steele, I A; Surdej, J; Unda-Sanzana, E; Verma, P; von Essen, C; Wambsganss, J; Wang, Yi-Bo; Wertz, O; Project, The OGLE; Poleski, R; Pawlak, M; Szymanski, M K; Skowron, J; Mroz, P; Kozlowski, S; Wyrzykowski, L; Pietrukowicz, P; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Bryden, G; Carey, S; Gaudi, B S; Henderson, C; Pogge, R W; Shvartzvald, Y; Abe, F; Asakura, Y; Bhattacharya, A; Bond, I A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Inayama, K; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Nishioka, T; Ohnishi, K; Oyokawa, H; Rattenbury, N; Saito, To; Sharan, A; Sullivan, D J; Sumi, T; Suzuki, D; P.,; Tristram, J; Wakiyama, Y; Yonehara, A; Choi, J -Y; Park, H; Jung, Y K; Shin, I -G

    2015-01-01

    We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.

  19. AKARI and Spitzer observations of heavily obscured C-rich AGB/post-AGB stars

    CERN Document Server

    García-Hernández, D A; Engels, D; Perea-Calderón, J V; García-Lario, P

    2009-01-01

    We present AKARI/IRC and Spitzer/IRS observations of a selected sample of galactic IRAS sources considered to be heavily obscured AGB/post-AGB stars based on their characteristic IRAS colours. All of them are completely invisible in the optical range but extremely bright in the infrared. Based on AKARI and Spitzer spectroscopy and using DUSTY we are able to determine the dominant chemistry of their circumstellar shells as well as the properties of the dust grains contained in these shells. Most of the sources are found to be C-rich (being the reddest C-rich stars observed so far). We find only molecular absorptions (and no PAH features) such as acetylene (C2H2) at 13.7 micron, indicative of an early post-AGB stage. We shortly discuss our findings in the context of stellar evolution during the hidden "transition phase" from AGB stars to Planetary Nebulae.

  20. Spitzer IRS Observations of Edge-on Protoplanetary Disks and Infrared Companions

    Science.gov (United States)

    Kruger, Andrew J.

    2011-01-01

    Lahuis et al. (2006) showed that Spitzer IRS observations of gas phase molecular absorption toward young stars could be used to determine physical conditions within a few AU of the star. The pencil beam nature of this method requires an edge-on disk geometry with a large column between the observer and the emitting source. Molecular gas absorption has also been detected towards GV Tau N, a classical infrared companion (Koresko et al. 1997) that is likely a circumstellar disk seen near edge-on (Correia et al. 2007). We were granted time with Spitzer IRS to obtain high signal-to-noise spectra of 7 YSOs, three classified as disks seen near edge-on and four classical IRCs, to search for molecular absorption. We present findings from this Spitzer IRS project, along with near-infrared spectroscopy of CO fundamental transitions and mid-infrared imaging. We find that although DG Tau B shows CO2 gas absorption at a temperature similar to IRS 46 and GV Tau N, it likely originates from a moderately different region of the disk, indicating that the detection of organic molecules, even in edge-on disks, is highly sensitive to the line of sight. We further find DG Tau B likely displays high amounts of dust grain growth and settling, and we provide support for the VV CrA binary disk geometry where the absorption seen towards the IRC is due to the disk around the Primary being in the line of sight (Smith et al. 2009). This work is supported by NSF grant AST-0708074 and NASA support for Spitzer observations through contract RSA No. 1346810, issued by JPL.

  1. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    Science.gov (United States)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  2. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  3. Parallaxes for 21 late-T and Y dwarfs in the Spitzer Parallax Program

    Science.gov (United States)

    Martin, Emily; Kirkpatrick, J. Davy; Beichman, Charles A.; Smart, Richard L.; Lowrance, Patrick; Ingalls, James G.; Cushing, Michael; Wright, Edward L.; Faherty, Jacqueline K.; Gelino, Christopher R.; McLean, Ian S.; Logsdon, Sarah E.; Tinney, Christopher G.

    2017-01-01

    We present parallaxes and proper motions for 21 late-type T and Y dwarfs in the Spitzer Parallax Program (PI: Kirkpatrick). The Spitzer Parallax Program targets all T6 and later dwarfs within the nearest 20pc to produce a volume-limited sample of the coldest brown dwarfs in the solar neighborhood. Measuring distances to the coldest brown dwarfs is an essential step towards completing the census of objects in the solar neighborhood and will aid in our understanding of the low-mass end of the field mass function. We used images from Spitzer’s IRAC channel 2 taken at maximum parallax factor over multiple epochs to determine astrometric fits to each object. Centroiding was performed using APEX/MOPEX with a custom warm-mission Point Response Function and 5th order distortion correction, provided by the Spitzer Science Center. We present first-time distance measurements for 6 newly identified late-T and Y dwarfs in our sample and further constrain distances to 15 others. Our high-quality distance measurements allow us to improve the spectral type vs. absolute magnitude and color vs. absolute magnitude relations for these ultracool dwarfs and further highlight a peculiar Y dwarf outlier.

  4. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  5. The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity

    CERN Document Server

    Hony, S; Woods, Paul M; van Loon, J Th; Gorjian, V; Madden, S C; Zijlstra, A A; Gordon, K D; Indebetouw, R; Marengo, M; Meixner, M; Panuzzo, P; Shiao, B; Sloan, G C; Roman-Duval, J; Mullaney, J; Tielens, A G G M

    2011-01-01

    We present a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the IR is entirely dominated by emission associated with the AGN. We present the 5-37 um Spitzer/IRS spectrum and broad wavelength SED of SAGE1CJ053634, an IR point-source detected by Spitzer/SAGE (Meixner et al 2006). The source was observed in the SAGE-Spec program (Kemper et al., 2010) and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z=0.14+-0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) bands. We compare the source with models of emission from dusty tori around AGNs from Nenkova et al. (2008). We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. The SED of SAGE1CJ053634 is peculiar because it lacks far-IR emission and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as em...

  6. Results of the 2015 Spitzer Exoplanet Data Challenge: Repeatability and Accuracy of Exoplanet Eclipse Depths

    Science.gov (United States)

    Ingalls, James G.; Krick, Jessica E.; Carey, Sean J.; Stauffer, John R.; Grillmair, Carl J.; Lowrance, Patrick

    2016-06-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. At infrared wavelengths secondary eclipses and phase curves are powerful tools for studying a planet’s atmosphere. Extracting information about atmospheres, however, is extremely challenging due to the small differential signals, which are often at the level of 100 parts per million (ppm) or smaller, and require the removal of significant instrumental systematics. For the IRAC 3.6 and 4.5μm InSb detectors that remain active on post-cryogenic Spitzer, the interplay of residual telescope pointing fluctuations with intrapixel gain variations in the moderately under sampled camera is the largest source of time-correlated noise. Over the past decade, a suite of techniques for removing this noise from IRAC data has been developed independently by various investigators. In summer 2015, the Spitzer Science Center hosted a Data Challenge in which seven exoplanet expert teams, each using a different noise-removal method, were invited to analyze 10 eclipse measurements of the hot Jupiter XO-3 b, as well as a complementary set of 10 simulated measurements. In this contribution we review the results of the Challenge. We describe statistical tools to assess the repeatability, reliability, and validity of data reduction techniques, and to compare and (perhaps) choose between techniques.

  7. Measuring Organic Molecular Emission in Disks with Low Resolution Spitzer Spectroscopy

    CERN Document Server

    Teske, Johanna K; Carr, John S; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas

    2011-01-01

    We explore the extent to which Spitzer IRS spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low mass young stars. We use Spitzer IRS spectra taken in both the high and low resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low resolution data. We find that trends in HCN emission strength seen in the high resolution data can be recovered in low resolution data. In examining the factors that influence the HCN emission strength, we find that the low resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low resolution disk spectra that reside in the Spitzer archive to study the factors t...

  8. Spitzer Transits of the Super-Earth GJ1214b and Implications for Its Atmosphere

    CERN Document Server

    Fraine, Jonathan D; Gillon, Michaël; Jehin, Emmanuël; Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara; Lewis, Nikole K; Knutson, Heather; Desert, Jean-Michel

    2013-01-01

    We observed the transiting super-Earth exoplanet GJ1214b using Warm Spitzer at 4.5 microns wavelength during a 20-day quasi-continuous sequence in May 2011. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a re-analysis of previous transit observations by Desert et al. (2011). In total, we analyse 14 transits of GJ1214b at 4.5 microns, 3 transits at 3.6 microns, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe & Burrows (2012). Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke & Seager (2012) and Howe &a...

  9. Probing the Physical Properties of z=4.5 Lyman Alpha Emitters with Spitzer

    CERN Document Server

    Finkelstein, Keely D; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James E; Grogin, Norman A; Pirzkal, Norbert; Dey, Arjun; Jannuzi, Buell T; Mobasher, Bahram; Pakzad, Sabrina; Salmon, Brett; Wang, Junzian

    2015-01-01

    We present the results from a stellar population modeling analysis of a sample of 162 z=4.5, and 14 z=5.7 Lyman alpha emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 um from the Spitzer Lyman Alpha Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 um for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >3-sigma in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8 to 10^11 Msol. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr - 1 Gyr, while the remainder have ages < 100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8 -- 20 x 10^8 Msol) and young (64 - 570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-bas...

  10. The initial conditions of stellar protocluster formation. I. A catalogue of Spitzer dark clouds

    CERN Document Server

    Peretto, N

    2009-01-01

    The majority of stars form in clusters. Therefore a comprehensive view of star formation requires understanding the initial conditions for cluster formation. The goal of our study is to shed light on the physical properties of infrared dark clouds (IRDCs) and the role they play in the formation of stellar clusters. This article, the first of a series dedicated to the study of IRDCs, describes techniques developed to establish a complete catalogue of Spitzer IRDCs in the Galaxy. We have analysed Spitzer GLIMPSE and MIPSGAL data to identify a complete sample of IRDCs in the region of Galactic longitude and latitude 10deg 1x10^{22} cm^{-2}. The 24micron data are then used to characterize the star formation activity of each extracted cloud. A total of 11303 clouds have been extracted. A comparison with the existing MSX based catalogue of IRDCs shows that 80% of these Spitzer dark clouds were previously unknown. The algorithm also extracts ~ 20000 to 50000 fragments within these clouds, depending on detection thr...

  11. The Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field

    CERN Document Server

    Baronchelli, I; Rodighiero, G; Franceschini, A; Capak, P L; Mei, S; Vaccari, M; Marchetti, L; Hibon, P; Sedgwick, C; Pearson, C; Serjeant, S; Menèndez-Delmestre, K; Salvato, M; Malkan, M; Teplitz, H I; Hayes, M; Colbert, J; Papovich, C; Devlin, M; Kovacs, A; Scott, K S; Surace, J; Kirkpatrick, J D; Atek, H; Urrutia, T; Scoville, N Z; Takeuchi, T T

    2016-01-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole (SEP) field. The large area covered (7.7 deg$^2$), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area ($\\approx$4:1), allowing for a significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches a depth of 1.93 and 1.75 $\\mu$Jy (1$\\sigma$) at 3.6 and 4.5 $\\mu$m, respectively. We discuss the multiwavelength IRAC--based catalog, completed with optical, mid-- and far--IR observations. We detect 341,000 sources with F$_{3.6\\mu m} \\geq 3\\sigma$. Of these, 10% have an associated 24 $\\mu$m counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrare...

  12. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field

    Science.gov (United States)

    Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.

    2016-03-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.

  13. Water in Comets 71P/Clark and C/2004 B1 (LINEAR) with Spitzer

    CERN Document Server

    Bockelee-Morvan, Dominique; Kelley, Michael S; Wooden, Diane H

    2009-01-01

    We present 5.5 to 7.6 micron spectra of comets 71P/Clark (2006 May 27.56 UT, r_h = 1.57 AU pre-perihelion) and C/2004 B1 (LINEAR) (2005 October 15.22 UT, r_h = 2.21 AU pre-perihelion and 2006 May 16.22 UT, r_h = 2.06 AU post-perihelion) obtained with the Spitzer Space Telescope. The nu_2 vibrational band of water is detected with a signal-to-noise ratio of 11 to 50. Fitting the spectra using a fluorescence model of water emission yields a water rotational temperature of < 18 K for 71P/Clark and approximately less than or equivalent to 14 +/- 2 K (pre-perihelion) and 23 +/- 4 K (post-perihelion) for C/2004 B1 (LINEAR). The water ortho-to-para ratio in C/2004 B1 (LINEAR) is measured to be 2.31 +/- 0.18, which corresponds to a spin temperature of 26^{+3}_{-2} K. Water production rates are derived. The agreement between the water model and the measurements is good, as previously found for Spitzer spectra of C/2003 K4 (LINEAR). The Spitzer spectra of these three comets do not show any evidence for emission from...

  14. The Taurus Spitzer Survey: New Candidate Taurus Members Selected Using Sensitive Mid-Infrared Photometry

    CERN Document Server

    Rebull, L M; McCabe, C -E; Hillenbrand, L A; Stapelfeldt, K R; Noriega-Crespo, A; Carey, S J; Brooke, T; Huard, T; Terebey, S; Audard, M; Monin, J -L; Fukagawa, M; Guedel, M; Knapp, G R; Menard, F; Allen, L E; Angione, J R; Baldovin-Saavedra, C; Bouvier, J; Briggs, K; Dougados, C; Evans, N J; Flagey, N; Guieu, S; Grosso, N; Glauser, A M; Harvey, P; Hines, D; Latter, W B; Skinner, S L; Strom, S; Tromp, J; Wolf, S

    2009-01-01

    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in our ~44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ~20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candida...

  15. Spitzer/IRAC and ISOCAM/CVF insights on the origin of the Near to Mid-IR Galactic diffuse emission

    CERN Document Server

    Flagey, N; Verstraete, L; Deschenes, M A M; Crespo, A N; Reach, W T

    2006-01-01

    We measure IRAC colors of extended emission in several fields covering a range of Galactic latitudes and longitudes outside of star forming regions. We determine the nature of the Galactic diffuse emission in Spitzer/IRAC images by combining them with spectroscopic data. We show that PAH features make the emission in the IRAC 5.8 and 8.0 $\\mu$m channels, whereas the 3.3 $\\mu$m feature represents only 20 to 50% of the IRAC 3.6 $\\mu$m channel. A NIR continuum is necessary to account for IRAC 4.5 $\\mu$m emission and the remaining fraction of the IRAC 3.6 $\\mu$m emission. This continuum cannot be accounted by scattered light. It represents 9% of the total power absorbed by PAHs and 120% of the interstellar UV photon flux. The 3.3 $\\mu$m feature is observed to vary from field-to-field with respect to the IRAC 8.0 $\\mu$m channel. The continuum and 3.3 $\\mu$m feature intensities are not correlated. We present model calculations which relate our measurements of the PAHs spectral energy distribution to the particles s...

  16. Probing the Interstellar Medium of z~1 Ultra-luminous Infrared Galaxies through Interferometric Observations of CO and Spitzer Mid-infrared Spectroscopy

    CERN Document Server

    Pope, Alexandra; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Daddi, Emanuele; Desai, Vandana; Dickinson, Mark E; Elbaz, David; Gabor, Jared; Kirkpatrick, Allison

    2013-01-01

    We explore the relationship between gas, dust and star formation in a sample of 12 ultra-luminous infrared galaxies (ULIRGs) at high redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for 6 70 micron selected galaxies at z~1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nuclei (AGN) to the mid-IR luminosity and the star formation efficiency (SFE=LIR/L'CO). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 micron selected ULIRGs which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high redshift ULIRGs, we further compare t...

  17. VERTICAL ATMOSPHERIC STRUCTURE IN A VARIABLE BROWN DWARF: PRESSURE-DEPENDENT PHASE SHIFTS IN SIMULTANEOUS HUBBLE SPACE TELESCOPE-SPITZER LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Buenzli, Esther; Apai, Daniel; Flateau, Davin [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95060 (United States); Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Marley, Mark S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Reid, I. Neill, E-mail: ebuenzli@email.arizona.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-12-01

    Heterogeneous clouds or temperature perturbations in rotating brown dwarfs produce variability in the observed flux. We report time-resolved simultaneous observations of the variable T6.5 brown dwarf 2MASS J22282889-431026 over the wavelength ranges 1.1-1.7 {mu}m and broadband 4.5 {mu}m. Spectroscopic observations were taken with Wide Field Camera 3 on board the Hubble Space Telescope and photometry with the Spitzer Space Telescope. The object shows sinusoidal infrared variability with a period of 1.4 hr at most wavelengths with peak-to-peak amplitudes between 1.45% and 5.3% of the mean flux. While the light curve shapes are similar at all wavelengths, their phases differ from wavelength to wavelength with a maximum difference of more than half of a rotational period. We compare the spectra with atmospheric models of different cloud prescriptions, from which we determine the pressure levels probed at different wavelengths. We find that the phase lag increases with decreasing pressure level, or higher altitude. We discuss a number of plausible scenarios that could cause this trend of light curve phase with probed pressure level. These observations are the first to probe heterogeneity in an ultracool atmosphere in both horizontal and vertical directions, and thus are an ideal test case for realistic three-dimensional simulations of the atmospheric structure with clouds in brown dwarfs and extrasolar planets.

  18. Spitzer Observations of GJ3470b: a Very Low-density Neptune-size Planet Orbiting a Metal-rich M dwarf

    CERN Document Server

    Demory, Brice-Olivier; Neves, Vasco; Rogers, Leslie; Gillon, Michael; Horch, Elliott; Sullivan, Peter; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Santos, Nuno; Seager, Sara; Smalley, Barry; Udry, Stephane

    2013-01-01

    We present Spitzer/IRAC 4.5-micron transit photometry of GJ3470b, a Neptune-size planet orbiting a M1.5 dwarf star with a 3.3-day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M_star = 0.539+0.047-0.043 M_sun and a radius of R_star = 0.568+0.037-0.031 R_sun. We determine the host star of GJ3470b to be metal-rich, with a metallicity of [Fe/H] = +0.20 +/- 0.10 and an effective temperature of Teff = 3600 +/- 100 K. The revised stellar parameters yield a planetary radius R_pl = 4.83+0.22-0.21 R_Earth that is 13 percent larger than the value previously reported in the literature. We find a planetary mass M_pl = 13.9+1.5-1.4 M_Earth that translates to a very low planetary density, rho_pl = 0.72+0.13-0.12 gcm-3, whic...

  19. Spitzer IRS Spectroscopy of the 10 Myr-old EF Cha Debris Disk: Evidence for Phyllosilicate-Rich Dust in the Terrestrial Zone

    CERN Document Server

    Currie, Thayne; Sicilia-Aguilar, Aurora; Rieke, George H; Su, Kate

    2011-01-01

    We describe Spitzer IRS spectroscopic observations of the 10 Myr-old star, EF Cha. Compositional modeling of the spectra from 5 {\\mu}m to 35 {\\mu}m confirms that it is surrounded by a luminous debris disk with LD/L\\star ~ 10-3, containing dust with temperatures between 225 K and 430 K characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr-old luminous, warm debris disks (e.g. HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to pyroxene ratio of ~ 2 also provide...

  20. Spitzer observations of HH54 and HH7-11: mapping the H2 ortho-to-para ratio in shocked molecular gas

    CERN Document Server

    Neufeld, D A; Sonnentrucker, P; Bergin, E A; Green, J D; Kim, K H; Watson, D M; Forrest, W J; Pipher, J L; Neufeld, David A.; Melnick, Gary J.; Sonnentrucker, Paule; Bergin, Edwin A.; Green, Joel D.; Kim, Kyoung Hee; Watson, Dan M.; Forrest, William J.; Pipher, Judith L.

    2006-01-01

    We report the results of spectroscopic mapping observations carried out toward the Herbig-Haro objects HH7-11 and HH54 over the 5.2 - 37 micron region using the Infrared Spectrograph of the Spitzer Space Telescope. These observations have led to the detection and mapping of the S(0) - S(7) pure rotational lines of molecular hydrogen, together with emissions in fine structure transitions of Ne+, Si+, S, and Fe+. The H2 rotational emissions indicate the presence of warm gas with a mixture of temperatures in the range 400 - 1200 K, consistent with the expected temperature behind nondissociative shocks of velocity ~ 10 - 20 km/s, while the fine structure emissions originate in faster shocks of velocity 35 - 90 km/s that are dissociative and ionizing. Maps of the H2 line ratios reveal little spatial variation in the typical admixture of gas temperatures in the mapped regions, but show that the H2 ortho-to-para ratio is quite variable, typically falling substantially below the equilibrium value of 3 attained at the...

  1. Advancing Nebular Astrophysics through Near-Infrared Spectroscopic Mapping

    Science.gov (United States)

    Waller, William H.; Kutyrev, A.; Silverberg, R.; Woodgate, B.; Allen, L.

    2006-12-01

    Infrared continuum surveys, optical emission-line surveys, and radio CO and HI surveys have revealed the star-forming ISM as a complex "froth" of shells, filaments, blobs, and myriad "working surfaces" whose origin and evolution remain poorly understood. The generic relations between these nebular structures and the embedded star clusters that have been discovered in abundance throughout the Galaxy by the Spitzer Space Telescope have yet to be deciphered. To address these challenges, we consider the options for carrying out wide-field narrow-band imaging surveys of the near-infrared line emission from the Milky Way and other nearby star-forming galaxies. The near-IR part of the EM spectrum is rich with diagnostic nebular emission features. We draw from the experiences gained from the ABU/SPIREX near-IR telescope that operated in Antarctica in the late 1990s, and from the Brackett-Alpha Mapper (BAM) -a Fabry-Perot spectrometer that successfully measured kinematics of the warm-ionized hydrogen gas in the northern Milky Way. Options for deploying a multi-line near-infrared spectroscopic mapper on SOFIA, high-altitude balloons, and the lunar surface will be discussed.

  2. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    Science.gov (United States)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  3. Star formation and the interstellar medium in nearby tidal streams (SAINTS): Spitzer mid-infrared spectroscopy and imaging of intergalactic star-forming objects

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, S. J. U.; Higdon, J. L. [Physics Department, Georgia Southern University, Statesboro, GA 30460 (United States); Smith, B. J. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Hancock, M. [Bishop Gorman High School, 5959 Hualapai Way, Las Vegas, NV 89148 (United States)

    2014-06-01

    A spectroscopic analysis of 10 intergalactic star-forming objects (ISFOs) and a photometric analysis of 67 ISFOs in a sample of 14 interacting systems is presented. The majority of the ISFOs have relative polycyclic aromatic hydrocarbon (PAH) band strengths similar to those of nearby spiral and starburst galaxies. In contrast to what is observed in blue compact dwarfs (BCDs) and local giant H II regions in the Milky Way (NGC 3603) and the Magellanic Clouds (30 Doradus and N 66), the relative PAH band strengths in ISFOs correspond to models with a significant PAH ion fraction (<50%) and bright emission from large PAHs (∼100 carbon atoms). The [Ne III]/[Ne II] and [S IV]/[S III] line flux ratios indicate moderate levels of excitation with an interstellar radiation field that is harder than the majority of the Spitzer Infrared Nearby Galaxies Survey and starburst galaxies, but softer than BCDs and local giant H II regions. The ISFO neon line flux ratios are consistent with a burst of star formation ≲6 million years ago. Most of the ISFOs have ∼10{sup 6} M {sub ☉} of warm H{sub 2} with a likely origin in photo-dissociation regions (PDRs). Infrared Array Camera photometry shows the ISFOs to be bright at 8 μm, with one-third having [4.5] – [8.0] > 3.7, i.e., enhanced non-stellar emission, most likely due to PAHs, relative to normal spirals, dwarf irregulars, and BCD galaxies. The relative strength of the 8 μm emission compared to that at 3.6 μm or 24 μm separates ISFOs from dwarf galaxies in Spitzer two-color diagrams. The infrared power in two-thirds of the ISFOs is dominated by emission from grains in a diffuse interstellar medium. One in six ISFOs have significant emission from PDRs, contributing ∼30%-60% of the total power. ISFOs are young knots of intense star formation.

  4. The Buried Starburst in the Interacting Galaxy II Zw 096 as Revealed by the Spitzer Space Telescope

    CERN Document Server

    Inami, Hanae; Surace, J A; Mazzarella, J M; Evans, A S; Sanders, D B; Howell, J H; Petric, A; Vavilkin, T; Iwasawa, K; Haan, S; Murphy, E J; Stierwalt, S; Appleton, P N; Barnes, J E; Bothun, G; Bridge, C R; Chan, B; Charmandaris, V; Frayer, D T; Kewley, L J; Kim, D C; Lord, S; Madore, B F; Marshall, J A; Matsuhara, H; Melbourne, J E; Rich, J; Schulz, B; Spoon, H W W; Sturm, E; U, V; Veilleux, S; Xu, K

    2010-01-01

    An analysis of data from the Spitzer Space Telescope, Hubble Space Telescope, Chandra X-ray Observatory, and AKARI Infrared Astronomy Satellite is presented for the z=0.036 merging galaxy system II Zw 096 (CGCG 448-020). Because II Zw 096 has an infrared luminosity of log(L_IR/L_sun) = 11.94, it is classified as a Luminous Infrared Galaxy (LIRG), and was observed as part of the Great Observatories All-sky LIRG Survey (GOALS). The Spitzer data suggest that 80% of the total infrared luminosity comes from an extremely compact, red source not associated with the nuclei of the merging galaxies. The Spitzer mid-infrared spectra indicate no high-ionization lines from a buried active galactic nucleus in this source. The strong detection of the 3.3 micron and 6.2 micron PAH emission features in the AKARI and Spitzer spectra also implies that the energy source of II Zw 096 is a starburst. Based on Spitzer infrared imaging and AKARI near-infrared spectroscopy, the star formation rate is estimated to be 120 M_sun/yr and ...

  5. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  6. A Spitzer view of the giant molecular cloud Mon OB1 East/NGC 2264

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, V. A. [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Pipher, J. L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Gutermuth, R. A. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Megeath, S. T.; Allen, T. S. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Allen, L. E., E-mail: var5998@rit.edu [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States)

    2014-10-20

    We present Spitzer 3.6, 4.5, 5.8, 8.0, and 24 μm images of the Mon OB1 East giant molecular cloud, which contains the young star forming region NGC 2264, as well as more extended star formation. With Spitzer data and Two Micron All Sky Survey photometry, we identify and classify young stellar objects (YSOs) with dusty circumstellar disks and/or envelopes in Mon OB1 East by their infrared-excess emission and study their distribution with respect to cloud material. We find a correlation between the local surface density of YSOs and column density of molecular gas as traced by dust extinction that is roughly described as a power law in these quantities. NGC 2264 follows a power-law index of ∼2.7, exhibiting a large YSO surface density for a given gas column density. Outside of NGC 2264 where the surface density of YSOs is lower, the power law is shallower and the region exhibits a larger gas column density for a YSO surface density, suggesting the star formation is more recent. In order to measure the fraction of cloud members with circumstellar disks/envelopes, we estimate the number of diskless pre-main-sequence stars by statistical removal of background star detections. We find that the disk fraction of the NGC 2264 region is 45%, while the surrounding, more distributed regions show a disk fraction of 19%. This may be explained by the presence of an older, more dispersed population of stars. In total, the Spitzer observations provide evidence for heterogenous, non-coeval star formation throughout the Mon OB1 cloud.

  7. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom)

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  8. Repeatability of Spitzer/IRAC Exoplanetary Eclipses with Independent Component Analysis

    Science.gov (United States)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  9. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path to Breaking Strong Microlens Degeneracies

    CERN Document Server

    Bozza, V; Udalski, A; Novati, S Calchi; Bond, I A; Han, C; Hundertmark, M; Poleski, R; Pawlak, M; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Soszyński, I; Ulaczyk, K; Beichman, C; Bryden, G; Carey, S; Fausnaugh, M; Gaudi, B S; Gould, A; Henderson, C B; Pogge, R W; Wibking, B; Yee, J C; Zhu, W; Abe, F; Asakura, Y; Barry, R K; Bennett, D P; Bhattacharya, A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Inayama, K; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Nishioka, T; Ohnishi, K; Oyokawa, H; Rattenbury, N; Saito, T; Sharan, A; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Choi, J -Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Park, B -G; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Dominik, M; Jørgensen, U G; Andersen, M I; Bramich, D M; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Jaimes, R Figuera; Gu, S -H; Hinse, T C; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Scarpetta, G; Skottfelt, J; Snodgrass, C; Southworth, J; Surdej, J; Unda-Sanzana, E; von Essen, C; Wang, Y -B; Wertz, O; Maoz, D; Friedmann, M; Kaspi, S

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively breaks a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  10. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  11. Spitzer's identity and the algebraic Birkhoff decomposition in pQFT

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, Kurusch [Institut Henri Poincare, 11, rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Guo Li [Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102 (United States); Kreimer, Dirk [CNRS-IHES, Le Bois-Marie, 35, Route de Chartres, F-91440 Bures-sur-Yvette (France)

    2004-11-12

    In this paper we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analysed in terms of complete filtered Rota-Baxter algebras.

  12. Spitzer-IRS Spectroscopy of the Prototypical Starburst Galaxy NGC7714

    CERN Document Server

    Brandl, B R; Higdon, S J U; Charmandaris, V; Spoon, H W W; Herter, T L; Hao, L; Bernard-Salas, J; Houck, J R; Armus, L; Soifer, B T; Grillmair, C J; Appleton, P N

    2004-01-01

    We present observations of the starburst galaxy NGC 7714 with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra yield a wealth of ionic and molecular features that allow a detailed characterization of its properties. NGC 7714 has an HII region-like spectrum with strong PAH emission features. We find no evidence for an obscured active galactic nucleus, and with [NeIII]/[NeII]~0.73, NGC7714 lies near the upper end of normal-metallicity starburst galaxies. With very little slicate absorption and a temperature of the hottest dust component of 340K, NGC 7714 is the perfect template for a young, unobscured starburst

  13. Finding {\\eta} Car Analogs in Nearby Galaxies Using Spitzer: I. Candidate Selection

    CERN Document Server

    Khan, Rubab; Kochanek, C S

    2012-01-01

    The late-stage evolution of the most massive stars such as {\\eta} Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of {\\eta} Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of 7 nearby (= 40 M_sun star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude.

  14. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  15. A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b

    CERN Document Server

    Lanotte, A A; Demory, B -O; Fortney, J J; Astudillo, N; Bonfils, X; Magain, P; Delfosse, X; Forveille, T; Lovis, C; Mayor, M; Neves, V; Pepe, F; Queloz, D; Santos, N; Udry, S

    2014-01-01

    Context. GJ 436b is one of the few transiting warm Neptunes for which a detailed characterisation of the atmosphere is possible, whereas its non-negligible orbital eccentricity calls for further investigation. Independent analyses of several individual datasets obtained with Spitzer have led to contradicting results attributed to the different techniques used to treat the instrumental effects. Aims. We aim at investigating these previous controversial results and developing our knowledge of the system based on the full Spitzer photometry dataset combined with new Doppler measurements obtained with the HARPS spectrograph. We also want to search for additional planets. Methods. We optimise aperture photometry techniques and the photometric deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer photometry spanning wavelengths from 3-24 {\\mu}m. Adding the high precision HARPS radial velocity data, we undertake a Bayesian global analysis of the system considering both instrumental and stellar...

  16. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    Science.gov (United States)

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V.

  17. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    Science.gov (United States)

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  18. Spitzer Microlens Measurement of a Massive Remnant in a Well-separated Binary

    Science.gov (United States)

    Shvartzvald, Y.; Udalski, A.; Gould, A.; Han, C.; Bozza, V.; Friedmann, M.; Hundertmark, M.; and; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Kerr, T.; Pogge, R. W.; Varricatt, W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Maoz, D.; Kaspi, S.; Wise Group; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Bramich, D. M.; Horne, Keith; Snodgrass, C.; Steele, I. A.; Menzies, J.; Figuera Jaimes, R.; Wambsganss, J.; Schmidt, R.; Cassan, A.; Ranc, C.; Mao, S.; Dong, Subo; RoboNet; D'Ago, G.; Scarpetta, G.; Verma, P.; Jørgensen, U. G.; Kerins, E.; Skottfelt, J.; MiNDSTEp

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  19. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V.; Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Friedmann, M. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hundertmark, M. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen K (Denmark); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Kerr, T.; Varricatt, W. [UKIRT, 660 N. Aohoku Place, University Park, Hilo, HI 96720 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  20. A Spitzer View of Mon OB1 East/NGC 2264

    CERN Document Server

    Rapson, Valerie A; Gutermuth, Robert A; Megeath, S Thomas; Allen, Thomas S; Myers, Philip C; Allen, Lori E

    2014-01-01

    We present Spitzer 3.6, 4.5, 5.8, 8.0, and 24 micron images of the Mon OB1 East giant molecular cloud, which contains the young star forming region NGC 2264, as well as more extended star formation. With Spitzer data and 2MASS photometry, we identify and classify young stellar objects (YSOs) with dusty circumstellar disks and/or envelopes in Mon OB1 East by their infrared-excess emission and study their distribution with respect to cloud material. We find a correlation between the local surface density of YSOs and column density of molecular gas as traced by dust extinction that is roughly described as a power law in these quantities. NGC 2264 follows a power law index of ~2.7, exhibiting a large YSO surface density for a given gas column density. Outside of NGC 2264 where the surface density of YSOs is lower, the power law is shallower and the region exhibits a larger gas column density for a YSO surface density, suggesting the star formation is more recent. In order to measure the fraction of cloud members ...

  1. A Chandra and Spitzer census of the young star cluster in the reflection nebula NGC 7129

    CERN Document Server

    Stelzer, B

    2009-01-01

    The reflection nebula NGC 7129 has long been known to be a site of recent star formation as evidenced, e.g., by the presence of deeply embedded protostars and HH objects. However, studies of the stellar population produced in the star formation process have remained rudimentary. At a presumed age of ~3 Myr, NGC7129 is in the critical range where disks around young stars disappear. We make use of Chandra X-ray and Spitzer and 2MASS IR imaging observations to identify the pre-main sequence stars in NGC7129. We define a sample of Young Stellar Objects based on color-color diagrams composed from IR photometry between 1.6 and 8 mu, from 2MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. This sample is composed of 26 Class II and 25 Class III candidates. The sample is estimated to be complete down to ~ 0.5 solar masses. The most restricted and least biased sub-sample of pre-main sequence stars is composed of lightly absorbed (A_V < 5 mag) stars in the cluster core. This sample com...

  2. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    Science.gov (United States)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  3. Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    CERN Document Server

    Temim, T; Woodward, C E; Roellig, T L; Smith, N; Rudnick, L R; Polomski, E F; Davidson, K; Yuen, L; Onaka, T; Temim, Tea; Gehrz, Robert D.; Woodward, Charles E.; Roellig, Thomas L.; Smith, Nathan; Rudnick, Lawrence R.; Polomski, Elisha F.; Davidson, Kris; Yuen, Lunming; Onaka, Takashi

    2006-01-01

    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that re...

  4. Spitzer IRAC Sparsely Sampled Phase Curve of the Exoplanet WASP-14b

    CERN Document Server

    Krick, J E; Carey, S; von Braun, K; Kane, S R; Ciardi, D; Plavchan, P; Wong, I; Lowrance, P

    2016-01-01

    Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of roughly two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring mode phase curve. Both datasets as well as snapshot style observations of a calibration star are used to validate this technique. By fitting our WASP-14b phase snapshot dataset, we successfully recover physical parameters for the transit and eclipse depths as well as amplitude and maximum and minimum of the phase curve shape of this slightly eccentric ...

  5. Spitzer--IRAC Imagery and Photometry of Ultracompact HII Regions With Extended Emission

    CERN Document Server

    De la Fuente-Acosta, E; Grave, J M C; Kumar, M S N; Trinidad, M A; Kurtz, S; Kemp, S; Franco, J; Quevedo, G

    2008-01-01

    We present the results of a morphological study performed to a sample of Ultracompact (UC) HII regions with Extended Emission (EE) using Spitzer--IRAC imagery and 3.6 cm VLA conf. D radio-continuum (RC) maps. Some examples of the comparison between maps and images are presented. Usually there is an IR point source counterpart to the peak(s) of RC emission, at the position of the UC source. We find that the predominant EE morphology is the cometary, and in most cases is coincident with IR emission at 8.0 $\\mu$m. Preliminary results of Spitzer--IRAC photometry of a sub-sample of 13 UC HII regions with EE based on GLIMPSE legacy data are also presented. Besides, individual IRAC photometry was performed to 19 UC sources within these 13 regions. We show that UC sources lie on specific locus, both in IRAC color-color and AM-product diagnostic diagrams. Counts of young stellar sources are presented for each region, and we conclude that a proportion of ~ 2%, ~10%, and ~88% of sources in the UC HII regions with EE are...

  6. The Spitzer Extragalactic Representative Volume Survey (SERVS): survey definition and goals

    CERN Document Server

    Mauduit, J -C; Farrah, D; Surace, J A; Jarvis, M; Oliver, S; Maraston, C; Vaccari, M; Marchetti, L; Zeimann, G; Gonzalez-Solares, E A; Pforr, J; Petric, A O; Henriques, B; Thomas, P A; Afonso, J; Rettura, A; Wilson, G; Falder, J T; Geach, J E; Huynh, M; Norris, R P; Seymour, N; Richards, G T; Stanford, S A; Alexander, D M; Becker, R H; Best, P N; Bizzocchi, L; Bonfield, D; Castro, N; Cava, A; Chapman, S; Christopher, N; Clements, D L; Covone, G; Dubois, N; Dunlop, J S; Dyke, E; Edge, A; Ferguson, H C; Foucaud, S; Franceschini, A; Gal, R R; Grant, J K; Grossi, M; Hatziminaoglou, E; Hickey, S; Hodge, J A; Huang, J -S; Ivison, R J; Kim, M; LeFevre, O; Lehnert, M; Lonsdale, C J; Lubin, L M; McLure, R J; Messias, H; Martinez-Sansigre, A; Mortier, A M J; Nielsen, D M; Ouchi, M; Parish, G; Perez-Fournon, I; Pierre, M; Rawlings, S; Readhead, A; Ridgway, S E; Rigopoulou, D; Romer, A K; Rosebloom, I G; Rottgering, H J A; Rowan-Robinson, M; Sajina, A; Simpson, C J; Smail, I; Squires, G K; Stevens, J A; Taylor, R; Trichas, M; Urrutia, T; van Kampen, E; Verma, A; Xu, C K

    2012-01-01

    We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 square degrees medium-deep survey at 3.6 and 4.5 microns with the post-cryogenic Spitzer Space Telescope to ~2 microJy (AB=23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z~5 to the present day, and is the first extragalactic survey both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z>1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this paper, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicing to catalogs, as well as coverage of ancillary data from other surveys i...

  7. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    CERN Document Server

    Esplin, T L

    2015-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 $\\mu$m bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7$^{\\rm th}$ and 8$^{\\rm th}$ order distortion corrections for the 3.6 and 4.5 $\\mu$m arrays of IRAC, ...

  8. Spitzer 24-micron Time-Series Observations of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David R; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a set of {\\it Spitzer} 24$\\mu$m MIPS time series observations of the M-dwarf eclipsing binary star GU Bo\\"otis. Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength (and thus limb darkening-independent) characterization of GU Boo's light curve, allowing for independent verification of the results of previous optical studies. Our results confirm previously obtained system parameters. We further compare GU Boo's measured 24$\\mu$m flux density to the value predicted by spectral fitting and find no evidence for circumstellar dust. In addition to GU Boo, we characterize (and show examples of) light curves of other objects in the field of view. Analysis of these light curves serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS 24\\micron array over short (days) and long (weeks) timescales at flux densities between approximately 300--2,000$\\mu$Jy. We find...

  9. Spitzer Space Telescope observations of magnetic cataclysmic variables: possibilities for the presence of dust in polars

    CERN Document Server

    Brinkworth, C S; Wachter, S; Howell, S B; Ciardi, D R; Szkody, P; Harrison, T E; van Belle, G T; Esin, A A; 10.1086/512797

    2009-01-01

    We present Spitzer Space Telescope photometry of six short-period polars, EF Eri, V347 Pav, VV Pup, V834 Cen, GG Leo, and MR Ser. We have combined the Spitzer Infrared Array Camera (3.6 -8.0 microns) data with the 2MASS J, H, K_s photometry to construct the spectral energy distributions of these systems from the near- to mid-IR (1.235 - 8 microns). We find that five out of the six polars have flux densities in the mid-IR that are substantially in excess of the values expected from the stellar components alone. We have modeled the observed SEDs with a combination of contributions from the white dwarf, secondary star, and either cyclotron emission or a cool, circumbinary dust disk to fill in the long-wavelength excess. We find that a circumbinary dust disk is the most likely cause of the 8 micron excess in all cases, but we have been unable to rule out the specific (but unlikely) case of completely optically thin cyclotron emission as the source of the observed 8 micron flux density. While both model components...

  10. The Spitzer 24-micron Photometric Light Curve of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a carefully controlled set of Spitzer 24 \\micron MIPS time series observations of the low mass eclipsing binary star GU Bo\\"otis (GU Boo). Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength characterization of GU Boo's light curve, independent of limb darkening and less sensitive to surface features such as spots. Its analysis allows for independent verification of the results of optical studies of GU Boo. Our mid-infrared results show good agreement with previously obtained system parameters. In addition, the analysis of light curves of other objects in the field of view serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS-24 at flux densities between approximately 300--2,000$\\mu$Jy. We find that the light curve root mean square about the median level falls into the 1--4% range for flux densities higher than 1 mJy.

  11. Spitzer mid-infrared point sources in the fields of nearby galaxies

    CERN Document Server

    Williams, S J

    2016-01-01

    We present $Spitzer$ IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby ($\\lesssim$4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. Point spread function photometry was performed on sources detected in both $Spitzer$ IRAC 3.6 $\\mu$m and 4.5 $\\mu$m bands at greater than 3$\\sigma$ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 $\\mu$m and 8.0 $\\mu$m bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be $m_{3.6}=18.0$, $m_{4.5}=17.5$, $m_{5.8}=17.0$, and $m_{8.0}=16...

  12. Detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer

    CERN Document Server

    Demory, B -O; Deming, D; Valencia, D; Seager, S; Benneke, B; Lovis, C; Cubillos, P; Harrington, J; Stevenson, K B; Mayor, M; Pepe, F; Queloz, D; Segransan, D; Udry, S

    2011-01-01

    We report on the detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer in IRAC's 4.5-micron band. Our MCMC analysis includes an extensive modeling of the systematic effects affecting Warm Spitzer photometry, and yields a transit depth of 450 +- 50 ppm, which translates to a planetary radius of 2.13 +- 0.14 Earth Radii as measured in IRAC 4.5-micron channel. A planetary mass of 7.98 +- 0.69 Earth Masses is derived from an extensive set of radial-velocity data, yielding a planetary density of 0.83 +- 0.18 Earth density. Interestingly, the derived radius is 1.3 times larger than the one recently reported in the visible by Winn et al. Thanks to the brightness of its host star (V=6, K=4), 55 Cnc e is a unique target for the thorough characterization of a super-Earth orbiting around a solar-type star.

  13. Dust evolution in protoplanetary disks around Herbig Ae/Be stars - The Spitzer view

    CERN Document Server

    Juhasz, A; Henning, Th; Acke, B; Ancker, M E van den; Meeus, G; Dominik, C; Min, M; Tielens, A G G M; Waters, L B F M

    2010-01-01

    In this paper we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standard protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite and enstatite and silica. No other solid state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating t...

  14. Spitzer-IRAC survey of molecular jets in Vela-D

    CERN Document Server

    Giannini, T; De Luca, M; Strafella, F; Elia, D; Maiolo, B; Marengo, M; Maruccia, Y; Massi, F; Nisini, B; Olmi, L; Salama, A; Smith, H A

    2013-01-01

    We present a survey of H2 jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer -IRAC data between 3.6 and 8.0 micron. Our search has led to the identification of 15 jets and about 70 well aligned knots within 1.2 squared degree. We compare the IRAC maps with observations of the H2 1-0 S(1) line at 2.12 micron, with a Spitzer-MIPS map at 24 and 70 micron, and with a map of the dust continuum emission at 1.2 mm. We find a association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the Young Stellar Objects of VMR-D. We selected all the sources of Class II or earlier which are located close to the jet center and aligned with it.The association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets. Four exciting sources are not (or very barely) observed at wavelengths sho...

  15. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    Science.gov (United States)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  16. A Spitzer survey of mid-infrared molecular emission from protoplanetary disks I: Detection rates

    CERN Document Server

    Pontoppidan, Klaus M; Blake, Geoffrey A; Meijerink, Rowin; Carr, John S; Najita, Joan

    2010-01-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 micron molecular emission from a large sample of protoplanetary disks, including lines from H2O, OH, C2H2, HCN and CO2. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star forming regions, including Ophiuchus, Lupus and Chamaeleon. In total, we identify 22 T Tauri stars with strong mid-infrared H2O emission. Integrated water line luminosities, where water vapor is detected, range from 5x10^-4 to 9x10^-3 Lsun, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the 5 transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H...

  17. Knot a Bad Idea: Testing BLISS Mapping for Spitzer Space Telescope Eclipse Observations

    CERN Document Server

    Schwartz, Joel C

    2016-01-01

    [Abridged] Much of transiting exoplanet science relies on high-precision photometry. The current generation of instruments exhibit sensitivity variations greater than the astrophysical signals. For the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope, a popular way to handle this is BiLinearly-Interpolated Subpixel Sensitivity mapping (BLISS). We use examples of posterior probability functions to show that this scheme can misfit or bias astrophysical parameters, and a toy model to show that underestimated uncertainties may even happen in very simple cases. BLISS maps of detector sensitivity can also be unreliable if the noise in the data is low. To know the astrophysical and detector models a priori, we construct a model of \\emph{Spitzer} light curves with $\\sim10^{3}$ data. We compare standard BLISS to a variant in which the knot values are full-fledged parameters in the MCMC, and to a standard polynomial model. Both types of BLISS fit the eclipse depth similarly, and the standard BLISS knots vary...

  18. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations

    CERN Document Server

    Marchis, F; Emery, J P; Mueller, M; Baek, M; Pollock, J; Assafin, M; Martins, R Vieira; Berthier, J; Vachier, F; Cruikshank, D P; Lim, L; Reichart, D; Ivarsen, K; Haislip, J; LaCluyz, A

    2016-01-01

    Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq $\\lt$ 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia ($\\Gamma$ < $\\sim$100 J s-1/2K-1m-2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff $\\lt$17 km) asteroids also show some emission lines of minerals, but they are signif...

  19. Spitzer IRS Spectra of Luminous 8 micron Sources in the Large Magellanic Cloud

    CERN Document Server

    Buchanan, C L; Forrest, W J; Hrivnak, B J; Sahai, R; Egan, M; Frank, A; Barnbaum, C; Buchanan, Catherine L.; Kastner, Joel H.; Forrest, William J.; Hrivnak, Bruce J.; Sahai, Raghvendra; Egan, Michael; Frank, Adam; Barnbaum, Cecilia

    2006-01-01

    We have produced an atlas of Spitzer Infrared Spectrograph (IRS) spectra of mass-losing, evolved stars in the Large Magellanic Cloud. These stars were selected to have high mass-loss rates and so contribute significantly to the return of processed materials to the ISM. Our high-quality spectra enable the determination of the chemistry of the circumstellar envelope from the mid-IR spectral features and continuum. We have classified the spectral types of the stars and show that the spectral types separate clearly in infrared color-color diagrams constructed from 2MASS data and synthetic IRAC/MIPS fluxes derived from our IRS spectra. We present diagnostics to identify and classify evolved stars in nearby galaxies with high confidence levels using Spitzer and 2MASS photometry. Comparison of the spectral classes determined using IRS data with the IR types assigned based on NIR colors also revealed a significant number of misclassifications and enabled us to refine the NIR color criteria resulting in more accurate ...

  20. Spitzer-MIPS survey of the young stellar content in the Vela Molecular Cloud-D

    CERN Document Server

    Giannini, T; De Luca, M; Nisini, B; Marengo, M; Allen, L; Smith, H A; Fazio, G; Massi, F; Elia, D; Strafella, F

    2007-01-01

    A new, unbiased Spitzer-MIPS imaging survey (~1.8 square degs) of the young stellar content of the Vela Molecular Cloud-D is presented. The survey is complete down to 5mJy and 250mJy at 24micron (mu) and 70mu, respectively. 849 sources are detected at 24mu and 52 of them also have a 70mu counterpart. The VMR-D region is one that we have already partially mapped in dust and gas millimeter emission, and we discuss the correlation between the Spitzer compact sources and the mm contours. About half of the 24mu sources are located inside the region delimited by the 12CO(1-0) contours (corresponding to only one third of the full area mapped with MIPS) with a consequent density increase of about 100% of the 24mu sources [four times for 70mu ones] moving from outside to inside the CO contours. About 400 sources have a 2MASS counterpart. So we have constructed a Ks vs. Ks-[24] diagram and identified the protostellar population. We find an excess of Class I sources in VMR-D in comparison with other star forming regions...

  1. Spitzer observations of MAMBO galaxies: weeding out active nuclei in starbursting proto-ellipticals

    CERN Document Server

    Ivison, R J; Serjeant, S; Bertoldi, F; Egami, E; Mortier, A M J; Alonso-Herrero, A; Barmby, P; Bei, L; Dole, H; Engelbracht, C W; Fazio, G G; Frayer, D T; Gordon, K D; Hines, D C; Huang, J S; Le Floc'h, E; Misselt, K A; Miyazaki, S; Morrison, J E; Papovich, C; Pérez-González, P G; Rieke, M J; Rieke, G H; Rigby, J; Rigopoulou, D; Smail, I; Wilson, G; Willner, S P

    2004-01-01

    We present Spitzer observations in five wavebands between 3.6 and 24um of an unbiased sample of 9 luminous, dusty galaxies selected at 1200um by the MAMBO camera on the IRAM 30-m telescope, a population akin to the well-known submm or `SCUBA' galaxies (hereafter SMGs). Owing to the coarse resolution of submm/mm instrumentation, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multi-wavelength catalogs to show that the overlap between 24 and 1200um must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4sigma SMGs have robust >=4sigma counterparts at 1.4GHz, while the fraction drops to 7/9 using all >=3sigma SMGs. We show that combining mid-IR and marginal (>=3sigma) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the mid-IR continuum emission for several sources, confirming Spitzer's potential ...

  2. A Spitzer Five-Band Analysis of the Jupiter-Sized Planet TrES-1

    CERN Document Server

    Cubillos, Patricio; Madhusudhan, Nikku; Foster, Andrew S D; Lust, Nate B; Hardy, Ryan A; Bowman, M Oliver

    2014-01-01

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by {\\Spitzer}. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all {\\Spitzer} eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 {\\micron} (0.083 % {\\pm} 0.024 %, 1270 {\\pm} 110 K), 4.5 {\\micron} (0.094 % {\\pm} 0.024 %, 1126 {\\pm} 90 K), 5.8 {\\micron} (0.162 % {\\pm} 0.042 %, 1205 {\\pm} 130 K), 8.0 {\\micron} (0.0213 % {\\pm} 0.042 %, 1190 {\\pm} 130 K), and 16 {\\micron} (0.33 % {\\pm} 0.12 %, 1270 {\\pm} 310 K) bands. The eclipse depths can be explained, within 1$\\sigma$ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity $e = 0.033^{+0.015}_{-0.031}$, consistent with a circular ...

  3. Repeatability of Spitzer/IRAC exoplanetary eclipses with Independent Component Analysis

    CERN Document Server

    Morello, Giuseppe; Tinetti, Giovanna

    2016-01-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths $>$3 $\\mu$m, have been taken with Spitzer. In some cases, in the past years, repeated observations and multiple reanalyses of the same datasets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. 2014, 2015 proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze IRAC data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-S/N cases. We describe the method and discuss the results obtained over twelve eclipses of the exoplanet XO...

  4. Spitzer 70 and 160-micron Observations of the Extragalactic First Look Survey

    CERN Document Server

    Frayer, D T; Yan, L; Marleau, F R; Choi, P I; Helou, G; Soifer, B T; Appleton, P N; Armus, L; Beck, R; Dole, H; Engelbracht, C W; Fang, F; Gordon, K D; Heinrichsen, I; Henderson, D; Hesselroth, T; Im, M; Kelly, D M; Lacy, M; Laine, S; Latter, W B; Mahoney, W; Makovoz, D; Masci, F J; Morrison, J E; Moshir, M; Noriega-Crespo, A; Padgett, D L; Pesenson, M; Shupe, D L; Squires, G K; Storrie-Lombardi, L J; Surace, J A; Teplitz, H I; Wilson, G

    2005-01-01

    We present Spitzer 70um and 160um observations of the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70um sample and 49% of the 160um-selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z<0.5, while about 5% have infrared colors consistent with AGN. The observed infrared colors agree with the spectral energy distribution (SEDs) of local galaxies previously determined from IRAS and ISO data. The average 160um/70um color temperature for the dust is Td~= 30+/-5 K, and the average 70um/24um spectral index is alpha~= 2.4+/-0.4. The observed infrared to radio correlation varies with redshift as expected out to z~1 based on the SEDs of local galaxies. The xFLS number counts at 70um and 160um are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight m...

  5. Diagnosing the Black Hole Accretion Physics of Sgr A*: Spitzer/Chandra Observations

    Science.gov (United States)

    Hora, Joseph L.; Fazio, Giovanni G.; Willner, Steven P.; Gurwell, Mark A.; Smith, Howard Alan; Ashby, Matthew; Baganoff, Frederick K.; Witzel, Gunther; Morris, Mark; Ghez, Andrea M.; Meyer, Leo; Becklin, Eric E.; Ingalls, James G.; Glaccum, William J.; Carey, Sean J.; Haggard, Daryl; Marrone, Daniel P.; Gammie, Charles F.

    2017-01-01

    The Galactic center offers the closest opportunity for studying accretion onto a supermassive black hole. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and its flux may originate in either the accretion flow or a jet, or both. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Following our successful Spitzer observations of the variability of Sgr A* in 2013 and 2014, we have undertaken a program of simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. In addition, several ground-based observatories participated in the campaigns, at wavelengths including radio, sub-mm, and the near-infrared. We will present initial Spitzer/Chandra results from the two 24-hour epochs in 2016 July. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon.

  6. Evidence for dust evolution within the Taurus Complex from Spitzer images

    CERN Document Server

    Flagey, N; Boulanger, F; Carey, S J; Brooke, T Y; Falgarone, E; Huard, T L; McCabe, C E; Miville-Deschênes, M A; Padgett, D L; Paladini, R; Rebull, L M

    2009-01-01

    We present Spitzer images of the Taurus Complex (TC) and take advantage of the sensitivity and spatial resolution of the observations to characterize the diffuse IR emission across the cloud. This work highlights evidence of dust evolution within the translucent sections of the archetype reference for studies of quiescent molecular clouds. We combine Spitzer 160 um and IRAS 100 um observations to produce a dust temperature map and a far-IR dust opacity map at 5' resolution. The average dust temperature is about 14.5K with a dispersion of +/-1K across the cloud. The far-IR dust opacity is a factor 2 larger than the average value for the diffuse ISM. This opacity increase and the attenuation of the radiation field (RF) both contribute to account for the lower emission temperature of the large grains. The structure of the TC significantly changes in the mid-IR images that trace emission from PAHs and VSGs. We focus our analysis of the mid-IR emission to a range of ecliptic latitudes where the zodiacal light resi...

  7. The Spitzer-IRAC Point Source Catalog of the Vela-D Cloud

    CERN Document Server

    Strafella, F; Campeggio, L; Giannini, T; Lorenzetti, D; Marengo, M; Smith, H A; Fazio, G; De Luca, M; Massi, F

    2010-01-01

    This paper presents the observations of the Cloud D in the Vela Molecular Ridge, obtained with the IRAC camera onboard the Spitzer Space Telescope at the wavelengths \\lambda = 3.6, 4.5, 5.8, 8.0 {\\mu}m. A photometric catalog of point sources, covering a field of approximately 1.2 square degrees, has been extracted and complemented with additional available observational data in the millimeter region. Previous observations of the same region, obtained with the Spitzer MIPS camera in the photometric bands at 24 {\\mu}m and 70 {\\mu}m, have also been reconsidered to allow an estimate of the spectral slope of the sources in a wider spectral range. A total of 170,299 point sources, detected at the 5-sigma sensitivity level in at least one of the IRAC bands, have been reported in the catalog. There were 8796 sources for which good quality photometry was obtained in all four IRAC bands. For this sample, a preliminary characterization of the young stellar population based on the determination of spectral slope is discu...

  8. Spitzer Characterization of Dust in the Ionized Medium of the Large Magellanic Cloud

    CERN Document Server

    Paradis, Deborah; Noriega-Crespo, Alberto; Lagache, Guilaine; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo

    2011-01-01

    A systematic investigation of dust emission associated with the ionized gas has so far been performed only in our Galaxy and for wavelengths longer than 60 {\\mu}m. Newly available Spitzer data now offer the opportunity to carry out a similar analysis in the Large Magellanic Cloud (LMC). By cross-correlating Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) data with the ATCA/Parkes HI 21-cm data, the NANTEN 12CO (J=1-0) data, and both the SHASSA H{\\alpha} and the Parkes 6-cm data, we investigate the physical properties of dust associated with the different phases of the gas (atomic, molecular and ionized). In particular, we study the presence and nature of dust from 3.6 to 160 {\\mu}m and for various regimes of the ionized gas, spanning emission measures (EM) from \\sim 1 pc cm-6 (diffuse component) to \\sim 10^3 pc cm-6 (HII regions). Using a dust emission model, and testing our results with several radiation field spectra, we show that dust in the ionized gas is warmer than dust associated with other...

  9. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD209458b

    CERN Document Server

    Richardson, L J; Seager, S; Deming, D; Harrington, Joseph; Seager, Sara; Deming, Drake

    2006-01-01

    We have measured the infrared transit of the extrasolar planet HD209458b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micron array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 microns. We derive a stellar radius of R$_*$ = 1.06 $\\pm$ 0.07 R$_\\sun$, a planetary radius of R$_p$ = 1.26 $\\pm$ 0.08 R$_J$, and a stellar mass of 1.17 M$_\\sun$. Within the errors, our results agree with the measurements at visible wavelengths. The 24-micron radius of the planet therefore does not differ s...

  10. A New Analysis of Spitzer Observations of Comet 29P/Schwassmann-Wachmann 1

    CERN Document Server

    Schambeau, Charles A; Lisse, Carey M; Samarasinha, Nalin; Woodney, Laura M

    2015-01-01

    We present a new analysis of ${\\it Spitzer}$ observations of comet 29P/Schwassmann-Wachmann 1 taken on UT 2003 November 21, 23, and 24, similar to a previous investigation of the observations (Stansberry et al. 2004), but using the most recent ${\\it Spitzer}$ data pipeline products and intensive image processing techniques. Analysis of images from the IRAC 5.8 & 8.0 $\\mu$m bands and the MIPS 24.0 & 70.0 $\\mu$m bands resulted in photometry measurements of the nucleus after a suite of coma modeling and removal processes were implemented. SW1 was not identified in the 5.8 $\\mu$m image from the previous work so its incorporation into this analysis is entirely new. Using the Near Earth Asteroid Thermal Model (Harris 1998) resulted in a nucleus radius measurement of $R$ = 30.2 $^{+3.7}_{-2.9}$ km and an infrared beaming parameter value of $\\eta = 0.99$ $^{+0.26}_{-0.19}$. We also measured an infrared geometric albedo, $p_{5.8}$ = 0.5 $\\pm$ 0.5. Extrapolating a 0.04 V-band albedo and using a normalized refle...

  11. Water in Comet 2/2003 K4 (LINEAR) with Spitzer

    CERN Document Server

    Woodward, Charles E; Bockelee-Morvan, Dominique; Gehrz, R D

    2007-01-01

    We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR) obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational band of water is detected with a high signal-to-noise ratio (> 50). Model fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/- 0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra acquired at different offset positions show that the rotational temperature decreases with increasing distance from the nucleus, which is consistent with evolution from thermal to fluorescence equilibrium. The inferred water production rate is (2.43 +/- 0.25) \\times 10^{29} molec. s^{-1}. The spectra do not show any evidence for emission from PAHs and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp). However, residual emission is observed near 7.3 micron the origin of which remains unidentified.

  12. Global Abundance and Temperature Constraints via Joint Spectroscopic Phase Curve Retrievals

    Science.gov (United States)

    Line, Michael R.; Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura; Fortney, Jonathan J.

    2016-01-01

    Spectroscopic thermal emission phase curves can provide us with a global view of an exoplanet's atmosphere. Different wavelengths probe different atmospheric depths whereas different phases probe different planetary longitudes. This in essence allows us to reconstruct the "3D" thermal and compositional structure of these atmospheres. In this contribution I will discuss the application of powerful atmospheric retrieval approaches to spectroscopic phase curve data, specifically the WFC3+Spitzer IRAC observations of the hot-Jupiter WASP-43b. First I will show the variation in thermal structures and molecular abundances with phase, assuming each phase is independent. Secondly, I will present a new framework for performing a joint retrieval on multiple phases simultaneously. In such a framework, I will test, via Bayesian hypothesis testing, a variety of assumptions. For instance, can the absorption features across all phases be explained with a global metallicity and C-to-O ratio under the assumption of thermochemical equilibrium? Can chemical quenching perturb the abundances on the cooler phases more than the hotter phases? Can we tell the difference? Can a global thermal structure "shape" explain all phases or is there structure variation with phase? Answering such questions are critical to understanding the complex interactions of atmospheric dynamics, chemical processes, and radiative energy balance in exoplanet atmospheres.

  13. VLT/SINFONI Observations of SPITZER/MIPSGAL 24 μm Circumstellar Shells: Revealing the Natures of Their Central Sources

    Science.gov (United States)

    Silva, K. M.; Flagey, N.; Noriega-Crespo, A.; Carey, S.; Ingallinera, A.

    2017-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf–Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.

  14. Coupled blind signal separation and spectroscopic database fitting of the mid infrared PAH features

    Science.gov (United States)

    Rosenberg, M. J. F.; Berné, O.; Boersma, C.; Allamandola, L. J.; Tielens, A. G. G. M.

    2011-08-01

    Context. The aromatic infrared bands (AIBs) observed in the mid infrared spectrum of galactic and extragalactic sources are attributed to polycyclic aromatic hydrocarbons (PAHs). Recently, two new approaches have been developed to analyze the variations of AIBs in terms of chemical evolution of PAH species: blind signal separation (BSS) and the NASA Ames PAH IR Spectroscopic Database fitting tool. Aims: We aim to study AIBs in a photo-dissociation region (PDR) since in these regions, as the radiation environment changes, the evolution of AIBs are observed. Methods: We observe the NGC 7023-north west (NW) PDR in the mid-infrared (10-19.5 μm) using the InfraRed Spectrometer (IRS), on board Spitzer, in the high-resolution, short wavelength mode. Clear variations are observed in the spectra, most notably the ratio of the 11.0 to 11.2 μm bands, the peak position of the 11.2 and 12.0 μm bands, and the degree of asymmetry of the 11.2 μm band. The observed variations appear to change as a function of position within the PDR. We aim to explain these variations by a change in the abundances of the emitting components of the PDR. A blind signal separation (BSS) method, i.e. a Non-Negative Matrix Factorization algorithm is applied to separate the observed spectrum into components. Using the NASA Ames PAH IR Spectroscopic Database, these extracted signals are fit. The observed signals alone were also fit using the database and these components are compared to the BSS components. Results: Three component signals were extracted from the observation using BSS. We attribute the three signals to ionized PAHs, neutral PAHs, and very small grains (VSGs). The fit of the BSS extracted spectra with the PAH database further confirms the attribution to PAH+ and PAH0 and provides confidence in both methods for producing reliable results. Conclusions: The 11.0 μm feature is attributed to PAH+ while the 11.2 μm band is attributed to PAH0. The VSG signal shows a characteristically

  15. Searching for Wide, Planetary-Mass Companions in Archival Spitzer/IRAC Data

    Science.gov (United States)

    Martinez, Raquel

    2017-01-01

    Over the past decade, a growing population of planetary-mass companions ( 100 AU) from their host stars, challenging existing models of both star and planet formation. It is unclear whether these systems represent the low-mass extreme of stellar binary formation or the high-mass and wide-orbit extreme of planet formation theories, as various proposed formation pathways inadequately explain the physical and orbital aspects of these systems. Even so, determining which scenario best reproduces their observed characteristics will come once a statistically robust sample of directly-imaged PMCs are found and studied.We are searching for wide-orbit PMCs to young stars in Spitzer/IRAC images with an automated pipeline. A Markov Chain Monte Carlo (MCMC) algorithm is the backbone of our novel point spread function (PSF) subtraction routine that efficiently creates and subtracts a χ2-minimizing instrumental PSF, producing a residuals image that is also assessed to ascertain the presence of a potential companion. In this work, we present the preliminary results of a Spitzer/IRAC archival imaging study of 11 young, low-mass (0.044-0.88 M⊙ K3.5-M7.5) stars known to have faint, low-mass companions in 3 nearby star-forming regions (Chameleon, Taurus, and Upper Scorpius). Initial runs of the pipeline have recovered 7 of the companions from the 11 systems. An additional binary companion PSF-fitting pipeline is being developed to simultaneously measure astrometry and infrared photometry of these systems across the four IRAC channels (3.6 μm, 4.5 μm, 5.8 μm, and 8 μm). We also find 3 of these systems to have low-mass companions with non-zero [I1] - [I4] colors, potentially signifying the presence of a circum(sub?)stellar disk. Plans for future pipeline improvements and paths forward will also be detailed. Once this computational foundation is optimized, the stage is set to quickly scour the nearby star-forming regions already imaged by Spitzer, identify potential candidates for

  16. Stellar Cartography: A Three-Dimensional View of the Magellanic System using Spitzer

    Science.gov (United States)

    Madore, Barry

    We will use the data obtained by the Spitzer SAGE-LMC, SAGE-SMC and SAGE-Var programs to measure the three-dimensional structure of the Magellanic System using Cepheids. Cepheids have been demonstrated to have a narrow period-luminosity relation in the mid-infrared, such that mean magnitudes, and hence distances, can be obtained with high precision. In the Magellanic System we will be able to obtain distances with precisions of 5% to individual Cepheids. Using around 5000 Cepheids --- a factor of 50 more than our previous works --- and with newly discovered Cepheids in the Magellanic Bridge, we will be able to study the 3D structure of the System at an unprecedented fidelity. Understanding the structure of the Magellanic System is key to understanding its evolutionary history. A more precise three dimensional representation of the system will enable us to distinguish between different theoretical models, such as those in which the Clouds experience a close pass and those in which they experience a merger event. We will create templates light curves to phase the mid--IR Cepheid observations with the publicly available optical OGLE light curves to determine accurate mean magnitudes for these stars. We will also create a deep field using the newly released SAGE—Var data in order to measure the old, RR Lyrae population for comparison with the young, Cepheid population. This project is complementary to the on-going Spitzer Exploration Science SMHASH program, which is studying the structure of the Milky Way using mid-infrared observations of RR Lyrae. We will be able to use the results from this work in concert with SMHASH to produce a 3D representation of the MW-LMC-SMC system, bypassing the systematics of using multiple telescopes. The project lays an excellent foundation for future JWST and WFIRST projects studying the evolution of dwarf galaxy systems. The in--depth study of the well resolved, interacting LMC-SMC pair that we will perform will be used as an

  17. Candidate Clusters of Galaxies at $z>1.3$ Identified in the Spitzer SPT Deep Field Survey

    CERN Document Server

    Rettura, A; Stern, D; Mei, S; Ashby, M L N; Brodwin, M; Gettings, D; Gonzalez, A H; Stanford, S A; Bartlett, J G

    2014-01-01

    We present 279 galaxy cluster candidates at $z > 1.3$ selected from the 94 deg$^{2}$ Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates in SSDF adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Bo\\"otes field. Our simple algorithm detects all three $1.4 < z \\leq 1.75$ X-ray detected clusters in the Bo\\"otes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE and XMM-Newton. This rich dataset will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters pre...

  18. Binarity as a key factor in protoplanetary disk evolution : Spitzer disk census of the eta Chamaeleontis cluster

    NARCIS (Netherlands)

    Bouwman, J.; Lawson, W. A.; Dominik, C.; Feigelson, E. D.; Henning, Th.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    2006-01-01

    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are therefore of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spect

  19. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    Science.gov (United States)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  20. VizieR Online Data Catalog: Spitzer/IRS survey of Class II objects in Orion A. I. (Kim+, 2016)

    Science.gov (United States)

    Kim, K. H.; Watson, D. M.; Manoj, P.; Forrest, W. J.; Furlan, E.; Najita, J.; Sargent, B.; Hernandez, J.; Calvet, N.; Adame, L.; Espaillat, C.; Megeath, S. T.; Muzerolle, J.; McClure, M. K.

    2016-10-01

    We present 319 Class II disks observed with Spitzer/IRS in the Orion A star-forming region. We described the Spitzer/IRS and IRTF/SpeX observations and data reduction process in Kim+ (2013, J/ApJ/769/149). The Orion A objects in this paper were selected based on the identification of young stars with disks by IRAC/Two Micron All Sky Survey (2MASS) color-color diagrams (Megeath+ 2012, J/AJ/144/192). We observed them using Spitzer/IRS during campaigns 36, 39, 40, and 44 between 2006 November and 2007 October. To this group we added 16 additional objects (5 in the ONC; 11 in L1641) that were reclassified as Class II from Class 0/I sources observed in the Orion A protostar survey by C. Poteet et al. (2016, in preparation); 14 of these 16 were observed during campaigns 39 and 40, but 2 sources were observed in campaign 56 (see table 1). Of our IRS targets observed in both SL and LL modules in Orion A with Spitzer/IRS, we observed 120 at near-IR (0.8-2.4um) wavelengths with the medium-resolution spectrograph SpeX, on the NASA IRTF on Mauna Kea during the 2010A, 2011A, and 2011B semesters (see table 3). (9 data files).

  1. Palomar/triplespec observations of Spitzer/MIPSGAL 24 μm circumstellar shells: Unveiling the natures of their central sources

    Energy Technology Data Exchange (ETDEWEB)

    Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Petric, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Geballe, T. R., E-mail: nflagey@jpl.nasa.gov [Gemini North Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States)

    2014-08-01

    We present near-IR spectroscopic observations of the central sources in 17 circumstellar shells from a sample of more than 400 'bubbles' discovered in the Spitzer/MIPSGAL 24 μm survey of the Galactic plane and in the Cygnus-X region. To identify the natures of these shells, we have obtained J, H, and K band spectra with a resolution of ∼2600 of the stars at their centers. We observed 14 MIPSGAL bubbles (MBs), WR149, and 2 objects in the Cygnus-X region (WR138a and BD+43 3710), our sample being about 2.5 mag fainter in the K band than previous studies of the central sources of MBs. We use spectroscopic diagnostics and spectral libraries of late- and early-type stars to constrain the natures of our targets. We find five late-type giants. The equivalent widths of their CO 2.29 μm features allow us to determine the spectral types of the stars and hence derive the extinction along the line of sight, distance, and physical size of the shells. We also find 12 early-type stars: in 9 MBs and the 3 comparison objects. We find that the subtype inferred from the near-IR for WR138a (WN9h) and WR149 (WN5h) agrees with that derived from optical observations. A careful analysis of the literature and the environment of BD+43 3710 allows us to rule out the carbon star interpretation previously suggested. Our near-IR spectrum suggests that it is a B5 supergiant. At the centers of the nine MBs, we find a WC5-6 star possibly of low mass, a candidate O5-6 V star, a B0 supergiant, a B/A-type giant, and five luminous blue variable (LBV) candidates. We also report the detections of emission lines arising from at least two shells with typical extents (∼10''), in agreement with those in the mid-IR. We summarize the findings on the natures of the MBs since their discovery, with 30% of them now known. Most MBs with central sources detected in the near- to mid-IR have been identified and are red and blue giants, supergiants, or stars evolving toward these phases

  2. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    CERN Document Server

    Xue, Mengyao; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-01-01

    A precise measure of the mid-infrared interstellar extinction law is crucial to the investigation of the properties of interstellar dust, especially of the grains in the large size end. Based on the stellar parameters derived from the SDSS-III/APOGEE spectroscopic survey, we select a large sample of G- and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinction (relative to the K$_{\\rm S}$ band at wavelength $\\lambda=2.16\\mu$m) for the four \\emph{WISE} bands at 3.4, 4.6, 12 and 22$\\mu$m, the four \\emph{Spitzer}/IRAC bands at 3.6, 4.5, 5.8 and 8$\\mu$m, the \\emph{Spitzer}/MIPS24 band at 23.7$\\mu$m and for the first time, the \\emph{AKARI}/S9W band at 8.23$\\mu$m. Our results agree with previous works in that the extinction curve is flat in the ~3--8$\\m...

  3. The 1997 spectroscopic GEISA databank.

    Science.gov (United States)

    Jacquinet-Husson, N.; Arie, E.; Ballard, J.; Barbe, A.; Bjoraker, G.; Bonnet, B.; Brown, L. R.; Camy-Peyret, C.; Champion, J. P.; Chedin, A.; Chursin, A.; Clerbaux, C.; Duxbury, G.; Flaud, J.-M.; Fourrie, N.; Fayt, A.; Graner, G.; Gamache, R.; Goldman, A.; Golovko, V.; Guelachvili, G.; Hartmann, J. M.; Hilico, J. C.; Hillman, J.; Lefevre, G.; Lellouch, E.; Mikhailenko, S. N.; Naumenko, O. V.; Nemtchinov, V.; Newnham, D. A.; Nikitin, A.; Orphal, J.; Perrin, A.; Reuter, D. C.; Rinsland, C. P.; Rosenmann, L.; Rothman, L. S.; Scott, N. A.; Selby, J.; Sinitsa, L. N.; Sirota, J. M.; Smith, A. M.; Smith, K. M.; Tyuterev, V. G.; Tipping, R. H.; Urban, S.; Varanasi, P.; Weber, M.

    1999-05-01

    The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are the spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the giant planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described.

  4. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Helton, L. Andrew; Vacca, William D. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-11, Moffett Field, CA 94035 (United States); Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Wagner, R. Mark [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Evans, Aneurin [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Krautter, Joachim [Landessternwarte-Zentrum fuer Astronomie der Universitaet, Koenigstuhl, D-69117 Heidelberg (Germany); Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009 (United States); Starrfield, Sumner, E-mail: ahelton@sofia.usra.edu [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States)

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  5. A Spitzer IRS Study of Debris Disks Around Planet-Host Stars

    CERN Document Server

    Dodson-Robinson, Sarah E; Carpenter, John M; Bryden, Geoffrey

    2010-01-01

    Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar dust produced by colliding planetesimals are therefore powerful probes of the formation histories of known planets. Here we present new Spitzer IRS spectrophotometry of 111 Solar-type stars, including 105 planet hosts. Our observations reveal 11 debris disks, including two previously undetected debris disks orbiting HD 108874 and HD 130322. Combining our 32 micron spectrophotometry with previously published MIPS photometry, we find that the majority of debris disks around planet hosts have temperatures in the range 60 < T < 100 K. Assuming a dust temperature T = 70 K, which is representative of the nine debris disks detected by both IRS and MIPS, we find that debris rings surrounding Sunlike stars orbit between 15 and 240 AU, depending on the mean particle ...

  6. Cosmic Infrared Background Fluctuations in Deep Spitzer IRAC Images: Data Processing and Analysis

    CERN Document Server

    Arendt, R G; Moseley, S H; Mather, J

    2009-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer IRAC observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations which would otherwise corrupt our results. The procedures and results for masking bright sources, and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large scale (>~30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power law components. Our measurements of spatial fluctuations ...

  7. VizieR Online Data Catalog: Spitzer/IRAC variability survey of Bootes field (Kozlowski+, 2016)

    Science.gov (United States)

    Kozlowski, S.; Kochanek, C. S.; Ashby, M. L. N.; Assef, R. J.; Brodwin, M.; Eisenhardt, P. R.; Jannuzi, B. T.; Stern, D.

    2016-04-01

    A detailed description of Spitzer Deep Wide-Field Survey (SDWFS) is presented in Ashby et al. (2009, see J/ApJ/716/530). The first epoch was taken on 2004 January 10-14 as the IRAC Shallow Survey (Eisenhardt et al. 2004ApJS..154...48E). Then, we added three more epochs on 2007 August 8-13, 2008 February 2-6, and 2008 March 6-10 as the SDWFS (Ashby et al. 2009, see J/ApJ/716/530; D. Stern PI, PID 40839). The new, fifth epoch was taken on 2014 April 23-29 as the Decadal IRAC Bootes Survey (DIBS; M.L.N. Ashby PI, PID 10088). The intervals between any two epochs span the range from 1 month to 10 years. (3 data files).

  8. Spitzer Space Telescope Observations of Low Mass X-ray Binaries

    CERN Document Server

    Wachter, Stefanie

    2008-01-01

    We present preliminary results from our archival Spitzer Space Telescope program aimed at characterizing the mid-IR properties of compact objects, both isolated and in binary systems, i.e. white dwarfs, X-ray binaries, cataclysmic variables, and magnetars. Most of these sources are too faint at mid-IR wavelengths to be observable from the ground, so this study provides the very first comprehensive look at the mid-IR emission of these objects. Here we present our results for the low mass X-ray binaries. We considered all of the systems listed in the most recent catalog of Liu et al. (2007) that have known optical counterparts. The particular goals of our projects encompass: to establish the mid-IR spectral energy distribution, to search for the signatures of jets, circumbinary disks, low mass or planetary companions and debris disks, and to study the local environment of these sources.

  9. Extrasolar Storms: Mapping Cloud Cover Evolution with Joint HST-Spitzer Observations

    Science.gov (United States)

    Apai, Daniel; Extrasolar Storms Team

    2017-01-01

    Observations of directly imaged and transiting exoplanets and brown dwarfs reveal the wide-spread presence of condensate clouds. These clouds profoundly influence the energy transport through ultracool atmospheres and impact their pressure-temperature profiles. Yet, the structure and properties of these cloud layers remain mostly unexplored and pose one of the great challenges to our understanding ultracool atmospheres. I will show how using HST and Spitzer jointly -- by exploiting their photometric stability and sensitivity and combining their wavelength ranges -- allows us to address this challenge. With time-resolved spectroscopy and photometry of rotating brown dwarfs - rotational phase mapping — we are exploring the longitudinal structure of condensate clouds and with multiple epoch observations we are following the evolution of the cloud cover. These new observations are opening a new window on the dynamics of ultracool atmospheres.

  10. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  11. Spitzer Spectroscopy of Low-Mass Dwarfs - Clouds and Chemistry at the Bottom of the IMF

    Science.gov (United States)

    Roellig, Thomas L.

    2006-01-01

    Brown dwarfs and low-mass stars show evidence of complicated atmospheres, including a variety of molecular species and clouds. Infrared observations are one of the best probes of the physics of these objects, but up until recently these observations have been limited in studies from ground-based telescopes by atmospheric absorption and insufficient sensitivity. With the launch of the Spitzer Space Telescope with its Infrared Spectrograph (IRS) instrument we now have the capability to undertake a systematic study of the atmospheric structure and chemistry in these cool objects. The IRS Dim Suns team has compiled spectra from objects ranging from M1 dwarfs with effective temperatures 3,800K of down to T8 dwarfs with effective temperatures of 700. This talk will present these results and discuss their implications for our understanding of cool dwarf atmospheric physics and structure.

  12. A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus

    CERN Document Server

    Furlan, E; Calvet, N; D'Alessio, P; Franco-Hernandez, R; Forrest, W J; Watson, D M; Uchida, K I; Sargent, B; Green, J D; Keller, L D; Herter, T L

    2006-01-01

    We present mid-infrared spectra of T Tauri stars in the Taurus star-forming region obtained with the Spitzer Infrared Spectrograph (IRS). For the first time, the 5-36 micron spectra of a large sample of T Tauri stars belonging to the same star-forming region is studied, revealing details of the mid-infrared excess due to dust in circumstellar disks. We analyze common features and differences in the mid-IR spectra based on disk structure, dust grain properties, and the presence of companions. Our analysis encompasses spectral energy distributions from the optical to the far-infrared, a morphological sequence based on the IRS spectra, and spectral indices in IRS wave bands representative of continuum emission. By comparing the observed spectra to a grid of accretion disk models, we infer some basic disk properties for our sample of T Tauri stars, and find additional evidence for dust settling.

  13. Spitzer IRS Spectra and Envelope Models of Class I Protostars in Taurus

    CERN Document Server

    Furlan, E; Calvet, N; Hartmann, L; D'Alessio, P; Forrest, W J; Watson, D M; Uchida, K I; Sargent, B; Green, J D; Herter, T L

    2007-01-01

    We present Spitzer Infrared Spectrograph spectra of 28 Class I protostars in the Taurus star-forming region. The 5 to 36 micron spectra reveal excess emission from the inner regions of the envelope and accretion disk surrounding these predecessors of low-mass stars, as well as absorption features due to silicates and ices. Together with shorter- and longer-wavelength data from the literature, we construct spectral energy distributions and fit envelope models to 22 protostars of our sample, most of which are well-constrained due to the availability of the IRS spectra. We infer that the envelopes of the Class I objects in our sample cover a wide range in parameter space, particularly in density and centrifugal radius, implying different initial conditions for the collapse of protostellar cores.

  14. Spitzer and Magellan Observations of NGC 2264: A Remarkable Star Forming Core Near IRS-2

    CERN Document Server

    Young, E T; Lada, C J; Mainzer, A K; Marengo, M; Murphy, D C; Muzerolle, J; Persson, S E; Siegler, N; Teixeira, P S

    2006-01-01

    We analyze {\\it Spitzer} and Magellan observations of a star forming core near IRS-2 in the young cluster NGC 2264. The submillimeter source IRAS 12 S1, previously believed to be an intermediate mass Class 0 object is shown to be a dense collection of embedded, low mass stars. We argue that this group of stars represents the fragmenting collapse of a dense, turbulent core, based on a number of indicators of extreme youth. With reasonable estimates for the velocity dispersion in the group, we estimate a dynamical lifetime of only a few x 10$^{4}$ years. Spectral energy distributions of stars in the core are consistent with Class I or Class 0 assignments. We present observations of an extensive system of molecular hydrogen emission knots. The luminosity of the objects in the core region are consistent with roughly solar mass protostars.

  15. Spitzer Mid-Infrared Spectra of Cool-Core Galaxy Clusters

    CERN Document Server

    de Messières, G E; McNamara, B R; Donahue, M; Nulsen, P E J; Voit, G M; Wise, M W

    2009-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation in the brightest cluster galaxy. Our goal is to use the advantages of the mid-infrared band to improve estimates of star formation. Our spectra are characterized by diverse morphologies ranging from classic starbursts to flat spectra with surprisingly weak dust features. Although most of our sample are known from optical/UV data to be active star-formers, they lack the expected strong mid-infrared continuum. Star formation may be proceeding in unusually dust-deficient circumgalactic environments such as the interface between the cooling flow and the relativistic jets from the active galactic nucleus.

  16. Spitzer Space Telescope: Unprecedented Efficiency and Excellent Science on a Limited Budget

    Science.gov (United States)

    Storrie-Lombardi, L. J.

    2012-09-01

    The Spitzer Space Telescope completed nearly six years of cryogenic operations in 2009 and in August 2011 began the third year of ‘warm’ science observations. Over 50,000 hours of science have been executed in the first 8 years of the mission. Nearly 40% of the cryogenic mission project budget was devoted to data analysis funding provided directly to the astronomical community. For the warm mission, the observatory was effectively reinvented as a new, scientifically productive mission operating at a substantially lower cost. In this paper we discuss how the design of the science operations, observing modes and observing program for the cryogenic mission led to very high observing efficiencies and maximized the observatory time devoted to science. The philosophy of maximizing science output per dollar has continued in the warm mission. The transition to warm operations has maintained an outstanding science program while reducing the project budget by nearly 70% from the cryogenic mission level.

  17. Managing the On-Board Data Storage, Acknowledgment and Retransmission System for Spitzer

    Science.gov (United States)

    Sarrel, Marc A.; Carrion, Carlos; Hunt, Joseph C., Jr.

    2006-01-01

    The Spitzer Space Telescope has a two-phase downlink system. Data are transmitted during one telecom session. Then commands are sent during the next session to delete those data that were received and to retransmit those data that were missed. We must build sequences that are as efficient as possible to make the best use of our finite supply of liquid helium, One way to improve efficiency is to use only the minimum time needed during telecom sessions to transmit the predicted volume of data. But, we must also not fill the onboard storage and must allow enough time margin to retransmit missed data. We describe tools and procedures that allow us to build observatory sequences that are single-fault tolerant in this regard and that allow us to recover quickly and safely from anomalies that affect the receipt or acknowledgment of data.

  18. Spitzer MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+12

    Science.gov (United States)

    Bryden, G.; Beichman, C. A.; Rieke, G. H.; Stansberry, J. A.; Stapelfeldt, K. R.; Trilling, D. E.; Turner, N. J.; Wolszczan, A.

    2006-01-01

    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR B1257+12. With accuracies of 0.05 mJy at 24 microns and 1.5 mJy at 70 microns, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3 x 10(exp -5) of the pulsar's spin-down luminosity, 3 orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the solar system's cannot be ruled out.

  19. \\textit{Spitzer} Point Source Catalogs of $\\sim300,000$ Stars in Seven Nearby Galaxies

    CERN Document Server

    Khan, Rubab; Stanek, K Z; Sonneborn, G

    2015-01-01

    We present \\textit{Spitzer} IRAC $3.6-8\\,\\micron$ and MIPS $24\\,\\micron$ point source catalogs for seven galaxies: NGC\\,$6822$, M\\,$33$, NGC\\,$300$, NGC\\,$2403$, M\\,$81$, NGC\\,$0247$, and NGC\\,$7793$. The catalogs contain a total of $\\sim300,000$ sources with $>3\\sigma$ detections at both $3.6\\,\\micron$ and $4.5\\,\\micron$. The source lists become incomplete near $m_{3.6}=m_{4.5}\\simeq18$. We complement the $3.6\\,\\micron$ and $4.5\\,\\micron$ fluxes with $5.8\\,\\micron$, $8.0\\,\\micron$ and $24\\,\\micron$ fluxes or $3\\sigma$ upper limits using a combination of PSF and aperture photometry. This catalog is a resource as an archive for studying mid-infrared transients and for planning observations with the James Webb Space Telescope.

  20. Spitzer and near-infrared observations of the young supernova remnant 3C397

    Science.gov (United States)

    Rho, Jeonghee; Jarrett, Tom

    2016-06-01

    We present Spitzer IRS, IRAC and MIPS observations and near-infrared imaging and spectroscopy of the young supernova remnant 3C397 (G41.1-0.2). Near-infrared observations were made using the Palomar 200 inch telescope. Both mid- and near-infrared spectra are dominated by Fe lines and near-infrared imaging shows bright Fe emission with a shell-like morphology. There is no molecular hydrogen line belong to the SNR and some are in background. The Ni, Ar, S and Si lines are detected using IRS and hydrogen recombination lines are detected in near-infrared. Two nickel lines at 18.24 and 10.69 micron are detected. 3C397 is ejecta-dominated, and our observations support 3C397 to be a Type Ia supernova.

  1. Star Formation as Seen by the Infrared Array Camera on Spitzer

    Science.gov (United States)

    Smith, Howard A.; Allen, L.; Megeath, T.; Barmby, P.; Calvet, N.; Fazio, G.; Hartmann, L.; Myers, P.; Marengo, M.; Gutermuth, R.

    2004-01-01

    The Infrared Array Camera (IRAC) onboard Spitzer has imaged regions of star formation (SF) in its four IR bands with spatial resolutions of approximately 2"/pixel. IRAC is sensitive enough to detect very faint, embedded young stars at levels of tens of Jy, and IRAC photometry can categorize their stages of development: from young protostars with infalling envelopes (Class 0/1) to stars whose infrared excesses derive from accreting circumstellar disks (Class 11) to evolved stars dominated by photospheric emission. The IRAC images also clearly reveal and help diagnose associated regions of shocked and/or PDR emission in the clouds; we find existing models provide a good start at explaining the continuum of the SF regions IRAC observes.

  2. Spitzer Photometry of Approximately 1 Million Stars in M31 and 15 Other Galaxies

    Science.gov (United States)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6-8 micrometer and Multiband Imaging Photometer 24 micrometer point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances approximately 3.5-14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain approximately 1 million sources including approximately 859,000 in M31 and approximately 116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of pointspread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6-24 micrometer) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope.

  3. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  4. Knot a Bad Idea: Testing BLISS Mapping for Spitzer Space Telescope Photometry

    Science.gov (United States)

    Schwartz, J. C.; Cowan, N. B.

    2017-01-01

    Much of transiting exoplanet science relies on high-precision photometry. The current generation of instruments can exhibit sensitivity variations greater than the astrophysical signals. For the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope, a popular way to handle this is BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping. As part of a Markov Chain Monte Carlo (MCMC), BLISS mapping estimates the sensitivity at many locations (knots) on the pixel, then interpolates to the target star’s centroids. We show that such embedded optimization schemes can misfit or bias parameters. Thus, we construct a model of Spitzer eclipse light curves to test the accuracy and precision of BLISS mapping. We compare standard BLISS mapping to a variant where the knots are fit during the MCMC, as well as to a polynomial model. Both types of BLISS mapping give similar eclipse depths, and we find that standard knots behave like real parameters. Standard BLISS mapping is therefore a reasonable shortcut to fitting for knots in an MCMC. BLISS maps become inaccurate when the photon noise is low, but typically approximate the real sensitivity well. We also find there is no perfect method for choosing the ideal number of BLISS knots to use on given data. BLISS mapping gives fits that are usually more accurate than precise (i.e., they are overly conservative), and the routine is more precise than polynomial models for significant eclipses or pixels with more varied sensitivities. BLISS mapping has better predictive power for most of these particular synthetic data, depending on how one treats time-correlated residuals. Overall, we conclude that BLISS mapping can be a reasonable sensitivity model for IRAC photometry.

  5. Circumstellar Dust Composition of M-type Mira Variables observed with phase with Spitzer

    Science.gov (United States)

    Güth, Tina; Creech-Eakman, Michelle J.

    2017-01-01

    Our research concerns the detailed dust composition surrounding Mira variables. These regular pulsators are easily observed in the optical and infrared due to their changes in brightness. Data on 25 galactic Miras were obtained with the Spitzer Infrared Spectrograph (IRS) instrument in 2008-09 under a GO program led by Creech-Eakman. The stars were observed approximately once per month to track changes in their brightness and spectral features. This dataset is unique for both the number of observations of each star and the high SNR due to their intrinsic brightness.The stars in this study span the range of oxygen- to carbon-rich, with each type exhibiting certain known solid state components (i.e dust). The current focus is on trying to reproduce dust spectral features in the short, high (SH) and long, high (LH) resolution wavelength range (~9.7 - 40 microns) of the oxygen-rich Miras (C/O features that provide insight into the stellar atmospheres and circumstellar dust composition with phase.Using the 1-D radiative transfer modeling code, DUSTY, we are attempting to identify several broad, and some sharp, dust features by including recently derived laboratory spectral indices for dust opacities. Prominent features seen in oxygen-rich Mira variables include potential identifications of water ice emission, as well as amorphous and crystalline silicates. We implement a greybody continuum obtained from MARCS, a 1-D hydrostatic spherical LTE model grid code, as the stellar continuum input for DUSTY. Using a greybody rather than a blackbody curve allows us to obtain a better agreement between the DUSTY spectrum and the Spitzer data. We will show these amended model fits that will improve the identification of the dust and other features in the spectra.

  6. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Martha L.; Sonneborn, George [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Barmby, Pauline [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Gordon, Karl D.; Meixner, Margaret [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Lagadec, Eric [Laboratoire Lagrange, UMR7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06300 Nice (France); Lennon, Daniel [ESA—European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Zijlstra, Albert, E-mail: martha.boyer@nasa.gov [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-01-01

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ≲ [Fe/H] ≲ –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 μm post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  7. Finding η Car Analogs in Nearby Galaxies Using Spitzer. I. Candidate Selection

    Science.gov (United States)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.

    2013-04-01

    The late-stage evolution of the most massive stars such as η Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby (lsim 4 Mpc) galaxies to search for such analogs. We find 34 candidates with a flat or rising mid-IR spectral energy distributions toward longer mid-infrared wavelengths that emit >105 L ⊙ in the IRAC bands (3.6 to 8.0 μm) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 ± 6 surviving candidates. Since we would detect true analogs of η Car for roughly 200 years post-eruption, this implies that the rate of eruptions like η Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M ⊙ star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 μm, allowing identification of η Car analogs for millennia rather than centuries post-eruption.

  8. Spitzer Observations of MAMBO Galaxies: Weeding Out Active Nuclei in Starbursting Protoellipticals

    Science.gov (United States)

    Ivison, R. J.; Greve, T. R.; Serjeant, S.; Bertoldi, F.; Egami, E.; Mortier, A. M. J.; Alonso-Herrero, A.; Barmby, P.; Bei, L.; Dole, H.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Huang, J.-S.; Le Floc'h, E.; Misselt, K. A.; Miyazaki, S.; Morrison, J. E.; Papovich, C.; Pérez-González, P. G.; Rieke, M. J.; Rieke, G. H.; Rigby, J.; Rigopoulou, D.; Smail, I.; Wilson, G.; Willner, S. P.

    2004-09-01

    We present 3.6-24 μm Spitzer observations of an unbiased sample of nine luminous, dusty galaxies selected at 1200 μm by MAMBO on the IRAM 30 m telescope, a population akin to the well-known submillimeter or SCUBA galaxies (hereafter SMGs). Owing to the coarse resolution of submillimeter/millimeter cameras, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multiwavelength catalogs to show that the overlap between 24 and 1200 μm must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4 σ SMGs have >=4 σ counterparts at 1.4 GHz, while the fraction drops to 7/9 using all >=3 σ SMGs. We show that combining mid-infrared (MIR) and marginal (>=3 σ) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the MIR continuum emission for several sources, confirming Spitzer's potential to weed out active galaxies. We demonstrate the power of an S24μm/S8μm versus S8μm/S4.5μm color-color plot as a diagnostic for this purpose. However, we conclude that the majority (~75%) of SMGs have rest-frame mid/far-IR spectral energy distributions commensurate with obscured starbursts. Sensitive 24 μm observations are clearly a useful route to identify and characterize reliable counterparts to high-redshift far-IR-bright galaxies, complementing what is possible via deep radio imaging.

  9. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  10. Spatial Variations of PAH Properties in M17SW Revealed by Spitzer/IRS Spectral Mapping

    Science.gov (United States)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Onaka, T.; Nagayama, T.; Umemoto, T.; Minamidani, T.; Nishimura, A.; Matsuo, M.; Fujita, S.; Tsuda, Y.; Kohno, M.; Ohashi, S.

    2016-12-01

    We present Spitzer/IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Brγ and Nobeyama 45 m/FOREST 13CO (J = 1-0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2 μm. We find that the PAH emission features are bright in the region between the H ii region traced by Brγ and the molecular cloud traced by 13CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer/IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7 μm/PAH 11.3 μm varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0 μm, 12.7 μm, 13.5 μm, and 14.2 μm features to the PAH 11.3 μm feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  11. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  12. THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Brassington, N. J. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard A.; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Klein, C., E-mail: n.brassington@herts.ac.uk [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-05-15

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  13. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  14. An Enhanced Multiwavelength Photometric Catalog for the Spitzer Extragalactic Representative Volume Survey

    Science.gov (United States)

    Nyland, Kristina

    2017-01-01

    Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.

  15. Multi-pass spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, Jean-Louis [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Samartzis, Peter C., E-mail: sama@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Stamataki, Katerina [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Department of Chemistry, University of Crete, Voutes, 71003, Heraklion (Greece); Piel, Jean-Philippe [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Katsoprinakis, George E.; Papadakis, Vassilis [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Schimowski, Xavier [Sopralab, 7 rue du Moulin des Bruyeres, 92400 Courbevoie (France); Rakitzis, T. Peter [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece); Department of Physics, University of Crete, Voutes, 71003, Heraklion (Greece); Loppinet, Benoit [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, Vassilika Vouton 71110, Heraklion Crete (Greece)

    2014-03-31

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films.

  16. VIMOS-VLT and Spitzer observations of a radio galaxy at z=2.5

    NARCIS (Netherlands)

    Villar-Martin, M; Sanchez, SF; De Breuck, C; Peletier, R; Vernet, J; Rettura, A; Seymour, N; Humphrey, A; Stern, D; Alighieri, SD; Fosbury, R

    2006-01-01

    We present: (i) a kinematic and morphological study of the giant Ly alpha nebula associated with the radio galaxy MRC 2104-242 (z = 2.49) based on integral field spectroscopic Visible Multiobject Spectrograph (VIMOS) data from the Very Large Telescope (VLT), and (ii) a photometric study of the host

  17. Spectroscopic properties of chlorophyll f.

    Science.gov (United States)

    Li, Yaqiong; Cai, Zheng-Li; Chen, Min

    2013-09-26

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

  18. VizieR Online Data Catalog: Spitzer and WISE light curves of Neptune (Stauffer+, 2016)

    Science.gov (United States)

    Stauffer, J.; Marley, M. S.; Gizis, J. E.; Rebull, L.; Carey, S. J.; Krick, J.; Ingalls, J. G.; Lowrance, P.; Glaccum, W.; Kirkpatrick, J. D.; Simon, A. A.; Wong, M. H.

    2017-02-01

    Neptune was observed between UT 2016 February 21-23 in both of the 3.6μm (IRAC-1) and 4.5μm (IRAC-2) channels of the Infrared Array Camera (IRAC) on Spitzer. The measurements were part of Director's Discretionary Time Program 12125 (PI: Stauffer). The Astronomical Observation Requests (AORs) were made in IRAC's staring mode, where for each channel, the spacecraft is maneuvered so that the target is placed on the well-calibrated peak-up pixel and back-to-back frames taken for the total time of the AOR with no dithering. For each channel, the total duration of the AOR was set to cover a complete rotation of Neptune, or about 17.2hr. In channel 1 (3.6μm), frames with times of 100s were used (corresponding to 96.8s exposure times), resulting in 622 images (see table1); in channel 2 (4.5μm), a frametime of 30s was used (corresponding to 26.8s exposure times), resulting in 2018 images (see table2). The image files were dark-subtracted, linearized, flat-fielded, and calibrated using the S19.2 version of the IRAC pipeline. We had requested that the channel 2 observations be made immediately following the channel 1 observations, but a time-critical exoplanet transit observation was inserted between the two Neptune AORs, resulting in the channel 2 light curve beginning about 2.3 days after the start of the channel 1 observation. Flux densities were measured with aperture photometry on the Spitzer Basic Calibrated Data images. We converted aperture fluxes to magnitudes using the in-band flux densities of Vega: 278Jy (3.6μm) and 180Jy (4.5μm). The light curve data of Neptune measured with Spitzer/IRAC are provided in Tables 1 and 2. These are the first continuous Neptune light curves covering a full rotation at mid-IR wavelengths. WISE was launched on 2009 December 14 to survey the sky in four broad wavelength bands referred to as W1 (3.4μm), W2 (4.6μm), W3 (12μm), and W4 (22μm). Neptune has been observed at six different epochs in the currently available WISE and

  19. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    Science.gov (United States)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low

  20. Spectroscopic and photometric analysis of the early-type spectroscopic binary HD 161853 in the centre of an H II region

    CERN Document Server

    Gamen, R; Barbá, R H; Arias, J I; Apellániz, J Maíz; Walborn, N R; Sota, A; Alfaro, E J

    2015-01-01

    We study the O-type star HD 161853, which has been noted as a probable double-lined spectroscopic binary system. We secured high-resolution spectra of HD 161853 during the past nine years. We separated the two components in the system and measured their respective radial velocities for the first time. We confirm that HD 161853 is an $\\sim$1 Ma old binary system consisting of an O8 V star ($M_{\\rm A,RV} \\geq 22$ M$_\\odot$) and a B1--3 V star ($M_{\\rm B,RV} \\geq 7.2$ M$_\\odot$) at about 1.3 kpc. From the radial velocity curve, we measure an orbital period $P$ = 2.66765$\\pm$0.00001 d and an eccentricity $e$ = 0.121$\\pm$0.007. Its $V$-band light curve is constant within 0.014 mag and does not display eclipses, from which we impose a maximum orbital inclination $i=54$ deg. HD 161853 is probably associated with an H II region and a poorly investigated very young open cluster. In addition, we detect a compact emission region at 50 arcsec to HD 161853 in 22$\\mu$m-WISE and 24$\\mu$m-Spitzer images, which may be identif...

  1. The (w)hole survey: an unbiased sample study of transition disk candidates based on Spitzer catalogs

    CERN Document Server

    van der Marel, Nienke; van Terwisga, Sierk; Merin, Bruno; Herczeg, Gregory; Ligterink, Niels F W; van Dishoeck, Ewine F

    2016-01-01

    Understanding disk evolution and dissipation is essential for studies of planet formation. Transition disks, i.e., disks with large dust cavities and gaps, are promising candidates of active evolution. About two dozen SED-selected candidates have been confirmed to have dust cavities through millimeter interferometric imaging, but this sample is biased towards the brightest disks. The Spitzer surveys of nearby low-mass star forming regions have resulted in more than 4000 Young Stellar Objects (YSOs). Using color criteria we have selected a sample of ~150 candidates, and an additional 40 candidates and known transition disks from the literature. The Spitzer data were complemented by new observations at longer wavelengths, including new JCMT and APEX submillimeter photometry, and WISE and Herschel-PACS mid and far-infrared photometry. Furthermore, optical spectroscopy was obtained and stellar types were derived for 85% of the sample, including information from the literature. The SEDs were fit to a grid of RADMC...

  2. PROPER MOTIONS OF YOUNG STELLAR OUTFLOWS IN THE MID-INFRARED WITH SPITZER (IRAC). I. THE NGC 1333 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Raga, A. C. [Instituto de Ciencias Nucleares, UNAM, Ap. 70-543, 04510 D.F. (Mexico); Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Arce, H. G., E-mail: raga@nucleares.unam.mx, E-mail: alberto@ipac.caltech.edu, E-mail: carey@ipac.caltech.edu, E-mail: hector.arce@yale.edu [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2013-02-01

    We use two 4.5 {mu}m Spitzer (IRAC) maps of the NGC 1333 region taken over a {approx}7 yr interval to determine proper motions of its associated outflows. This is a first successful attempt at obtaining proper motions of stellars' outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8, and 10, we find proper motions of {approx}9-13 km s{sup -1}, which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of eight outflows, ranging from {approx}10 to 100 km s{sup -1}. The derived proper motions show that out of these eight outflows, three have tangential velocities {<=}20 km s{sup -1}. This result shows that a large fraction of the observed outflows have low intrinsic velocities and that the low proper motions are not merely a projection effect.

  3. Proper Motions of Young Stellar Outflows in the Mid-Infrared with Spitzer (IRAC). I. The NGC 1333 region

    CERN Document Server

    Raga, A C; Carey, S J; Arce, H G

    2012-01-01

    We use two 4.5micron Spitzer (IRAC) maps of the NGC 1333 region taken over approx. 7 yr interval to determine proper motions of its associated outflows. This is a first, successful attempt at obtaining proper motions of stellars outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8 and 10, we find proper motions of approx. 9-13 km/s, which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of 8 outflows, ranging from approx. 10 to 100 km/s. The derived proper motions show that out of these 8 outflows, 3 have tangential velocities less or equal to 20 km/s. This result shows that a large fraction of the observed outflows have low intrinsic velocities, and that the low proper motions are not merely a projection effect.

  4. SPITZER-IRAC SURVEY OF MOLECULAR JETS IN VELA-D

    Energy Technology Data Exchange (ETDEWEB)

    Giannini, T.; Lorenzetti, D.; Nisini, B.; Salama, A. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio (Italy); De Luca, M. [LERMA-LRA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC UCP, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Strafella, F.; Maiolo, B.; Maruccia, Y. [Dipartimento di Matematica e Fisica, Universita del Salento, CP 193, I-73100 Lecce (Italy); Elia, D. [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Marengo, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Massi, F.; Olmi, L. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-04-20

    We present a survey of H{sub 2} jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer-IRAC data between 3.6 {mu}m and 8.0 {mu}m. Our search has led to the identification of 15 jets (two new discoveries) and about 70 well-aligned knots within 1.2 deg{sup 2}. We compare the Infrared Array Camera (IRAC) maps with observations of the H{sub 2} 1-0 S(1) line at 2.12 {mu}m, with a Spitzer-MIPS map at 24 {mu}m and 70 {mu}m, and with a map of the dust continuum emission at 1.2 mm. From such a comparison, we find a tight association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the young stellar objects of VMR-D. In particular, we searched for all the sources of Class II or (preferentially) earlier which are located close to the jet center and aligned with it. Furthermore, the association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets, for which two alternative candidates are given. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 {mu}m, suggesting that they are very young protostars. Three of them are also associated with the most compact jets (projected length {approx}<0.1 pc). The exciting source spectral energy distributions (SEDs) have been constructed and modeled by means of all the available photometric data between 1.2 {mu}m and 1.2 mm. From SEDs fits, we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24]-[70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous

  5. The Physical Structure and Chemical Composition of Neptune's Atmosphere from Combined Herschel and Spitzer Spectral Observations

    Science.gov (United States)

    Orton, Glenn S.; Moreno, R.; Lellouch, E.; Fletcher, L. N.; Hartogh, P.; Feuchtgruber, H.; Jarchow, C.; Cavalie, T.; Lara, L.; Rengel, M.; Gonzalez, A.; Line, M.; Herschel HssO Key Project Team

    2010-10-01

    We report the analysis of thermal-infrared observations of Neptune's disk by experiments on the Spitzer and Herschel Space Telescopes. The Spitzer data were obtained by the IRS instrument at wavelengths between 5.2 and 21.5 microns at a spectral resolving power, R 70, and at wavelengths between 10 and 21.5 microns at R 600. The Herschel observations were made by the PACS instrument's integral field spectrometer between 51 and 220 microns at R 3000, within the framework of the Key Project, ``Water and Related Chemistry in the Solar System''. Our analysis is set in the context of lower-resolution spectra obtained by the ISO LWS and SWS spectrometers covering wavelengths between 28 and 185 microns and the Akari IRC spectrometer covering wavelengths between 5.8 and 13.3 microns at R 40, together with spatially resolved ground-based studies of thermal emission. Our results indicate that that global-mean tropospheric temperatures are lower than those derived from the Voyager radio-occultation experiment, and consistent with the ISO results. Preliminary results (Lellouch et al. 2010 Astron. & Astrophys. In press) indicate that the D/H ratio is 4.5±1.0 x 10-5, consistent with enrichment of deuterium over the protosolar value, and the stratospheric column of H2O is 2.1±0.5 x 1014 cm-2. The peak CH4 abundance in the stratosphere is orders of magnitude larger than if it were cold-trapped below the mean 54-Kelvin tropopause minimum temperature - but consistent with injection from Neptune's warmer south polar region. Good fits to a variety of other stratospheric emission features are obtained: CO, CH3, CO2, C2H2, C2H4, C2H6, C3H8, C4H2. It is also possible to obtain a better fit to a spectral region dominated by C2H6 emission by adding 50-100 ppt of C6H6.

  6. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Agol, E.; /Washington U., Seattle, Astron. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Cowan, Nicolas B.; /Washington U., Seattle, Astron. Dept.; Knutson, Heather A.; /UC, Berkeley, Astron. Dept.; Deming, Drake; /NASA, Goddard; Steffen, Jason H.; /Fermilab; Henry, Gregory W.; /Tennessee State U.; Charbonneau, David; /Harvard-Smithsonian Ctr. Astrophys.

    2010-07-01

    We present observations of six transits and six eclipses of the transiting planet system HD 189733 taken with the Spitzer Space Telescope IRAC camera at 8 microns, as well as a re-analysis of previously published data. We use several novel techniques in our data analysis, the most important of which is a new correction for the detector 'ramp' variation with a double-exponential function which performs better and is a better physical model for this detector variation. Our main scientific findings are: (1) an upper limit on the variability of the day-side planet flux of 2.7% (68% confidence); (2) the most precise set of transit times measured for a transiting planet, with an average accuracy of 3 seconds; (3) a lack of transit-timing variations, excluding the presence of second planets in this system above 20% of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the planet's phase variation, finding the night side is 64% as bright as the day side, as well as an upper limit on the night-side variability of 17% (68% confidence); (5) a better correction for stellar variability at 8 micron causing the phase function to peak 3.5 hours before secondary eclipse, confirming that the advection and radiation timescales are comparable at the 8 micron photosphere; (6) variation in the depth of transit, which possibly implies variations in the surface brightness of the portion of the star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit absorption measurements of planet atmospheres; (7) a measurement of the infrared limb-darkening of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of secondary eclipse of 69 seconds, which is mostly accounted for by a 31 second light travel time delay and 33 second delay due to the shift of ingress and egress by the planet hot spot; this confirms that the phase variation is due to an offset hot

  7. The Spitzer Survey of the Small Magellanic Cloud: Discovery of Embedded Protostars in the HII Region NGC 346

    CERN Document Server

    Simon, Joshua D; Whitney, Barbara A; Robitaille, Thomas P; Shah, Ronak Y; Makovoz, David; Stanimirovic, Snezana; Barba, Rodolfo H; Rubio, Monica

    2007-01-01

    We use Spitzer Space Telescope observations from the Spitzer Survey of the Small Magellanic Cloud (S3MC) to study the young stellar content of N66, the largest and brightest HII region in the SMC. In addition to large numbers of normal stars, we detect a significant population of bright, red infrared sources that we identify as likely to be young stellar objects (YSOs). We use spectral energy distribution (SED) fits to classify objects as ordinary (main sequence or red giant) stars, asymptotic giant branch stars, background galaxies, and YSOs. This represents the first large-scale attempt at blind source classification based on Spitzer SEDs in another galaxy. We firmly identify at least 61 YSOs, with another 50 probable YSOs; only one embedded protostar in the SMC was reported in the literature prior to the S3MC. We present color selection criteria that can be used to identify a relatively clean sample of YSOs with IRAC photometry. Our fitted SEDs indicate that the infrared-bright YSOs in N66 have stellar mas...

  8. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud AGB Stars

    CERN Document Server

    Blum, R D; Kemper, F; Ling, B; Volk, K

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer IRS SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near infrared - Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars were chosen from the luminous and red extreme "tip" of the color magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich "stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near infrared and mid infrared colors. One object in our sample, HV 915, a known post asymptotic giant branch star of the RV Tau type exhibits CO 2.3 micron band head emission consistent with previ...

  9. Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud ---polycyclic aromatic hydrocarbons at low metallicities

    CERN Document Server

    Matsuura, Mikako; Evans, T Lloyd; Volk, Kevin M; Hrivnak, Bruce J; Sloan, G C; Chu, You-Hua; Gruendl, Robert; Kraemer, Kathleen E; Peeters, Els; Szczerba, R; Wood, P R; Zijlstra, Albert A; Hony, S; Ita, Yoshifusa; Kamath, Devika; Lagadec, Eric; Parker, Quentin A; Reid, Warren A; Shimonishi, Takashi; Van Winckel, H; Woods, Paul M; Kemper, F; Meixner, Margaret; Otsuka, M; Sahai, R; Sargent, B A; Hora, J L; McDonald, Iain

    2014-01-01

    This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme. We found that five post-AGB stars showed a broad feature with a peak at 7.7 micron, that had not been classified before. Further, the 10--13 micron PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 micron rather than two distinct sharp peaks at 11.3 and 12.7 micron, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to PNe,...

  10. Spitzer Observations of Var Her 04: Possible Detection of Dust Formation in a Super-Outbursting TOAD

    CERN Document Server

    Ciardi, D R; Hoard, D W; Howell, S B; Van Belle, G T; Ciardi, David R.; Wachter, Stefanie; Howell, Steve B.; Belle, Gerard T. van

    2006-01-01

    We present four MIPS (24 \\micron) and two IRAC (3.6, 4.5, 5.8, and 8.0 \\micron) Spitzer observations of the newly discovered Tremendous Outburst Amplitude Dwarf nova (TOAD) Var Her 04 during decline from super-outburst. The four MIPS observations span 271 days and the two IRAC observations span 211 days. Along the line-of-sight to Var Her 04, there is a foreground M-star within 1\\arcsec of the variable; as a result, all of the Spitzer photometry presented in this paper is a blend of the foreground M-star and Var Her 04. We estimate the quiescent level of the TOAD to be $\\Delta V=4-5$ magnitudes below that of the M-star. Based upon the spectral energy distribution and the 2MASS colors, we find the M-star to be an M3.5V dwarf at a distance of 80-130 pc. Based upon its outburst amplitude and quiescent apparent magnitude, we estimate the distance to Var Her 04 to be 200-400 pc, suggesting that the line-of-sight foreground star is physically unrelated to the cataclysmic variable. All of the Spitzer photometry is c...

  11. The Hubble Deep Field North SCUBA Super-map IV - Characterizing submillimetre galaxies using deep Spitzer imaging

    CERN Document Server

    Pope, A; Dickinson, M; Chary, R R; Morrison, G; Borys, C; Sajina, A; Alexander, D M; Daddi, E; Frayer, D; MacDonald, E; Stern, D; Pope, Alexandra; Scott, Douglas; Dickinson, Mark; Chary, Ranga-Ram; Morrison, Glenn; Borys, Colin; Sajina, Anna; Alexander, David M.; Daddi, Emanuele; Frayer, David; Donald, Emily Mac; Stern, Daniel

    2006-01-01

    We present SEDs, Spitzer colours, and IR luminosities for 850 micron selected galaxies in the GOODS-N field. Using the deep Spitzer Legacy images and new data and reductions of the VLA-HDF radio data, we find statistically secure counterparts for 60 per cent (21/35) of our submm sample, and identify tentative counterparts for another 12 objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer. We find that in most cases the 850 micron emission is dominated by a single 24 micron source. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ULIRGs of the same luminosity and therefore appear to be cooler. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. Using 24 micron. 850 micron and 1.4 GHz observations, we fit templates that span the mid-IR through...

  12. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    CERN Document Server

    Bohlin, R C; Rieke, G H; Ardila, D; Carey, S; Deustua, S; Engelbracht, C; Ferguson, H C; Flanagan, K; Kalirai, J; Meixner, M; Noriega-Crespo, A; Su, K Y L; Tremblay, P -E

    2011-01-01

    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.

  13. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  14. The TNG EROs Spectroscopic Identification Survey (TESIS)

    CERN Document Server

    Saracco, P; Ceca, R D; Severgnini, P; Braito, V; Bender, R; Drory, N; Feulner, G; Hopp, U; Mannucci, F; Maraston, C

    2003-01-01

    We are carrying on a near-IR very low resolution spectroscopic follow-up in parallel with XMM-Newton observations of a complete sample of ~30 bright (K'<18.5) Extremely Red Objects (EROs) selected over an area of 360 arcmin^2 of the MUNICS survey. We here present the preliminary results of the spectroscopic and X-ray data analysis.

  15. Models of the Eta Corvi debris disk from the Keck Interferometer, Spitzer and Herschel

    CERN Document Server

    Lebreton, J; Bryden, G; Defrère, D; Mennesson, B; Millan-Gabet, R; Boccaletti, A

    2015-01-01

    Debris disks are signposts of analogues to small body populations of the Solar System, often however with much higher masses and dust production rates. The disk associated with the nearby star Eta Corvi is especially striking as it shows strong mid- and far-infrared excesses despite an age of ~1.4 Gyr. We undertake to construct a consistent model of the system able to explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectro-photometric data, as well as resolved Herschel images to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries a...

  16. Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82

    CERN Document Server

    Beirão, P; Appleton, P N; Groves, B; Armus, L; Förster-Schreiber, N M; Smith, J D; Charmandaris, V; Houck, J R

    2007-01-01

    We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH fe...

  17. AGB stars in the SMC: evolution and dust properties based on Spitzer observations

    CERN Document Server

    Dell'Agli, F; Ventura, P; Schneider, R; Di Criscienzo, M; Rossi, C

    2015-01-01

    We study the population of asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC) by means of full evolutionary models of stars of mass 1Msun < M < 8Msun, evolved through the thermally pulsing phase. The models also account for dust production in the circumstellar envelope. We compare Spitzer infrared colours with results from theoretical modelling. We show that ~75% of the AGB population of the SMC is composed by scarcely obscured objects, mainly stars of mass M < 2.5Msun at various metallicity, formed between 700 Myr and 5 Gyr ago; ~ 70% of these sources are oxygen--rich stars, while ~ 30% are C-stars. The sample of the most obscured AGB stars, accounting for ~ 25% of the total sample, is composed almost entirely by carbon stars. The distribution in the colour-colour ([3.6]-[4.5], [5.8]-[8.0]) and colour-magnitude ([3.6]-[8.0], [8.0]) diagrams of these C-rich objects, with a large infrared emission, traces an obscuration sequence, according to the amount of carbonaceous dust in the...

  18. Spitzer observations of acetylene bands in carbon-rich AGB stars in the Large Magellanic Cloud

    CERN Document Server

    Matsuura, M; Sloan, G C; Zijlstra, A A; Van Loon, J T; Groenewegen, M A T; Blommaert, J A D L; Cioni, M R L; Feast, M W; Habing, H J; Hony, S; Lagadec, E; Loup, C; Menzies, J W; Waters, L B F M; Whitelock, P A

    2006-01-01

    We investigate the molecular bands in carbon-rich AGB stars in the Large Magellanic Cloud (LMC), using the InfraRed Spectrograph (IRS) on board the Spitzer Space Telescope (SST) over the 5--38 micron range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 micron. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 micron C2H2 band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 micron band by circumstellar dust emission. This 14 micron band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2,column density, derived from the 13.7 micron band, shows a gas mass-loss rate in the range 3x10^-6 to 5x10^{-5} Msun yr-1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Addit...

  19. A new look at Spitzer primary transit observations of the exoplanet HD189733b

    CERN Document Server

    Morello, Giuseppe; Tinetti, Giovanna; Peres, Giovanni; Micela, Giuseppina; Howarth, Ian D

    2014-01-01

    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor $1.6$. This is a worthwhile t...

  20. Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grillmair, Carl J., E-mail: todorovk@phys.ethz.ch [Spitzer Science Center, California Institute of Technology, Mail Stop 220-6, Pasadena, CA 91125 (United States)

    2014-12-01

    We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare the planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.

  1. SECONDARY ECLIPSE PHOTOMETRY OF THE EXOPLANET WASP-5b WITH WARM SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Nathaniel J.; Knutson, Heather A.; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-08-20

    We present secondary eclipse photometry of the extrasolar planet WASP-5b taken in the 3.6 and 4.5 {mu}m bands with the Spitzer Space Telescope's Infrared Array Camera as part of the extended warm mission. By estimating the depth of the secondary eclipse in these two bands we can place constraints on the planet's atmospheric pressure-temperature profile and chemistry. We measure secondary eclipse depths of 0.197% {+-} 0.028% and 0.237% {+-} 0.024% in the 3.6 {mu}m and 4.5 {mu}m bands, respectively. For the case of a solar-composition atmosphere and chemistry in local thermal equilibrium, our observations are best matched by models showing a hot dayside and, depending on our choice of model, a weak thermal inversion or no inversion at all. We measure a mean offset from the predicted center of eclipse of 3.7 {+-} 1.8 minutes, corresponding to ecos {omega} = 0.0025 {+-} 0.0012 and consistent with a circular orbit. We conclude that the planet's orbit is unlikely to have been perturbed by interactions with another body in the system as claimed by Fukui et al.

  2. The Supernova Impostor Impostor SN 1961V: Spitzer Shows That Zwicky Was Right (Again)

    CERN Document Server

    Kochanek, C S; Stanek, K Z

    2010-01-01

    SN 1961V, one of Zwicky's defining Type V supernovae (SN), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable (LBV) star. The former case is suggested by its association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L_opt ~ 10^5 Lsun, than the L_opt ~ 3 10^6 Lsun progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as a L_IR ~ 3 10^6 Lsun mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest s...

  3. The Spitzer Survey of the Small Magellanic Cloud: FIR Emission and Cold Gas in the SMC

    CERN Document Server

    Leroy, A; Stanimirovic, S; Mizuno, N; Israel, F; Bot, C; Leroy, Adam; Bolatto, Alberto; Stanimirovic, Snezana; Mizuno, Norikazu; Israel, Frank; Bot, Caroline

    2006-01-01

    We present new far infrared maps of the Small Magellanic Cloud (SMC) at 24, 70, and 160 microns obtained as part of the Spitzer Survey of the Small Magellanic Cloud (S3MC,Bolatto et al. 2006). These maps cover most of the active star formation in the SMC Bar and the more quiescent Wing. We combine our maps with literature data to derive the dust surface density across the SMC. We find a total dust mass of Mdust = 3 10^5 Msun, implying a dust-to-hydrogen ratio over the region studied of log D/H = -2.86, or 1-to-700, which includes H_2. Assuming the dust to trace the total gas column, we derive H_2 surface densities across the SMC. We find a total H_2 mass M_H2 = 3.2 10^7 Msun in a distribution similar to that of the CO, but more extended. We compare profiles of CO and H_2 around six molecular peaks and find that on average H_2 is more extended than CO by a factor of \\sim 1.3. The implied CO-to-H_2 conversion factor over the whole SMC is XCO = 13 +/- 1 10^21 cm^-2 (K km/s)^-1. Over the volume occupied by CO we ...

  4. Spitzer SAGE survey of the Large Magellanic Cloud II : Evolved Stars and Infrared Color Magnitude Diagrams

    CERN Document Server

    Blum, R D; Olsen, K A; Frogel, J A; Werner, M; Meixner, M; Markwick-Kemper, F; Indebetouw, R; Whitney, B; Meade, M; Babler, B; Churchwell, E B; Gordon, K; Engelbracht, C W; Misselt, K; Vijh, U; Leitherer, C; Volk, K; Points, S; Reach, W; Hora, J L; Bernard, J P; Boulanger, F; Bracker, S; Cohen, M; Fukui, Y; Gallagher, J; Gorjian, V; Harris, J; Kelly, D; Kawamura, A; Latter, W B; Madden, S; Mizuno, A; Mizuno, N; Nota, A; Oey, M S; Onishi, T; Paladini, R; Panagia, N; Perez-Gonzalez, P; Shibai, H; Sato, S; Smith, L; Staveley-Smith, L; Tielens, A G G M; Ueta, T; Van Dyk, S D; Zaritsky, D

    2006-01-01

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 u...

  5. SPITZER-IRS spectral fitting of discs around binary post-AGB stars - Corrigendum

    CERN Document Server

    Gielen, C; Min, M; Waters, L B F M; Evans, T Lloyd; Matsuura, M; Deroo, P; Dominik, C; Reyniers, M; Zijlstra, A; Gordon, K D; Kemper, F; Indebetouw, R; Marengo, M; Meixner, M; Sloan, G C; Tielens, A G G M; Woods, P M; 10.1051/0004-6361/200912982e

    2010-01-01

    Recently, we have discovered an error in our Monte-Carlo spectral fitting routine, more specifically where the errors on the fluxes were rescaled to get a reduced chi2 of 1. The rescaled errors were too big, resulting in too wide a range of good fits in our 100 step Monte-Carlo routine. This problem affects Figs. 7-9 and Tables A.1, A.2 in Gielen et al. (2008), Table 3 in Gielen et al. (2009a), and Table 4 in Gielen et al. (2009b). We corrected for this error and present the new values and errors in the tables below. The new values and errors nearly all fall within the old error range. Our best chi2 values and overall former scientific results are not affected. With these new errors some possible new trends in the dust parameters might be observed. These will be discussed in an upcoming paper where we extend the sample presented in Gielen et al. (2008) with newly obtained SPITZER-IRS data.

  6. A Spitzer Space Telescope survey of extreme Asymptotic Giant Branch stars in M32

    CERN Document Server

    Jones, O C; Rich, R M; Kemper, F; Boyer, M L; Zijlstra, A A; Bendo, G J

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcmin of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dust-producing stars on the asymptotic giant branch (AGB) and extend to approximately 3 mag below the AGB tip. We detect for the first time a sizeable population of `extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be $7.5 \\times 10^{-7}$ ${\\rm M}_{\\odot} \\, {\\rm yr}^{-1}$, corresponding to a gas mass-loss rate of $1.5 \\times 10^{-4}$ ${\\rm M}_{\\odot} \\, {\\rm yr}^{-1}$. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 Gyr a...

  7. Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf

    CERN Document Server

    Luhman, K L; D'Alessio, Paola; Calvet, Nuria; McLeod, Kim K; Bohac, J; Forrest, William J; Hartmann, Lee; Sargent, B; Watson, Dan M

    2007-01-01

    We present observations of a circumstellar disk that is inclined close to edge-on around a young brown dwarf in the Taurus star-forming region. Using data obtained with SpeX at the NASA Infrared Telescope Facility, we find that the slope of the 0.8-2.5 um spectrum of the brown dwarf 2MASS J04381486+2611399 cannot be reproduced with a photosphere reddened by normal extinction. Instead, the slope is consistent with scattered light, indicating that circumstellar material is occulting the brown dwarf. By combining the SpeX data with mid-IR photometry and spectroscopy from the Spitzer Space Telescope and previously published millimeter data from Scholz and coworkers, we construct the spectral energy distribution for 2MASS J04381486+2611399 and model it in terms of a young brown dwarf surrounded by an irradiated accretion disk. The presence of both silicate absorption at 10 um and silicate emission at 11 um constrains the inclination of the disk to be ~70 deg, i.e. ~20 deg from edge-on. Additional evidence of the h...

  8. The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC

    CERN Document Server

    Ravandi, Masoud Rafiei; Ashby, Matthew L N; Laine, Seppo; Davidge, T J; Zhang, Jenna; Bianchi, Luciana; Babul, Arif; Chapman, S C

    2016-01-01

    We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 hours of observations by Spitzer-IRAC at 3.6 and 4.5 \\mu m. This survey extends previous observations to the outer disc and halo, covering total lengths of 4$.\\!\\!^\\circ$4 and 6$.\\!\\!^\\circ$6 along the minor and major axes, respectively. We have produced surface brightness profiles by combining the integrated light from background-corrected maps with stellar counts from a new catalogue of point sources. Using auxiliary catalogues we have carried out a statistical analysis in colour-magnitude space to discriminate M31 objects from foreground Milky Way stars and background galaxies. The catalogue includes 426,529 sources, of which 66 per cent have been assigned probability values to identify M31 objects with magnitude depths of [3.6]$\\,=\\,$19.0$\\,\\pm\\,$0.2, [4.5]$\\,=\\,$18.7$\\,\\pm\\,$0.2. We discuss applications of our data for constraining the stellar mass and characterising point sources in the outer radii.

  9. Revisiting Spitzer transit observations with Independent Component Analysis: new results for the GJ436 system

    CERN Document Server

    Morello, G; Tinetti, G; Howarth, I D; Micela, G; Allard, F

    2015-01-01

    We analyzed four Spitzer/IRAC observations at 3.6 and 4.5 {\\mu}m of the primary transit of the exoplanet GJ436b, by using blind source separation techniques. These observations are important to investigate the atmospheric composition of the planet GJ436b. Previous analyses claimed strong inter-epoch variations of the transit parameters due to stellar variability, casting doubts on the possibility to extract conclusively an atmospheric signal; those analyses also reported discrepant results, hence the necessity of this reanalysis. The method we used has been proposed in Morello et al. (2014) to analyze 3.6 {\\mu}m transit light-curves of the hot Jupiter HD189733b; it performes an Independent Component Analysis (ICA) on a set of pixel-light-curves, i.e. time series read by individual pixels, from the same photometric observation. Our method only assumes the independence of instrumental and astrophysical signals, and therefore guarantees a higher degree of objectivity compared to parametric detrending techniques ...

  10. The Spitzer View of Low-Metallicity Star Formation: I. Haro 3

    CERN Document Server

    Hunt, L K; Sauvage, M; Izotov, Yu I

    2006-01-01

    We present Spitzer observations of the blue compact dwarf galaxy (BCD) Haro 3, with an oxygen abundance of 12+log(O/H)=8.32. These data are part of a larger study of star formation and dust in low-metallicity environments.The IRS spectrum of Haro 3 shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with high equivalent widths. Gaseous nebular fine-structure lines are also seen. Despite the absence of optical high-excitation lines, a faint high-ionization [O IV] line at 25.89 micron indicates the presence of radiation as hard as 54.9 eV. A CLOUDY model suggests that the MIR lines originate in two regions: a low-extinction optically-emitting region, and an optically invisible one with much higher extinction. The morphology of Haro 3 changes with wavelength. IRAC 4.5 micron traces extended stellar photospheric emission from the body of the galaxy and hot dust continuum coming mainly from star-forming regions; 8 micron probes extended PAH emission coming mainly from the general ISM; MIPS 24 and 7...

  11. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-Cryogenic Spitzer

    CERN Document Server

    Ingalls, James G; Carey, S J; Stauffer, John R; Lawrence, Patrick J; Grillmair, Carl J; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M; Morello, G; Stevenson, Kevin B; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-01-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5{\\mu}m dataset, consisting of 10 observations of the XO-3 b system during secondary eclipse, using 7 different techniques for removing correlated noise. We find that, on average, for a given technique the eclipse depth estimate is repeatable from epoch to epoch to within 150 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 2 of the photon noise limit. Nearly all methods accurately assess their own errors: for these methods the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10-epoch sample. To assess the accuracy of the techniques as well as clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated datas...

  12. A Spitzer high resolution mid-infrared spectral atlas of starburst galaxies

    CERN Document Server

    Bernard-Salas, J; Charmandaris, V; Lebouteiller, V; Farrah, D; Devost, D; Brandl, B R; Wu, Yanling; Armus, L; Hao, L; Sloan, G C; Weedman, D; Houck, J R

    2009-01-01

    We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six out of the eight objects with a known AGN component show emission of the high excitation [NeV] line. This line is also seen in one other object (NGC4194) with, a priori, no known AGN component. In addition to strong polycyclic aromatic hydrocarbon emission features in this wavelength range (11.3, 12.7, 16.4um), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2um, and a previously unreported emission feature at 10.75um. An unidentified absorption feature at 13.7um is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the HI 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams ch...

  13. Local Luminous Infrared Galaxies: Spatially resolved mid-infrared observations with Spitzer/IRS

    CERN Document Server

    Alonso-Herrero, Almudena; Rieke, George H; Colina, Luis; Engelbracht, Charles W; Perez-Gonzalez, Pablo; Diaz-Santos, Tanio; Smith, J D T

    2009-01-01

    Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The I...

  14. Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 micron Imaging

    CERN Document Server

    Gordon, Karl D; Fadda, Dario; Stansberry, John; Wachter, Stefanie; Frayer, Dave T; Rieke, George; Noriega-Crespo, Alberto; Latter, William B; Young, Erick; Neugebauer, Gerry; Balog, Zoltan; Dole, Herve; Egami, Eiichi; Hines, Dean; Kelly, Doug; Marleau, Francine; Misselt, Karl; Morrison, Jane; Perez-Gonzalez, Pablo; Rho, Jeonghee; Wheaton, Wm A

    2007-01-01

    The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 micron coarse- and fine-scale imaging modes are presented based on over 2.5 years of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long-term detector transients. Point spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse-scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^-1, and with spectral types from B to M. The coarse-scale calibration is 702 +/- 35 MJy sr^-1 MIPS70^-1 (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 micron coarse- and fine-sca...

  15. Observations of V592 Cassiopeiae with the Spitzer Space Telescope - Dust in the Mid-Infrared

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Howell, Steve B; Brinkworth, Carolyn S; Ciardi, David R; Szkody, Paula; Belle, Kunegunda; Froning, Cynthia; van Belle, Gerard

    2008-01-01

    We present the ultraviolet-optical-infrared spectral energy distribution of the low inclination novalike cataclysmic variable V592 Cassiopeiae, including new mid-infrared observations from 3.5-24 microns obtained with the Spitzer Space Telescope. At wavelengths shortward of 8 microns, the spectral energy distribution of V592 Cas is dominated by the steady state accretion disk, but there is flux density in excess of the summed stellar components and accretion disk at longer wavelengths. Reproducing the observed spectral energy distribution from ultraviolet to mid-infrared wavelengths can be accomplished by including a circumbinary disk composed of cool dust, with a maximum inner edge temperature of ~500 K. The total mass of circumbinary dust in V592 Cas (~10^21 g) is similar to that found from recent studies of infrared excess in magnetic CVs, and is too small to have a significant effect on the long-term secular evolution of the cataclysmic variable. The existence of circumbinary dust in V592 Cas is possibly ...

  16. Herschel and Spitzer Observations of Slowly Rotating, Nearby Isolated Neutron Stars

    Science.gov (United States)

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 μm) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ~10% to ~20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  17. Herschel and Spitzer observations of slowly rotating, nearby isolated neutron stars

    CERN Document Server

    Posselt, B; Popov, S B; Wachter, S

    2014-01-01

    Supernova fallback disks around neutron stars have been discussed to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are most promising to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 $\\mu$m, 160 $\\mu$m) and Spitzer IRAC (3.6 $\\mu$m, 4.5 $\\mu$m) observations of eight slowly rotating ($P\\approx 3 - 11$ s) nearby ($5\\sigma$) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33% and 3% that, respectively, none, one, or both Herschel PACS 160 $\\mu$m detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 $\\mu$m emission is indeed related to cold (10 K to 22 K) dust around the neutron stars, this dust is absorbing and re-emitting $\\sim 10$% to $\\sim 20$% of the neutron stars' X-rays...

  18. A Spitzer/IRAC Characterization of Galactic AGB and RSG Stars

    CERN Document Server

    Reiter, Megan; Hora, Joseph L; Fazio, Giovanni G

    2015-01-01

    We present new Spitzer/IRAC observations of 55 dusty Long Period Variables (LPVs, 48 AGB and 6 RSG stars) in the Galaxy that have different chemistry, variability type, and mass-loss rate. O-rich AGB stars (including intrinsic S-type) tend to have redder [3.6]-[8.0] colors than carbon stars for a given [3.6]-[4.5] color due to silicate features increasing the flux in the 8.0 {\\mu}m IRAC band. For colors including the 5.8 {\\mu}m band, carbon stars separate into two distinct sequences, likely due to a variable photospheric C$_3$ feature that is only visible in relatively unobscured, low mass-loss rate sources. Semiregular variables tend to have smaller IR excess in [3.6]-[8.0] color than Miras, consistent with the hypothesis that semiregular variables lose mass discontinuously. Miras have redder colors for longer periods while semiregular variables do not. Galactic AGB stars follow the period-luminosity sequences found for the Magellanic Clouds. Mira variables fall along the fundamental pulsation sequence, whil...

  19. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    CERN Document Server

    Gielen, C; Min, M; Waters, L B F M; Evans, T Lloyd

    2008-01-01

    Aims: We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust species. This allows for the identification of the carriers of the different emission bands. Our fits also constrain the physical properties of different dust species and grain sizes responsible for the observed emission features. Results: In all stars the dust is oxygen-rich: amorphous and crystalline silicate dust species prevail and no features of a carbon-rich component can be found, the exception being EPLyr, where a mixed chemistry of both oxygen- and carbon-rich species is found. Our full spectral fitting indicates a high degree of dust grain processing. The mineralogy of our sample stars shows that the dust is constituted of irregularly shaped and relatively large grains, with typical grain sizes larger tha...

  20. A Spitzer-IRS Detection of Crystalline Silicates in a Protostellar Envelope

    CERN Document Server

    Poteet, Charles A; Watson, Dan M; Calvet, Nuria; Remming, Ian S; McClure, Melissa K; Sargent, Benjamin A; Fischer, William J; Furlan, Elise; Allen, Lori E; Bjorkman, Jon E; Hartmann, Lee; Muzerolle, James; Tobin, John J; Ali, Babar

    2011-01-01

    We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on the broad 9.7 and 18 micron amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite. Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line-of-sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (< 0.02-0.05). W...

  1. Polycyclic Aromatic Hydrocarbon emission in Spitzer/IRS maps I: Catalog and simple diagnostics

    CERN Document Server

    Stock, D J; Moya, L G V; Otaguro, J N; Sorkhou, S; Allamandola, L J; Tielens, A G G M; Peeters, E

    2016-01-01

    We present a sample of resolved galactic HII regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph (IRS) in spectral mapping mode between the wavelengths of 5--15 $\\mu$m. For each object we have spectral maps at a spatial resolution of $\\sim$4" in which we have measured all of the mid-infrared emission and absorption features. These include the PAH emission bands, primarily at 6.2, 7.7, 8.6, 11.2 and 12.7 $\\mu$m, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 $\\mu$m. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups, the first comprising the HII regions and the second the reflection nebulae (RNe). Three sources, the reflection nebu...

  2. Spatial variations of PAH properties in M17SW revealed by Spitzer/IRS spectral mapping

    CERN Document Server

    Yamagishi, M; Ishihara, D; Oyabu, S; Suzuki, T; Onaka, T; Nagayama, T; Umemoto, T; Minamidani, T; Nishimura, A; Matsuo, M; Fujita, S; Tsuda, Y; Kohno, M; Ohashi, S

    2016-01-01

    We present $Spitzer$/IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br$\\gamma$ and Nobeyama 45-m/FOREST $^{13}$CO ($J$=1--0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2 $\\mu$m. We find that the PAH emission features are bright in the region between the HII region traced by Br$\\gamma$ and the molecular cloud traced by $^{13}$CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially-resolved maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7 $\\mu$m/PAH 11.3 $\\mu$m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the ionization degree of PAHs is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find tha...

  3. Spitzer Observations of M83 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, R H; Colgan, S W J; Dufour, R J; Ray, K L; Erickson, E F; Haas, M R; Pauldrach, A W A; Citron, R I; Rubin, Robert H.; Simpson, Janet P.; Colgan, Sean W.J.; Dufour, Reginald J.; Ray, Katherine L.; Erickson, Edwin F.; Haas, Michael R.; Pauldrach, Adalbert W.A.; Citron, Robert I.

    2007-01-01

    We have undertaken a program to observe emission lines of SIV 10.5, NeII 12.8, NeIII 15.6, & SIII 18.7 um in a number of extragalactic HII regions with the Spitzer Space Telescope. We report our results for the nearly face-on spiral galaxy M83. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph in the short wavelength, high dispersion configuration. The above set of 4 lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne and S for HII regions, Ne/S ~ (Ne+ + Ne++)/(S++ + S3+). Our findings of ratios that exceed the benchmark Orion value are more likely due to other effects than a true gradient in Ne/S. Both Ne and S are primary elements produced in alpha- chain...

  4. Spitzer Observations of M33 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, Robert H; Colgan, Sean W J; Dufour, Reginald J; Brunner, Gregory; McNabb, Ian A; Pauldrach, Adalbert W A; Erickson, Edwin F; Haas, Michael R; Citron, Robert I

    2008-01-01

    We have observed emission lines of [S IV] 10.51, H(7-6) 12.37, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71 um in a number of extragalactic H II regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the local group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph with the short wavelength, high resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) for H II regions, we can estimate the Ne/H, S/H, and Ne/S ratios. We find from linear least-squares fits that ...

  5. Morphological Parameters of Spitzer Survey of Stellar Structure in Galaxies (S4G)

    CERN Document Server

    Holwerda, B W; Comeron, S; Meidt, S; Sheth, K; Laine, S; Hinz, J L; Regan, M W; Gil-de-Paz, A; Menendez-Delmestre, K; Seibert, M; Kim, T; Mizusawa, T; Laurikainen, E; Salo, H; Laine, J; Gadotti, D A; Zaritsky, D; Erroz-Ferrer, S; Ho, L C; Knapen, J H; Athanassoula, E; Bosma, A; Pirzkal, N

    2013-01-01

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), Asymmetry (A), Smoothness (S), the Gini index (G), relative contribution of the brightest pixels to the second order moment of the flux (M20), ellipticity (E), and the Gini index of the second order moment (GM) have all been applied to morphologically classify galaxies at various wavelengths. Here we present a catalog of these parameters for the Spitzer Survey of Stellar Structure in Galaxies (S4G), a volume-limited near-infrared imaging survey of nearby galaxies using the 3.6 and 4.5 micron channels of the IRAC camera. Our goal is to provide a reference catalog of near-infrared quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies -those typically found on the Hubble tuning fork- lie in this parameter space and show that there is a tight relation between Concentra...

  6. Spitzer Space Telescope Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418

    CERN Document Server

    Vazquez, Billy; Richmond, Michael; Robinson, Andrew; Axon, David J; Horne, Keith; Almeyda, Triana; Fausnaugh, Michael; Peterson, Bradley M; Bottorff, Mark; Gallimore, Jack; Eltizur, Moshe; Netzer, Hagai; Storchi-Bergmann, Thaisa; Marconi, Alessandro; Capetti, Alessandro; Batcheldor, Dan; Buchanan, Catherine; Stirpe, Giovanna; Kishimoto, Makoto; Packham, Christopher; Perez, Enrique; Tadhunter, Clive; Upton, John; Estrada-Carpenter, Vicente

    2015-01-01

    We present results from a fifteen-month campaign of high-cadence (~ 3 days) mid-infrared Spitzer and optical (B and V ) monitoring of the Seyfert 1 galaxy NGC 6418, with the objective of determining the characteristic size of the dusty torus in this active galactic nucleus (AGN). We find that the 3.6 $\\mu$m and 4.5 $\\mu$m flux variations lag behind those of the optical continuum by $37.2^{+2.4}_{-2.2}$ days and $47.1^{+3.1}_{-3.1}$ days, respectively. We report a cross-correlation time lag between the 4.5 $\\mu$m and 3.6 $\\mu$m flux of $13.9^{+0.5}_{-0.1}$ days. The lags indicate that the dust emitting at 3.6 $\\mu$m and 4.5 $\\mu$m is located at a distance of approximately 1 light-month (~ 0.03 pc) from the source of the AGN UV-optical continuum. The reverberation radii are consistent with the inferred lower limit to the sublimation radius for pure graphite grains at 1800 K, but smaller by a factor of ~ 2 than the corresponding lower limit for silicate grains; this is similar to what has been found for near-inf...

  7. Spitzer, Near-Infrared, and Submillimeter Imaging of the Relatively Sparse Young Cluster, Lynds 988e

    CERN Document Server

    Allen, Thomas S; Gutermuth, Robert A; Megeath, S Thomas; Adams, Joseph D; Herter, Terry L; Williams, Jonathan P; Goetz-Bixby, Jennifer A; Allen, Lori E; Myers, Philip C

    2007-01-01

    We present {\\it Spitzer} images of the relatively sparse, low luminosity young cluster L988e, as well as complementary near-infrared (NIR) and submillimeter images of the region. The cluster is asymmetric, with the western region of the cluster embedded within the molecular cloud, and the slightly less dense eastern region to the east of, and on the edge of, the molecular cloud. With these data, as well as with extant H$\\alpha$ data of stars primarily found in the eastern region of the cluster, and a molecular $^{13}$CO gas emission map of the entire region, we investigate the distribution of forming young stars with respect to the cloud material, concentrating particularly on the differences and similarities between the exposed and embedded regions of the cluster. We also compare star formation in this region to that in denser, more luminous and more massive clusters already investigated in our comprehensive multi-wavelength study of young clusters within 1 kpc of the Sun.

  8. Spitzer/IRS Observations of the Redshift 3.91 quasar APM 08279+5255

    CERN Document Server

    Soifer, B T; Brandl, B R; Armus, L; Appleton, P N; Burgdorf, M J; Devost, D; Herter, T; Higdon, S J U; Higdon, J L; Houck, J R; Lawrence, C R; Morris, P W; Teplitz, H I; Uchida, K I; Van Cleve, J; Weedman, D

    2004-01-01

    The Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope (SST) has been used to obtain low and moderate resolution spectra of the dust and gas-rich quasar APM08279+5255 (z=3.91). Broad Paschen $\\alpha$ and $\\beta$ recombination lines of hydrogen were detected at wavelengths of 9.235 and 6.315microns, as well as a strong, red continuum that is a smooth power law over the observed (rest frame) wavelength range 5.3-35microns (1.08 - 7.1microns). The observed P$\\alpha$/P$\\beta$ line flux ratio of 1.05$\\pm$0.2 is far from the case B value of ~2 and simple models of high density, high optical depth ionized gas regions (~1.8). This deviation is opposite in sense to the expected effect of reddening. No evidence is found in the spectrum for either the 3.3micron or 6.2micron emission features usually attributed to aromatic hydrocarbons in gas rich galaxies in the local Universe. This is consistent with the high luminosity AGN nature of APM08279+5255.

  9. The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy

    CERN Document Server

    Brandl, B R; Spoon, H W W; Devost, D; Sloan, G C; Guilles, S; Wu, Y; Houck, J R; Armus, L; Weedman, D W; Charmandaris, V; Appleton, P N; Soifer, B T; Hao, L; Marshall, J A; Higdon, S J; Herter, T L

    2006-01-01

    We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The silicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correla...

  10. Silicate Emission in the Spitzer IRS spectrum of FSC 10214+4724

    CERN Document Server

    Teplitz, H I; Charmandaris, V; Eisenhardt, P R M; Hao, L; Herter, T; Higdon, S; Houck, J R; Lacy, M; Lawrence, C R; Marshall, J A; Soifer, B T; Spoon, H; Wu, Y

    2006-01-01

    We present the first MIR spectrum of the z=2.2856 ultraluminous, infrared galaxy FSC 10214+4724, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope. The spectrum spans a rest wavelength range of 2.3-11.5 microns, covering a number of key diagnostic emission and absorption features. The most prominent feature in the IRS spectrum is the silicate emission at rest-frame 10 microns. We also detect an unresolved emission line at a rest wavelength of 7.65 microns which we identify with [NeVI], and a slightly resolved feature at 5.6 microns identified as a blend of [Mg VII] and [Mg V]. There are no strong PAH emission features in the FSC 10214+4724 spectrum. We place a limit of 0.1 micron on the equivalent width of 6.2 micron PAH emission but see no evidence of a corresponding 7.7 micron feature. Semi-empirical fits to the spectral energy distribution suggest about 45% of the bolometric luminosity arises from cold 50 K dust, half arises from warm (190 K) dust, and the remainder, 5%, originate...

  11. Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High Redshift IR Luminous Galaxies

    CERN Document Server

    Teplitz, H I; Armus, L; Chary, R; Marshall, J A; Colbert, J W; Frayer, D T; Pope, A; Blain, A; Spoon, H; Charmandaris, V; Scott, D

    2007-01-01

    The study of the dominant population of high redshift IR-luminous galaxies (10^11 - 10^12 Lsun at 1Spitzer Space Telescope. We targeted two faint (f24~0.15 mJy) sources in the Southern GOODS field at z=1.09 and z=2.69. Spectra of the lower redshift target were taken in the observed-frame 8--21 micron range, while the spectrum of the higher redshift target covered 21--37 microns. We also present the spectra of two secondary sources within the slit. We detect strong PAH emission in all four targets, and compare the spectra to those of local galaxies observed by the IRS. The z=1.09 source appears to be a typical, star-formation dominated IR-luminous galaxy, while the z=2.69 source is a composite source with strong star formation and a prominent AGN. The IRAC colors of this source show no evidence of rest-frame near-infrared stellar photospheric...

  12. 16 micron Imaging around the Hubble Deep Field North with the Spitzer IRS

    CERN Document Server

    Teplitz, H I; Chary, R; Colbert, J W; Armus, L; Weedman, D

    2005-01-01

    We present a pilot study of 16 micron imaging within the GOODS northern field. Observations were obtained using the PeakUp imaging capability of the Spitzer IRS. We survey 35 square arcminutes to an average 3 sigma depth of 0.075 mJy and detect 149 sources. The survey partially overlaps the area imaged at 15 microns by ISO, and we demonstrate that our photometry and galaxy-number counts are consistent with their measurements. We infer the total infrared luminosity of 16 micron detections using a comparison to local templates and find a wide range of L_IR} from ~10^9 to 10^{12} L_sun. Approximately one fifth of the detected sources have counterparts in the Chandra 2 Msec catalog, and we show that the hard band (2-8 keV) detected sources are likely to have strong AGN contributions to the X-ray flux. The ultradeep sensitivity of Chandra implies some X-ray detections may be purely starbursting objects. We examine the 16 to 24 micron flux ratio and conclude that it shows evidence for the detection of redshifted PA...

  13. Deep JHKs and Spitzer Imaging of Four Isolated Molecular Cloud Cores

    CERN Document Server

    Chapman, Nicholas L

    2009-01-01

    We present observations in eight wavebands from 1.25-24 microns of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the YSO population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded young stellar objects (YSOs). L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7x10^-5 to 5x10^-4 solar luminosities for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law towards each background star. These measurements are averaged spatially, to create chi-squared maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the chi-squared maps we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroy...

  14. Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with Spitzer

    CERN Document Server

    Sonnentrucker, P; Gerakines, P A; Bergin, E A; Melnick, G J; Forrest, W J; Pipher, J L; Whittet, D C B

    2007-01-01

    We report the first fully sampled maps of the distribution of interstellar CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron silicate feature, toward the star-forming region Cepheus A East with the IRS instrument onboard the Spitzer Space Telescope. We find that the column density distributions for these solid state features all peak at, and are distributed around, the location of HW2, the protostar believed to power one of the outflows observed in this star-forming region. A correlation between the column density distributions of CO2 and water ice with that of total hydrogen indicates that the solid state features we mapped mostly arise from the same molecular clumps along the probed sight lines. We therefore derive average CO2 ice and water ice abundances with respect to the total hydrogen column density of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances for both ices are relatively constant over the mapped region exhibiting both ice absorptions. The ...

  15. A dozen type II-P supernovae seen with the eyes of Spitzer

    CERN Document Server

    Szalai, T

    2012-01-01

    Core-collapse supernovae (CC SNe), especially those of type II-plateau (II-P), are thought to be important contributors to cosmic dust production. The most obvious indicator of the presence of newly-formed and/or pre-existing dust is the time-dependent mid-infrared (MIR) excess coming from the environment of SNe. Our goal was to collect publicly available, previously unpublished measurements on type II-P (or peculiar IIP) SNe from the Spitzer database. The temporal changes of the observed fluxes may be indicative of the underlying supernova, while spectral energy distribution (SED) fitting to the fluxes in different IRAC channels may reveal the physical parameters of the mid-IR radiation, presumably due to warm dust. IRS spectra were extracted and calibrated with SPICE, while photometric SEDs were assembled using IRAF and MOPEX. Calculated SEDs from observed fluxes were fit with simple dust models to get basic information on the dust presumed as the source of MIR radiation. We found twelve SNe satisfying the ...

  16. Spitzer observations of a gravitationally lensed quasar, QSO 2237+0305

    CERN Document Server

    Agol, Eric; Gorjian, Varoujan; Kimball, Amy; 10.1088/0004-637X/697/2/1010

    2009-01-01

    The four-image gravitationally lensed quasar QSO 2237+0305 is microlensed by stars in the lens galaxy. The amplitude of microlensing variability can be used to infer the relative size of the quasar as a function of wavelength; this provides a test of quasar models. Toward this end, we present Spitzer Space Telescope Infrared Spectrograph and Infrared Array Camera (IRAC) observations of QSO 2237+0305, finding the following. (1) The infrared (IR) spectral energy distribution (SED) is similar to that of other bright radio-quiet quasars, contrary to an earlier claim. (2) A dusty torus model with a small opening angle fits the overall shape of the IR SED well, but the quantitative agreement is poor due to an offset in wavelength of the silicate feature. (3) The flux ratios of the four lensed images can be derived from the IRAC data despite being unresolved. We find that the near-IR fluxes are increasingly affected by microlensing toward shorter wavelengths. (4) The wavelength dependence of the IRAC flux ratios is ...

  17. Clustering of the IR Background Light with Spitzer: Contribution from Resolved Sources

    CERN Document Server

    Sullivan, I; Chary, R R; Bock, J J; Brodwin, M; Brown, M J I; Dey, A; Dickinson, M; Eisenhardt, P; Ferguson, H C; Giavalisco, M; Keating, B; Lange, A; Mobasher, B; Reach, W T; Stern, D; Wright, E L; Sullivan, Ian; Cooray, Asantha; Chary, Ranga-Ram; Bock, James J.; Brodwin, Mark; Brown, Michael J. I.; Dey, Arjun; Dickinson, Mark; Eisenhardt, Peter; Ferguson, Henry C.; Giavalisco, Mauro; Keating, Brian; Lange, Andrew; Mobasher, Bahram; Reach, William T.; Stern, Daniel; Wright, Edward L.

    2006-01-01

    We describe the angular power spectrum of resolved sources at 3.6 microns (L-band) in Spitzer imaging data of the GOODS HDF-N, the GOODS CDF-S, and the NDWFS Bootes field in several source magnitude bins. We also measure angular power spectra of resolved sources in the Bootes field at K_S and J-bands using ground-based IR imaging data. In the three bands, J, K_S, and L, we detect the clustering of galaxies on top of the shot-noise power spectrum at multipoles between ell ~ 10^2 and 10^5. The angular power spectra range from the large, linear scales to small, non-linear scales of galaxy clustering, and in some magnitude ranges, show departure from a power-law clustering spectrum. We consider a halo model to describe clustering measurements and to establish the halo occup ation number parameters of IR bright galaxies at redshifts around one. We also extend our clustering results and completeness-corrected faint source number counts in GOODS fields to understand the underlying nature of unresolved sources respon...

  18. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    CERN Document Server

    Lelli, Federico; Schombert, James M

    2016-01-01

    We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (~5 dex), and surface brightnesses (~4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass-HI mass relation and the stellar radius-HI radius relation have significant intrinsic scatter, while the HI mass-radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic-to-observed velocity (Vbar/Vobs) for different characteristic radii and values of the stellar mass-to-light ratio (M/L) at [3.6]. Assuming M/L=0.5 Msun/Lsun (as suggested by stellar population models) we find that (i) the gas fraction linearly correlates with total luminosity, (ii) the transition from star-dominated to gas-dominated galaxies roughly correspond...

  19. Do individual Spitzer young stellar object candidates enclose multiple UKIDSS sources?

    CERN Document Server

    Morales, Esteban F E

    2016-01-01

    We analyze near-infrared UKIDSS observations of a sample of 8325 objects taken from a catalog of intrinsically red sources in the Galactic plane selected in the Spitzer-GLIMPSE survey. Given the differences in angular resolution (factor >2 better in UKIDSS), our aim is to investigate whether there are multiple UKIDSS sources that might all contribute to the GLIMPSE flux, or there is only one dominant UKIDSS counterpart. We then study possible corrections to estimates of the SFR based on counts of GLIMPSE young stellar objects (YSOs). This represents an exploratory work towards the construction of a hierarchical YSO catalog. After performing PSF fitting photometry in the UKIDSS data, we implemented a technique to automatically recognize the dominant UKIDSS sources by evaluating their match with the spectral energy distribution (SED) of the associated GLIMPSE red sources. This is a generic method which could be robustly applied for matching SEDs across gaps at other wavelengths. We found that most (87.0% +- 1.6...

  20. Nearby early-type galaxies with ionized gas VI. The Spitzer-IRS view

    CERN Document Server

    Panuzzo, P; Bressan, A; Vega, O; Annibali, F; Buson, L M; Clemens, M S; Zeilinger, W W

    2010-01-01

    We present low resolution Spitzer-IRS spectra of 40 ETGs, selected from a sample of 65 ETGs showing emission lines in their optical spectra. We homogeneously extract the mid-infrared (MIR) spectra, and after the proper subtraction of a "passive" ETG template, we derive the intensity of the ionic and molecular lines and of the polycyclic aromatic hydrocarbon emission features. We use MIR diagnostic diagrams to investigate the powering mechanisms of the ionized gas. The mid-infrared spectra of early-type galaxies show a variety of spectral characteristics. We empirically sub-divide the sample into five classes of spectra with common characteristics. Class-0, accounting for 20% of the sample, are purely passive ETGs with neither emission lines nor PAH features. Class-1 show emission lines but no PAH features, and account for 17.5% of the sample. Class-2, in which 50% of the ETGs are found, as well as having emission lines, show PAH features with unusual ratios, e.g. 7.7 {\\mu}m/11.3 {\\mu}m \\leq 2.3. Class-3 objec...

  1. The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC

    Science.gov (United States)

    Rafiei Ravandi, Masoud; Barmby, Pauline; Ashby, Matthew L. N.; Laine, Seppo; Davidge, T. J.; Zhang, Jenna; Bianchi, Luciana; Babul, Arif; Chapman, S. C.

    2016-06-01

    We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 h of observations by Spitzer-IRAC at 3.6 and 4.5 µm. This survey extends previous observations to the outer disc and halo, covering total lengths of 4.4° and 6.6° along the minor and major axes, respectively. We have produced surface brightness profiles by combining the integrated light from background-corrected maps with stellar counts from a new catalogue of point sources. Using auxiliary catalogues, we have carried out a statistical analysis in colour-magnitude space to discriminate M31 objects from foreground Milky Way stars and background galaxies. The catalogue includes 426 529 sources, of which 66 per cent have been assigned probability values to identify M31 objects with magnitude depths of [3.6] = 19.0 ± 0.2, [4.5] = 18.7 ± 0.2. We discuss applications of our data for constraining the stellar mass and characterizing point sources in the outer radii.

  2. HERSCHEL AND SPITZER OBSERVATIONS OF SLOWLY ROTATING, NEARBY ISOLATED NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Posselt, B.; Pavlov, G. G. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Popov, S. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Wachter, S., E-mail: posselt@psu.edu [Max Planck Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany)

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 mu m) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ∼10% to ∼20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  3. A Spitzer IRS Spectral Atlas of Luminous 8 micron Sources in the Large Magellanic Cloud

    CERN Document Server

    Buchanan, C L; Forrest, W J; Hrivnak, B J; Sahai, R; Egan, M; Frank, A; Barnbaum, C; Buchanan, Catherine L.; Kastner, Joel H.; Forrest, William J.; Hrivnak, Bruce J.; Sahai, Raghvendra; Egan, Michael; Frank, Adam

    2006-01-01

    We present an atlas of Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of highly luminous, compact mid-infrared sources in the Large Magellanic Cloud. Sources were selected on the basis of infrared colors and 8 micron (MSX) fluxes indicative of highly evolved, intermediate- to high-mass stars with current or recent mass loss at large rates. We determine the chemistry of the circumstellar envelope from the mid-IR continuum and spectral features and classify the spectral types of the stars. In the sample of 60 sources, we find 21 Red Supergiants (RSGs), 16 C-rich Asymptotic Giant Branch (AGB) stars, 11 HII regions, 4 likely O-rich AGB stars, 4 Galactic O-rich AGB stars, 2 OH/IR stars, and 2 B[e] supergiants with peculiar IR spectra. We find that the overwhelming majority of the sample AGB stars (with typical IR luminosities ~1.0E4 L_sun) have C-rich envelopes, while the O-rich objects are predominantly luminous RSGs with L_IR ~ 1.0E5 L_sun. We determine mean bolometric corrections to the stellar K-b...

  4. A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae

    CERN Document Server

    Do, Tuan; Sahai, Raghvendra; Stapelfeldt, Karl

    2007-01-01

    We present the results of far-infrared imaging of extended regions around three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS 16342$-$3814, at 70 and 160 $\\mu$m with the MIPS instrument on the Spitzer Space Telescope. After a careful subtraction of the point spread function of the central star from these images, we place constraints on the existence of extended shells and thus on the mass outflow rates as a function of radial distance from these stars. We find no apparent extended emission in AFGL 2688 and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of AFGL 2688, this result is inconsistent with a previous report of two extended dust shells made on the basis of ISO observations. We derive an upper limit of $2.1\\times10^{-7}$ M$_\\odot$ yr$^{-1}$ and $1.0\\times10^{-7}$ M$_\\odot$ yr$^{-1}$ for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively, at 200 arcseconds from each source. In contrast to these two sources, IRAS 16342$-$3814 does show extended emi...

  5. Spitzer IRS-based Classification of Luminous 8 Micron Sources in the Large Magellanic Cloud

    CERN Document Server

    Thorndike, S L; Hrivnak, B J; Sahai, R; Egan, M; Thorndike, Stephen L.; Buchanan, Joel H. Kastner & Catherine; Hrivnak, Bruce J.; Sahai, Raghvendra; Egan, Michael

    2007-01-01

    To ascertain the nature of the brightest mid-infrared sources in the Large Magellanic Cloud (LMC), we have applied the Buchanan et al. (2006) 2MASS-MSX color classification system, which is based on the results of Spitzer Space Telescope spectroscopy, to a mid-infrared flux-limited sample of 254 LMC objects for which 2MASS and MSX photometry is available. We find 72 sources are most likely H II regions; 49 sources are identified as oxygen rich objects, where 42 of these are red supergiants and 7 are likely oxygen rich asymptotic giant branch (AGB) stars; 77 sources are identified as carbon-rich AGB stars; and 7 objects are found to be foreground Mira variables in the halo of the Milky Way. An additional 49 objects cannot be reliably classified based on their positions in 2MASS/MSX color-color and color-magnitude diagrams. The very large ratio of carbon-rich to oxygen-rich objects among the luminous and heavily dust-enshrouded AGB stars in our sample (~10:1) is consistent with the hypothesis that carbon stars ...

  6. Spitzer Observations of V838 Monocerotis: Detection of a Rare Infrared Light Echo

    CERN Document Server

    Banerjee, D P K; Misselt, K A; Su, K Y L

    2006-01-01

    We present Spitzer observations of the unusual variable V838 Monocerotis. Extended emission is detected around the object at 24, 70 and 160um. The extended infrared emission is strongly correlated spatially with the HST optical light echo images taken at a similar epoch. We attribute this diffuse nebulosity to be from an infrared light echo caused by reprocessed thermal emission from dust heated by the outward-propagating radiation from the 2002 eruption. The detection of an IR light echo provides an opportunity to estimate the mass in dust of the echo material and hence constrain its origin. We estimate the dust mass of the light echo to be on the order of a solar mass - thereby implying the total gas plus dust mass to be considerably more - too massive for the echo material to be the ejecta from previous outburst/mass-losing events. This is therefore suggestive that a significant fraction of the matter seen through the light echo is interstellar in origin. Unresolved emission at 24 and 70um is also seen at ...

  7. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    CERN Document Server

    Williams, Brian J; Reynolds, Stephen P; Ghavamian, Parviz; Blair, William P; Long, Knox S; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 $\\mu$m infrared (IR) spectra of the remnant, obtained with the {\\it Spitzer Space Telescope}, dominated by emission from warm dust. Broad spectral features at 10 and 18 $\\mu$m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the p...

  8. Spitzer Space Telescope Observations of Kepler's Supernova Remnant: A Detailed Look at the Circumstellar Dust Component

    CERN Document Server

    Blair, W P; Long, K S; Williams, B J; Borkowski, K J; Sankrit, S P R R; Blair, William P.; Ghavamian, Parviz; Long, Knox S.; Williams, Brian J.; Borkowski, Kazimierz J.; Sankrit, Stephen P. Reynolds & Ravi

    2007-01-01

    We present 3.6 - 160 micron infrared images of Kepler's supernova remnant (SN1604) obtained with the IRAC and MIPS instruments on the Spitzer Space Telescope. We also present MIPS SED low resolution spectra in the 55 - 95 micron region. The observed emission in the MIPS 24 micron band shows the entire shell. Emission in the MIPS 70 micron and IRAC 8 micron bands is seen only from the brightest regions of 24 micron emission, which also correspond to the regions seen in optical Halpha images. Shorter wavelength IRAC images are increasingly dominated by stars, although faint filaments are discernible. The SED spectrum of shows a faint continuum dropping off to longer wavelengths and confirms that strong line emission does not dominate the mid-IR spectral region. The emission we see is due primarily to warm dust emission from dust heated by the primary blast wave; no excess infrared emission is observed in regions where supernova ejecta are seen in X-rays. We use models of the dust to interpret the observed 70/24...

  9. Spitzer IRS Observations of the XA Region in the Cygnus Loop Supernova Remnant

    CERN Document Server

    Sankrit, R; Bautista, M; Gaetz, T J; Williams, B J; Blair, W P; Borkowski, K J; Long, K S

    2014-01-01

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 micron wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km/s shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is mat...

  10. Spitzer Observations of the Type Ia Supernova Remnant N103B: Kepler's Older Cousin?

    CERN Document Server

    Williams, Brian J; Reynolds, Stephen P; Ghavamian, Parviz; Raymond, John C; Long, Knox S; Blair, William P; Winkler, P Frank; Sankrit, Ravi; Hendrick, Sean P

    2014-01-01

    We report results from Spitzer observations of SNR 0509-68.7, also known as N103B, a young Type Ia supernova remnant in the Large Magellanic Cloud that shows interaction with a dense medium in its western hemisphere. Our images show that N103B has strong IR emission from warm dust in the post-shock environment. The post-shock gas density we derive, 45 cm$^{-3}$, is much higher than in other Type Ia remnants in the LMC, though a lack of spatial resolution may bias measurements towards regions of higher than average density. This density is similar to that in Kepler's SNR, a Type Ia interacting with a circumstellar medium. Optical images show H$\\alpha$ emission along the entire periphery of the western portion of the shock, with [O III] and [S II] lines emitted from a few dense clumps of material where the shock has become radiative. The dust is silicate in nature, though standard silicate dust models fail to reproduce the "18 $\\mu$m" silicate feature that peaks instead at 17.3 $\\mu$m. We propose that the dense...

  11. The Large Magellanic Cloud: A power spectral analysis of Spitzer images

    CERN Document Server

    Puerari, Ivanio; Elmegreen, Bruce G; Bournaud, Frederic

    2010-01-01

    We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plan...

  12. Spitzer observations of the N157B supernova remnant and its surroundings

    CERN Document Server

    Micelotta, E R; Israel, F P; 10.1051/0004-6361/200809849

    2009-01-01

    (Aims): We study the LMC interstellar medium in the field of the nebula N157B, which contains a supernova remnant, an OB association, ionized gas, and high-density dusty filaments in close proximity. We investigate the relative importance of shock excitation by the SNR and photo-ionization by the OB stars, as well as possible interactions between the supernova remnant and its environment. (Methods): We apply multiwavelength mapping and photometry, along with spatially resolved infrared spectroscopy, to identifying the nature of the ISM using new infrared data from the Spitzer space observatory and X-ray, optical, and radio data from the literature. (Results): The N157B SNR has no infrared counterpart. Infrared emission from the region is dominated by the compact blister-type HII region associated with 2MASS J05375027-6911071 and excited by an O8-O9 star. This object is part of an extended infrared emission region that is associated with a molecular cloud. We find only weak emission from the shock-indicator [F...

  13. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. I. CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Gan, Cong-Gui; Shen, Zhi-Qiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He, Jin-Hua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming, 650011 Yunnan Province (China)

    2013-05-01

    We have produced a catalog containing 98 newly identified massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects, or EGOs). These have been identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) II data set and our new identifications increase the number of known EGOs to {approx}400 in our Galaxy, adding to the {approx}300 previously identified EGOs reported by Cyganowski et al. from the GLIMPSE I survey. The high detection rate ({approx}70%) of 95 GHz class I methanol masers achieved in a survey toward 57 of these new EGOs with the Mopra 22 m radio telescope demonstrates that the new EGOs are associated with outflows. Investigations of the mid-infrared properties and physical associations with other star formation tracers (e.g., infrared dark clouds, class I and II methanol masers, and millimeter Bolocam Galactic Plane Survey sources) reveal that the newly identified EGOs are very similar in nature to those in the sample of Cyganowski et al. All of the observational evidence supports the hypothesis that EGOs correspond to MYSOs at the earliest evolutionary stage, with ongoing outflow activity, and active rapid accretion.

  14. Si and Fe depletion in Galactic star-forming regions observed by the Spitzer Space Telescope

    CERN Document Server

    Okada, Yoko; Miyata, Takashi; Okamoto, Yoshiko K; Sakon, Itsuki; Shibai, Hiroshi; Takahashi, Hidenori

    2008-01-01

    We report the results of the mid-infrared spectroscopy of 14 Galactic star-forming regions with the high-resolution modules of the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. We detected [SiII] 35um, [FeII] 26um, and [FeIII] 23um as well as [SIII] 33um and H2 S(0) 28um emission lines. Using the intensity of [NII] 122um or 205um and [OI] 146um or 63um reported by previous observations in four regions, we derived the ionic abundance Si+/N+ and Fe+/N+ in the ionized gas and Si+/O0 and Fe+/O0 in the photodissociation gas. For all the targets, we derived the ionic abundance of Si+/S2+ and Fe2+/S2+ for the ionized gas. Based on photodissociation and HII region models the gas-phase Si and Fe abundance are suggested to be 3-100% and <8% of the solar abundance, respectively, for the ionized gas and 16-100% and 2-22% of the solar abundance, respectively, for the photodissociation region gas. Since the [FeII] 26um and [FeIII] 23um emissions are weak, the high sensitivity of the IRS enables to de...

  15. NEOSurvey 1: Initial results from the Warm Spitzer Exploration Science Survey of Near Earth Object Properties

    CERN Document Server

    Trilling, David E; Hora, Joseph; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Michael; Smith, Howard

    2016-01-01

    Near Earth Objects (NEOs) are small Solar System bodies whose orbits bring them close to the Earth's orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey --- a fast and efficient flux-limited survey of 597 known NEOs in which we derive diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single band thermal emission measurements, is uncertainty in eta, the beaming parameter used in our thermal modelin...

  16. Discovery of the Dust-Enshrouded Progenitor of the Type IIn SN 2008S with Spitzer

    CERN Document Server

    Prieto, J L; Thompson, T A; Yuksel, H; Kochanek, C S; Stanek, K Z; Beacom, J F; Martini, P; Pasquali, A; Bechtold, J

    2008-01-01

    We report the discovery of the progenitor of the recent type IIn supernova 2008S in the nearby galaxy NGC 6946. Surprisingly, the progenitor was not found in deep, pre-supernova optical images of its host galaxy taken with the Large Binocular Telescope, but only through examination of archival Spitzer mid-IR data. A source coincident with the supernova position is clearly detected in the 4.5, 5.8, and 8.0 micron IRAC bands, showing no evident variability in a three-year light curve leading up to the explosion, yet undetected at 3.6 and 24 micron. The distinct presence of ~440 K dust, along with stringent LBT limits on the optical fluxes, suggests that the progenitor of SN 2008S died in a shroud of its own dust. The inferred luminosity of 3.5x10^4 Lsun implies a modest progenitor mass of ~10 Msun. We conclude that type IIn supernovae need not always result from the death of very massive eta Carinae-like objects.

  17. WASP-8b: Characterization of a Cool and Eccentric Exoplanet with Spitzer

    CERN Document Server

    Cubillos, Patricio; Madhusudhan, Nikku; Stevenson, Kevin B; Hardy, Ryan A; Blecic, Jasmina; Anderson, David R; Hardin, Matthew; Campo, Christopher J

    2013-01-01

    WASP-8b has 2.18 times Jupiter's mass and is on an eccentric ($e=0.31$) 8.16-day orbit. With a time-averaged equilibrium temperature of 948 K, it is one of the least-irradiated hot Jupiters observed with the Spitzer Space Telescope. We have analyzed six photometric light curves of WASP-8b during secondary eclipse observed in the 3.6, 4.5, and 8.0 {\\microns} Infrared Array Camera bands. The eclipse depths are $0.113\\pm 0.018$%, $0.069\\pm 0.007$%, and $0.093\\pm 0.023$%, respectively, giving respective brightness temperatures of 1552, 1131, and 938 K. We characterized the atmospheric thermal profile and composition of the planet using a line-by-line radiative transfer code and a Markov-chain Monte Carlo sampler. The data indicated no thermal inversion, independently of any assumption about chemical composition. We noted an anomalously high 3.6-{\\microns} brightness temperature (1552 K); by modeling the eccentricity-caused thermal variation, we found that this temperature is plausible for radiative time scales le...

  18. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    Science.gov (United States)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  19. Photometric Monitoring of the Coldest Known Brown Dwarf with the {\\it Spitzer Space Telescope}

    CERN Document Server

    Esplin, Taran; Cushing, Michael; Hardegree-Ullman, Kevin; Trucks, Jessica; Burgasser, Adam; Schneider, Adam

    2016-01-01

    Because WISE J085510.83$-$071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf ($\\sim250$ K) and one of the Sun's closest neighbors (2.2 pc), it offers a unique opportunity for studying a planet-like atmosphere in an unexplored regime of temperature. To detect and characterize inhomogeneities in its atmosphere (e.g., patchy clouds, hot spots), we have performed time-series photometric monitoring of WISE 0855-0714 at 3.6 and 4.5 micron with the Spitzer Space Telescope during two 23~hr periods that were separated by several months. For both bands, we have detected variability with peak-to-peak amplitudes of 4-5% and 3-4% in the first and second epochs, respectively. The light curves are semi-periodic in the first epoch for both bands, but are more irregular in the second epoch. Models of patchy clouds have predicted a large increase in mid-IR variability amplitudes (for a given cloud covering fraction) with the appearance of water ice clouds at $T_{\\rm eff}<$375 K, so if such clouds are respo...

  20. Spitzer-IRS Study of the Antennae Galaxies NGC 4038/39

    CERN Document Server

    Brandl, B R; Brok, M den; Whelan, D G; Groves, B; Van der Werf, P P; Charmandaris, V; Smith, J D; Armus, L; Kennicutt, R C Jr.; Houck, J R

    2009-01-01

    Using the Infrared Spectrograph on the Spitzer Space Telescope, we observed the Antennae galaxies obtaining spectral maps of the entire central region and high signal-to-noise 5-38 um spectra of the two galactic nuclei and six infrared-luminous regions. The total infrared luminosity of our six IR peaks plus the two nuclei is L_IR = 3.8x10^10 L_o, with their derived star formation rates ranging between 0.2 and 2 M_o/yr, with a total of 6.6 M_o/yr. The hardest and most luminous radiation originates from two compact clusters in the southern part of the overlap region, which also have the highest dust temperatures. PAH emission and other tracers of softer radiation are spatially extended throughout and beyond the overlap region, but regions with harder and intenser radiation field show a reduced PAH strength. The strong H_2 emission is rather confined around the nucleus of NGC 4039, where shocks appear to be the dominant excitation mechanism, and the southern part of the overlap region, where it traces the most r...

  1. A uniform analysis of HD209458b Spitzer/IRAC lightcurves with Gaussian process models

    CERN Document Server

    Evans, Thomas M; Gibson, Neale; Barstow, Joanna K; Amundsen, David S; Tremblin, Pascal; Mourier, Pierre

    2015-01-01

    We present an analysis of Spitzer/IRAC primary transit and secondary eclipse lightcurves measured for HD209458b, using Gaussian process models to marginalise over the intrapixel sensitivity variations in the 3.6 micron and 4.5 micron channels and the ramp effect in the 5.8 micron and 8.0 micron channels. The main advantage of this approach is that we can account for a broad range of degeneracies between the planet signal and systematics without actually having to specify a deterministic functional form for the latter. Our results do not confirm a previous claim of water absorption in transmission. Instead, our results are more consistent with a featureless transmission spectrum, possibly due to a cloud deck obscuring molecular absorption bands. For the emission data, our values are not consistent with the thermal inversion in the dayside atmosphere that was originally inferred from these data. Instead, we agree with another re-analysis of these same data, which concluded a non-inverted atmosphere provides a b...

  2. Spitzer Microlens Measurement of a Massive Remnant in a Well-Separated Binary

    CERN Document Server

    Shvartzvald, Y; Gould, A; Han, C; Bozza, V; Friedmann, M; Hundertmark, M; Beichman, C; Bryden, G; Novati, S Calchi; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, C B; Kerr, T; Pogge, R W; Varricatt, W; Wibking, B; Yee, J C; Zhu, W; Poleski, R; Pawlak, M; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Pietrzyński, G; Soszyński, I; Ulaczyk, K; Choi, J -Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Park, B -G; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Maoz, D; Kaspi, S; Street, R A; Tsapras, Y; Bachelet, E; Dominik, M; Bramich, D M; Horne, Keith; Snodgrass, C; Steele, I A; Menzies, J; Jaimes, R Figuera; Wambsganss, J; Schmidt, R; Cassan, A; Ranc, C; Mao, S; Dong, Subo; D'Ago, G; Scarpetta, G; Verma, P; Jørgensen, U G; Kerins, E; Skottfelt, J

    2015-01-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having $M_1>1.35\\,M_\\odot$ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star or black hole. The system has a projected separation $r_\\perp= 6.1\\pm 0.4\\,{\\rm AU}$ and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from $Spitzer$, which lay at $1.25\\,{\\rm AU}$ projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near infrared. Future adaptive optics imaging of the companion by 30m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing black holes and neutron stars in wide binaries, with either dark or luminous com...

  3. The $Spitzer$ infrared spectrograph survey of protoplanetary disks in Orion A: I. disk properties

    CERN Document Server

    Kim, K H; Manoj, P; Forrest, W J; Furlan, Elise; Najita, Joan; Sargent, Benjamin; Hernández, Jesús; Calvet, Nuria; Adame, Lucía; Espaillat, Catherine; Megeath, S T; Muzerolle, James; McClure, M K

    2016-01-01

    We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The m...

  4. Spatially Resolved Spitzer-IRS Spectral Maps of the Superwind in M82

    CERN Document Server

    Beirão, P; Lehnert, M D; Guillard, P; Heckman, T; Draine, B; Hollenbach, D; Walter, F; Sheth, K; Smith, J D; Shopbell, P; Boulanger, F; Surace, J; Hoopes, C; Engelbracht, C

    2015-01-01

    We have mapped the superwind/halo region of the nearby starburst galaxy M82 in the mid-infrared with $Spitzer-IRS$. The spectral regions covered include the H$_2 S(1)-S(3)$, [NeII], [NeIII] emission lines and PAH features. We estimate the total warm H$_2$ mass and the kinetic energy of the outflowing warm molecular gas to be between $M_{warm}\\sim5-17\\times10^6$ M$_{\\odot}$ and $E_{K}\\sim6-20\\times10^{53}$ erg. Using the ratios of the 6.2, 7.7 and 11.3 micron PAH features in the IRS spectra, we are able to estimate the average size and ionization state of the small grains in the superwind. There are large variations in the PAH flux ratios throughout the outflow. The 11.3/7.7 and the 6.2/7.7 PAH ratios both vary by more than a factor of five across the wind region. The Northern part of the wind has a significant population of PAH's with smaller 6.2/7.7 ratios than either the starburst disk or the Southern wind, indicating that on average, PAH emitters are larger and more ionized. The warm molecular gas to PAH f...

  5. Dust in the diffuse emission of the galactic plane - The Herschel/Spitzer SED fitting

    CERN Document Server

    Compiegne, M; Noriega-Crespo, A; Martin, P G; Bernard, J -P; Paladini, R; Molinari, S

    2010-01-01

    The first Herschel Hi-Gal images of the galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this paper, we present the first analysis of these data in combination with that of Spitzer Glimpse & Mipsgal. We selected a relatively diffuse and low excitation region of the l~59\\,^{\\circ} Hi-Gal Science Demonstration Phase field to perform a pixel by pixel fitting of the 8 to 500 microns SED using the DustEM dust emission model. We derived maps of the Very Small Grains (VSG) and PAH abundances from the model. Our analysis allows us to illustrate that the Aromatic Infrared Bands (AIB) intensity does not trace necessarily the PAH abundance but rather the product of "abundance x column density x intensity of the exciting radiation field". We show that the spatial structure of PACS70microns map resembles the shorter wavelengths (e.g. IRAC8microns) maps, because they trace both the intensity of exciting radiation field and co...

  6. The Kilometer-Sized Main Belt Asteroid Population as Revealed by Spitzer

    CERN Document Server

    Ryan, Erin Lee; Shenoy, Sachindev S; Woodward, Charles E; Carey, Sean; Noriega-Crespo, Alberto; Kraemer, Kathleen E; Price, Stephan D

    2012-01-01

    Multi-epoch Spitzer Space Telescope 24 micron data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. These infrared detections are matched to known asteroids and rotationally averaged diameters and albedos are derived using the Near Earth Asteroid Model (NEATM) in conjunction with Monte Carlo simulations for 1835 asteroids ranging in size from 0.2 to 143.6 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from this data are within 5% of the IRAS and/or MSX derived albedos and diameters demonstrating the robustness of our technique. The mean geometric albedo of the small main belt asteroids in this sample is p_V = 0.138 with a sample standard deviation of 0.105. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the main belt at small diameters is directly derived. Completeness l...

  7. Spitzer characterisation of dust in an anomalous emission region: the Perseus cloud

    CERN Document Server

    Tibbs, C T; Paladini, R; Compiégne, M; Shenoy, S; Carey, S; Noriega-Crespo, A; Dickinson, C; Ali-Haïmoud, Y; Casassus, S; Cleary, K; Davies, R D; Davis, R J; Hirata, C M; Watson, R A

    2011-01-01

    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterise the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field ($\\chi_\\mathrm{ISRF}$), the mass abundances of the PAHs and VSGs relative to the BGs (Y$_\\mathrm{PAH}$ and Y$_\\mathrm{VSG}$), the column density of hydrogen (N$_\\mathrm{H}$) and the equilibrium dust temperature (T$_\\mathrm{dust}$). The parameter maps of Y$_\\mathrm{PAH}$, Y$_\\mathrm{VSG}$ and $\\chi_\\mathrm{ISRF}$ are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which ano...

  8. Spitzer/infrared spectrograph investigation of MIPSGAL 24 {\\mu}m compact bubbles : Low resolution observations

    CERN Document Server

    Nowak, M; Noriega-Crespo, A; Billot, N; Carey, S J; Paladini, R; Van Dyk, S D

    2014-01-01

    We present Spitzer/IRS low resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 {\\mu}m Galactic Plane Survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories, and that this distinction correlates with the morphologies of the MBs in the mid- IR. The four MBs with central sources in the mid-IR exhibit dust-rich, low excitation spectra, and their 24 {\\mu}m emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high excitation gas lines (e.g., [O IV] 26.0 {\\mu}m, [Ne V] 14.3 and 24.3 {\\mu}m, [Ne III] 15.5 {\\mu}m), and the [O IV] line accounts for 50 to almost 100% of the 24 {\\mu}m emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae with peculiar white dwarfs (e.g., [WR], novae) at their centers. ...

  9. Spitzer observations of the HH 1/2 system. The discovery of the counterjet

    CERN Document Server

    Noriega-Crespo,; Raga,; C, A

    2012-01-01

    We present unpublished Spitzer IRAC observations of the HH 1/2 young stellar outflow processed with a high angular resolution deconvolution algorithm that produces sub-arcsecond (approx. 0.6" - 0.8") images. In the resulting mid-infrared images the optically invisible counterjet is detected for the first time. The counterjet is approximately half as bright as the jet at 4.5 micron (the IRAC band that best traces young stellar outflows) and has a length of approx. 10". The NW optical jet itself can be followed back in the mid-IR to the position of the exciting VLA 1 source. An analysis of the IRAC colors indicates that the jet/counterjet emission is dominated by collisionally excited H2 pure rotational lines arising from a medium with a neutral Hydrogen gas density of 1000-2000 per cubic cm and a temperature of 1500 K. The observed jet/counterjet brightness asymmetry is consistent with an intrinsically symmetric outflow with extinction from a dense, circumstellar structure of 6" size (along the outflow axis), ...

  10. SPITZER OBSERVATIONS OF THE HH 1/2 SYSTEM: THE DISCOVERY OF THE COUNTERJET

    Energy Technology Data Exchange (ETDEWEB)

    Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Raga, A. C. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-05-10

    We present unpublished Spitzer IRAC observations of the HH 1/2 young stellar outflow processed with a high angular resolution deconvolution algorithm that produces subarcsecond ({approx}0.''6-0.''8) images. In the resulting mid-infrared images, the optically invisible counterjet is detected for the first time. The counterjet is approximately half as bright as the jet at 4.5 {mu}m (the IRAC band that best traces young stellar outflows) and has a length of {approx}10''. The NW optical jet itself can be followed back in the mid-IR to the position of the exciting VLA 1 source. An analysis of the IRAC colors indicates that the jet/counterjet emission is dominated by collisionally excited H{sub 2} pure rotational lines arising from a medium with a neutral hydrogen gas density of {approx}1000-2000 cm{sup -3} and a temperature of {approx} 1500 K. The observed jet/counterjet brightness asymmetry is consistent with an intrinsically symmetric outflow with extinction from a dense, circumstellar structure of {approx}6'' size (along the outflow axis), and with a mean visual extinction, A{sub V} {approx} 11 mag.

  11. Spitzer Observations of Long Term Infrared Variability Among Young Stellar Objects in Chamaeleon I

    CERN Document Server

    Flaherty, Kevin M; Muzerolle, James; Balog, Zoltan; Herbst, William; Megeath, S Thomas; Furlan, Elise; Gutermuth, Robert

    2016-01-01

    Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about a month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster whose low declination makes it observable by the Spitzer space telescope over a 200 day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find such variability is common, occurring in ~80% of the detected cluster members. The change in [3.6]-[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200 ...

  12. Spitzer imaging of the jet driving the NGC 2264 G outflow

    CERN Document Server

    Teixeira, Paula S; Fich, Michael; Lada, Charles J

    2007-01-01

    We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the InfraRed Array Camera (IRAC) on-board the Spitzer Space Telescope. A jet in the red outflow lobe (eastern lobe) is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe traced by CO observations. The redshifted jet also extends to a deeply embedded Class 0 source, VLA 2, confirming previous suggestions that it is the driving source of the outflow (Gomez et al. 1994). The images show that the easternmost part of the redshifted jet exhibits what appear to be multiple changes of direction. To understand the redshifted jet morphology we explore several mechanisms that could generate such apparent changes of direction. From this analysis, we conclude that the redshifted jet structure and morphology visible in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period ~8000 yr) that lies mos...

  13. Spitzer View of Massive Star Formation in the Tidally Stripped Magellanic Bridge

    CERN Document Server

    Chen, C -H Rosie; Muller, Erik; Kawamura, Akiko; Gordon, Karl D; Sewiło, Marta; Whitney, Barbara A; Fukui, Yasuo; Madden, Suzanne C; Meade, Marilyn R; Meixner, Margaret; Oliveira, Joana M; Robitaille, Thomas P; Seale, Jonathan P; Shiao, Bernie; van Loon, Jacco Th

    2014-01-01

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper we present analysis of candidate massive young stellar objects (YSOs), i.e., {\\it in situ, current} massive star formation (MSF) in the Bridge using {\\it Spitzer} mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are $\\sim10 M_\\odot$, $\\ll45 M_\\odot$ found in the Large Magellanic Cloud (LMC). The intensity of MSF in the Bridge also appears decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and...

  14. Spitzer Observations of Star Formation in the Extreme Outer Disk of M83 (NGC5236)

    CERN Document Server

    Dong, Hui; Regan, Michael; Thilker, David; Bianchi, Luciana; Meurer, Gerhardt R; Walter, Fabian

    2008-01-01

    Spitzer IRAC observations of two fields in the XUV-disk of M83 have been recently obtained,3R_{HII} away from the center of the galaxy (R_{HII)=6.6 kpc).GALEX UV images have shown the two fields to host in-situ recent star formation.The IRAC images are used in conjunction with GALEX data and new HI imaging from THINGS to constrain stellar masses and ages of the UV clumps in the fields,and to relate the local recent star formation to the reservoir of available gas. multi wavelength photometry in the UV and mid-IR bands of 136 UV clumps(spatial resolution >220pc) identified in the two target fields, together with model fitting of the stellar UV-MIR SED,suggest that the clumps cover a range of ages between a few Myr and >1Gyr with a median value around <100Myr,and have masses in the range 10^3-3*10^6M, with a peak ~10^4.7M.The range of observed ages,for which only a small fraction of the mass in stars appears to have formed in the past ~10Myr, agrees with the dearth of Ha emission observed in these outer fiel...

  15. Galactic bulge giants: probing stellar and galactic evolution I. Catalogue of Spitzer IRAC and MIPS sources

    CERN Document Server

    Uttenthaler, Stefan; Sahai, Raghvendra; Blommaert, Joris A D L; Schultheis, Mathias; Kraemer, Kathleen E; Groenewegen, Martin A T; Price, Stephan D

    2010-01-01

    Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretic...

  16. A Spitzer/IRAC Search for Substellar Companions of the Debris Disk Star epsilon Eridani

    CERN Document Server

    Marengo, M; Fazio, G G; Stapelfeldt, K R; Werner, M W; Backman, D E

    2006-01-01

    We have used the InfraRed Array Camera (IRAC) onboard the Spitzer Space telescope to search for low mass companions of the nearby debris disk star epsilon Eridani. The star was observed in two epochs 39 days apart, with different focal plane rotation to allow the subtraction of the instrumental Point Spread Function, achieving a maximum sensitivity of 0.01 MJy/sr at 3.6 and 4.5 um, and 0.05 MJy/sr at 5.8 and 8.0 um. This sensitivity is not sufficient to directly detect scattered or thermal radiation from the epsilon Eridani debris disk. It is however sufficient to allow the detection of Jovian planets with mass as low as 1 MJ in the IRAC 4.5 um band. In this band, we detected over 460 sources within the 5.70 arcmin field of view of our images. To test if any of these sources could be a low mass companion to epsilon Eridani, we have compared their colors and magnitudes with models and photometry of low mass objects. Of the sources detected in at least two IRAC bands, none fall into the range of mid-IR color an...

  17. High-contrast Imaging with Spitzer: Deep Observations of Vega, Fomalhaut, and epsilon Eridani

    CERN Document Server

    Janson, Markus; Carson, Joseph C; Thalmann, Christian; Lafreniere, David; Amara, Adam

    2014-01-01

    Stars with debris disks are intriguing targets for direct imaging exoplanet searches, both due to previous detections of wide planets in debris disk systems, as well as commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, that are also known to host massive debris disks: Vega, Fomalhaut, and eps Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star, in order to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120--330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 micron image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented he...

  18. A Spitzer Infrared Spectrograph (IRS) Spectral Sequence of M, L, and T Dwarfs

    CERN Document Server

    Cushing, M C; Marley, M S; Saumon, D; Leggett, S K; Kirkpatrick, J D; Wilson, J C; Sloan, G C; Mainzer, A K; Van Cleve, J E; Houck, J R

    2006-01-01

    We present a low-resolution (R = 90), 5.5-38 micron spectral sequence of a sample of M, L, and T dwarfs obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The spectra exhibit prominent absorption bands of H_2O at 6.27 microns, CH_4 at 7.65 microns, and NH_3 at 10.5 microns and are relatively featureless at lambda > 15 microns. Three spectral indices that measure the strengths of these bands are presented; H_2O absorption features are present throughout the MLT sequence while the CH_4 and NH_3 bands first appear at roughly the L/T transition. Although the spectra are, in general, qualitatively well matched by synthetic spectra that include the formation of spatially homogeneous silicate and iron condensate clouds, the spectra of the mid-type L dwarfs show an unexpected flattening from roughly 9 to 11 microns. We hypothesize that this may be a result of a population of small silicate grains that are not predicted in the cloud models. The spectrum of the peculiar T6 dwarf 2MASS J0...

  19. Infrared Spectroscopy of Comet 73P/Schwassmann-Wachmann 3 using the Spitzer Space Telescope

    CERN Document Server

    Sitko, Michael L; Kelley, Michael S; Polomski, Elisha F; Lynch, David K; Russell, Ray W; Kimes, Robin L; Whitney, Barbara A; Wolff, Michael J; Harker, David E

    2011-01-01

    We have used the Spitzer Space Telescope Infrared Spectrograph (IRS) to observe the 5-37 micron thermal emission of comet 73P/Schwassmann-Wachmann 3 (SW3), components B and C. We obtained low spectral resolution (R ~ 100) data over the entire wavelength interval, along with images at 16 and 22 micron. These observations provided an unprecedented opportunity to study nearly pristine material from the surface and what was until recently the interior of an ecliptic comet - cometary surface having experienced only two prior perihelion passages, and including material that was totally fresh. The spectra were modeled using a variety of mineral types including both amorphous and crystalline components. We find that the degree of silicate crystallinity, ~ 35%, is somewhat lower than most other comets with strong emission features, while its abundance of amorphous carbon is higher. Both suggest that SW3 is among the most chemically primitive solar system objects yet studied in detail, and that it formed earlier or far...

  20. Spitzer Infrared Spectrograph survey of young stars in the Chamaeleon I star-forming region

    CERN Document Server

    Manoj, P; Furlan, E; McClure, M K; Luhman, K L; Watson, D M; Espaillat, C; Calvet, N; Najita, J R; D'Alessio, P; Adame, L; Sargent, B A; Forrest, W J; Bohac, C; Green, J D; Arnold, L A

    2011-01-01

    We present 5 to 36 micron mid-infrared spectra of 82 young stars in the ~2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on their spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Chamaeleon I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes...

  1. Molecular Cooling as a Probe of Star Formation: Spitzer Looking Forward to Herschel

    Science.gov (United States)

    Bergin, Edwin A.; Maret, Sebastien; Yuan, Yuan; Sonnentrucker, Paule; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We explore here the question of how cloud physics can be more directly probed when one observes the majority of cooling emissions from molecular gas. For this purpose we use results from a recent Spitzer Space Telescope study of the young cluster of embedded objects in NGC1333. For this study we mapped the emission from eight pure H2 rotational lines, from S(0) to S(7). The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and can be used to more directly ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for cores disruption. Given the recent launch of Herschel and the upcoming operational lifetime of SOFIA we discuss how studies of molecular cooling can take a step beyond understanding thermal balance to exploring the origin, receipt, and transfer of energy in atomic and molecular gas in a wide range of physical situations.

  2. A Tale of Three Galaxies: Deciphering the Infrared Emission of the Spectroscopically Anomalous Galaxies IRAS F10398+1455, IRAS F21013-0739 and SDSS J0808+3948

    CERN Document Server

    Xie, Yanxia; Hao, Lei; Nikutta, Robert

    2015-01-01

    The \\textit{Spitzer}/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS~F10398+1455, IRAS~F21013-0739 and SDSS~J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep $\\simali$5--8$\\mum$ emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep $\\simali$5--8$\\mum$ emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions ("astronomical silicate," amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these %spectroscopically anomalous galaxies. We find that the dust tempe...

  3. Spectroscopic signatures of quantum friction

    Science.gov (United States)

    Klatt, Juliane; Bennett, Robert; Buhmann, Stefan Yoshi

    2016-12-01

    We present a formula for the spectroscopically accessible level shifts and decay rates of an atom moving at an arbitrary angle relative to a surface. Our Markov formulation leads to an intuitive analytic description whereby the shifts and rates are obtained from the coefficients of the Heisenberg equation of motion for the atomic flip operators but with complex Doppler-shifted (velocity-dependent) transition frequencies. Our results conclusively demonstrate that for the limiting case of parallel motion the shifts and rates are quadratic or higher in the atomic velocity. We show that a stronger, linear velocity dependence is exhibited by the rates and shifts for perpendicular motion, thus opening the prospect of experimentally probing the Markovian approach to the phenomenon of quantum friction.

  4. Sick, the spectroscopic inference crank

    CERN Document Server

    Casey, Andrew R

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives which remain severely under-utilised. The lack of reliable open-source tools for analysing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this Article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick can be used to provide a nearest-neighbour estimate of model parameters, a numerically optimised point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalise on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-di...

  5. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    Science.gov (United States)

    Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Zhang, Lan; Sicilia-Aguilar, Aurora; Alonso-Martínez, Miguel; Eiroa, Carlos; Wang, Hongchi

    2017-04-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M ⊙, which harbors a flaring disk. Using the Hα emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  6. A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z=7.730 using Keck/MOSFIRE

    CERN Document Server

    Oesch, P A; Illingworth, G D; Bouwens, R J; Momcheva, I; Holden, B; Roberts-Borsani, G W; Smit, R; Franx, M; Labbe, I; Gonzalez, V; Magee, D

    2015-01-01

    We present a spectroscopic redshift measurement of a very bright Lyman break galaxy at z=7.7302+-0.0006 using Keck/MOSFIRE. The source was pre-selected photometrically in the EGS field as a robust z~8 candidate with H=25.0 mag based on optical non-detections and a very red Spitzer/IRAC [3.6]-[4.5] broad-band color driven by high equivalent width [OIII]+Hbeta line emission. The Lyalpha line is reliably detected at >6 sigma and shows an asymmetric profile as expected for a galaxy embedded in a relatively neutral inter-galactic medium near the Planck peak of cosmic reionization. The line has a rest-frame equivalent width of EW0=21+-4 A and is extended with V_FWHM=376+89-70 km/s. The source is perhaps the brightest and most massive z~8 Lyman break galaxy in the full CANDELS and BoRG/HIPPIES surveys, having assembled already 10^(9.9+-0.2) M_sol of stars at only 650 Myr after the Big Bang. The spectroscopic redshift measurement sets a new redshift record for galaxies. This enables reliable constraints on the stella...

  7. VizieR Online Data Catalog: Spitzer/IRS obs. of Magellanic carbon stars (Sloan+, 2016)

    Science.gov (United States)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Groenewegen, M. A. T.; Wood, P. R.; Zijlstra, A. A.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Srinivasan, S.; van Loon, J. T.; Volk, K.

    2016-09-01

    Table 1 lists the 144 objects in the LMC and 40 in the SMC observed with the IRS (spectral coverage at 5-14um and 14-37um, respectively, with a resolution R~80-120) and identified as carbon stars. A variety of Spitzer observing programs contributed to the present sample of carbon stars (see Note 2 in table 1). We adopt distance moduli for the LMC and SMC of 18.5 and 18.9, respectively. For all of our targets, we have constructed SEDs based on multi-epoch photometry in the optical, near-IR, and mid-IR from several surveys. The mid-IR data come from the SAGE survey of the LMC (Meixner et al. 2006, J/AJ/132/2268) and the SAGE-SMC survey for the SMC (Gordon et al. 2011AJ....142..102G)). The SAGE-VAR survey adds four epochs from the Warm Spitzer Mission at 3.6 and 4.5um for portions of the LMC and SMC (Riebel et al. 2015ApJ...807....1R). We also used additional epochs at 3.4 and 4.6um from the Wide-field Infrared Survey Experiment (WISE; Wright et al. 2010AJ....140.1868W) and the NEOWISE reactivation mission (Mainzer et al. 2014ApJ...792...30M). Near-IR photometry comes from the 2MASS survey, and the deeper 2MASS-6X survey provides a second epoch at J, H, and Ks (Cutri et al. 2012, II/281; Skrutskie et al. 2006, VII/233). Additional epochs come from the Deep Near-IR Survey of the Southern Sky (DENIS) at J and Ks (Cioni et al. 2000, II/228) and the IR Survey Facility (IRSF) at J, H, and Ks (Kato et al. 2007, II/288). In the optical, we relied on the Magellanic Clouds Photometric Survey (MCPS) at U, B, V, and I (Zaritsky et al. 2002, J/AJ/123/855; 2004, J/AJ/128/1606). DENIS adds data at I. Additional mean magnitudes at V and I in the LMC come from the OGLE-III Shallow Survey (Ulaczyk et al. 2013, J/AcA/63/1). Where possible, we replaced the V and I data with mean magnitudes from the OGLE-III surveys of the Magellanic Clouds, which also give pulsation periods and amplitudes (Soszynski et al. 2009, J/AcA/59/335; 2011, J/AcA/61/217). We also consider a Galactic control

  8. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-H. Rosie; Indebetouw, Remy [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Muller, Erik; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Sewiło, Marta [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Whitney, Barbara A.; Meade, Marilyn R. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602 (Japan); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Oliveira, Joana M.; Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Robitaille, Thomas P., E-mail: rchen@mpifr-bonn.mpg.de [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany)

    2014-04-20

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M {sub ☉}, <<45 M {sub ☉} found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10{sup 20} cm{sup –2}, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  9. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    Science.gov (United States)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.

    2016-12-01

    We introduce SPARC (Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μm and high-quality rotation curves from previous H i/Hα studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity (V bar/V obs) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ⋆) at [3.6]. Assuming ϒ⋆ ≃ 0.5 M ⊙/L ⊙ (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V bar/V obs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ⋆ ≃ 0.2 M ⊙/L ⊙ as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ⋆ ≃ 0.7 M ⊙/L ⊙ at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  10. MODELS OF THE η CORVI DEBRIS DISK FROM THE KECK INTERFEROMETER, SPITZER, AND HERSCHEL

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, J.; Beichman, C.; Millan-Gabet, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, G.; Mennesson, B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91107 (United States); Defrère, D. [Department of Astronomy, University of Arizona, 993 N. Cherry Avenue, Tucson, AZ, 85721 (United States); Boccaletti, A., E-mail: lebretoj@gmail.com [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-02-01

    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ∼1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ∼400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets.

  11. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Arendt, R. [Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Barmby, P. [University of Western Ontario, London, ON N6A 3K7 (Canada); Barro, G.; Faber, S.; Guhathakurta, P. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bouwens, R. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Cattaneo, A. [Aix Marseille Universite, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388, Marseille (France); Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218 Hawthorn, VIC 3122 (Australia); Dave, R. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dunlop, J. S. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Egami, E. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Finlator, K. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, CK-2100 Copenhagen O (Denmark); Grogin, N. A., E-mail: mashby@cfa.harvard.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  12. Deciphering IR Excess Observed by the Spitzer Space Telescope in Short Period Interacting Cataclysmic Binaries

    Science.gov (United States)

    Chun, Howard; Brinkworth, Carolyn; Ciardi, David; Hoard, Don; Howell, Steve; Stefaniak, Linda; Thomas, , Beth

    2006-03-01

    During the first year of the Spitzer Space Telescope Observing Program for Students and Teachers, our team observed a small sample of short orbital period interacting white dwarf binaries. Our scientific investigation was aimed at detection and characterization of the low mass, cool, brown dwarf-like mass donors in these systems. We used the Infrared Array Camera to obtain photometric observations of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 microns. In all our targets, we detected excess emission in the 3-8 micron region over that expected from a brown dwarf alone. One of the exciting discoveries we made with our IRAC observations is that the star EF Eri was found to be unexpectedly bright in the mid-IR (compared to its 2MASS magnitudes). This fact highlights an opportunity for us to observe EF Eri with the IRS as a follow-up proposal. EF Eri has a flux level of ~700 ?Jy at 8 microns. Thus, we are asking for time to obtain IRS data for only this star, our brightest source. We plan to obtain SL1 (7.4-14.5 microns) and SL2 (5.2-8.7 microns) spectroscopy only. We know the IRAC fluxes so our integration toies are well constrained and the spectral region covered by SL1, SL2 will yield sufficient S/N to differentiate between cool dust (rising BB like spectrum with PAH and other molecular features allowing us to determine dust size, temperature, and disk extent) and a T type dwarf showing characteristic spectral signatures and a falling Rayleigh-Jeans tail.

  13. A Spitzer search for transits of radial velocity detected super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, A. W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, G. P.; Fortney, J. J. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Deming, D. [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Todorov, K. O. [Institute for Astronomy, ETH Zürich, CH-8093 Zürich (Switzerland); Agol, E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Showman, A. P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lewis, N. K., E-mail: jkammer@caltech.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  14. REVISITING SPITZER TRANSIT OBSERVATIONS WITH INDEPENDENT COMPONENT ANALYSIS: NEW RESULTS FOR THE GJ 436 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Micela, G. [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Allard, F., E-mail: giuseppe.morello.11@ucl.ac.uk [Centre de Recherche Astrophysique de Lyon—École Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07 (France)

    2015-04-01

    We analyzed four Spitzer/IRAC observations at 3.6 and 4.5 μm of the primary transit of the exoplanet GJ 436b, by using blind source separation techniques. These observations are important for investigating the atmospheric composition of the planet GJ 436b. Previous analyses claimed strong inter-epoch variations of the transit parameters due to stellar variability, casting doubts on the possibility of conclusively extracting an atmospheric signal. Those analyses also reported discrepant results, hence the necessity of this reanalysis. The method we used has been proposed in Morello et al. to analyze 3.6 μm transit light curves of the hot Jupiter HD 189733b. It performes an Independent Component Analysis on a set of pixel light curves, i.e., time series read by individual pixels, from the same photometric observation. Our method only assumes the independence of instrumental and astrophysical signals, and therefore guarantees a higher degree of objectivity compared to parametric detrending techniques published in the literature. The data sets we analyzed in this paper represent a more challenging test than the previous ones. Contrary to previous results reported in the literature, our results (1) do not support any detectable inter-epoch variations of orbital and stellar parameters, (2) are photometrically stable at the level ∼10{sup −4} in the IR, and (3) the transit depth measurements at the two wavelengths are consistent within 1σ. We also (4) detect a possible transit duration variation of ∼80 s (2σ significance level) that has not been pointed out in the literature, and (5) confirm no transit timing variations ≳30 s.

  15. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    Science.gov (United States)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  16. DUST IN A TYPE Ia SUPERNOVA PROGENITOR: SPITZER SPECTROSCOPY OF KEPLER'S SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695-8202 (United States); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Long, Knox S. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Sankrit, Ravi, E-mail: brian.j.williams@nasa.gov [SOFIA/USRA, NASA Ames Research Center, M/S N211-3, Moffett Field, CA 94035 (United States)

    2012-08-10

    Characterization of the relatively poorly understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's supernova remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 {mu}m infrared (IR) spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 {mu}m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the asymptotic giant branch stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength Infrared Spectrograph and Infrared Array Camera data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally heated dust emission from fast shocks (>1000 km s{sup -1}) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are {approx}80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km s{sup -1}) into moderate density material (n{sub 0} {approx} 50-250 cm{sup -3}) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  17. Spitzer IRS observations of the XA region in the cygnus loop supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Sankrit, Ravi [SOFIA Science Center, NASA Ames Research Center, M/S N211-3, Moffett Field, CA 94035 (United States); Raymond, John C.; Gaetz, Terrance J. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 15, Cambridge, MA 02138 (United States); Bautista, Manuel [Department of Physics, Western Michigan University, Kalamazoo MI 49008-5252 (United States); Williams, Brian J. [Goddard Space Flight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borkowski, Kazimierz J. [North Carolina State University, Raleigh, NC 27607 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-05-20

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 μm wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s{sup –1} shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s{sup –1} that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 × 10{sup 18} cm{sup –2}, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.

  18. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    Science.gov (United States)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  19. POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E. [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States); Tielens, A. G. G. M., E-mail: dstock4@uwo.ca [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA (Netherlands)

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  20. Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC

    Science.gov (United States)

    Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.

    2010-01-01

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric

  1. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  2. Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations

    Science.gov (United States)

    Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-01-01

    We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  3. Revisiting Spitzer Transit Observations with Independent Component Analysis: New Results for the GJ 436 System

    Science.gov (United States)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D.; Micela, G.; Allard, F.

    2015-04-01

    We analyzed four Spitzer/IRAC observations at 3.6 and 4.5 μm of the primary transit of the exoplanet GJ 436b, by using blind source separation techniques. These observations are important for investigating the atmospheric composition of the planet GJ 436b. Previous analyses claimed strong inter-epoch variations of the transit parameters due to stellar variability, casting doubts on the possibility of conclusively extracting an atmospheric signal. Those analyses also reported discrepant results, hence the necessity of this reanalysis. The method we used has been proposed in Morello et al. to analyze 3.6 μm transit light curves of the hot Jupiter HD 189733b. It performes an Independent Component Analysis on a set of pixel light curves, i.e., time series read by individual pixels, from the same photometric observation. Our method only assumes the independence of instrumental and astrophysical signals, and therefore guarantees a higher degree of objectivity compared to parametric detrending techniques published in the literature. The data sets we analyzed in this paper represent a more challenging test than the previous ones. Contrary to previous results reported in the literature, our results (1) do not support any detectable inter-epoch variations of orbital and stellar parameters, (2) are photometrically stable at the level ˜10-4 in the IR, and (3) the transit depth measurements at the two wavelengths are consistent within 1σ. We also (4) detect a possible transit duration variation of ˜80 s (2σ significance level) that has not been pointed out in the literature, and (5) confirm no transit timing variations ≳30 s.

  4. Photometric and Spectroscopic analysis of lensed re-ionising sources at the frontier of the Universe

    Science.gov (United States)

    Laporte, N.; Ellis, R.; Roberts-Borsani, G.; Infante, L.; Zheng, W.; Bauer, F. E.; Bina, D.; Chilingarian, I.; Kim, S.; Pelló, R.; Pérez-Fournon, I.; Richard, J.; Troncoso-Iribarren, P.; Streblyanska, A.

    2016-12-01

    Our team is performing an automatic search for very distant sources using HST, VLT, Magellan, Gemini, Spitzer and ALMA dataset around Frontier Fields aiming to study the nature and properties of sources during the epoch of reionization. In this paper, we report on our photometric sample selection, the photometric properties of our z>6 candidates and the evolution of galaxy number densities during the first billion years from a statistical point of view. Thanks to the huge depth of HST FF data, we identified several z>7 candidates selected in previous HST surveys as mid-z interlopers that could bias our conclusions on the evolution of the first galaxies. We also briefly discuss several interesting objects that will benefit from the arrival of the JWST. The spectroscopic follow-up has just started, and our team is observing a sample of z>7 sources with ground-based spectrographs in order to confirm the redshift of these objects and add robust constraints on their physical properties.

  5. Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

    CERN Document Server

    Raman, V Venkata

    2008-01-01

    We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated spectroscopic observations were made on some PAGB stars to look for spectral variations. We also analyse archival SPITZER mid-infrared spectra on a few PAGB stars to identify spectral features due to PAH molecules providing confirmation of the advanced stage of their evolution. Further, we model the SEDs of the stars (compiled from archival data) and compare circumstellar dust parameters and mass loss rates in different types. Our near-infrared spectra show that in the case of M and S type stars, the equivalent widths of the CO(3-0) band are moderately correlated with infrared colors, suggesting a possible relationship wi...

  6. Revision of Stellar Intrinsic Colors in the Infrared by the Spectroscopic Surveys

    CERN Document Server

    Jian, Mingjie; Zhao, He; Jiang, Biwei

    2016-01-01

    Intrinsic colors of normal stars are derived in the popularly used infrared bands involving the 2MASS/JHKs, WISE, Spitzer/IRAC and AKARI/S9W filters. Based on three spectroscopic surveys -- LAMOST, RAVE and APOGEE, stars are classified into groups of giants and dwarfs, as well as metal-normal and metal-poor stars. An empirical analytical relation of the intrinsic color is obtained with stellar effective temperature (Teff) for each group of stars after the zero-reddening stars are selected from the blue edge in the $J-\\lambda$ versus (Teff) diagram. It is found that metallicity has little effect on the infrared colors. In the near-infrared bands, our results agree with previous work. In addition, the color indexes H-W2 and Ks-W1 that are taken as constant to calculate interstellar extinction are discussed. The intrinsic color of M-type stars are derived separately due to lack of accurate measurement of their effective temperature.

  7. NIR spectroscopic observation of massive galaxies in the protocluster at z = 3.09

    CERN Document Server

    Kubo, Mariko; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2014-01-01

    We present the results of near-infrared spectroscopic observations of the $K$-band selected candidate galaxies in the protocluster at $z=3.09$ in the SSA22 field. We observed 67 candidates with $K_{\\rm AB}1.4$), hyper extremely red objects (HEROs; $J-K_{\\rm AB}>2.1$), {\\it Spitzer} MIPS 24 $\\mu$m sources, active galactic nuclei (AGNs) as well as the counterparts of Ly$\\alpha$ blobs and the AzTEC/ASTE 1.1-mm sources in the SSA22 field are also found to be the protocluster members. The mass of the SSA22 protocluster is estimated to be $\\sim2-5\\times10^{14}~M_{\\odot}$ and this system is plausibly a progenitor of the most massive clusters of galaxies in the current Universe. The reddest ($J-K_{\\rm AB}\\geq 2.4$) protocluster galaxies are massive galaxies with $M_{\\rm star}\\sim10^{11}~M_{\\odot}$ showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences ...

  8. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    Science.gov (United States)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  9. MDM OSMOS Spectroscopic classification of Supernovae

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Chen, Ping; Klusmeyer, J.; Prieto, Jose Luis; Shappee, B.; Shields, J.; Brown, J.; Stanek, K. Z.; Kochanek, C.

    2016-11-01

    We report optical spectroscopic classification of supernova candidates 2016hgd (ATel #9651), 2016hli (ATel #9685), CSS161013:015319+171853 and CSS161013:020130+141534 (http://nesssi.cacr.caltech.edu/catalina/AllSN.html).

  10. Automated pipelines for spectroscopic analysis

    Science.gov (United States)

    Allende Prieto, C.

    2016-09-01

    The Gaia mission will have a profound impact on our understanding of the structure and dynamics of the Milky Way. Gaia is providing an exhaustive census of stellar parallaxes, proper motions, positions, colors and radial velocities, but also leaves some glaring holes in an otherwise complete data set. The radial velocities measured with the on-board high-resolution spectrograph will only reach some 10 % of the full sample of stars with astrometry and photometry from the mission, and detailed chemical information will be obtained for less than 1 %. Teams all over the world are organizing large-scale projects to provide complementary radial velocities and chemistry, since this can now be done very efficiently from the ground thanks to large and mid-size telescopes with a wide field-of-view and multi-object spectrographs. As a result, automated data processing is taking an ever increasing relevance, and the concept is applying to many more areas, from targeting to analysis. In this paper, I provide a quick overview of recent, ongoing, and upcoming spectroscopic surveys, and the strategies adopted in their automated analysis pipelines.

  11. SDSS spectroscopic survey of stars

    CERN Document Server

    Ivezic, Z; Uomoto, A; Bond, N; Beers, T; Allende-Prieto, C; Wilhelm, R; Lee, Y S; Sivarani, T; Juric, M; Lupton, R; Rockosi, C M; Knapp, G; Gunn, J; Yanny, B; Jester, S; Kent, S; Pier, J; Munn, J A; Richards, G; Newberg, H; Blanton, M; Eisenstein, D; Hawley, S; Anderson, S; Harris, H; Kiuchi, F; Chen, A; Bushong, J; Sohi, H; Haggard, D; Kimball, A; Barentine, J; Brewington, H; Harvanek, M; Kleinman, S; Krzesínski, J; Long, D; Nitta, A; Snedden, S A

    2007-01-01

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Zo]~ -1.3. The median metallicity for the low-metallicity [Z/Zo] -1.3 sample. We also find that the low-metallicity sample has ~2.5 times larger velocity dispersion and that it does not rotate (at ...

  12. Vibrational spectroscopic characterization of fluoroquinolones

    Science.gov (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  13. Spectroscopic Detection of Caries Lesions

    Directory of Open Access Journals (Sweden)

    Mika Ruohonen

    2013-01-01

    Full Text Available Background. A caries lesion causes changes in the optical properties of the affected tissue. Currently a caries lesion can be detected only at a relatively late stage of development. Caries diagnosis also suffers from high interobserver variance. Methods. This is a pilot study to test the suitability of an optical diffuse reflectance spectroscopy for caries diagnosis. Reflectance visible/near-infrared spectroscopy (VIS/NIRS was used to measure caries lesions and healthy enamel on extracted human teeth. The results were analysed with a computational algorithm in order to find a rule-based classification method to detect caries lesions. Results. The classification indicated that the measured points of enamel could be assigned to one of three classes: healthy enamel, a caries lesion, and stained healthy enamel. The features that enabled this were consistent with theory. Conclusions. It seems that spectroscopic measurements can help to reduce false positives at in vitro setting. However, further research is required to evaluate the strength of the evidence for the method’s performance.

  14. LOW FALSE POSITIVE RATE OF KEPLER CANDIDATES ESTIMATED FROM A COMBINATION OF SPITZER AND FOLLOW-UP OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Désert, Jean-Michel; Brown, Timothy M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bryson, Stephen T.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ford, Eric B. [University of Florida, Gainesville, FL 32611 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Seager, Sara, E-mail: desert@colorado.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2015-05-01

    NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated

  15. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Rettura, A.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, MS 169-234, Pasadena, CA 91109 (United States); Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Mei, S. [GEPI, Observatoire de Paris, Section de Meudon, Meudon Cedex (France); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Stanford, S. A. [Department of Physics, University of California, Davis, CA 95616 (United States); Bartlett, J. G. [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cite, 75205 Paris Cedex 13 (France)

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  16. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    2010-12-29

    wavelength 7.844 µm; Hora et al. 2008). For IRAC 4, we have overlap with ISOGAL in the fields Bulge 2, Bulge 4, N 1, and NGC 6522. The number of...6522 field. The data points do not scatter randomly around zero . Rather, faint sources tend to be brighter in the ISO 7 µm band, whereas bright...slopes and zero points of this linear fit are similar for all fields, with a cross-over (Spitzer IRAC 4 equal to ISO 7 µm mag- nitude) between 6.m0 and 7

  17. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    Science.gov (United States)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; Gardner, Jonathan P.; Gladders, Mike; Lonsdale, Carol

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  18. The Spitzer-Weinstein Syndrome: One Form of Type IV Renal Tubular Acidosis and Its Response to Indapamide: A Case Report

    Directory of Open Access Journals (Sweden)

    Hilmi Umut ÜNAL

    2012-05-01

    Full Text Available Spitzer-Weinstein is rare disorder characterized by thiazide responsive hyperkalemia and normal anion gap metabolic acidosis, similar to Gordon syndrome.The hyperfunction of thiazide–sensitive Na-Cl cotransporter (TSC is the main pathophysiological mechanism. We present a 21-year-old male with normal blood pressure, persistently elevated serum potassium, and metabolic asidosis. The diagnosis of Spitzer-Weinstein syndrome was made by clinical pictures and thiazide test. After using 1.5 mg indapamide from a group of thiazide diuretics, his serum potassium decreased from 6.68 mmol/L to 3.54 mmol/L and the daily urine potassium excretion increased from 13.2 mmol to 34.1 mmol. This patient then took indapamide 1.5 mg daily. The persistent hyperkalemia and metabolic acidosis were corrected. Thiazide, a powerful inhibitor of TSC, proved to be a useful tool for the diagnosis and treatment of Spitzer-Weinstein syndrome.

  19. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.

  20. Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

    Science.gov (United States)

    Lisse, C. M.; Fernandez, Y. R.; Reach, W. T.; Bauer, J. M.; A’Hearn, M. F.; Farnham, T. L.; Groussin, O.; Belton, M. J.; Meech, K. J.; Snodgrass, C. D.

    2009-09-01

    We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 1028 molecules s-1 at perihelion, we estimate that ∼100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ∼5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (∼700 yr) at its current rate of

  1. A Spitzer Study of Pseudobulges in S0 Galaxies: Secular Evolution of Disks

    Science.gov (United States)

    Barway, Sudhanshu; Vaghmare, Kaustubh; Mathur, Smita; Kembhavi, Ajit

    2017-03-01

    A comparison of pseudobulges in S0 and spiral galaxies is presented using structural parameters derived from 2-d decomposition of mid-infrared images taken at 3.6 μm by Spitzer IRAC. The position of the bulges on the Kormendy diagram has been used as an initial classification criterion for determining the nature of the bulge. To make the classification more secure, the criterion proposed by Fisher and Drory (2008) has also been used, which involves using the n = 2 division line on Sérsic index. We find that among the 185 S0 galaxies, 27 are pseudobulge hosts while 160 are classical. Of these 25 pseudobulge hosts, only two belong to the bright luminosity class (MK 22.66, AB system). We find that among spiral galaxies, 77 % (24 of 31) of the bulges are classified as pseudobulges. As pointed out by various studies, the presence of such a large fraction poses problems to our current picture of galaxy formation. How ever, our primary result is that the disk scale length of pseudobulge hosting S0s is significantly smaller on average than that of their spiral counterparts. This can be explained as a lowered disk luminosity which in turn implies that S0s have evolved from spiral progenitors. We also argue that early type spirals are more likely to be the progenitors based on bulge and total luminosity arguments. We speculate that if late type spirals hosting pseudobulges have to evolve into S0s, an additional mechanism along with gas stripping of spirals is needed. We have also investigated the effect of environment on pseudobulges in the two samples, but no significant trends were found in the properties of the pseudobulges as a function of the various structural parameters. The study is made more difficult because of the low number statistics one deals with when the sample is sub-divided based on whether it is in a field or group/cluster environment. The study of pseudobulges based on environment, however, is an interesting one and is something that can be considered

  2. Do individual Spitzer young stellar object candidates enclose multiple UKIDSS sources?

    Science.gov (United States)

    Morales, Esteban F. E.; Robitaille, Thomas P.

    2017-02-01

    Aims: We analyze United Kingdom Infrared Deep Sky Survey (UKIDSS) observations of a sample of 8325 objects taken from a catalog of intrinsically red sources selected in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Given the differences in angular resolution (factor >2 better in UKIDSS), our aim is to investigate whether there are multiple UKIDSS sources that might all contribute to the GLIMPSE flux, or whether there is only one dominant UKIDSS counterpart. We then study possible corrections to estimates of the star formation rate (SFR) based on counts of GLIMPSE young stellar objects (YSOs). This represents an exploratory work toward the construction of a hierarchical YSO catalog. Methods: After performing PSF fitting photometry in the UKIDSS data, we implemented a technique to recognize the dominant UKIDSS sources automatically by evaluating their match with the spectral energy distribution (SED) of the associated GLIMPSE red sources. This is a generic method that could be robustly applied for matching SEDs across gaps at other wavelengths. Results: We found that most (87.0 ± 1.6%) of the candidate YSOs from the GLIMPSE red source catalog have only one dominant UKIDSS counterpart that matches the mid-infrared SED (fainter associated UKIDSS sources might still be present). Although at first sight this could seem surprising, given that YSOs are typically in clustered environments, we argue that within the mass range covered by the GLIMPSE YSO candidates (intermediate to high masses), clustering with objects with comparable mass is unlikely at the GLIMPSE resolution. Indeed, by performing simple clustering experiments based on a population synthesis model of Galactic YSOs, we found that although 60% of the GLIMPSE YSO enclose at least two UKIDSS sources, in general only one dominates the flux. Conclusions: No significant corrections are needed for estimates of the SFR of the Milky Way based on the assumption that the GLIMPSE YSOs

  3. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    Science.gov (United States)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  4. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  5. The Initial Conditions of Stellar Protocluster Formation: III. The Herschel counterparts of the Spitzer Dark Cloud catalogue

    CERN Document Server

    Peretto, N; Fuller, G A; Traficante, A; Molinari, S; Thompson, M A; Ward-Thompson, D

    2016-01-01

    Galactic plane surveys of pristine molecular clouds are key for establishing a Galactic-scale view of the earliest stages of star formation. For this reason Peretto & Fuller (2009) built an unbiased sample of IRDCs in the 10 deg < |l| < 65 deg, |b|<1 deg region of the Galactic plane using Spitzer 8micron extinction. However, in absorption studies, intrinsic fluctuations in the mid-infrared background can be mis-interpreted as foreground clouds. The main goal of the study presented here is to disentangle real clouds in the Spitzer Dark Cloud (SDC) catalogue from artefacts due to fluctuations in the mid-infrared background. We constructed H_2 column density maps at ~18" resolution using the 160micron and 250micron data from the Herschel Galactic plane survey Hi-GAL. We also developed an automated detection scheme that confirms the existence of a SDC through its association with a peak on these Herschel column density maps. Detection simulations, along with visual inspection of a small sub-sample of...

  6. Spitzer as Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star

    CERN Document Server

    Udalski, A; Gould, A; Carey, S; Zhu, W; Skowron, J; Kozłowski, S; Poleski, R; Pietrukowicz, P; Pietrzyński, G; Szymański, M K; Mróz, P; Soszyński, I; Ulaczyk, K; Wyrzykowski, Ł; Han, C; Novati, S Calchi; Pogge, R W

    2014-01-01

    We combine Spitzer and ground-based observations to measure the microlens parallax vector ${\\mathbf \\pi}_{\\rm E}$, and so the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses $m \\sim 0.5\\,M_{\\rm jup}$ and $M\\sim 0.7\\,M_\\odot$ and are separated by $a_\\perp\\sim 3.1$ AU in projection. The main source of uncertainty in all these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius $\\theta_{\\rm E}$, rather than uncertainty in $\\pi_{\\rm E}$, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the $\\pi_{\\rm E}$ measurement but also the first independent test of a ground-based ${\\mathbf \\pi}_{\\rm E}$ measurement.

  7. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z=1.5: I. Description and Methodology

    CERN Document Server

    Kelson, Daniel D; Dressler, Alan; McCarthy, Patrick J; Shectman, Stephen A; Mulchaey, John S; Villanueva, Edward V; Crane, Jeffrey D; Quadri, Ryan F

    2012-01-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer 3.6micron imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z~1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded 37,000 high quality redshifts in our first 5.3 sq.degs of the SWIRE XMM-LSS field. We use three...

  8. The physical properties of Spitzer/IRS galaxies derived from their UV to 22 $\\mu$m spectral energy distribution

    CERN Document Server

    Vika, Marina; Charmandaris, Vassilis; Xilouris, Emmanuel M; Lebouteiller, Vianney

    2016-01-01

    We provide the basic integrated physical properties of all the galaxies contained in the full CASSIS with available broad-band photometry from UV to 22 $\\mu$m. We have collected photometric measurements in 14 wavelengths from available public surveys in order to study the SED of each galaxy in CASSIS, thus constructing a final sample of 1,146 galaxies in the redshift range 0Spitzer/IRS galaxies are star-forming and lie on or above the star-forming MS of the corresponding redshift. Moreover, the emission of Spitzer/IRS galaxies with z<0.1 is mostly dominated by star-formation, galaxies in the mid-redshift bin are a mixture of star forming and AGN galaxies, wh...

  9. Mid- and far-infrared properties of Spitzer Galactic bubbles revealed by the AKARI all-sky surveys

    CERN Document Server

    Hattori, Yasuki; Ishihara, Daisuke; Fukui, Yasuo; Torii, Kazufumi; Hanaoka, Misaki; Kokusho, Takuma; Kondo, Akino; Shichi, Kazuyuki; Ukai, Sota; Yamagishi, Mitsuyoshi; Yamaguchi, Yuta

    2016-01-01

    We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${\\mu}{\\rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${\\mu}{\\rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morpholog...

  10. Spitzer Observations of the Lambda Orionis cluster I: the frequency of young debris disks at 5 Myr

    CERN Document Server

    Hernández, Jesús; Hartmann, L; Muzerolle, J; Gutermuth, R; Stauffer, J

    2009-01-01

    We present IRAC/MIPS Spitzer observations of intermediate-mass stars in the 5 Myr old Lambda Orionis cluster. In a representative sample of stars earlier than F5 (29 stars), we find a population of 9 stars with a varying degree of moderate 24um excess comparable to those produced by debris disks in older stellar groups. As expected in debris disks systems, those stars do not exhibit emission lines in their optical spectra. We also include in our study the star HD 245185, a known Herbig Ae object which displays excesses in all Spitzer bands and shows emission lines in its spectrum. We compare the disk population in the Lambda Orionis cluster with the disk census in other stellar groups studied using similar methods to detect and characterize their disks and spanning a range of ages from 3 Myr to 10 Myr. We find that for stellar groups of 5 Myr or older the observed disk frequency in intermediate mass stars (with spectral types from late B to early F) is higher than in low mass stars (with spectral types K and ...

  11. A Spitzer MIPS Study of 2.5-2.0 M\\odot Stars in Scorpius-Centaurus

    CERN Document Server

    Chen, Christine H; Mamajek, Eric E; Su, Kate Y L; Bitner, Martin

    2012-01-01

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {\\mu}m and 70 {\\mu}m observations of 215 nearby, Hipparcos B- and A-type common proper motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {\\mu}m B+A-type disk fractions of 17/67 (25+6%), 36/131 (27+4%), and 23/95 (24+5%) for Upper Scorpius (\\sim11 Myr), Upper Centaurus Lupus (\\sim15 Myr), and Lower Centaurus Crux (\\sim17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from LIR/L\\ast = 1e-6 to 1e-2 and grain temperatures ranging from Tgr = 40 - 300 K. In addition, we confirm that the 24 {\\mu}m and 70 {\\mu}m excesses (or fractional infrared luminosities) around B+A type stars ...

  12. The Spitzer Survey of Interstellar Clouds in the Gould Belt. III. A Multi-Wavelength View of Corona Australis

    CERN Document Server

    Peterson, Dawn E; Bourke, Tyler L; Forbrich, Jan; Gutermuth, Robert A; Jorgensen, Jes K; Allen, Lori E; Patten, Brian M; Dunham, Michael M; Harvey, Paul M; Merin, Bruno; Chapman, Nicholas L; Cieza, Lucas A; Huard, Tracy L; Knez, Claudia; Prager, Brian; Evans, Neal J

    2011-01-01

    We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg^2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M_o Myr^-1, similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface ...

  13. Serendipity observations of far infrared cirrus emission in the Spitzer Infrared Nearby Galaxies Survey: Analysis of far-infrared correlations

    CERN Document Server

    Bot, Caroline; Boulanger, Francois; Lagache, Guilaine; Miville-Deschenes, Marc-Antoine; Draine, Bruce; Martin, Peter

    2009-01-01

    We present an analysis of far-infrared dust emission from diffuse cirrus clouds. This study is based on serendipitous observations at 160 microns at high galactic latitude with the Multiband Imaging Photometer (MIPS) onboard the Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey (SINGS). These observations are complemented with IRIS data at 100 and 60 microns and constitute one of the most sensitive and unbiased samples of far infrared observations at small scale of diffuse interstellar clouds. Outside regions dominated by the cosmic infrared background fluctuations, we observe a substantial scatter in the 160/100 colors from cirrus emission. We compared the 160/100 color variations to 60/100 colors in the same fields and find a trend of decreasing 60/100 with increasing 160/100. This trend can not be accounted for by current dust models by changing solely the interstellar radiation field. It requires a significant change of dust properties such as grain size distribution or emissivity or ...

  14. Quantifying the UV continuum slopes of galaxies to z~10 using deep Hubble and Spitzer/IRAC observations

    CERN Document Server

    Wilkins, Stephen M; Oesch, Pascal A; Labbe, Ivo; Sargent, Mark; Caruana, Joseph; Wardlow, Julie; Clay, Scott

    2015-01-01

    Measurements of the UV-continuum slopes provide valuable information on the physical properties of galaxies forming in the early universe, probing the dust reddening, age, metal content, and even the escape fraction. While constraints on these slopes generally become more challenging at higher redshifts as the UV continuum shifts out of the Hubble Space Telescope bands (particularly at z>7), such a characterisation actually becomes abruptly easier for galaxies in the redshift window z=9.5-10.5 due to the Spitzer/IRAC 3.6um-band probing the rest-UV continuum and the long wavelength baseline between this Spitzer band and the Hubble H-band. Higher S/N constraints on the UV slope are possible at z~10 than at z=8. Here we take advantage of this opportunity and five recently discovered bright z=9.5-10.5 galaxies to present the first measurements of the mean slope for a multi-object sample of galaxy candidates at z~10. We find the measured observed slopes of these candidates are $-2.1\\pm0.3\\pm0.2$ (random and system...

  15. Young brown dwarfs at high cadence: Warm Spitzer time series monitoring of very low mass Sigma Orionis cluster members

    CERN Document Server

    Cody, Ann Marie

    2011-01-01

    The continuous temporal coverage and high photometric precision afforded by space observatories has opened up new opportunities for the study of variability processes in young stellar cluster members. Of particular interest is the phenomenon of deuterium-burning pulsation in brown dwarfs and very-low-mass stars, whose existence on 1-4 hours timescales has been proposed but not yet borne out by observations. To investigate short-timescale variability in young, low-mass objects, we carried out high-precision, high-cadence time series monitoring with the Warm Spitzer mission on 14 low mass stars and brown dwarfs in the ~3 Myr Sigma Orionis cluster. The flux in many of our raw light curves is strongly correlated with sub-pixel position and can vary systematically as much as 10%. We present a new approach to disentangle true stellar variability from this "pixel-phase effect," which is more pronounced in Warm Spitzer observations as compared to the cryogenic mission. The light curves after correction reveal that mo...

  16. The Spitzer Survey of Interstellar Clouds in the Gould Belt. V. Ophiuchus North Observed with IRAC and MIPS

    CERN Document Server

    Hatchell, Jennifer; Huard, Tracy; Mamajek, Eric; Allen, Lori; Bourke, Tyler; Dunham, Michael; Gutermuth, Robert; Harvey, Paul; Jorgensen, Jes; Merin, Bruno; Noriega-Crespo, Albert; Peterson, Dawn

    2012-01-01

    We present Spitzer IRAC (2.1 sq. deg.) and MIPS (6.5 sq. deg.) observations of star formation in the Ophiuchus North molecular clouds. This fragmentary cloud complex lies on the edge of the Sco-Cen OB association, several degrees to the north of the well-known rho Oph star-forming region, at an approximate distance of 130 pc. The Ophiuchus North clouds were mapped as part of the Spitzer Gould Belt project under the working name `Scorpius'. In the regions mapped, selected to encompass all the cloud with visual extinction AV>3, eleven Young Stellar Object (YSO) candidates are identified, eight from IRAC/MIPS colour-based selection and three from 2MASS K/MIPS colours. Adding to one source previously identified in L43 (Chen et al. 2009), this increases the number of YSOcs identified in Oph N to twelve. During the selection process, four colour-based YSO candidates were rejected as probable AGB stars and one as a known galaxy. The sources span the full range of YSOc classifications from Class 0/1 to Class III, and...

  17. SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Udalski, A.; Skowron, J.; Kozłowski, S.; Poleski, R.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Mróz, P.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gould, A.; Zhu, W.; Pogge, R. W. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Calchi Novati, S. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We combine Spitzer and ground-based observations to measure the microlens parallax vector π{sub E}, and thus the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses of m ∼ 0.5 M {sub jup} and M ∼ 0.7 M {sub ☉} and are separated by a ∼ 3.1 AU in projection. The main source of uncertainty in all of these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius θ{sub E}, rather than uncertainty in π{sub E}, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the π{sub E} measurement, but also the first independent test of a ground-based π{sub E} measurement.

  18. The Nature of the Strong 24 micron Spitzer Source J222557+601148: Not a Young Galactic Supernova Remnant

    CERN Document Server

    Fesen, Robert

    2010-01-01

    The nebula J222557+601148, tentatively identified by Morris et al. (2006) as a young Galactic supernova remnant (SNR) from Spitzer Galactic First Look Survey images and a follow-up mid-infrared spectrum, is unlikely to be a SNR remnant based on Halpha, [O III], [S II] images and low dispersion optical spectra. The object is seen in Halpha and [O III] 5007 images as a faint, roughly circular ring nebula with dimensions matching that seen in 24 micron Spitzer images. Low-dispersion optical spectra show it to have narrow Halpha and [N II] 6548, 6583 line emissions with no evidence of broad or high-velocity (v > 300 km/s) line emissions. The absence of any high-velocity optical features, the presence of relatively strong [N II] emissions, a lack of detected [S II] emission which would indicate the presence of shock-heated gas, plus no coincident X-ray or nonthermal radio emissions indicate the nebula is unlikely to be a SNR, young or old. Instead, it is likely a faint, high-excitation planetary nebula (PN) as its...

  19. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambdridge, CB3 0HA (United Kingdom)

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  20. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  1. "TNOs are Cool": A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations

    NARCIS (Netherlands)

    Lellouch, E.; Santos-Sanz, P.; Lacerda, P.; Mommert, M.; Duffard, R.; Ortiz, J. L.; Müller, T. G.; Fornasier, S.; Stansberry, J.; Kiss, Cs.; Vilenius, E.; Mueller, M.; Peixinho, N.; Moreno, R.; Groussin, O.; Delsanti, A.; Harris, A. W.

    2013-01-01

    Aims: The goal of this work is to characterize the ensemble thermal properties of the Centaurs / trans-Neptunian population. Methods: Thermal flux measurements obtained with Herschel/PACS and Spitzer/MIPS provide size, albedo, and beaming factors for 85 objects (13 of which are presented here for th

  2. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. I. Evidence against a strong starburst-AGN connection in radio-loud AGN

    CERN Document Server

    Dicken, D; Axon, D; Morganti, R; Robinson, A; N., M B; Spoon, H; Kharb, P; Inskip, K J; Holt, J; Almeida, C Ramos; Nesvadba, N P H

    2011-01-01

    We present deep Spitzer/IRS spectra for complete samples of 46 2Jy radio galaxies (0.0575%) than their more extended counterparts (=15 -- 25%). We discuss this result in the context of a possible bias towards the selection of compact radio sources triggered in gas-rich environments.

  3. "TNOs are Cool" : A survey of the trans-Neptunian region IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations

    NARCIS (Netherlands)

    Lellouch, E.; Santos-Sanz, P.; Lacerda, P.; Mommert, M.; Duffard, R.; Ortiz, J. L.; Mueller, T. G.; Fornasier, S.; Stansberry, J.; Kiss, Cs.; Vilenius, E.; Mueller, M.; Peixinho, N.; Moreno, R.; Groussin, O.; Delsanti, A.; Harris, A. W.

    2013-01-01

    Aims. The goal of this work is to characterize the ensemble thermal properties of the Centaurs/trans-Neptunian population. Methods. Thermal flux measurements obtained with Herschel/PACS and Spitzer/MIPS provide size, albedo, and beaming factors for 85 objects (13 of which are presented here for the

  4. Spitzer/IRAC view of Sh 2-284. Searching for evidence of triggered star formation in an isolated region in the outer Milky Way

    NARCIS (Netherlands)

    E. Puga; S. Hony; C. Neiner; A. Lenorzer; A.M. Hubert; L.B.F.M. Waters; F. Cusano; V. Ripepi

    2009-01-01

    Aims. Using Spitzer/IRAC observations of a region to be observed by the CoRoT satellite, we have unraveled a new complex star-forming region at low metallicity in the outer Galaxy. We perform a study of S284 in order to outline the chain of events in this star-forming region. Methods. We used four-b

  5. SPITZER observations of Abell 1763. III. The infrared luminosity function in different supercluster environments

    CERN Document Server

    Biviano, A; Durret, F; Edwards, L O V; Marleau, F

    2011-01-01

    We determine the galaxy infrared (IR) luminosity function (LF) as a function of the environment in a supercluster at z=0.23, using optical, near-IR, and mid- to far-IR photometry, as well as redshifts from optical spectroscopy. We identify 467 supercluster members in a sample of 24-micron-selected galaxies, on the basis of their spectroscopic (153) and photometric (314) redshifts. IR luminosities, stellar masses and star formation rates (SFRs) are determined for supercluster members via spectral energy distribution fitting and the Kennicutt relation. Galaxies with active galactic nuclei are excluded from the sample. We determine the IR LF of the whole supercluster as well as the IR LFs of three different regions in the supercluster: the cluster core, a large-scale filament, and the cluster outskirts (excluding the filament). The IR LF shows an environmental dependence which is not simply related to the local galaxy density. The filament, an intermediate-density region in the A1763 supercluster, contains the h...

  6. The (dark) halo-to-stellar mass ratio in the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G)

    CERN Document Server

    Díaz-García, Simón; Laurikainen, Eija; Leaman, Ryan

    2016-01-01

    We use 3.6 $\\mu$m photometry for 1154 disk galaxies ($i<65^{\\circ}$) in the Spitzer Survey of Stellar Structure in Galaxies (S$^{4}$G, Sheth et al. 2010) to obtain the stellar component of the circular velocity. By combining the disk+bulge rotation curves with HI line width measurements from the literature, we estimate the ratio of the halo-to-stellar mass ($M_{\\rm halo}/M_{\\ast}$) within the optical disk, and compare it to the total stellar mass ($M_{\\ast}$). We find the $M_{\\rm halo}/M_{\\ast}$-$M_{\\ast}$ relation in good agreement with the best-fit model at z$\\approx$0 in $\\Lambda$CDM cosmological simulations (e.g. Moster et al. 2010), assuming that the dark matter halo within the optical radius comprises a constant fraction ($\\sim4\\%$) of its total mass.

  7. The Mid-Infrared Spectrum of the Short Orbital Period Polar EF Eridani from the Spitzer Space Telescope

    CERN Document Server

    Hoard, D W; Brinkworth, Carolyn S; Ciardi, David R; Wachter, Stefanie

    2007-01-01

    We present the first mid-infrared (5.5-14.5 micron) spectrum of a highly magnetic cataclysmic variable, EF Eridani, obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The spectrum displays a relatively flat, featureless continuum. A spectral energy distribution model consisting of a 9500 K white dwarf, L5 secondary star, cyclotron emission corresponding to a B~13 MG white dwarf magnetic field, and an optically thin circumbinary dust disk is in reasonable agreement with the extant 2MASS, IRAC, and IRS observations of EF Eri. Cyclotron emission is ruled out as a dominant contributor to the infrared flux density at wavelengths >3 microns. The spectral energy distribution longward of ~5 microns is dominated by dust emission. Even longer wavelength observations would test the model's prediction of a continuing gradual decline in the circumbinary disk-dominated region of the spectral energy distribution.

  8. Clusters of Galaxies at 1 < z < 2 The Spitzer Adaptation of the Red-Sequence Cluster Survey

    CERN Document Server

    Wilson, G; Lacy, M; Yee, H; Surace, J; Lonsdale, C; Hoekstra, H; Majumdar, S; Gilbank, D; Gladders, M; Wilson, Gillian; Muzzin, Adam; Lacy, Mark; Yee, Howard; Surace, Jason; Lonsdale, Carol; Hoekstra, Henk; Majumdar, Subhabrata; Gilbank, David

    2006-01-01

    As the densest galaxy environments in the universe, clusters are vital to our understanding of the role that environment plays in galaxy formation and evolution. Unfortunately, the evolution of high-redshift cluster galaxies is poorly understood because of the ``cluster desert'' that exists at 1 2 to the quiescent population at z < 1. The existing seven-passband Spitzer data (3.6, 4.5, 5.8, 8.0, 24, 70, 160 micron) will allow us to make the first measurements of the evolution of the cluster red-sequence, IR luminosity function, and the mid-IR dust-obscured star-formation rate for 1 < z < 2 clusters.

  9. First Space-based Microlens Parallax Measurement of an Isolated Star: Spitzer Observations of OGLE-2014-BLG-0939

    CERN Document Server

    Yee, J C; Novati, S Calchi; Gould, A; Carey, S; Poleski, R; Gaudi, B S; Pogge, R W; Skowron, J; Kozłowski, S; Mróz, P; Pietrukowicz, P; Pietrzyński, G; Szymański, M K; Soszyński, I; Ulaczyk, K; Wyrzykowski, Ł

    2014-01-01

    We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 240 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.

  10. Synthesis and Spectroscopic Investigation of Azoporphyrins

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The synthesis of a series of new covalently-connected azoporphyrin derivatives is described and the photochemical properties of the new compounds are discussed. The two chromophores of these derivatives exhibit their absorption spectroscopic properties respectively.In the fluorescence emission spectra, intermolecular fluorescence quenching is detected.

  11. Asiago spectroscopic classification of two transients

    Science.gov (United States)

    Turatto, M.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Terreran, G.

    2016-12-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of Gaia16bzi, AT2016isl. The targets were supplied by the ESA Gaia Photometric Science Alerts Team and DPAC (http://gsaweb.ast.cam.ac.uk/alerts), the Tsinghua-NAOC Transient Survey (TNTS) and by Kunihiro Shima..

  12. Spectroscopic observation of the rotational Doppler effect.

    Science.gov (United States)

    Barreiro, S; Tabosa, J W R; Failache, H; Lezama, A

    2006-09-15

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle electromagnetically induced transparency coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  13. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  14. TESIS - The TNG EROs Spectroscopic Identification Survey

    CERN Document Server

    Saracco, P; Severgnini, P; Ceca, R D; Bender, R; Drory, N; Feulner, G; Ghinassi, F; Hopp, U; Mannucci, F; Maraston, C

    2002-01-01

    A near-IR low-resolution spectroscopic follow-up of a complete sample of K1.2 and at estimating their spatial density to put constraints on the galaxy formation and evolution models. In this proceeding, the preliminary analysis of the first spectra obtained is presented.

  15. Asiago spectroscopic classification of two SNe

    Science.gov (United States)

    Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Terreran, G.; Tomasella, L.; OAPd, M. Turatto (INAF

    2016-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of two transients. The targets are supplied by the All Sky Automated Survey for SuperNOvae (ASAS-SN) and the TNS (https://wis-tns.weizmann.ac.il).

  16. Asiago spectroscopic classification of ASASSN-15db

    Science.gov (United States)

    Ochner, P.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.

    2015-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of ASASSN-15db in NGC 5996. The observation was performed with the Asiago 1.82m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm), equipped with the CCD Andor IKON L936.

  17. The Gaia-ESO Public Spectroscopic Survey

    DEFF Research Database (Denmark)

    Gilmore, G.; Randich, S.; Asplund, M.;

    2012-01-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous o...

  18. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN {eta} CORVI At {approx}1 Gyr

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morlok, A. [Department of Earth and Planetary Sciences, The Open University, Milton-Keynes (United Kingdom); Watson, D. M.; Manoj, P.; Sheehan, P. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Currie, T. M. [NASA-GSFC, Code 667, Greenbelt, MD 20771 (United States); Thebault, P. [Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Sitko, M. L., E-mail: carey.lisse@jhuapl.edu, E-mail: wyatt@ast.cam.ac.uk, E-mail: cchen@stsci.edu, E-mail: a.morlok@open.ac.uk, E-mail: dmw@pas.rochester.edu, E-mail: manoj@pas.rochester.edu, E-mail: psheeha2@mail.rochester.edu, E-mail: thayne.m.currie@nasa.gov, E-mail: philippe.thebault@obspm.fr, E-mail: sitko@spacescience.org [Space Science Institute, 475 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2012-03-10

    We have analyzed Spitzer and NASA/IRTF 2-35 {mu}m spectra of the warm, {approx}350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 {+-} 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at {approx}3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 Multiplication-Sign 10{sup 18} kg of 0.1-100 {mu}m warm dust is present in a collisional equilibrium distribution with dn/da {approx} a{sup -3.5}, the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm{sup 3} density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at {approx}150 AU. At {approx}1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s{sup -1} with a rocky planetary body of mass {<=}M{sub Earth} at {approx}3 AU, delivering large amounts of water (>0.1% of M{sub Earth'sOceans}) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  19. Red worlds: Spitzer exploration of a compact system of temperate terrestrial planets transiting a nearby Jupiter-sized star

    Science.gov (United States)

    Gillon, Michael; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuel; Magain, Pierre; Van Grootel, Valerie; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean; Selsis, Franck; Demory, Brice-Olivier; Queloz, Didier; Triaud, Amaury; de Wit, Julien; Burgasser, Adam; Carey, Sean; Ingalls, Jim; Lederer, Sue; Agol, Eric; Deck, Katherine

    2016-08-01

    The recently detected TRAPPIST-1 planetary system represents a unique opportunity to extend the nascent field of comparative exoplanetology into the realm of temperate terrestrial worlds. It is composed of at least three Earth-sized planets similar in sizes and irradiations to Earth and Venus transiting an ultra-cool dwarf star only 39 light-years away. Thanks to the Jupiter-size and infrared brightness of their host star, the planets are amenable for detailed atmospheric characterization with JWST, including for biosignatures detection. Our Spitzer Exploration Science Program aims to prepare and optimize the detailed study of this fascinating planetary system through the two following complementary sub-programs: (1) a 480 hrs continuous monitoring of the star to explore its full inner system up to its ice line in a search for any other transiting object(s) (planet, moon, Trojan) with a sensitivity high enough to detect any body as small as Ganymede, and (2) the observation of ~130 transits of the planets (520 hrs). This second part has two goals. First, to measure precisely the planets' masses and eccentricities through the Transit Timing Variations method, to constrain strongly their compositions and energy budgets. Secondly, to measure with an extremely high precision the planets' effective radii at 4.5 microns to assess, when combined with future HST/WFC3 observations, the presence of an atmosphere around them. The two complementary parts of this program will make it a long-lasting legacy of Spitzer to the fields of comparative exoplanetology and astrobiology, by providing the necessary measurements on the inner system of TRAPPIST-1 (complete census, masses, eccentricities, first insights on atmospheres) required to initiate and optimize the detailed atmospheric characterization of its different components with JWST and other future facilities.

  20. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H.; Bitner, Martin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pecaut, Mark; Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Su, Kate Y. L., E-mail: cchen@stsci.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.