WorldWideScience

Sample records for c2c12 skeletal muscle

  1. Proliferative effect of Hachimijiogan, a Japanese herbal medicine, in C2C12 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Takeda T

    2015-02-01

    Full Text Available Takashi Takeda,1,2 Kenji Tsuiji,2 Bin Li,2 Mari Tadakawa,2 Nobuo Yaegashi2 1Division of Women’s Health, Research Institute of Traditional Asian Medicine, Kinki University School of Medicine, Osaka, Japan; 2Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan Background: Hachimijiogan (HJG, Ba-Wei-Di-Huang-Wan in Chinese, is one of the most popular herbal medicines in Japanese Kampo. HJG is often prescribed for the prevention and treatment of age-related diseases. Muscle atrophy plays an important role in aging-related disabilities such as sarcopenia. The purpose of this study was to investigate the possible beneficial effect of HJG on skeletal muscle.Methods: Cells of murine skeletal muscle myoblast cell line C2C12 were used as an in vitro model of muscle cell proliferation and differentiation. The effect of HJG on C2C12 cell proliferation and differentiation was assessed. We counted the number of myotubes morphologically to assess the degree of differentiation.Results: HJG treatment (200 µg/mL for 3 days significantly increased C2C12 cell number by 1.23-fold compared with that of the control. HJG promoted the proliferation of C2C12 cells through activation of the ERK1/2 signaling pathway without affecting the Akt signaling pathway. HJG did not affect the differentiation of C2C12 cells. Conclusion: HJG had beneficial effects on skeletal muscle myoblast proliferation. These findings may provide a useful intervention for the prevention and treatment of sarcopenia. Keywords: ERK1/2 signaling pathway, herbal medicine, myoblast, proliferation, sarcopenia

  2. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  3. Expression of Thyroid Stimulating Hormone Receptor mRNA in Mouse C2C12 Skeletal Muscle Cells

    OpenAIRE

    Ohn, Jung Hun; Han, Sun Kyoung; Park, Do Joon; Park, Kyong Soo; Park, Young Joo

    2013-01-01

    Background We analyzed whether thyroid stimulating hormone receptor (TSH-R) is expressed in a skeletal muscle cell line and if TSH has influence on the differentiation of muscle cells or on the determination of muscle fiber types. Methods TSH-R gene expression was detected with nested real-time polymerase chain reaction (RT-PCR) in C2C12, a mouse skeletal muscle cell line. The effect of TSH on myotube differentiation was assessed by microscopic examination of myotube formation and through the...

  4. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells.

    Science.gov (United States)

    Massaccesi, Luca; Goi, Giancarlo; Tringali, Cristina; Barassi, Alessandra; Venerando, Bruno; Papini, Nadia

    2016-08-01

    Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc. PMID:26728070

  5. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.

    Directory of Open Access Journals (Sweden)

    Yasuko Manabe

    Full Text Available A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺ transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt, 5' AMP-activated protein kinase (AMPK, p38 mitogen-activated protein kinase (p38, and c-Jun NH2-terminal kinase (JNK1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise, in situ (hindlimb muscles in an anesthetized animal, and invitro (dissected muscle tissues in incubation buffer by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction.

  6. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  7. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    International Nuclear Information System (INIS)

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl2 doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl2 doses for prolonged time points. Furthermore, CoCl2 treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes

  8. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: ► Change in the epigenetic landscape during myogenesis was optically investigated. ► Mobility of nuclear proteins was used to state the epigenetic status of the cell. ► Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. ► Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  9. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomonobu M. [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); World Premier Initiative, iFREC, Osaka University, Osaka 565-0871 (Japan); Higuchi, Sayaka [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); Kawauchi, Keiko [Mechanobiology Institute, National University of Singapore, Singapore 117411 (Singapore); Tsukasaki, Yoshikazu; Ichimura, Taro [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan); Fujita, Hideaki, E-mail: hideaki.fujita@riken.jp [Laboratory for Comprehensive Bioimaging, Riken Qbic, Osaka 565-0874 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage

  10. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  11. Antioxidant effects of whey protein on muscle C2C12 cells.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Priftis, Alexandros; Aivazidis, Stefanos; Tsatsakis, Aristidis M; Hayes, A Wallace; Kouretas, Demetrios

    2014-07-15

    In the present study, the in vitro scavenging activity of sheep whey protein against free radicals, as well as its reducing power were determined and compared with that of beef protein, soy protein and cow whey protein. Moreover, the possible protective effects of sheep whey protein from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in muscle C2C12 cells were determined by assessing oxidative stress markers by flow cytometry and spectrophotometry. The results showed that sheep whey protein scavenged DPPH, ABTS(+) and OH radicals with IC50 values of 3.1, 4.1 and 1.8 mg of protein/ml. Moreover, the reducing power activity assessed with potassium ferricyanide of sheep whey protein was 1.3mg/ml. As regards to the antioxidant effects in muscle cell line, sheep whey protein at 0.78, 1.56, 3.12 and 6.24 mg of protein/ml increased GSH levels up to 138%, lowered TBARS levels up to 25% and decreased ROS levels up to 41.4%. PMID:24594185

  12. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds

    International Nuclear Information System (INIS)

    This study aims at investigating the behavior in terms of the proliferation and skeletal muscle differentiation capability of two myoblastic cell lines, C2C12 and H9c2, on both isotropic and anisotropic electrospun nanofibrous poly(hydroxybutyrate) (PHB) scaffolds, as well as on PHB films and polystyrene controls. After a careful characterization of the matrices in terms of surface morphology, surface roughness and mechanical properties, the proliferation rate and the capability of the two cell lines to form skeletal myotubes were evaluated. Genetic analyses were also performed in order to assess the differentiation level of the cells on the different substrates. We demonstrated that the aligned nanofibrous mesh decreases the proliferation activity and provides a higher differentiative stimulus. We also clarified how the nanofibrous substrate influences myotube formation, and quantified a series of myotube-related parameters for both C2C12 and H9c2 cells. (paper)

  13. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    International Nuclear Information System (INIS)

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 μM cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  14. Effect of dehydroepiandrosterone on insulin action and development of insulin-induced resistance in C2C12 muscle cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydroepiandrosterone (DHEA), a precursor of androgens and estrogens, has been demonstrated to have effect of preventing insulin resistance and development of diabetes mellitus. Administration of testosterone appears to induce a marked insulin resistance. How these two hormones affect insulin resistance through regulation of sensitivity of tissues to insulin deserves further studies. Here, the effects of DHEA and testosterone on response to insulin in C2C12 muscle cells are analyzed. After 24 h of DHEA (10-6 mol/L) treatment, C2C12 cells showed an increased insulin- stimulated glucose uptake and enhanced activities of glycogen synthase (GS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), whereas testosterone gave the opposite effects. Incubation of C2C12 cells with high-dose insulin (5×10-7 mol/L) for 24 hours decreased their sensitivity to insulin and led to a state of resistance as assessed on insulin-stimulated glucose uptake and activities of GS, PFK and PDH. Addition of DHEA to insulin-resistant C2C12 cells could reverse the response of these cells to high-dose insulin, but testosterone could further impair insulin sensitivity in insulin-resistant C2C12 cells. These results suggest that the two hormones may influence the development or inhibition of insulin-resistance in type 2 diabetes through regulating glucose uptake, glycogenesis and glycolysis to some extent.

  15. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    Science.gov (United States)

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  16. Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12 Effects of continuous therapeutic ultrasound on proliferation and viability of C2C12 muscle cells

    Directory of Open Access Journals (Sweden)

    Paola Pelegrineli Artilheiro

    2010-06-01

    Full Text Available O ultra-som terapêutico (US é um recurso bioestimulante utilizado para propiciar reparo muscular de melhor qualidade e menor duração, mas o potencial terapêutico do US contínuo não está totalmente estabelecido. O objetivo deste trabalho foi avaliar o efeito do US contínuo sobre a proliferação e viabilidade de células musculares precursoras (mioblastos C2C12. Mioblastos C2C12 foram cultivados em meio de cultura contendo 10% de soro fetal bovino e irradiados com US contínuo nas freqüências de 1 e 3 MHz nas intensidades de 0,2 e 0,5 W/cm2, durante 2 e 5 minutos. A viabilidade e proliferação celular foram avaliadas após 24, 48 e 72 h de incubação. Grupos não-irradiados serviram como controle. Foram realizados experimentos independentes em cada condição acima, e os dados obtidos submetidos à análise estatística. Os resultados mostram que não houve diferença estatisticamente significativa na proliferação e viabilidade celular entre os mioblastos tratados com US e as culturas controles após os diferentes períodos de incubação, em todos os parâmetros avaliados. Conclui-se que o US contínuo, nos parâmetros avaliados, não foi capaz de alterar a proliferação e viabilidade dos mioblastos.Therapeutic ultrasound (US is a biophysical stimulation resource widely used in order to promote better, faster muscle repair, but the effectiveness of continuous US in treating injuries is not fully established. The aim of the present in vitro study was to assess the effects of continuous ultrasound on viability and proliferation of skeletal muscle precursor cells (C2C12 myoblasts. C2C12 myoblasts were cultured in a medium containing 10% foetal bovine serum and irradiated with continuous ultrasound at 1 and 3 MHz frequencies, at intensities of 0.2 and 0.5 W/cm² for 2 and 5 minutes. Cell viability and proliferation were assessed after different incubation periods (24, 48 and 72 h. Non-irradiated groups served as control and data were

  17. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.

    Science.gov (United States)

    Kaji, Hirokazu; Ishibashi, Takeshi; Nagamine, Kuniaki; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2010-09-01

    A porous membrane-based cell culture device was developed to electrically stimulate a confluent monolayer of C2C12 myotubes. The device's cell culture substrate is a microporous alumina membrane-modified by attaching an atelocollagen membrane on the upperside and a hole-spotted poly(dimethylsiloxane) (PDMS) film on the underside. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the focused current at the PDMS hole can electrically stimulate the cells. C2C12 myoblasts were cultured on the substrate and differentiated into myotubes. When the electrical pulses were applied, myotubes started to contract slightly in and near the hole, and that the continuous stimulation increased both the number of stimuli-responding myotubes and the magnitude of the contraction considerably owing to the underlying atelocollagen membrane with muscle tissue-like stiffness. Also, the generation of contractile myotubes on a wider region of the membrane substrate was possible by applying the electrical pulses through the array of holes in the PDMS film. Using the present system, the glucose uptake by contractile myotubes was examined with fluorescence-labeled glucose, 2-NBDG, which displayed a positive correlation between the contractile activity of myotubes and the uptake of 2-NBDG. PMID:20561677

  18. Extracellular vesicles from a muscle cell line (C2C12 enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34

    Directory of Open Access Journals (Sweden)

    Roger D. Madison

    2014-02-01

    Full Text Available Introduction: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. Background: When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. Methods: We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Conclusion: Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.

  19. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    2016-06-01

    Full Text Available The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals.

  20. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    Science.gov (United States)

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  1. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    Science.gov (United States)

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  2. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    International Nuclear Information System (INIS)

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro

  3. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  4. Myostatin Stimulates, Not Inihibits, C2C12 Myoblast Proliferation

    OpenAIRE

    Rodgers, Buel D.; Wiedeback, Benjamin D.; Hoversten, Knut E.; Jackson, Melissa F; Walker, Ryan G.; Thompson, Thomas B.

    2014-01-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but con...

  5. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao, E-mail: hhaniu@shinshu-u.ac.jp [Institute of Carbon Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.

  6. TNF-α and IFN-s-Dependent Muscle Decay Is Linked to NF-κB- and STAT-1α-Stimulated Atrogin1 and MuRF1 Genes in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Barbara Pijet

    2013-01-01

    Full Text Available TNF-α was shown to stimulate mitogenicity in C2C12 myoblasts. Selected cytokines TNF-α, IFNα, or IFNγ reduced the expression of myosin heavy chain (MyHC IIa when given together. Molecular mechanisms of cytokine activities were controlled by NF-κB and JAK/STAT signaling pathways, as metabolic inhibitors, curcumin and AG490, inhibited some of TNF-α and IFNα/IFNγ effects. Insulin was hardly antagonistic to TNF-α- and IFNα/IFNγ-dependent decrease in MyHC IIa protein expression. Cytokines used individually or together also repressed myogenesis of C2C12 cells. Moreover, TNF-α- and IFNα/IFNγ-dependent effects on C2C12 myotubes were associated with increased activity of Atrogin1 and MuRF1 genes, which code ubiquitin ligases. MyHC IIa gene activity was unaltered by cytokines. Inhibition of NF-κB or JAK/STAT with specific metabolic inhibitors decreased activity of Atrogin1 and MuRF1 but not MyHC IIa gene. Overall, these results suggest cooperation between cytokines in the reduction of MyHC IIa protein expression level via NF-κB/JAK/STAT signaling pathways and activation of Atrogin1 and MuRF1 genes as their molecular targets. Insulin cotreatment or pretreatment does not protect against muscle decay induced by examined proinflammatory cytokines.

  7. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  8. Two-dimensional differential adherence and alignment of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Surface microstructure is a critical parameter for scaffolds used in skeletal muscle tissue engineering. We have developed micromachined surfaces using matrix assisted pulsed laser evaporation-direct write (MAPLE-DW) that demonstrate differential adherence of C2C12 myoblast cells. The 60-400 μm diameter channels were micromachined onto 2% agarose surfaces using an ArF excimer laser and lined with Matrigel[reg] basement membrane matrix solution. Suspensions containing C2C12 myoblast cells were then placed on the surface of these micromachined channels. The C2C12 myoblast cells aligned themselves parallel to the 60-150 μm channels. Live/dead assays over 72 h demonstrated that cell number, cell size, and number of nuclei per cell increased within these channels. In addition, some of the myoblasts fused and differentiated into multinucleated myotubes. These results provide the basis for the development of direct-write scaffolds for skeletal muscle tissue engineering

  9. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  10. Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

    Science.gov (United States)

    Rodgers, Buel D; Wiedeback, Benjamin D; Hoversten, Knut E; Jackson, Melissa F; Walker, Ryan G; Thompson, Thomas B

    2014-03-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes. PMID:24424069

  11. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.

    Directory of Open Access Journals (Sweden)

    Masaki Horie

    Full Text Available Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2 transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

  12. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    International Nuclear Information System (INIS)

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance

  13. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  14. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract.

    Science.gov (United States)

    Lee, Yong-Hyeon; Kim, Dae-Hyun; Kim, Yoon Suk; Kim, Tack-Joong

    2013-01-01

    Cell injury associated with reactive oxygen species (ROS) has been reported in various muscular disorders. We found that a Cichorium intybus (Cii) extract reduced H(2)O(2)-induced viability loss in C2C12 myoblasts, inhibited oxidative stress-induced apoptosis and increased intracellular heat shock protein 70 (Hsp 70) expression. Cii also inhibited the level of intracellular ceramide. These results indicate that Cii may prevent skeletal muscle atrophy by inducing the expression of Hsp 70 and inhibiting the level of ceramide. PMID:23391909

  15. Establishment and Identification of a Stable Human ASB12-Expressed C2C12 Cell Line%稳定表达人ASB12的C2C12细胞系的建立及鉴定

    Institute of Scientific and Technical Information of China (English)

    文斗斗; 周军媚; 赵明一; 胡维新; 吴秀山; 王跃群

    2012-01-01

    The human ASB12 (Homo sapiens ankyrin repeat and SOCS box containing 12) protein contains five ANK (ankyrin repeat sequence) domains and a SOCS (suppressor of cytokine signaling) box domain, belonging to the ASBs family. It was reported that ASB12 especially expressed in skeletal and cardiac muscles of adult tissues, which suggested that ASB12 closely associated with skeleton muscle development. To construct a stable ASB12-expressed C2C12 cell line, the fusion expression plasmid pCMV-tag2B-ASB12, which was identified by enzyme digestion and sequencing analysis, was transfected into C2C12 cell by cationic polymer. After screening culture by G418, the expression of ASB12 was detected by immunofluorescfence, RT-PCR and Western-blotting. The C2C12 cell line that expressing ASB12 stably was established successfully, which provide a cell model for studying the molecular function of ASB12 in skeleton muscle development.%ASB12 (homo sapiens ankyrin repeat and SOCS box containing 12)蛋白含有5个ANK (ankyrin repeat sequence)序列和一个保守的SOCS (suppressor of cytokine signaling)盒结构域,是ASBs (human ankyrin repeat and SOCS box containing protein family,ASB family)家族的成员.人类ASB12基因在成体心肌和骨骼肌组织中特异表达,是成肌分化的候选基因.利用阳离子聚合物转染技术将重组表达质粒pCMV-tag2B-ASB 12转染小鼠骨骼肌细胞系C2C12细胞,通过G418筛选、免疫荧光检测、RT-PCR分析、Western blotting检测建立了稳定表达ASB12的细胞系C2C12-ASB12,为研究ASB12在骨骼肌发育及其相关功能提供有用的细胞研究模型.

  16. THE NUCLEOTIDE RECEPTORS ON MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; NELEMANS, A; VANDENAKKER, J; DENHERTOG, A

    1992-01-01

    1 The response of C2C12 mouse myotubes to stimulation with adenosine triphosphate (ATP) and other nucleotides was studied by measuring changes in membrane potential. 2 A transient hyperpolarization followed by a slowly declining depolarization of the cells was observed in the presence of ATP (10-mu-

  17. Expression of porcine CFL2b gene in C2C12 cells and its effect on the expression of MyHC

    OpenAIRE

    Zhao, Wei; ZENG Rui-Xia; Su, Yu-Hong; BA Cai-Feng; SU Rong-Jian; Song, Hui-Juan

    2008-01-01

    Porcine CFL2b gene is expressed mainly in skeletal muscle, it affects muscle development and myofibrillar formation. In order to study the relationship between CFL2b gene and muscle fiber trait, stable C2C12 cell clones groups expressing porcine CFL2b gene were obtained by directed cloning and gene transfection technology. The expression of pEGFP-N1–CFL2b were detected using GFP fluorescence and Western Blotting. The expression level of myosin heavy chain (MyHC) isoforms (2x.2b and slow) in C...

  18. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    BruceAlanWatkins

    2014-03-01

    Full Text Available Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25µM of arachidonate (AA or docosahexaenoate (DHA, 25µM of EC [anandamide (AEA, 2-arachidonoylglycerol (2-AG, docosahexaenoylethanolamide (DHEA], 1µM of CB1 antagonist NESS0327, and CB2 antagonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.Key Words: endocannabinoid system •C2C12 myoblasts cannabinoid receptors glucose uptake gene expression DHEA • polyunsaturated fatty acids

  19. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    OpenAIRE

    A Deshmukh; Murgia, M.; Nagaraj, N; Treebak, J.; Cox, J; Mann, M

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and...

  20. Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges.

    Science.gov (United States)

    Hong, Ye; Yao, Yifei; Wong, Singwan; Bian, Liming; Mak, Arthur F T

    2016-05-24

    Skeletal and epidermal loadings can damage muscle cells and contribute to the development of deep tissue injury (DTI) - a severe kind of pressure ulcers affecting many people with disability. Important predisposing factors include the multiaxial stress and strain fields in the internal tissues, particularly the vulnerable muscles around bony prominences. A careful study of the mechanical damage thresholds for muscle cell death is critical not only to the understanding of the formation of DTI, but also to the design of various body support surfaces for prevention. In this paper, we measured the mechanical damage thresholds of C2C12 myoblasts under prescribed compressive strains (15% and 30%) and shear strains (from 0% to 100%), and studied how oxidative stress, as caused potentially by reperfusion or inflammation, may affect such damage thresholds. A flat plate was used to apply a uniform compressive strain and a radially increasing shear strain on disks of Gelatin-methacrylate (GelMA) hydrogel with myoblasts encapsulated within. The percentages of cell death were estimated with propidium iodide (PI) and calcein AM staining. Results suggested that cell death depended on both the level and duration of the applied strain. There seemed to be a non-linear coupling between compression and shear. Muscle cells often need to function biomechanically in challenging oxidative environments. To study how oxidative stress may affect the mechanical damage thresholds of myoblasts, cell viability under compressive and shear strains was also studied after the cells were pre-treated for different durations (1h and 20h) with different concentrations (0.1mM and 0.5mM) of hydrogen peroxide (H2O2). Oxidative stress can either compromise or enhance the cellular resistance to shear damage, depending on the level and duration of the oxidative exposure. PMID:27017299

  1. Dynamics of the skeletal muscle secretome during myoblast differentiation

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Rigbolt, Kristoffer T G; Blagoev, Blagoy;

    2010-01-01

    During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative...... proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics...... of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188...

  2. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Long Jia

    2013-12-01

    Full Text Available MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs of messenger RNAs (mRNAs. Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.

  3. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast

    OpenAIRE

    Tamotsu Tsukahara; Hisao Haniu

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the ...

  4. FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation.

    Science.gov (United States)

    Yamashita, Atsushi; Hatazawa, Yukino; Hirose, Yuma; Ono, Yusuke; Kamei, Yasutomi

    2016-08-01

    Unloading stress, such as bed rest, inhibits the regenerative potential of skeletal muscles; however, the underlying mechanisms remain largely unknown. FOXO1 expression, which induces the upregulated expression of the cell cycle inhibitors p57 and Gadd45α, is known to be increased in the skeletal muscle under unloading conditions. However, there is no report addressing FOXO1-induced inhibition of myoblast proliferation. Therefore, we induced muscle injury by cardiotoxin in transgenic mice overexpressing FOXO1 in the skeletal muscle (FOXO1-Tg mice) and observed regeneration delay in skeletal muscle mass and cross-sectional area in FOXO1-Tg mice. Increased p57 and Gadd45α mRNA levels, and decreased proliferation capacity were observed in C2C12 myoblasts expressing a tamoxifen-inducible active form of FOXO1. These results suggest that decreased proliferation capacity of myoblasts by FOXO1 disrupts skeletal muscle regeneration under FOXO1-increased conditions, such as unloading. PMID:27010781

  5. Aligned electrospun polymer fibres for skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    KJ Aviss

    2010-05-01

    Full Text Available Skeletal muscle repair is often overlooked in surgical procedures and in serious burn victims. Creating a tissue-engineered skeletal muscle would not only provide a grafting material for these clinical situations, but could also be used as a valuable true-to-life research tool into diseases affecting muscle tissue. Electrospinning of the elastomer PLGA produced aligned fibres that had the correct topology to provide contact guidance for myoblast elongation and alignment. In addition, the electrospun scaffold required no surface modifications or incorporation of biologic material for adhesion, elongation, and differentiation of C2C12 murine myoblasts.

  6. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  7. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    International Nuclear Information System (INIS)

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using 3H-labelled phenylalanine. Protein breakdown was measured using 3H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion

  8. miR-143-3p促进C2C12成肌细胞分化%miR-143-3p Is Implicated in C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    云青; 吴国芳; 魏欢; 庞卫军; 杨公社; 沈清武

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNA that play important roles in skeletal muscle development.To explore the function of miR-143-3p in the differentiation of C2C12 myoblasts,we detected miR-143-3p levels by real-time PCR in different mouse tissues,as well as C2C12 myoblasts during myogenesis.After the trasfection of miR-143-3p mimics and inhibitor in C2C12 myoblasts,the expression of myogenic regulatory factor MyoG and myogenic marker gene MyHC were detected by realtime PCR and Western blotting.The myotubule formation was detected by immunofluorescent staining.The results showed that miR-143-3p was ubiquitously expressed in various tissues and was upregulated during cell differentiation.The differentiation of C2C12 myoblasts was promoted with miR-143-3p overexpression as significant upregulation of MyoG and MyHC,and increased number of myotubules.The inhibitor of miR-143-3p significantly repressed cell differentiation.Interestingly,the transfection of miR-143-3p mimics had little effect on the expression of MyHCs.Our data suggested that miR-143-3p might be involved during the myogeneis of C2C12 myoblasts,but not directly impact MyHC expression.%MicroRNAs (miRNAs)是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用real-time PCR检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p的模拟物和特异性抑制剂分别处理细胞,采用real-time PCR和Western印迹分别检测成肌因子MyoG和成肌标志基因MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分

  9. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the LPA analog cyclic phosphatidic acid (cPA) had no effect on the expression and secretion of MCP-1. LPA, although similar in structure to cPA, had potent inducing effects on MCP-1 expression in C2C12 cells. In this study, we showed that LPA enhanced MCP-1 mRNA expression and protein secretion in a dose-dependent manner. Taken together, these results suggest that LPA enhances MCP-1 secretion in C2C12 cells and thus may play an important role in cell proliferation. PMID:24049655

  10. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress.

    Science.gov (United States)

    Rodriguez-Ortiz, Carlos J; Flores, Julio C; Valenzuela, Joanna A; Rodriguez, Gema J; Zumkehr, Joannee; Tran, Diana N; Kimonis, Virginia E; Kitazawa, Masashi

    2016-06-01

    Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration. PMID:27106764

  11. Effects of Sunphenon and Polyphenon 60 on proteolytic pathways, inflammatory cytokines and myogenic markers in H22-treated C2C12 cells

    Indian Academy of Sciences (India)

    Allur Subramaniyan Sivakumar; Inho Hwang

    2015-03-01

    The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF- and NF-kB, as well as proteolytic enzymes, such as -calpain and m-calpain. The pre-treatment of Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of -calpain and m-calpain were significantly ( < 0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely -calpain and m-calpain. Furthermore, the mRNA expression of TNF- and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) significantly ( < 0.05) down-regulated it when compared to the untreated control group. Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, -calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of -calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.

  12. Expression of porcine CFL2b gene in C2C12 cells and its effect on the expression of MyHC

    Directory of Open Access Journals (Sweden)

    ZHAO Wei

    2008-12-01

    Full Text Available Porcine CFL2b gene is expressed mainly in skeletal muscle, it affects muscle development and myofibrillar formation. In order to study the relationship between CFL2b gene and muscle fiber trait, stable C2C12 cell clones groups expressing porcine CFL2b gene were obtained by directed cloning and gene transfection technology. The expression of pEGFP-N1–CFL2b were detected using GFP fluorescence and Western Blotting. The expression level of myosin heavy chain (MyHC isoforms (2x.2b and slow in C2C12 were determined using Real-time PCR. Result showed that MyHC 2x gene and MyHC 2b genes were obviously up-regulated, MyHC1/slow gene not significant. The research indicated porcine CFL2b gene correlated to muscle fiber trait. And it was associated with pork quality. Porcine CFL2b gene can possible be regarded as a candidate gene for pork quality [Acta Zoologica Sinica 54(6: 1014–1019, 2008].

  13. Structure of Skeletal Muscle

    Science.gov (United States)

    ... and in some they are oblique. Each skeletal muscle fiber is a single cylindrical muscle cell. An individual ... made up of hundreds, or even thousands, of muscle fibers bundled together and wrapped in a connective tissue ...

  14. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    Science.gov (United States)

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  15. Tissue engineering skeletal muscle for orthopaedic applications

    Science.gov (United States)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  16. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin [Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Park, Won Jin [Dr. Park' s Aesthetic Clinic, Seoul (Korea, Republic of); Kong, Jee Hyun; Shim, Kwang Yong [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In, E-mail: oncochem@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@unitel.co.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  17. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  18. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways

    OpenAIRE

    Xingcai Cai; Canjun Zhu; Yaqiong Xu; Yuanyuan Jing; Yexian Yuan; Lina Wang; Songbo Wang; Xiaotong Zhu; Ping Gao; Yongliang Zhang; Qingyan Jiang; Gang Shu

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotub...

  19. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    Science.gov (United States)

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level. PMID:26902224

  20. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    Science.gov (United States)

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost. PMID:23201486

  1. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Koh, Ho-Jin; Toyoda, Taro; Fujii, Nobuharu;

    2010-01-01

    The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK....... Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction......-stimulated glucose transport in skeletal muscle....

  2. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  3. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  4. MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells.

    Science.gov (United States)

    Chen, Xiaoling; Huang, Zhiqing; Chen, Daiwen; Yang, Ting; Liu, Guangmang

    2013-01-01

    Leucine, a branched chain amino acid, is well known to stimulate protein synthesis in skeletal muscle. However, the role of leucine in myoblast proliferation remains unclear. In this study, we found that leucine could promote proliferation of C2C12 cells. Moreover, expressions of miR-27a and myostatin (a bona fide target of miR-27a) were upregulated and downregulated, respectively, following leucine treatment. We also found that miR-27a loss-of-function by transfection of a miR-27a inhibitor suppressed the promotion of myoblast proliferation caused by leucine. Our results suggest that miR-27a is induced by leucine and contributes to leucine-induced proliferation promotion of myoblast. PMID:23880856

  5. Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program

    OpenAIRE

    Salmon, Morgan; Owens, Gary K.; Zehner, Zendra E.

    2009-01-01

    Myogenesis involves the complex interplay between the down-regulation of non-muscle genes and the up-regulation of muscle-specific genes. This interplay is controlled by the myogenic regulatory factors Myf5, MRF4, MyoD and myogenin. To trigger the up-regulation of these muscle-specific factors, certain environmental cues, such as the removal of serum, signal C2C12 myoblast cells to withdraw from cell cycle, fuse and activate muscle-specific genes. Here, the level of ZBP-89 (zfp148), a Krüppel...

  6. Nrf2 Protects Against TWEAK-mediated Skeletal Muscle Wasting

    Science.gov (United States)

    Al-Sawaf, Othman; Fragoulis, Athanassios; Rosen, Christian; Kan, Yuet Wai; Sönmez, Tolga Taha; Pufe, Thomas; Wruck, Christoph Jan

    2014-01-01

    Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.

  7. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    International Nuclear Information System (INIS)

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation

  8. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  9. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  10. Effects of myostatin propeptide gene tranfection on glucose metabolism in cultured C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    张莎莎

    2014-01-01

    Objective To investigate the effects of recombinant adeno-associated virus-mediated myostatin propeptide(MPRO)on uptake and oxidation of glucose,and glycogen synthesis in C2C12 myotubes,as well as the associated molecular mechanism.Methods Mature C2C12myotubes were assigned to the following 6 groups:control,insulin,green fluorescent protein(GFP),insulin+

  11. [Muscle-skeletal pain].

    Science.gov (United States)

    Vygonskaya, M V; Filatova, E G

    2016-01-01

    The paper is devoted to the most complicated aspects of low back pain. The differences between specific and nonspecific low back pain using the "red flags" system is highlighted. The authors consider the causes of pain chronification (the "yellow flags" system) and the necessity of using a biopsychosocial model. Main pathogenetic mechanisms of chronic muscle/skeletal pain are considered and the possible involvement of several mechanism in the pathogenesis of chronic pain as well as the use of complex therapy is discussed. The high efficacy and safety of ketorolac in treatment of nonspecific muscle/skeletal pain is demonstrated. PMID:27042717

  12. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    Directory of Open Access Journals (Sweden)

    Dupuy Fabrice

    2009-10-01

    Full Text Available Abstract Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries, providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.

  13. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna;

    2015-01-01

    spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins......Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...... expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compare to tissue. This revealed unexpectedly...

  14. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... systems of muscle have been visualized in their full complexity, including the ‘neglected' lymphatic capillaries at the level of the endomysium. These findings serve to remind us that muscle contraction is not only about force generation and transmission, but also about nutrient supply and waste removal...

  15. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Manami [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yang, Zeyu [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang (China); Nakagawa, Kentaro; Maruyama, Junichi [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Xu, Xiaoyin [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Sarkar, Aradhan; Ichimura, Ayana [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Nasu, Yusuke [Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Ozawa, Takeaki [Department of Chemistry, School of Science, The University of Tokyo, Tokyo (Japan); Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Ishigami-Yuasa, Mari [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Shigeru [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); Kagechika, Hiroyuki [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  16. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    International Nuclear Information System (INIS)

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced

  17. Investigation of interactions between poly-l-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Science.gov (United States)

    Ciofani, G; Ricotti, L; Danti, S; Moscato, S; Nesti, C; D’Alessandro, D; Dinucci, D; Chiellini, F; Pietrabissa, A; Petrini, M; Menciassi, A

    2010-01-01

    Boron nitride nanotubes (BNNTs) have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-l-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation. PMID:20463944

  18. 热休克蛋白70过表达对骨骼肌细胞内 ATP水平的影响%Effect of over-expression Hsp70 on the intracellular ATP level in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    王磊; 王尊; 刘跃飞; 顾一煌

    2013-01-01

    Objective To examine the effect of over-expression Hsp70 on the intracellular ATP level in C2C12 cells. Methods Hsp70 gene was amplified from pAT153 plasmids and then cloned into pTRE2hyg vector. After the transfection of recombinant plasmids of pTRE2hyg-Hsp70 into the C2C12 cells, the expression of Hsp70 was examined by Western blot. Furthermore, the intracellular ATP level was evaluated in C2C12 cells at different time points (0 d, 3 d, 7 d) during cell culture. Results Compared with controls, the intracellular ATP level was significantly increased (P<0.05) at different time points,(14.5 ± 2.87)nmol/mg protein (3 d), (15.3 ± 3.12) nmol/mg protein(7 d) after transfection. Conclusion The C2C12 cells of over-expression Hsp70 can increase the intracellular ATP level, indicating that Hsp70 may play a role in the metabolism in skeletal muscle cells.%目的:探讨热休克蛋白70(heat shock protein 70,Hsp70)过表达对骨骼肌细胞(C2C12)内ATP水平的影响。方法通过构建重组pTRE2hyg-Hsp70质粒,稳定转染C2C12细胞系,建立Hsp70过表达的C2C12细胞系。分别在转染后细胞培养的不同时间点(0 d,3 d,7 d),检测细胞内ATP的水平。结果 Hsp70过表达的C2C12细胞系在培养的3 d,7 d,细胞内ATP的水平分别达到(14.5±2.87)nmol/mg蛋白质、(15.3±3.12)nmol/mg 蛋白质,与对照组相比明显增高(P<0.05)。结论 Hsp70过表达的骨骼肌细胞可以提高细胞内的ATP水平,提示Hsp70对骨骼肌细胞的能量代谢产生影响。

  19. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle.

    Science.gov (United States)

    Duffy, Rebecca M; Sun, Yan; Feinberg, Adam W

    2016-06-01

    Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening. PMID:26983843

  20. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    state is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise......-induced PDH regulation in human skeletal muscle. 2: Effect of muscle glycogen on PDH regulation in human skeletal muscle at rest and during exercise. 3: The impact of physical inactivity on PDH regulation in human skeletal muscle at rest and during exercise. 4: Elucidating the importance of PGC-1? in PDH...... regulation in mouse skeletal muscle at rest and in response to fasting and during recovery from exercise. The studies indicate that the content of PDH-E1? in human muscle follows the metabolic profile of the muscle, rather than the myosin heavy chain fiber distribution of the muscle. The larger lactate...

  1. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2 result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.

  2. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    Science.gov (United States)

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  3. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    Science.gov (United States)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  4. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23 Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shimoda

    Full Text Available Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23 is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.

  5. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    International Nuclear Information System (INIS)

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA

  6. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, Takumi [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Sato, Koji [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Iwanaka, Nobumasa [The Graduate School of Science and Engineering, Ritsumeikan University, Shiga (Japan); Honda, Hiroki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Higashida, Kazuhiko [Faculty of Sport Science, Waseda University, Saitama (Japan); Iemitsu, Motoyuki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Hayashi, Tatsuya [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan)

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  7. Regulation of skeletal muscle proteolysis

    OpenAIRE

    Slee, Adrian

    2005-01-01

    Proteolysis is a component of protein turnover, controlled by multiple proteolytic systems. Alterations in system components within skeletal muscle has been associated with hypertrophy, remodelling, atrophy, apoptosis and metabolic dysregulation. Key components may have novel regulatory roles, e. g. calpain-3 and cathepsin-L. Experiments described within this thesis investigated the hypothesis that the gene expression of specific proteolytic system components within skeletal muscle may be co-...

  8. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin;

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9).......Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  9. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Bauman, William A. [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Cardozo, Christopher, E-mail: chris.cardozo@va.gov [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  10. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    International Nuclear Information System (INIS)

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  11. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    Science.gov (United States)

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  12. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    International Nuclear Information System (INIS)

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  13. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    Science.gov (United States)

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  14. Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells

    International Nuclear Information System (INIS)

    Autophagy is one of the major processes involved in the degradation of intracellular materials. Here, we examined the potential impact of heavy ion irradiation on the induction of autophagy in irradiated C2C12 mouse myoblasts and their non-targeted bystander cells. In irradiated cells, ultrastructural analysis revealed the accumulation of autophagic structures at various stages of autophagy (id est (i.e.) phagophores, autophagosomes and autolysosomes) within 20 min after irradiation. Multivesicular bodies (MVBs) and autolysosomes containing MVBs (amphisomes) were also observed. Heavy ion irradiation increased the staining of microtubule-associated protein 1 light chain 3 and LysoTracker Red (LTR). Such enhanced staining was suppressed by an autophagy inhibitor 3-methyladenine. In addition to irradiated cells, bystander cells were also positive with LTR staining. Altogether, these results suggest that heavy ion irradiation induces autophagy not only in irradiated myoblasts but also in their bystander cells. (author)

  15. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    Science.gov (United States)

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  16. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    Directory of Open Access Journals (Sweden)

    Christopher L Dearth

    Full Text Available We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1 is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12 did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/- mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05 overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05 the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  17. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    OpenAIRE

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss.

  18. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  19. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  20. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  1. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  2. Intracellular Distribution and Involvement of GPR30 in the Actions of E2 on C2C12 Cells.

    Science.gov (United States)

    Ronda, Ana C; Boland, Ricardo L

    2016-03-01

    G-protein-coupled receptor 30 (GPR30) is an estrogen receptor that initiates several rapid, non-genomic signaling events triggered by E2. GPR30 has recently been identified in C2C12 cells; however, little is known about the intracelular distribution and its role in C2C12 myoblasts and myotubes. By western blotting and immunohistochemistry, we evidenced expression of GPR30. While in C2C12 myoblasts, the receptor was present in nucleus, mitochondria, and endoplasmic reticulum, in C2C12 myotubes, it was additionally found in cytoplasm. Using trypan blue uptake assay to determine cellular death and fluorescent microscopy to evaluate picnotic nuclei and mitochondrial distribution, we demonstated that treatment of C2C12 myoblasts with G1 (GPR30 agonist) did not protect the cells against apoptosis induced by H2 O2 as E2. However, when G15 (GPR30 antagonist) was used, E2 could not prevent the damage caused by the oxidative stress. Further, some of the molecular mechanisms involved were investigated by wertern blot assays. Thus, E2 was able to induce AKT phosphorylation in apoptotic conditions and ERK phosphorylation in proliferating C2C12 cells but not when the cultures were incubated with G15. Additionally, using G15 antagonist we have found that GPR30 participates in the myogenin expression and creatine kinase activity stimulated by E2 in the first steps of C2C12 differentiation. Althogether these findings provide evidences showing that GPR30 is expressed in diverse intracellular compartments in undifferentiated and differentiated C2C12 cells and mediates E2 actions. J. Cell. Biochem. 117: 793-805, 2016. © 2015 Wiley Periodicals, Inc. PMID:26359786

  3. The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes.

    Science.gov (United States)

    Ferraro, Elisabetta; Giammarioli, Anna Maria; Caldarola, Sara; Lista, Pasquale; Feraco, Alessandra; Tinari, Antonella; Salvatore, Anna Maria; Malorni, Walter; Berghella, Libera; Rosano, Giuseppe

    2013-10-01

    It has recently been demonstrated that trimetazidine (TMZ), an anti-ischemic antianginal agent, is also able to improve exercise performance in patients with peripheral arterial disease. TMZ is a metabolic modulator, and the mechanisms underlying its cytoprotective anti-ischemic activity could be ascribed, at least in cardiomyocytes, to optimization of metabolism. However, regarding the cytoprotection exerted by TMZ on skeletal muscle and allowing the improvement of exercise performance, no information is yet available. In the present study, we investigated in detail the protective effects of this drug on in vitro skeletal muscle models of atrophy. Experiments carried out with murine C2C12 myotubes treated with TMZ revealed that this drug could efficiently counteract the cytopathic effects induced by the proinflammatory cytokine tumor necrosis factor-α and by the withdrawal of growth factors. Indeed, TMZ significantly counteracted the reduction in myotube size induced by these treatments. TMZ also increased myosin heavy chain expression and induced hypertrophy in C2C12 myotubes, both effects strongly suggesting a role of TMZ in counteracting atrophy in vitro. In particular, we found that TMZ was able to activate the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin 2 pathway and to reduce the stress-induced transcriptional upregulation of atrogin-1, muscle ring finger protein 1, and myostatin, all of which are key molecules involved in muscle wasting. Moreover, this is the first demonstration that TMZ induces autophagy, a key mechanism involved in muscle mass regulation. On the basis of these results, it can be hypothesized that the improvement in exercise performance previously observed in patients could be ascribed to a cytoprotective mechanism exerted by TMZ on skeletal muscle integrity. PMID:23953053

  4. A Pilot Study of Ceramic Powder Far-Infrared Ray Irradiation (cFIR) on Physiology: Observation of Cell Cultures and Amphibian Skeletal Muscle.

    Science.gov (United States)

    Leung, Ting-Kai; Lee, Chi-Ming; Tsai, Shih-Yin; Chen, Yi-Chien; Chao, Jo-Shui

    2011-08-31

    The purpose of this research was to assess the potential for far-infrared ray irradiation from ceramic powder to improve exercise performance at room temperature. We designed experiments with murine myoblast cells (C2C12) to study the effect of cFIR irradiation on cell viability and lactate dehydrogenase release under H2O2-mediated oxidative stress and evaluated intracellular levels of nitric oxide and calmodulin. We also used electro-stimulation of amphibian skeletal muscle. Our results show that cFIR strengthened C2C12 under oxidative stress and delayed onset of fatigue induced by muscle contractions. We discuss possible mechanisms including anti-oxidation and prevention of acid build-up in muscle tissue based, and expect to see more applications of cFIR in the future. PMID:22129823

  5. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  6. Skeletal muscle involvement in cardiomyopathies.

    Science.gov (United States)

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  7. An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes

    OpenAIRE

    Heather Kirk-Ballard; Wang, Zhong Q.; Priyanka Acharya; Zhang, Xian H.; Yongmei Yu; Gail Kilroy; David Ribnicky; Cefalu, William T.; Z Elizabeth Floyd

    2013-01-01

    Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin signaling extends to regulation of the ubiquitin-proteasome system. C2C12 myotubes and the KK-A(y) murine model of type 2 diabetes were use...

  8. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth;

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity. S...

  9. Choosing a skeletal muscle relaxant.

    Science.gov (United States)

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  10. Bio-inspired Hybrid Carbon Nanotube Muscles

    OpenAIRE

    Tae Hyeob Kim; Cheong Hoon Kwon; Changsun Lee; Jieun An; Tam Thi Thanh Phuong; Sun Hwa Park; Lima, Márcio D.; Baughman, Ray H.; Tong Mook Kang; Seon Jeong Kim

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with p...

  11. Stem cells for skeletal muscle repair

    OpenAIRE

    Shadrach, Jennifer L.; Wagers, Amy J.

    2011-01-01

    Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throug...

  12. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  13. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac, skele...

  14. Attenuation of skeletal muscle wasting with recombinant human growth hormone secreted from a tissue-engineered bioartificial muscle

    Science.gov (United States)

    Vandenburgh, H.; Del Tatto, M.; Shansky, J.; Goldstein, L.; Russell, K.; Genes, N.; Chromiak, J.; Yamada, S.

    1998-01-01

    Skeletal muscle wasting is a significant problem in elderly and debilitated patients. Growth hormone (GH) is an anabolic growth factor for skeletal muscle but is difficult to deliver in a therapeutic manner by injection owing to its in vivo instability. A novel method is presented for the sustained secretion of recombinant human GH (rhGH) from genetically modified skeletal muscle implants, which reduces host muscle wasting. Proliferating murine C2C12 skeletal myoblasts stably transduced with the rhGH gene were tissue engineered in vitro into bioartificial muscles (C2-BAMs) containing organized postmitotic myofibers secreting 3-5 microg of rhGH/day in vitro. When implanted subcutaneously into syngeneic mice, C2-BAMs delivered a sustained physiologic dose of 2.5 to 11.3 ng of rhGH per milliliter of serum. rhGH synthesized and secreted by the myofibers was in the 22-kDa monomeric form and was biologically active, based on downregulation of a GH-sensitive protein synthesized in the liver. Skeletal muscle disuse atrophy was induced in mice by hindlimb unloading, causing the fast plantaris and slow soleus muscles to atrophy by 21 to 35% ( < 0.02). This atrophy was significantly attenuated 41 to 55% (p < 0.02) in animals that received C2-BAM implants, but not in animals receiving daily injections of purified rhGH (1 mg/kg/day). These data support the concept that delivery of rhGH from BAMs may be efficacious in treating muscle-wasting disorders.

  15. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    Science.gov (United States)

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  16. Delta-like 1 homolog (dlk1: a marker for rhabdomyosarcomas implicated in skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Louise H Jørgensen

    Full Text Available Dlk1, a member of the Epidermal Growth Factor family, is expressed in multiple tissues during development, and has been detected in carcinomas and neuroendocrine tumors. Dlk1 is paternally expressed and belongs to a group of imprinted genes associated with rhabdomyosarcomas but not with other primitive childhood tumors to date. Here, we investigate the possible roles of Dlk1 in skeletal muscle tumor formation. We analyzed tumors of different mesenchymal origin for expression of Dlk1 and various myogenic markers and found that Dlk1 was present consistently in myogenic tumors. The coincident observation of Dlk1 with a highly proliferative state in myogenic tumors led us to subsequently investigate the involvement of Dlk1 in the control of the adult myogenic programme. We performed an injury study in Dlk1 transgenic mice, ectopically expressing ovine Dlk1 (membrane bound C2 variant under control of the myosin light chain promotor, and detected an early, enhanced formation of myotubes in Dlk1 transgenic mice. We then stably transfected the mouse myoblast cell line, C2C12, with full-length Dlk1 (soluble A variant and detected an inhibition of myotube formation, which could be reversed by adding Dlk1 antibody to the culture supernatant. These results suggest that Dlk1 is involved in controlling the myogenic programme and that the various splice forms may exert different effects. Interestingly, both in the Dlk1 transgenic mice and the DLK1-C2C12 cells, we detected reduced myostatin expression, suggesting that the effect of Dlk1 on the myogenic programme might involve the myostatin signaling pathway. In support of a relationship between Dlk1 and myostatin we detected reciprocal expression of these two transcripts during different cell cycle stages of human myoblasts. Together our results suggest that Dlk1 is a candidate marker for skeletal muscle tumors and might be involved directly in skeletal muscle tumor formation through a modulatory effect on the

  17. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes

    International Nuclear Information System (INIS)

    Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. WF decreased the viability of C2C12 myotubes, especially at concentrations of 20–25 μg.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model

  18. PDLIM7 is a novel target of the ubiquitin ligase Nedd4-1 in skeletal muscle.

    Science.gov (United States)

    D'Cruz, Robert; Plant, Pamela J; Pablo, Lesley A; Lin, Shouzhe; Chackowicz, Joshua; Correa, Judy; Bain, James; Batt, Jane

    2016-02-01

    Skeletal muscle atrophy remains a complication occurring both as a natural response to muscle disuse and as a pathophysiological response to illness such as diabetes mellitus and nerve injury, such as traumatic muscle denervation. The ubiquitin-proteasome system (UPS) is the predominant proteolytic machinery responsible for atrophy of skeletal muscle, and Nedd4-1 (neural precursor cell-expressed developmentally down-regulated 4-1) is one of a series of E3 ubiquitin ligases identified to mediate inactivity-induced muscle wasting. Targets of Nedd4-1 mediated ubiquitination in skeletal muscle remain poorly understood. In the present study, we identified PDLIM7 (PDZ and LIM domain 7, Enigma), a member of the PDZ-LIM family of proteins, as a novel target of Nedd4-1 in skeletal muscle. The PDZ-LIM family of proteins is known to regulate muscle development and function. We show that Nedd4-1 expression in muscle atrophied by denervation is co-incident with a decrease in PDLIM7 and that PDLIM7 protein levels are stabilized in denervated muscle of Nedd4-1 skeletal muscle-specific knockout mice (SMS-KO). Exogenous PDLIM7 and Nedd4-1 transfected into human embryonic kidney (HEK)293 cells co-immunoprecipitate through binding between the PY motif of PDLIM7 and the second and third WW domains of Nedd4-1 and endogenous PDLIM7 and Nedd4-1 interact in the cytoplasm of differentiated C2C12 myotubes, leading to PDLIM7 ubiquitination. These results identify PDLIM7 as a bona fide skeletal muscle substrate of Nedd4-1 and suggest that this interaction may underlie the progression of skeletal muscle atrophy. This offers a novel therapeutic target that could be potentially used to attenuate muscle atrophy. PMID:26556890

  19. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2008-01-01

    reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have...

  20. Mechanical modeling of skeletal muscle functioning.

    NARCIS (Netherlands)

    Linden, van der Bart Jochem Julius Joost

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  1. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  2. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.

    Science.gov (United States)

    Abrigo, Johanna; Rivera, Juan Carlos; Simon, Felipe; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-05-01

    Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration, and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterised by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β. Atrophy also results in increased myosin heavy chain (MHC) degradation and the expression of two muscle-specific E3 ubiquitin ligases, atrogin-1 and MuRF-1. Reactive oxygen species (ROS) are modulators of muscle wasting, and NAD(P)H oxidase (NOX) is one of the main sources of ROS. While it was recently found that TGF-β1 induces atrophy in skeletal muscle, the underlying mechanism is not fully understood. In this study, the role of NOX-derived ROS in skeletal muscle atrophy induced by TGF-β was assessed. TGF-β1 induced an atrophic effect in C2C12 myotubes, as evidenced by decreased myotube diameter and MHC levels, together with increased MuRF-1 levels. Concomitantly, TGF-β increased NOX-induced ROS contents. Interestingly, NOX inhibition through apocynin and the antioxidant treatment with N-acetyl cysteine (NAC) decreased increased ROS levels in myotubes. Additionally, both apocynin and NAC completely prevented the decreased MHC, decreased myotube diameter, and increased MuRF-1 induced by TGF-β. Injection of TGF-β1 into the tibialis anterior muscle induced atrophy, as observed by decreased fibre diameter and MHC levels, together with increased MuRF-1 levels. Likewise, TGF-β increased the ROS contents in the smaller fibres of skeletal muscle. Additionally, the administration of NAC to mice prevented all atrophic effects and the increase in ROS induced by TGF-β in the tibialis anterior. This is the first study to report that TGF-β has an atrophic effect dependent on NOX-induced ROS in skeletal muscle. PMID:26825874

  3. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. PMID:27304505

  4. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity.

    Science.gov (United States)

    Barbieri, Elena; Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Fimognari, Carmela; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina; Sestili, Piero

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  5. The Effects of Lactate on Skeletal Muscle

    OpenAIRE

    Willkomm, Lena

    2014-01-01

    Regular exercise and physical activity are cornerstones in the prevention and treatment of numerous chronic conditions, such as type 2 diabetes, coronary heart disease, and age-related sarcopenia. The associated health benefits arise from a number of tissues but due to its high plasticity skeletal muscle plays a pivotal role. The resident stem cells of skeletal muscle tissue, so called Satellite cells (SCs), contribute significantly to skeletal muscle adaptation and hence, maintenance of heal...

  6. Nutrient and energy sensing in skeletal muscle

    OpenAIRE

    Deshmukh, Atul S.

    2009-01-01

    Nutrient overload and physical inactivity often leads to the development of obesity and type 2 diabetes. Acute over-nutrition can induce insulin resistance, while physical exercise enhances skeletal muscle insulin sensitivity. Like every living cell, skeletal muscle senses nutrient and energy signals and to adjust metabolic flux. This thesis focuses on some of the key nutrient and energy sensing (exercise/contraction-induced) pathways in skeletal muscle that regulate metabol...

  7. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    International Nuclear Information System (INIS)

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Cavβ1a NH2-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Cavβ1a is a gene transcription regulator. • Here, we show that TnT3 interacts with Cavβ1a. • We mapped TnT3 and Cavβ1a interaction domain. • TnT3 facilitates Cavβ1a nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation

  8. Apple Pomace Extract Improves Endurance in Exercise Performance by Increasing Strength and Weight of Skeletal Muscle.

    Science.gov (United States)

    Jeong, Ji-Woong; Shim, Jae-Jung; Choi, Il-Dong; Kim, Sung-Hwan; Ra, Jehyeon; Ku, Hyung Keun; Lee, Dong Eun; Kim, Tae-Youl; Jeung, Woonhee; Lee, Jung-Hee; Lee, Ki Won; Huh, Chul-Sung; Sim, Jae-Hun; Ahn, Young-Tae

    2015-12-01

    Ursolic acid is a lipophilic pentacyclic triterpenoid found in many fruits and herbs and is used in several herbal folk medicines for diabetes. In this study, we evaluated the effects of apple pomace extract (APE; ursolic acid content, 183 mg/g) on skeletal muscle atrophy. To examine APE therapeutic potential in muscle atrophy, we investigated APE effects on the expression of biomarkers associated with muscle atrophy and hypertrophy. We found that APE inhibited atrophy, while inducing hypertrophy in C2C12 myotubes by decreasing the expression of atrophy-related genes and increasing the expression of hypertrophy-associated genes. The in vivo experiments using mice fed a diet with or without APE showed that APE intake increased skeletal muscle mass, as well as grip strength and exercise capacity. In addition, APE significantly improved endurance in the mice, as evidenced by increased exhaustive running time and muscle weight, and reduced the expression of the genes involved in the development of muscle atrophy. APE also decreased the concentration of serum lactate and lactate dehydrogenase, inorganic phosphate, and creatinine, the indicators of accumulated fatigue and exercise-induced stress. These results suggest that APE may be useful as an ergogenic functional food or dietary supplement. PMID:26331671

  9. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    OpenAIRE

    Bloemberg, Darin; Quadrilatero, Joe

    2016-01-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpa...

  10. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG, 5.6 mM (MG, or 23.3 mM(HG under normoxic or hypoxic (1% oxygen condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production.

  11. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  12. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway. PMID:17588539

  13. The omega-3 fatty acid, eicosapentaenoic acid (EPA, prevents the damaging effects of tumour necrosis factor (TNF-alpha during murine skeletal muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Pearson Stephen

    2008-07-01

    Full Text Available Abstract Background Eicosapentaenoic acid (EPA is a ώ-3 polyunsaturated fatty acid with anti-inflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p p p p p p Conclusion In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury.

  14. Proteomic profiling of skeletal muscle plasticity.

    Science.gov (United States)

    Ohlendieck, Kay

    2011-10-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physiological modifications and pathophysiological alterations. This review outlines and discusses the impact of recent proteomic profiling studies of skeletal muscle transitions, including the effects of chronic electro-stimulation, physical exercise, denervation, disuse atrophy, hypoxia, myotonia, motor neuron disease and age-related fibre type shifting. This includes studies on the human skeletal muscle proteome, animal models of muscle plasticity and major neuromuscular pathologies. The biomedical importance of establishing reliable biomarker signatures for the various molecular and cellular transition phases involved in muscle transformation is critically examined. PMID:23738259

  15. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund;

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle and...... adipose tissue leptin release in vivo. We recruited 16 healthy male human participants. Catheters were inserted into the femoral artery and vein draining skeletal muscle, as well as an epigastric vein draining the abdominal subcutaneous adipose tissue. By combining the veno-arterial differences in plasma...... leptin with measurements of blood flow, leptin release from both tissues was quantified. To induce changes in leptin, the participants were infused with either saline or adrenaline in normo-physiological concentrations. The presence of leptin in skeletal muscle was confirmed by western blotting. Leptin...

  16. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    Science.gov (United States)

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  17. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin

    International Nuclear Information System (INIS)

    Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to + 90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.

  18. Skeletal muscle regulatory factors with alterations in muscle mass

    OpenAIRE

    Litt Miller, Jennifer Michele

    2007-01-01

    Given that maintenance of skeletal muscle mass is essential for overall health, functionality and quality of life, it is critical to elucidate the fundamental mechanisms underlying the maintenance of muscle mass which likely vary as a function of muscle status (i.e. healthy or diseased). This thesis examined key skeletal muscle regulatory factors (smRF’s) that are known to affect skeletal muscle mass, including components of the PI3K/Akt and MAPK(ERK) pathways, calcineurin, the myogenic regul...

  19. Redox control of skeletal muscle atrophy.

    Science.gov (United States)

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  20. Molecular regulation of skeletal muscle myosin heavy chain isoforms

    OpenAIRE

    Brown, David M.

    2015-01-01

    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  1. Proteomic profiling of skeletal muscle plasticity

    OpenAIRE

    Ohlendieck, Kay

    2012-01-01

    One of the most striking physiological features of skeletal muscle tissues are their enormous capacity to adapt to changed functional demands. Muscle plasticity has been extensively studied by histological, biochemical, physiological and genetic methods over the last few decades. With the recent emergence of high-throughput and large-scale proteomic techniques, mass spectrometry-based surveys have also been applied to the global analysis of the skeletal muscle protein complement during physio...

  2. Infectious prions accumulate to high levels in non proliferative C2C12 myotubes.

    Directory of Open Access Journals (Sweden)

    Allen Herbst

    Full Text Available Prion diseases are driven by the strain-specific, template-dependent transconformation of the normal cellular prion protein (PrP(C into a disease specific isoform PrP(Sc. Cell culture models of prion infection generally use replicating cells resulting in lower levels of prion accumulation compared to animals. Using non-replicating cells allows the accumulation of higher levels of PrP(Sc and, thus, greater amounts of infectivity. Here, we infect non-proliferating muscle fiber myotube cultures prepared from differentiated myoblasts. We demonstrate that prion-infected myotubes generate substantial amounts of PrP(Sc and that the level of infectivity produced in these post-mitotic cells, 10(5.5 L.D.50/mg of total protein, approaches that observed in vivo. Exposure of the myotubes to different mouse-adapted agents demonstrates strain-specific replication of infectious agents. Mouse-derived myotubes could not be infected with hamster prions suggesting that the species barrier effect is intact. We suggest that non-proliferating myotubes will be a valuable model system for generating infectious prions and for screening compounds for anti-prion activity.

  3. Increased skeletal muscle capillarization enhances insulin sensitivity.

    Science.gov (United States)

    Akerstrom, Thorbjorn; Laub, Lasse; Vedel, Kenneth; Brand, Christian Lehn; Pedersen, Bente Klarlund; Lindqvist, Anna Kaufmann; Wojtaszewski, Jørgen F P; Hellsten, Ylva

    2014-12-15

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes. PMID:25352432

  4. Ribosome biogenesis during skeletal muscle hypertrophy

    OpenAIRE

    von Walden, Ferdinand

    2014-01-01

    Muscle adaptation to chronic resistance exercise (RE) is the result of a cumulative effect on gene expression and protein content. Following a bout of RE, muscle protein synthesis increases and, if followed by consecutive bouts (training), protein accretion and muscle hypertrophy develops. The protein synthetic capacity of the muscle is dictated by ribosome content. Therefore, the general aim of this thesis is to investigate the regulation of ribosome biogenesis during skeletal muscle hypertr...

  5. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure.

    Science.gov (United States)

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented. PMID:27104214

  6. Muscle-specific microRNAs in skeletal muscle development.

    Science.gov (United States)

    Horak, Martin; Novak, Jan; Bienertova-Vasku, Julie

    2016-02-01

    Proper muscle function constitutes a precondition for good heath and an active lifestyle during an individual's lifespan and any deviations from normal skeletal muscle development and its functions may lead to numerous health conditions including e.g. myopathies and increased mortality. It is thus not surprising that there is an increasing need for understanding skeletal muscle developmental processes and the associated molecular pathways, especially as such information could find further uses in therapy. The understanding of complex skeletal muscle developmental networks was broadened with the discovery of microRNA (miRNA) molecules. MicroRNAs are evolutionary conserved small non-coding RNAs capable of negatively regulating gene expression on a post-transcriptional level by means of miRNA-mRNA interaction. Several miRNAs expressed exclusively in muscle have been labeled myomiRs. MyomiRs represent an integral part of skeletal muscle development, i.e. playing a significant role during skeletal muscle proliferation, differentiation and regeneration. The purpose of this review is to provide a summary of current knowledge regarding the involvement of myomiRs in the individual phases of myogenesis and other aspects of skeletal muscle biology, along with an up-to-date list of myomiR target genes and their functions in skeletal muscle and miRNA-related therapeutic approaches and future prospects. PMID:26708096

  7. Regulation of skeletal muscle perfusion during exercise

    Science.gov (United States)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  8. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    Science.gov (United States)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  9. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    Science.gov (United States)

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  10. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.

    2006-01-01

    In this study we investigated the activity, expression and regulation of iPLA2 during ischemia in mouse C2C12 myotubes. Here, we show that in vitro ischemia, i.e. oxygen deprivation and glucose starvation, induces an iPLA2 activity that is totally reversed by siRNA knock down of iPLA2£], indicating...... preferential activation of iPLA2£]. The activity of the native iPLA2£] tetramer has in humans been proposed to be negatively regulated by interactions with catalytic inactive splice variants of the full-length protein. These variants, characterized by the presence exon 9a, have however not been identified in...... transcript would be a C-terminally truncated î50 kDa protein lacking the catalytic site. qPCR indicated that, while the total iPLA2£] mRNA level in C2C12 myotubes increased weakly within 1-2 hours of in vitro ischemia, the transcript containing the mouse exon 9a was rapidly down regulated. In addition...

  11. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva;

    2016-01-01

    on metabolism, endocrine function, and locomotion, and is tightly regulated at many different levels. Skeletal muscle is also high adaptable, and thus one of the few organ systems which can be experimentally manipulated (e.g. by exercise) to study physiologic regulation of angiogenesis. This review will focus...... during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural...

  12. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  13. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  14. Collagen quantification across human skeletal muscles

    OpenAIRE

    Lin, Evie Ya Hui

    2011-01-01

    Intramuscular connective tissue provides structural stability and facilitates force transmission in skeletal muscle. Additionally, it contains extracellular matrix that is crucial for muscle development and regeneration¹. Alterations of collagen content within intramuscular connective tissue have been associated with aging or diseased muscle ²,³. Data of baseline collagen content among different muscles, to provide deeper understanding of normal muscular functions, does not exist. Hence the a...

  15. How sex hormones promote skeletal muscle regeneration.

    Science.gov (United States)

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  16. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  17. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue with...... its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...... events were noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro...

  18. Epigenetic regulation of skeletal muscle metabolism.

    Science.gov (United States)

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  19. Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice.

    Science.gov (United States)

    Sugiyama, Masako; Yamaki, Akira; Furuya, Mayumi; Inomata, Norio; Minamitake, Yoshiharu; Ohsuye, Kazuhiro; Kangawa, Kenji

    2012-10-10

    Ghrelin is a gastric peptide that regulates energy homeostasis. Angiotensin II (Ang II) is known to induce body weight loss and skeletal muscle catabolism through the ubiquitin-proteasome pathway. In this study, we investigated the effects of ghrelin on body weight and muscle catabolism in mice treated with Ang II. The continuous subcutaneous administration of Ang II to mice for 6 days resulted in cardiac hypertrophy and significant decreases in body weight gain, food intake, food efficiency, lean mass, and fat mass. In the gastrocnemius muscles of Ang II-treated mice, the levels of insulin-like growth factor 1 (IGF-1) were decreased, and the levels of mRNA expression of catabolic factors were increased. Although the repeated subcutaneous injections of ghrelin (1.0mg/kg, twice daily for 5 days) did not affect cardiac hypertrophy, they resulted in significant body weight gains and improved food efficiencies and tended to increase both lean and fat mass in Ang II-treated mice. Ghrelin also ameliorated the decreased IGF-1 levels and the increased mRNA expression levels of catabolic factors in the skeletal muscle. IGF-1 mRNA levels in the skeletal muscle significantly decreased 24h after Ang II infusion, and this was reversed by two subcutaneous injections of ghrelin. In C2C12-derived myocytes, the dexamethasone-induced mRNA expression of atrogin-1 was decreased by IGF-1 but not by ghrelin. In conclusion, we demonstrated that ghrelin improved body weight loss and skeletal muscle catabolism in mice treated with Ang II, possibly through the early restoration of IGF-1 mRNA in the skeletal muscle and the amelioration of nutritional status. PMID:22750276

  20. Skeletal Muscle Autophagy: A New Metabolic Regulator

    OpenAIRE

    Neel, Brian A.; Lin, Yuxi; Pessin, Jeffrey E.

    2013-01-01

    Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that...

  1. Heat stress inhibits skeletal muscle hypertrophy

    OpenAIRE

    Frier, Bruce C.; Locke, Marius

    2007-01-01

    Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42°C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The...

  2. MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration.

    Science.gov (United States)

    Shireman, Paula K; Contreras-Shannon, Verónica; Ochoa, Oscar; Karia, Bijal P; Michalek, Joel E; McManus, Linda M

    2007-03-01

    We examined the role of MCP-1, a potent chemotactic and activating factor for macrophages, in perfusion, inflammation, and skeletal muscle regeneration post-ischemic injury. MCP-1-/- or C57Bl/6J control mice [wild-type (WT)] underwent femoral artery excision (FAE). Muscles were collected for histology, assessment of tissue chemokines, and activity measurements of lactate dehydrogenase (LDH) and myeloperoxidase. In MCP-1-/- mice, restoration of perfusion was delayed, and LDH and fiber size, indicators of muscle regeneration, were decreased. Altered inflammation was observed with increased neutrophil accumulation in MCP-1-/- versus WT mice at Days 1 and 3 (P< or =0.003), whereas fewer macrophages were present in MCP-1-/- mice at Day 3. As necrotic tissue was removed in WT mice, macrophages decreased (Day 7). In contrast, macrophage accumulation in MCP-1-/- was increased in association with residual necrotic tissue and impaired muscle regeneration. Consistent with altered inflammation, neutrophil chemotactic factors (keratinocyte-derived chemokine and macrophage inflammatory protein-2) were increased at Day 1 post-FAE. The macrophage chemotactic factor MCP-5 was increased significantly in WT mice at Day 3 compared with MCP-1-/- mice. However, at post-FAE Day 7, MCP-5 was significantly elevated in MCP-1-/- mice versus WT mice. Addition of exogenous MCP-1 did not induce proliferation in murine myoblasts (C2C12 cells) in vitro. MCP-1 is essential for reperfusion and the successful completion of normal skeletal muscle regeneration after ischemic tissue injury. Impaired muscle regeneration in MCP-1-/- mice suggests an important role for macrophages and MCP-1 in tissue reparative processes. PMID:17135576

  3. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    Directory of Open Access Journals (Sweden)

    Andrea Bonetto

    Full Text Available BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6, and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26-carcinoma cachexia. METHODOLOGY/PRINCIPAL FINDINGS: Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. CONCLUSIONS/SIGNIFICANCE: These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and

  4. Omega-3 Fatty Acids and Skeletal Muscle Health

    OpenAIRE

    Stewart Jeromson; Gallagher, Iain J.; Stuart D. R. Galloway; D. Lee Hamilton

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscl...

  5. Role of microRNAs in skeletal muscle hypertrophy

    OpenAIRE

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2014-01-01

    Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy), whereas skeletal muscle mass is decreased (atrophy) in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and n...

  6. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available We previously demonstrated that cinnamon extract (CE ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4 translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  7. Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1α mRNA in Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Xingyuan Wen

    2014-01-01

    Full Text Available PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3′ splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle during physical exercise with different intensities. We report here that NT-PGC-1α-a mRNA expression derived from a canonical exon 1 (exon 1a is increased by high-intensity exercise and AMPK activator AICAR in mouse skeletal muscle but not altered by low- and medium-intensity exercise and β2-adrenergic receptor agonist clenbuterol. In contrast, the alternative exon 1b-driven NT-PGC-1α-b (PGC-1α4 and NT-PGC-1α-c are highly induced by low-, medium-, and high-intensity exercise, AICAR, and clenbuterol. Ectopic expression of NT-PGC-1α-a in C2C12 myotube cells upregulates myosin heavy chain (MHC I, MHC II a and Glut4, which represent oxidative fibers, and promotes the expression of mitochondrial genes (Cyc1, COX5B, and ATP5B. In line with gene expression data, citrate synthase activity was significantly increased by NT-PGC-1α-a in C2C12 myotube cells. Our results indicate the regulatory role for NT-PGC-1α-a in mitochondrial biogenesis and adaptation of skeletal muscle to endurance exercise.

  8. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  9. Pannexin 1 channels in skeletal muscles

    OpenAIRE

    Cea, Luis A.; Riquelme, Manuel A.; Vargas, Anibal A.; Urrutia, Carolina; Sáez, Juan C.

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident ph...

  10. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  11. The physiological roles of Sirt1 in skeletal muscle

    OpenAIRE

    Pardo, Patricia S.; Boriek, Aladin M.

    2011-01-01

    Skeletal muscle aging is associated with increased inflammation and oxidative stress, a decrease in the ability to rebuild muscle after injury and in response to exercise. In this perspective, we discuss the mechanisms regulating Sirt1 activity and expression in skeletal muscles, emphasizing their implications in muscle physiology and the impairment of muscle function with age.

  12. Cytokine Signaling in Skeletal Muscle Wasting.

    Science.gov (United States)

    Zhou, Jin; Liu, Bin; Liang, Chun; Li, Yangxin; Song, Yao-Hua

    2016-05-01

    Skeletal muscle wasting occurs in a variety of diseases including diabetes, cancer, Crohn's disease, chronic obstructive pulmonary disease (COPD), disuse, and denervation. Tumor necrosis factor α (TNF-α) is involved in mediating the wasting effect. To date, a causal relationship between TNF-α signaling and muscle wasting has been established in animal models. However, results from clinical trials are conflicting. This is partly due to the fact that other factors such as TNF-like weak inducer of apoptosis (TWEAK) and interleukin 6 (IL-6) are also involved in skeletal muscle wasting. Because muscle wasting is often associated with physical inactivity and reduced food intake, therapeutic interventions will be most effective when multiple approaches are used in conjunction with nutritional support and exercise. PMID:27025788

  13. Chronic alcohol ingestion delays skeletal muscle regeneration following injury

    OpenAIRE

    Dekeyser, Graham J; Clary, Caroline R; OTIS, JEFFREY S.

    2013-01-01

    Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-match...

  14. : AMPK and skeletal muscle hypertrophy

    OpenAIRE

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Pende, Mario; Daegelen, Dominique; Sakamoto, Kei; Foretz, Marc; Viollet, Benoit

    2009-01-01

    10 pages; 6 figures; 49 références bibliographiques International audience Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes a...

  15. Treatment of Skeletal Muscle Injury: A Review

    OpenAIRE

    Vanden Bossche, L. C.; Vanderstraeten, G; Almqvist, K.F.; Rimbaut, S.; Witvrouw, E.; Philips, N.; Van den Steen, E; Baoge, L

    2012-01-01

    Skeletal muscle injuries are the most common sports-related injuries and present a challenge in primary care and sports medicine. Most types of muscle injuries would follow three stages: the acute inflammatory and degenerative phase, the repair phase and the remodeling phase. Present conservative treatment includes RICE (rest, ice, compression, elevation), nonsteroidal anti-inflammatory drugs (NSAIDs) and physical therapy. However, if use improper, NSAIDs may suppress an essential inflammator...

  16. Impaired skeletal muscle microcirculation in systemic sclerosis

    OpenAIRE

    Partovi, Sasan; Schulte, Anja-Carina; Aschwanden, Markus; Staub, Daniel; Benz, Daniela; Imfeld, Stephan; Jacobi, Björn; Broz, Pavel; Jäger, Kurt A; Takes, Martin; Huegli, Rolf W; Bilecen, Deniz; Walker, Ulrich A.

    2012-01-01

    Introduction Muscle symptoms in systemic sclerosis (SSc) may originate from altered skeletal muscle microcirculation, which can be investigated by means of blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Methods After ethics committee approval and written consent, 11 consecutive SSc patients (5 men, mean age 52.6 years, mean SSc disease duration 5.4 years) and 12 healthy volunteers (4 men, mean age 45.1 years) were included. Subjects with peripheral arterial occlusi...

  17. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  18. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  19. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2014-12-01

    Full Text Available This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz. Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE significantly attenuated hydrogen peroxide (H2O2-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1 and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.

  20. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik A.

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4 to...

  1. Vasodilatory mechanisms in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Clifford, Philip S.; Hellsten, Ylva

    2004-01-01

    and stabilizes within 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid...

  2. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  3. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  4. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    Science.gov (United States)

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  5. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    International Nuclear Information System (INIS)

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H2O2. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1kd cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1kd cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H2O2) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H2O2 among AOX1kd cells confirmed production of H2O2 in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H2O2

  6. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  7. Skeletal muscle adaptations and muscle genomics of performance horses.

    Science.gov (United States)

    Rivero, José-Luis L; Hill, Emmeline W

    2016-03-01

    Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in muscle growth, muscle contraction and specific metabolic pathways have been found to be functionally relevant for the early performance evaluation of elite athletic horses. The candidate genes discussed in this review are important for a healthy individual to improve performance. However, muscle performance limiting conditions are widespread in horses and many of these conditions are also genetically influenced. PMID:26831154

  8. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    OpenAIRE

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Zant, Gary Van; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overl...

  9. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse

    Directory of Open Access Journals (Sweden)

    White James P

    2012-07-01

    Full Text Available Abstract Background Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1 determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2 to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia. Methods ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts. Results Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2 protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1 was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression

  10. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease.

    Science.gov (United States)

    Davignon, Laurianne; Chauveau, Claire; Julien, Cédric; Dill, Corinne; Duband-Goulet, Isabelle; Cabet, Eva; Buendia, Brigitte; Lilienbaum, Alain; Rendu, John; Minot, Marie Christine; Guichet, Agnès; Allamand, Valérie; Vadrot, Nathalie; Fauré, Julien; Odent, Sylvie; Lazaro, Leïla; Leroy, Jean Paul; Marcorelles, Pascale; Dubourg, Odile; Ferreiro, Ana

    2016-04-15

    Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation inTRIP4encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted inTRIP4mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and inTrip4knocked-down C2C12 led to a significant reduction in myotube diameterex vivoandin vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the firstTRIP4mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism. PMID:27008887

  11. Tractography of peripheral nerves and skeletal muscles.

    Science.gov (United States)

    Khalil, C; Budzik, J F; Kermarrec, E; Balbi, V; Le Thuc, V; Cotten, A

    2010-12-01

    The assessment of human peripheral nerves and skeletal muscles by means of diffusion tensor imaging and tractograpy has been a recent area of research. These techniques have been successfully applied in both volunteers and patients, providing non-invasively, quantitative microstructural parameters (mainly mean fractional anisotropy and apparent diffusion coefficient) and offering a three-dimensional visualization tool of nerves and muscles fibers. DTI and tractography may reveal abnormalities that are beyond the resolution of conventional MR techniques and hence open the way to potential clinical applications. In this article, we will first summarize the current state of DTI and tractography in the evaluation of peripheral nerves and skeletal muscles as well as their potential future clinical applications. Then, we will address important technical considerations, which understanding is necessary to appropriately apply DTI and tractograhy, and in order to understand the current limitations of these innovative and promising techniques. PMID:20392583

  12. Tractography of peripheral nerves and skeletal muscles

    International Nuclear Information System (INIS)

    The assessment of human peripheral nerves and skeletal muscles by means of diffusion tensor imaging and tractograpy has been a recent area of research. These techniques have been successfully applied in both volunteers and patients, providing non-invasively, quantitative microstructural parameters (mainly mean fractional anisotropy and apparent diffusion coefficient) and offering a three-dimensional visualization tool of nerves and muscles fibers. DTI and tractography may reveal abnormalities that are beyond the resolution of conventional MR techniques and hence open the way to potential clinical applications. In this article, we will first summarize the current state of DTI and tractography in the evaluation of peripheral nerves and skeletal muscles as well as their potential future clinical applications. Then, we will address important technical considerations, which understanding is necessary to appropriately apply DTI and tractograhy, and in order to understand the current limitations of these innovative and promising techniques.

  13. Magnetic resonance findings in skeletal muscle tears

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) images of skeletal muscle tears can clearly delineate the severity of muscle injury. Although MR imaging is seldom necessary in patients with acute musle trauma, it can be helpful in deciding on clinical management. The two major MR findings in acute muscle tears are deformity of the muscle and the presence of abnormal signal reflecting hemorrhage and edema. In acute tears, methemoglobin within the extravascular blood causes high-signal areas on both T1- and T2-weighted images. With partial tears, the blood may dissect in a distinctive linear pattern along the muscle bundles and fibers. As healing begins, the muscle signal diminishes, first on the T1-weighted images and then on the T2-weighted images. When there is residual abnormal signal on images obtained more than several months after the injury, it is presumed to represent hemorrhage from recurrent tears. In patients with a questionable history of a remote injury, the clinical presentation may be that of persistent pain or a soft tissue mass. In these cases MR imaging may identify the cause of the pain and can exclude a neoplasm by proving that the mass is a hypertrophied or retracted musle. Thus, MR imaging has a limited, but occasionally important role in selected patients with skeletal muscle tears. (orig.)

  14. Pannexin 1 channels in skeletal muscles

    Science.gov (United States)

    Cea, Luis A.; Riquelme, Manuel A.; Vargas, Anibal A.; Urrutia, Carolina; Sáez, Juan C.

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca2+ signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles. PMID:24782784

  15. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Science.gov (United States)

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. PMID:27122162

  16. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    Science.gov (United States)

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. PMID:27237374

  17. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    Science.gov (United States)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  18. Working around the clock: circadian rhythms and skeletal muscle

    OpenAIRE

    ZHANG, XIPING; Dube, Thomas J.; Esser, Karyn A.

    2009-01-01

    The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal muscle of a clock-compromised mouse, Clock mutant, exhibits significant disruption in normal expression of many genes required for adult muscle structure and metabolism. In light of the growing association between the molecular clock, metabolism, and metabolic disease, it will also be important to ...

  19. Local induction of adiponectin reduces lipopolysaccharide-triggered skeletal muscle damage

    OpenAIRE

    Jortay, Julie; Senou, Maximin; Delaigle, Aurélie; Noel, Laurence; Funahashi, Tohru; Maeda, Norikazu; Many, Marie-Christine; Brichard, Sonia

    2010-01-01

    Adiponectin (ApN) exhibits metabolic and antiinflammatory properties. This hormone is exclusively secreted by adipocytes under normal conditions. We have shown that ApN was induced in tibialis anterior muscle of mice injected with lipopolysaccharide (LPS) and in C2C12 myotubes cultured with proinflammatory cytokines. We hypothesized that muscle ApN could be a local protective mechanism to counteract excessive inflammatory reaction and oxidative damage. To test this paradigm, we examined wheth...

  20. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    reorganization due to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we...

  1. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  2. Anisotropic photon migration in human skeletal muscle

    International Nuclear Information System (INIS)

    It is demonstrated in the short head of the human biceps brachii of 16 healthy subjects (12 males and 4 females) that near infrared photon migration is anisotropic. The probability for a photon to travel along the direction of the muscle fibres is higher (∼0.4) than that of travelling along a perpendicular axis (∼0.3) while in the adipose tissue the probability is the same (∼0.33) in all directions. Considering that the muscle fibre orientation is different depending on the type of muscle considered, and that inside a given skeletal muscle the orientation may change, the present findings in part might explain the intrasubject variability observed in the physiological parameters measured by near infrared spectroscopy techniques. In other words, the observed regional differences might not only be physiological differences but also optical artefacts. (note)

  3. Control of cell volume in skeletal muscle.

    Science.gov (United States)

    Usher-Smith, Juliet A; Huang, Christopher L-H; Fraser, James A

    2009-02-01

    Regulation of cell volume is a fundamental property of all animal cells and is of particular importance in skeletal muscle where exercise is associated with a wide range of cellular changes that would be expected to influence cell volume. These complex electrical, metabolic and osmotic changes, however, make rigorous study of the consequences of individual factors on muscle volume difficult despite their likely importance during exercise. Recent charge-difference modelling of cell volume distinguishes three major aspects to processes underlying cell volume control: (i) determination by intracellular impermeant solute; (ii) maintenance by metabolically dependent processes directly balancing passive solute and water fluxes that would otherwise cause cell swelling under the influence of intracellular membrane-impermeant solutes; and (iii) volume regulation often involving reversible short-term transmembrane solute transport processes correcting cell volumes towards their normal baselines in response to imposed discrete perturbations. This review covers, in turn, the main predictions from such quantitative analysis and the experimental consequences of comparable alterations in extracellular pH, lactate concentration, membrane potential and extracellular tonicity. The effects of such alterations in the extracellular environment in resting amphibian muscles are then used to reproduce the intracellular changes that occur in each case in exercising muscle. The relative contributions of these various factors to the control of cell volume in resting and exercising skeletal muscle are thus described. PMID:19133959

  4. Skeletal Muscle Mitochondria and Aging: A Review

    Directory of Open Access Journals (Sweden)

    Courtney M. Peterson

    2012-01-01

    Full Text Available Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.

  5. Skeletal muscle HIF-1 and exercise

    OpenAIRE

    Rundqvist, Helene

    2008-01-01

    Regular physical activity prevents and improves a number of disease conditions and reduces the risk for premature death substantially. From a clinical as well as a basic science point of view it is important to create a more fundamental understanding of the molecular mechanisms that contribute to the improved functional capacity induced by regular physical activity. Skeletal muscle tissue exhibits a remarkable ability to adapt to altered demands. Training adaptations include...

  6. Training induced adaptation in horse skeletal muscle

    OpenAIRE

    van Dam, K.G.

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate transport, enzyme activity, etc) differ considerably between species. The major drawbacks in equine training physiological research are the lack of an appropriate training model and the lack of control o...

  7. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    Science.gov (United States)

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway. PMID:27279047

  8. Na,K-ATPase regulation in skeletal muscle.

    Science.gov (United States)

    Pirkmajer, Sergej; Chibalin, Alexander V

    2016-07-01

    Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted. PMID:27166285

  9. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Holst, Dorte; Luquet, Serge; Nogueira, Véronique;

    2003-01-01

    starvation period, PPARdelta mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARdelta is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while...... refeeding promotes down-regulation of both genes. To directly access the role of PPARdelta in muscle cells, we forced its expression and that of a dominant-negative PPARdelta mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARdelta agonist by induction...

  10. Regenerating skeletal muscle in the face of aging and disease.

    Science.gov (United States)

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review. PMID:24879554

  11. Myofibre damage in human skeletal muscle

    DEFF Research Database (Denmark)

    Crameri, R M; Aagaard, P; Qvortrup, K;

    2007-01-01

    humans using voluntary exercise. Untrained males (n=8, range 22-27 years) performed 210 maximal eccentric contractions with each leg on an isokinetic dynamometer, voluntarily (VOL) with one leg and electrically induced (ES) with the other leg. Assessments from the skeletal muscle were obtained prior to......Disruption to proteins within the myofibre after a single bout of unaccustomed eccentric exercise is hypothesized to induce delayed onset of muscle soreness and to be associated with an activation of satellite cells. This has been shown in animal models using electrical stimulation but not in...... exercise and at 5, 24, 96 and 192 h postexercise. Muscle tenderness rose in VOL and ES after 24 h, and did not differ between groups. Maximal isometric contraction strength, rate of force development and impulse declined in the VOL leg from 4 h after exercise, but not in ES (except at 24 h). In contrast, a...

  12. Changes in skeletal muscle gene expression following clenbuterol administration

    OpenAIRE

    McIntyre Lauren M; McDaneld Tara G; Spurlock Diane M

    2006-01-01

    Abstract Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administ...

  13. Calpain-10 and insulin resistance in human skeletal muscle

    OpenAIRE

    Norton, Luke

    2007-01-01

    Variation in the calpain-10 gene has been linked to a three-fold increased risk for type 2 diabetes in Pima Indian and some European populations. Furthermore, reduced skeletal muscle expression of calpain-10 is associated with reduced insulin mediated glucose disposal and carbohydrate oxidation. The skeletal muscle specific calpain-3 plays a key role in skeletal muscle integrity and has also been linked to insulin resistance in humans and rodents. The major aims of this thesis were to...

  14. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work with...... available and new techniques will undoubtedly reveal the functional significance and signaling mechanisms behind changes in skeletal muscle protein turnover during exercise. Key words: Exercise, skeletal muscle, protein metabolism, translation....

  15. Skeletal muscle regeneration - mechanisms, satellite cells, factors involved

    OpenAIRE

    Marš, Tomaž

    2015-01-01

    Skeletal muscle is the most abundant of the human body's tissues and it represents a substantial percentage of body mass. Its main function is contraction, which produces force for different types of movement. It also includes the contraction of skelet al muscles that enables locomotion, joint stabilization, posture maintenance and production of body heat. Overall, skeletal muscles play an important role in the body's long-term survival and are crucial for fast and efficient response to chang...

  16. A metabolic link to skeletal muscle wasting and regeneration

    OpenAIRE

    René eKoopman; C. Hai eLy; Ryall, James G.

    2014-01-01

    Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in m...

  17. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M;

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  18. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Haruka Amitani

    Full Text Available Hydrogen (H(2 acts as a therapeutic antioxidant. However, there are few reports on H(2 function in other capacities in diabetes mellitus (DM. Therefore, in this study, we investigated the role of H(2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2 promoted 2-[(14C]-deoxy-d-glucose (2-DG uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K, protein kinase C (PKC, and AMP-activated protein kinase (AMPK, although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p. and oral (p.o. administration. However, long-term p.o. administration of H(2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  19. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E;

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  20. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...... the role of skeletal muscle transverse tubules as potential modulators of tissue insulin responsiveness....

  1. Shark skeletal muscle tropomyosin is a phosphoprotein.

    Science.gov (United States)

    Hayley, Michael; Chevaldina, Tatiana; Mudalige, Wasana A K A; Jackman, Donna M; Dobbin, Alvin D; Heeley, David H

    2008-01-01

    Shark skeletal muscle tropomyosin is classified as an alpha-type isoform. The chemical structure is characterised by the absence of cysteine and the presence of a sub-stoichiometric amount of covalently bound phosphate. The protein migrates as a single component on a SDS polyacrylamide gel but is resolved into two components by chromatography and electrophoresis both in the presence of urea at mild alkaline pH. The only detectable difference between these components is the presence of phosphoserine in the tropomyosin form of greater net negative charge. Low ionic strength (pH 7) solutions of phosphorylated shark tropomyosin display significantly higher specific viscosity than unphosphorylated, consistent with the presence of a phosphorylation site within the overlap region, serine 283, as well as conservation of the positively charged amino terminal region. Similar observations were made with tropomyosin prepared from the trunk muscle of Atlantic cod. In a steady-state MgATPase assay, thin filaments (Ca2+) reconstituted with shark phosphorylated tropomyosin activate myosin to a greater extent than those composed of unphosphorylated. The difference is attributable chiefly to a change in Vmax. Skeletal muscle tropomyosin is concluded to be phosphorylated in cartilaginous fishes as well as some teleosts. PMID:18763042

  2. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  3. Effect of vitamin D on skeletal muscle.

    Science.gov (United States)

    Walrand, Stéphane

    2016-06-01

    Beyond its traditional biological roles on bone health, extra-skeletal effects of vitamin D are currently under extensive research. The expression of the vitamin D receptor in most tissues has also strengthened the argument for its multiple functions. Among these, the effect of vitamin D on the mass and muscle performance has long been discussed. In ancient Greece, Herodotus recommended the sun as a cure for the "weak and soft muscles" and former Olympians exposed to sunlight to improve their physical performance. In 1952, Dr Spellerberg, a sports physiologist, has conducted an extensive study on the effects of UV irradiation on the performance of elite athletes. Following the significant results of this investigation, the scientist has informed the Olympic Committee that UV irradiation had a "persuasive" effect on physical performance and motor skills. These data are consistent with many subsequent studies reporting an improvement in physical activity, speed and endurance in young subjects treated with UV or with supplements containing vitamin D. Additional observation indicates a significant effect on muscle strength, particularly in the lower limbs. Concerning the mechanisms involved, some recent fundamental studies have shown that vitamin D exerts some molecular effects within the muscle cell. Specifically, a regulatory effect of vitamin D on calcium flux, mineral homeostasis and signaling pathways controlling protein anabolism has been reported in muscle tissue. Several epidemiological studies show that low vitamin D status is always associated with a decrease in muscle mass, strength and contractile capacity in older people. Vitamin D deficiency accelerates muscle loss with age (sarcopenia), and therefore leads to a reduction in physical capacity and to an increased risk of falls and fractures. In contrast, an additional intake of vitamin D in older people significantly improves muscle function and physical performance. PMID:27100224

  4. Molecular networks in skeletal muscle plasticity.

    Science.gov (United States)

    Hoppeler, Hans

    2016-01-01

    The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events. PMID:26792332

  5. Osmoregulatory processes and skeletal muscle metabolism

    Science.gov (United States)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  6. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B;

    2013-01-01

    four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition of...... exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within the...

  7. Effect of High Temperature- and High Pressure-Treated Red Ginseng on Lipolysis and Lipid Oxidation in C2C12 Myotubes.

    Science.gov (United States)

    Yu, Seok-Yeong; Lee, Jin-Ha; Cho, MyoungLae; Lee, Jong Seok; Hong, Hee-Do; Lee, Young-Chul; Kim, Young-Chan; Cho, Chang-Won; Kim, Kyung-Tack; Lee, Ok-Hwan

    2016-01-01

    Korean red ginseng (KRG), a highly valuable medicinal herb in oriental societies, has biological activity similar to that of Panax ginseng. Recently, it has been discovered that the biological activities of red ginseng can vary according to heating and steaming processes under different conditions that change the principal components of KRG and result in changes in biological activity. This study evaluated and compared the effects of high temperature- and high pressure-treated red ginseng (HRG) and commercial red ginseng (RG) on β-oxidation in C2C12 myotubes. HRG enhanced the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), but RG did not affect the phosphorylation of AMPK in C2C12 myotubes. HRG also promoted the nuclear translocation of forkhead box protein O1 (FoxO1), and the translocation exerted an increase in the protein expression of adipose triglyceride lipase (ATGL). As a consequence, HRG increased the mRNA expression level of carnitine palmitoyltransferase 1 (CPT-1) compared to the control. Taken together, our results indicated that HRG promotes the lipolysis of triglycerides and mitochondrial β-oxidation of fatty acids in C2C12 myotubes, suggesting that alterations to the principal components by high temperature and pressure may positively influence the nutraceutical functions of HRG. PMID:26501225

  8. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Lomax Michael A

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA, relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.

  9. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  10. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    Regulation of glucose metabolism, despite intense research through decades, is still not clear. Skeletal muscle is highly important for maintaining glucose homeostasis. Regulation of skeletal muscle glucose metabolism is influenced by protein signaling and changes in the activity of metabolic...... enzymes. Skeletal muscle consists of thousands of muscle fibers. These fibers can roughly be classified into type I and type II muscle fibers. The overall aim of this PhD thesis was to investigate the effect of insulin and exercise on human muscle fiber type specific metabolic signaling. The importance of...... biopsies, single muscle fibers were dissected. Muscle fiber type determination was performed and fibers were pooled in groups of type I and II muscle fibers. Muscle fiber pools were investigated for regulation of signaling molecules and enzymes, involved in glucose metabolism. Irrespective of the group of...

  11. COX-2 inhibitor reduces skeletal muscle hypertrophy in mice

    OpenAIRE

    Novak, Margaret L.; Billich, William; Smith, Sierra M.; Sukhija, Kunal B.; McLoughlin, Thomas J.; Hornberger, Troy A.; Timothy J. Koh

    2009-01-01

    Anti-inflammatory strategies are often used to reduce muscle pain and soreness that can result from high-intensity muscular activity. However, studies indicate that components of the acute inflammatory response may be required for muscle repair and growth. The hypothesis of this study was that cyclooxygenase (COX)-2 activity is required for compensatory hypertrophy of skeletal muscle. We used the synergist ablation model of skeletal muscle hypertrophy, along with the specific C...

  12. Skeletal Muscle Stem Cells from Animals I. Basic Cell Biology

    OpenAIRE

    Michael V. Dodson, Gary J. Hausman, LeLuo Guan, Min Du, Theodore P. Rasmussen, Sylvia P. Poulos, Priya Mir, Werner G. Bergen, Melinda E. Fernyhough, Douglas C. McFarland, Robert P. Rhoads, Beatrice Soret, James M. Reecy, Sandra G. Velleman, Zhihua Jiang

    2010-01-01

    Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to grea...

  13. Skeletal muscle stem cells from animals I. basic cell biology

    OpenAIRE

    Dodson, Michael V.; Hausman, Gary J.; Guan, Leluo; Du, Min; Rasmussen, Theodore P.; Poulos, Sylvia P; Mir, Priya; Bergen, Werner G.; Fernyhough, Melinda E.; McFarland, Douglas C.; Rhoads, Robert P.; Soret Lafraya, Beatriz; Reecy, James M.; Velleman, Sandra G; Jiang, Zhihua

    2010-01-01

    Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to grea...

  14. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  15. Irisin response to exercise training in adults and its effect on the regulation of C2C12 cell proliferation and differentiation

    OpenAIRE

    Qiu, Shanhu

    2015-01-01

    Irisin is now recognized as an exercise-induced hormone that is produced primarily by skeletal muscles and adipose tissue. However, its physiological characteristics in the response to acute or chronic exercise training still remains somewhat controversial. By using serum samples at different time points before and after an acute bout of exercise among trained and untrained healthy adults, this study showed that serum irisin transiently increases in response to acute exercise, which is indepe...

  16. Myonase is localized in skeletal muscle myofibrils.

    Science.gov (United States)

    Hori, Shinichiro; Yamada, Makoto; Ohtani, Sachiko; Hori, Chiyo; Yokomizo, Tadahiro; Webb, Timothy; Shimokawa, Teruhiko

    2002-09-01

    A novel chymotrypsin-like proteinase termed myonase was previously purified from MDX-mouse skeletal muscle [Hori et al. (1998) J. Biochem. 123, 650-658]. Western blots and immunohistochemical analyses showed that myonase was present within myocytes of both MDX-mouse and control mouse, and subcellular fractionation showed that it was associated with myofibrils. No significant difference was observed on Western blots between the amounts of myonase in myofibrils of MDX-mouse and control mouse, but the amount of myonase recoverable as a pure protein was 5-10-fold more when MDX-mouse was the source of the skeletal muscle. Myofibrils also possessed an endogenous inhibitor of myonase, whose inhibitory activity at physiological pH (pH 7.4) depended on salt concentration, stronger inhibition being observed at a low salt concentration. Inhibition at alkaline pH (pH 9) was weak and independent of salt concentration. Myonase in myofibrils was partially released at neutral pH by a high salt concentration (>0.6 M NaCl). However, even at 4 M NaCl, more than 80% of myonase remained within the myofibrils. Under alkaline conditions, release of myonase from myofibril was more extensive. At pH 12, myonase was almost completely present in the soluble fraction. Release of myonase under these conditions coincided with the solubilization of other myofibrillar proteins. PMID:12204111

  17. Satellite cell proliferation in adult skeletal muscle

    Science.gov (United States)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  18. CLOCK and BMAL1 Regulate Muscle Insulin Sensitivity via SIRT1 in Male Mice.

    Science.gov (United States)

    Liu, Jun; Zhou, Ben; Yan, Menghong; Huang, Rui; Wang, Yuangao; He, Zhishui; Yang, Yonggang; Dai, Changgui; Wang, Yiqian; Zhang, Fang; Zhai, Qiwei

    2016-06-01

    Circadian misalignment induces insulin resistance in both human and animal models, and skeletal muscle is the largest organ response to insulin. However, how circadian clock regulates muscle insulin sensitivity and the underlying molecular mechanisms are still largely unknown. Here we show circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1, two core circadian transcription factors, are down-regulated in insulin-resistant C2C12 myotubes and mouse skeletal muscle. Furthermore, insulin signaling is attenuated in the skeletal muscle of Clock(Δ19/Δ19) mice, and knockdown of CLOCK or BMAL1 by small interfering RNAs induces insulin resistance in C2C12 myotubes. Consistently, ectopic expression of CLOCK and BMAL1 improves insulin sensitivity in C2C12 myotubes. Moreover, CLOCK and BMAL1 regulate the expression of sirtuin 1 (SIRT1), an important regulator of insulin sensitivity, in C2C12 myotubes and mouse skeletal muscle, and two E-box elements in Sirt1 promoter are responsible for its CLOCK- and BMAL1-dependent transcription in muscle cells. Further studies show that CLOCK and BMAL1 regulate muscle insulin sensitivity through SIRT1. In addition, we find that BMAL1 and SIRT1 are decreased in the muscle of mice maintained in constant darkness, and resveratrol supplementation activates SIRT1 and improves insulin sensitivity. All these data demonstrate that CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1, and activation of SIRT1 might be a potential valuable strategy to attenuate muscle insulin resistance related to circadian misalignment. PMID:27035655

  19. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, S; Wright-Paradis, C; Gnaiger, E;

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity of...

  20. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  1. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...

  2. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    2009-01-01

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high pronenes

  3. Influence of age on leptin induced skeletal muscle signaling

    DEFF Research Database (Denmark)

    Guadalupe Grau, Amelia; Larsen, Steen; Guerra, Borja;

    2014-01-01

    Age associated fat mass accumulation could be due to dysregulation of leptin signaling in skeletal muscle. Thus, we investigated total protein expression and phosphorylation levels of the long isoform of the leptin receptor (OB-Rb), and leptin signaling through Janus Kinase 2 (JAK2)/signal...... skeletal muscle of different age....

  4. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian;

    2015-01-01

    characterized. METHODS: Effects of LIF on skeletal muscle glucose uptake, palmitate oxidation and signaling were investigated in ex-vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat fed mice. Inhibitors were used to...

  5. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study

    OpenAIRE

    Bentley, Rachel; Gray, Stuart R.; Schwarzbauer, Christian; Dawson, Dana; Frenneaux, Michael; He, Jiabao

    2014-01-01

    Abstract Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia‐dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and re...

  6. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study

    OpenAIRE

    Bentley, R; Gray, S. R.; Schwarzbauer, C.; Dawson, D; Frenneaux, M; He, J.

    2014-01-01

    Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia‐dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and replenishme...

  7. Skeletal muscle adaptation in response to exercise(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Zhen Yan

    2004-01-01

    @@ INTRODUCTION Skeletal muscles of adult mammalian species, including humans,are the source of power for locomotion and other daily activities essential for survival. Loss of skeletal musclecontractile function is a major cause of falling,morbidity and mortality,especially in elderly populations [1]. More importantly,skeletal muscles collectively influence total body metabolism of glucose, fat and protein, abnormalities of which are associated with a variety of common diseases[2-3].

  8. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Pereyra, Andrea S. [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Messi, Maria Laura; Wang, Zhong-Min [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Hereñú, Claudia [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Delbono, Osvaldo, E-mail: odelbono@wakehealth.edu [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States)

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  9. Compatibility of hyaluronic acid hydrogel and skeletal muscle myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei; Zhang Li; Sun Liang; Wang Chengyue [Jinzhou Central Hospital, Jinzhou 121000 (China); Fan Ming; Liu Shuhong, E-mail: Weiwang_Ly@yahoo.com.c [Institute of Basic Medical Sciences, Academy of Military Medical Science, Beijing 100850 (China)

    2009-04-15

    Compatibility of hyaluronic acid hydrogel (HAH) and skeletal muscle myoblasts has been investigated for the first time in the present paper. Skeletal muscle myoblasts were separated from skeletons of rats and incubated with a HAH-containing culture medium. Cell morphology, hydrophilicity and cell adhesion of the HAH scaffold were investigated using optical microscopy, scanning electron microscopy, Hoechest33258 fluorescent staining, the immunocytochemistry method and water adsorption rate measurement. It was found that at a proper concentration (around 0.5%) of hyaluronic acid, the hydrogel possessed good compatibility with skeletal muscle myoblasts. The hydrogel can create a three-dimensional structure for the growth of skeletal muscle myoblasts and benefit cell attachment to provide a novel scaffold material for the tissue engineering of skeletal muscle.

  10. Compatibility of hyaluronic acid hydrogel and skeletal muscle myoblasts

    International Nuclear Information System (INIS)

    Compatibility of hyaluronic acid hydrogel (HAH) and skeletal muscle myoblasts has been investigated for the first time in the present paper. Skeletal muscle myoblasts were separated from skeletons of rats and incubated with a HAH-containing culture medium. Cell morphology, hydrophilicity and cell adhesion of the HAH scaffold were investigated using optical microscopy, scanning electron microscopy, Hoechest33258 fluorescent staining, the immunocytochemistry method and water adsorption rate measurement. It was found that at a proper concentration (around 0.5%) of hyaluronic acid, the hydrogel possessed good compatibility with skeletal muscle myoblasts. The hydrogel can create a three-dimensional structure for the growth of skeletal muscle myoblasts and benefit cell attachment to provide a novel scaffold material for the tissue engineering of skeletal muscle.

  11. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette;

    2011-01-01

    Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods Hyperinsul......Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... mitochondrial function and indices of insulin sensitivity. Conclusions In contrast to previous reports we found no evidence that skeletal muscle mitochondrial respiration is reduced in skeletal muscle of women with PCOS compared to control subjects. Furthermore, mitochondrial content did not differ between our...... control and PCOS groups. These results question the causal relationship between reduced mitochondrial function and skeletal muscle insulin resistance in PCOS....

  12. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  13. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H;

    2000-01-01

    amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...... muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in...

  14. Motor endplate cholinesterase in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Fujii,Masafumi

    1982-08-01

    Full Text Available The activity and properties of cholinesterase (ChE of the motor endplate and its fractions were studied in isolated human skeletal muscle. This preparation was used since the ChE activity of the membrane preparation was localized only in the motor endplate. The endplate ChE was stable in the isolated membrane for 4 weeks at 4 degrees C. The specific activity of the extracted ChE of human muscle membrane was 29.6% higher than that of the original membrane. Studies with specific substrates and ChE inhibitors indicated that most of the ChE of human muscle membrane and its fractions was acetylcholinesterase, and that the minor component was pseudocholinesterase. A Michaelis-Menten constant of 3.82 mM was estimated in the endplate ChE, and 0.88 mM in the extracted ChE of the endplate. The extracted human endplate ChE was separated into three fractions by Sephadex G-200 chromatography, and into two fractions by acrylamide gel electrophoresis.

  15. Osteogenic sarcoma with skeletal muscle metastases

    Energy Technology Data Exchange (ETDEWEB)

    Peh, W.C.G. [Department of Diagnostic Radiology, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Shek, T.W.H. [Department of Pathology, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Wang Shihchang [Department of Diagnostic Imaging, National University of Singapore, National University Hospital (Singapore); Wong, J.W.K.; Chien, E.P. [Department of Orthopaedic Surgery, The University of Hong Kong, Queen Mary Hospital (Hong Kong)

    1999-05-01

    Two cases of osteogenic sarcoma with skeletal muscle metastases are described. A 40-year-old woman presented with progressive swelling of both calves and a soft tissue back lump. She had been diagnosed with mandibular chondroblastic osteogenic sarcoma 6 years earlier. Radiographs showed calcified masses. MRI scans and bone scintigraphy revealed multiple soft tissue masses in both calves. Bone scintigraphy also showed uptake in the back lump, right thigh and left lung base. Biopsy confirmed metastatic chondroblastic osteogenic sarcoma, which initially responded well to chemotherapy. However, the metastatic disease subsequently progressed rapidly and she died 21 months after presentation. The second case concerns a 20-year-old man who presented with a pathologic fracture of the humerus, which was found to be due to osteoblastic osteogenic sarcoma. He developed cerebral metastases 17 months later, followed by metastases at other sites. Calcified masses were subsequently seen on radiographs of the abdomen and chest. CT scans confirmed the presence of densely calcified muscle metastases in the abdominal wall, erector spinae and gluteal muscles. The patient`s disease progressed rapidly and he died 30 months after presentation. (orig.) With 6 figs., 29 refs.

  16. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T;

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  17. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    Full Text Available BACKGROUND: Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control. METHODOLOGY/PRINCIPAL FINDINGS: Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. CONCLUSIONS/SIGNIFICANCE: We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  18. Skeletal muscle microvascular function in girls with Turner syndrome

    OpenAIRE

    West, Sarah L.; Clodagh S. O'Gorman; Elzibak, Alyaa H.; Jessica Caterini; Noseworthy, Michael D.; Tammy Rayner; Jill Hamilton; Wells, Greg D

    2015-01-01

    Background: Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) s...

  19. Dysregulation of skeletal muscle protein metabolism by alcohol

    OpenAIRE

    Steiner, Jennifer L.; Lang, Charles H.

    2015-01-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time prod...

  20. Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    OpenAIRE

    M Carmen Valero; Huntsman, Heather D.; Jianming Liu; Kai Zou; Boppart, Marni D.

    2012-01-01

    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hemat...

  1. Effect of ionizing radiation on human skeletal muscle precursor cells

    OpenAIRE

    Marš, Tomaž; Čemažar, Maja; Jurdana, Mihaela; Pegan, Katarina

    2015-01-01

    Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures.Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shoc...

  2. AMPK Control of Fat Metabolism in Skeletal Muscle

    OpenAIRE

    Thomson, David M.; Winder, William W.

    2009-01-01

    AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK’s role in the muscle is important. It was originally shown to stimulate fatty acid oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review we summarize much of this data, particularly in relation to chan...

  3. Skeletal muscle digoxin binding in patients with renal failure.

    OpenAIRE

    Jogestrand, T; Ericsson, F

    1983-01-01

    For digoxin analyses blood and skeletal muscle samples were taken from seven digoxin-treated patients with chronic renal failure. The ratio between skeletal muscle and serum digoxin concentration in the patients with renal failure was not significantly different from the ratios in two control groups consisting of subjects with normal renal function. In the group of patients with renal failure there was no relationship between the glomerular filtration rate and muscle digoxin binding (specific...

  4. Development and progress of engineering of skeletal muscle tissue

    OpenAIRE

    Zhou, GQ; Liao, H.

    2009-01-01

    Engineering skeletal muscle tissue remains still a challenge, and numerous studies have indicated that this technique may be of great importance in medicine in the near future. This article reviews some of the recent findings resulting from tissue engineering science related to the contractile behavior and the phenotypes of muscle tissue cells in different three-dimensional environment, and discusses how tissue engineering could be used to create and regenerate skeletal muscle, as well as the...

  5. Adiponectin Upregulates Ferritin Heavy Chain in Skeletal Muscle Cells

    OpenAIRE

    Ikegami, Yuichi; Inukai, Kouichi; Imai, Kenta; Sakamoto, Yasushi; Katagiri, Hideki; Kurihara, Susumu; Awata, Takuya; Katayama, Shigehiro

    2009-01-01

    OBJECTIVE—Adiponectin is an adipocyte-derived protein that acts to reduce insulin resistance in the liver and muscle and also inhibits atherosclerosis. Although adiponectin reportedly enhances AMP-activated protein kinase and inhibits tumor necrosis factor-α action downstream from the adiponectin signal, the precise physiological mechanisms by which adiponectin acts on skeletal muscles remain unknown. RESEARCH DESIGN AND METHODS—We treated murine primary skeletal muscle cells with recombinant...

  6. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  7. DHA Inhibits Protein Degradation More Efficiently than EPA by Regulating the PPARγ/NFκB Pathway in C2C12 Myotubes

    OpenAIRE

    Yue Wang; Qiao-wei Lin; Pei-pei Zheng; Jian-song Zhang; Fei-ruo Huang

    2013-01-01

    This study was conducted to evaluate the mechanism by which n-3 PUFA regulated the protein degradation in C2C12 myotubes. Compared with the BSA control, EPA at concentrations from 400 to 600 µM decreased total protein degradation (P < 0.01). However, the total protein degradation was decreased when the concentrations of DHA ranged from 300 µM to 700 µM (P < 0.01). DHA (400 µM, 24 h) more efficiently decreased the I κ B α phosphorylation and increased in the I κ B α protein level than 400 µM E...

  8. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    International Nuclear Information System (INIS)

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  9. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  10. Compartmentalized ATP synthesis in skeletal muscle triads.

    Science.gov (United States)

    Han, J W; Thieleczek, R; Varsányi, M; Heilmeyer, L M

    1992-01-21

    Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads. PMID:1731894

  11. Lack of CFTR in Skeletal Muscle Predisposes to Muscle Wasting and Diaphragm Muscle Pump Failure in Cystic Fibrosis Mice

    OpenAIRE

    Maziar Divangahi; Haouaria Balghi; Gawiyou Danialou; Comtois, Alain S.; Alexandre Demoule; Sheila Ernest; Christina Haston; Renaud Robert; Hanrahan, John W.; Danuta Radzioch; Petrof, Basil J

    2009-01-01

    Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR-deficient myotubes exhibit augmented levels of intracellular calcium aft...

  12. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  13. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy.

    Science.gov (United States)

    Sartorelli, Vittorio; Fulco, Marcella

    2004-08-01

    The maintenance of adult skeletal muscle mass is ensured by physical exercise. Accordingly, physiological and pathological situations characterized by either impaired motor neuron activity, reduced gravity (microgravity during space flights), or reduced physical activity result in loss of muscle mass. Furthermore, a plethora of clinical conditions, including cancer, sepsis, diabetes, and AIDS, are associated with varying degrees of muscle atrophy. The cellular and molecular pathways responsible for maintaining the skeletal muscle mass are not well defined. Nonetheless, studies aimed at the understanding of the mechanisms underlying either muscular atrophy or hypertrophy have begun to identify the physiological determinants and clarify the molecular pathways responsible for the maintenance of muscle mass. PMID:15292521

  14. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. : AMPK in skeletal musclemetabolic adaptation

    OpenAIRE

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi; Leclerc, Jocelyne; Treebak, Jonas,; Pehmøller, Christian; Sanz, Nieves; Sakakibara, Iori; Saint-Amand, Emmanuelle; Rimbaud, Stéphanie; Maire, Pascal; Marette, André; Ventura-Clapier, Renée; Ferry, Arnaud; Wojtaszewski, Jørgen,

    2014-01-01

    : AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production an...

  15. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  16. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S;

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  17. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S;

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  18. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics.

    Science.gov (United States)

    Shankaran, Mahalakshmi; King, Chelsea L; Angel, Thomas E; Holmes, William E; Li, Kelvin W; Colangelo, Marc; Price, John C; Turner, Scott M; Bell, Christopher; Hamilton, Karyn L; Miller, Benjamin F; Hellerstein, Marc K

    2016-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  19. Postnatal ontogeny of skeletal muscle protein synthesis in pigs

    Science.gov (United States)

    The neonatal period is characterized by rapid growth and elevated rates of synthesis and accretion of skeletal muscle proteins. The fractional rate of muscle protein synthesis is very high at birth and declines rapidly with development. The elevated capacity for muscle protein synthesis in the neo...

  20. Skeletal Muscle Fatigue in Old Age: Whose Advantage?

    OpenAIRE

    Kent-Braun, Jane A.

    2009-01-01

    The results of recent studies indicate that, in healthy men and women beyond ~65 years of age, the energy-producing pathways in skeletal muscle may combine with changes in motor unit behavior and muscle contractile properties to provide a unique environment for resisting muscle fatigue.

  1. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. PMID:26687163

  2. Heparan sulfate in skeletal muscle development

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  3. Heparan sulfate in skeletal muscle development

    International Nuclear Information System (INIS)

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in 35SO42- radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated 35SO42- into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated 35SO42- into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium [Ca++] closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate

  4. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD.

    OpenAIRE

    Kong, Y; Flick, M J; Kudla, A J; Konieczny, S F

    1997-01-01

    The muscle LIM protein (MLP) is a muscle-specific LIM-only factor that exhibits a dual subcellular localization, being present in both the nucleus and in the cytoplasm. Overexpression of MLP in C2C12 myoblasts enhances skeletal myogenesis, whereas inhibition of MLP activity blocks terminal differentiation. Thus, MLP functions as a positive developmental regulator, although the mechanism through which MLP promotes terminal differentiation events remains unknown. While examining the distinct ro...

  5. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  6. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  7. Regulation of Skeletal Muscle by microRNAs.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Wang, Da-Zhi

    2016-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. © 2016 American Physiological Society. Compr Physiol 6:1279-1294, 2016. PMID:27347893

  8. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    The aims of the present thesis were to investigate 1) The impact of physical inactivity on insulinstimulated Akt, TBC1D4 and GS regulation in human skeletal muscle, 2) The impact of exercise training on glucose-mediated regulation of PDH and GS in skeletal muscle in elderly men, 3) The impact of...... inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well as...... glucose to the level seen when exercise was performed before bed rest. Study II demonstrated that exercise training-improved glucose regulation in elderly healthy subjects was associated with increased HKII, GLUT4, Akt2, PDK2, GS and PDH-E1α protein content. Moreover, exercise training resulted in an...

  9. The effects of obesity on skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Dmitry eAkhmedov

    2013-12-01

    Full Text Available Obesity and metabolic disorders such as type 2 diabetes mellitus are accompanied by increased lipid deposition in adipose and non-adipose tissues including liver, pancreas, heart and skeletal muscle. Recent publications report impaired regenerative capacity of skeletal muscle following injury in obese mice. Although muscle regeneration has not been thoroughly studied in obese and type 2 diabetic humans and mechanisms leading to decreased muscle regeneration in obesity remain elusive, the initial findings point to the possibility that muscle satellite cell function is compromised under conditions of lipid overload. Elevated toxic lipid metabolites and increased proinflammatory cytokines as well as insulin and leptin resistance that occur in obese animals may contribute to decreased regenerative capacity of skeletal muscle. In addition, obesity-associated alterations in the metabolic state of skeletal muscle fibers and satellite cells may directly impair the potential for satellite cell-mediated repair. Here we discuss recent studies that expand our understanding of how obesity negatively impacts skeletal muscle maintenance and regeneration.

  10. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    LENUS (Irish Health Repository)

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  11. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle

    OpenAIRE

    Engeli, Stefan; Birkenfeld, Andreas L.; Badin, Pierre-Marie; Bourlier, Virginie; Louche, Katie; Viguerie, Nathalie; Thalamas, Claire; Montastier, Emilie; Larrouy, Dominique; Harant, Isabelle; de Glisezinski, Isabelle; Lieske, Stefanie; Reinke, Julia; Beckmann, Bibiana; Langin, Dominique

    2012-01-01

    Cardiac natriuretic peptides (NP) are major activators of human fat cell lipolysis and have recently been shown to control brown fat thermogenesis. Here, we investigated the physiological role of NP on the oxidative metabolism of human skeletal muscle. NP receptor type A (NPRA) gene expression was positively correlated to mRNA levels of PPARγ coactivator-1α (PGC1A) and several oxidative phosphorylation (OXPHOS) genes in human skeletal muscle. Further, the expression of NPRA, PGC1A, and OXPHOS...

  12. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    OpenAIRE

    Fan, Weiwei; Atkins, Annette R.; Yu, Ruth T.; Downes, Michael; Ronald M. Evans

    2013-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate...

  13. Skeletal muscle matrix metalloproteinase and exercise in humans

    OpenAIRE

    Rullman, Eric

    2011-01-01

    Skeletal muscle is a highly plastic tissue; it has a great capacity to adapt to environmental demands throughout life. The structural and functional changes that occur in response to exercise training are well characterized whereas much less is known about these adaptive processes at the cellular and molecular levels. A possibly underestimated aspect of skeletal muscle adaptation to exercise is the remodeling of the extracellular matrix (ECM). Degradation and processing of...

  14. Resistance Exercise Reverses Aging in Human Skeletal Muscle

    OpenAIRE

    Simon Melov; Tarnopolsky, Mark A.; Kenneth Beckman; Krysta Felkey; Alan Hubbard

    2007-01-01

    Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N =...

  15. 核仁素表达下调对C2C12细胞增殖与凋亡的影响%Effect of nucleolin down-regulation on the proliferation and apoptosis in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    王慷慨; 蒋磊; 鄂顺梅; 刘可; 张玲莉; 刘梅冬; 肖献忠

    2005-01-01

    目的:探讨核仁素反义寡核苷酸对细胞增殖与凋亡的影响.方法:采用反义寡核苷酸技术以抑制C2C12细胞中核仁素的表达后,用MTT法检测细胞增殖状况,流式细胞术及DNA琼脂糖凝胶电泳检测细胞凋亡.结果:免疫印迹结果显示,反义寡核苷酸导入细胞后24 h,核仁素的表达受到明显抑制,同时反义寡核苷酸处理组细胞的增殖能力亦明显受到抑制,细胞凋亡百分率显著升高,并能检测到清晰的"梯状条带".而正义及随机核酸导入细胞后不能降低核仁素的表达,对细胞增殖及凋亡均无明显影响.结论:核仁素表达下调能抑制C2C12细胞增殖并能触发C2C12细胞凋亡.

  16. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  17. A study on the change of autophagy in skeletal muscle of patients with chronic kidney disease

    Institute of Scientific and Technical Information of China (English)

    黄娟

    2013-01-01

    Objective To study skeletal muscle atrophy and the change of autophagy in skeletal muscle of patients with chronic kidney disease.Methods Mean muscle cross sectional area,mRNA and protein expression of

  18. Skeletal muscle tissue in movement and health: positives and negatives.

    Science.gov (United States)

    Lindstedt, Stan L

    2016-01-01

    The history of muscle physiology is a wonderful lesson in 'the scientific method'; our functional hypotheses have been limited by our ability to decipher (observe) muscle structure. The simplistic understanding of how muscles work made a large leap with the remarkable insights of A. V. Hill, who related muscle force and power to shortening velocity and energy use. However, Hill's perspective was largely limited to isometric and isotonic contractions founded on isolated muscle properties that do not always reflect how muscles function in vivo. Robert Josephson incorporated lengthening contractions into a work loop analysis that shifted the focus to dynamic muscle function, varying force, length and work done both by and on muscle during a single muscle work cycle. It became apparent that muscle is both a force generator and a spring. Titin, the missing filament in the sliding filament model, is a muscle spring, which functions very differently in cardiac versus skeletal muscle; its possible role in these two muscle types is discussed relative to their contrasting function. The good news for those of us who choose to work on skeletal muscle is that muscle has been reluctant to reveal all of its secrets. PMID:26792329

  19. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning;

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training......-modality specific action on the adaptive processes including heat shock proteins in human skeletal muscle. This article is protected by copyright. All rights reserved....

  20. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C;

    2008-01-01

    AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS...

  1. Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness

    NARCIS (Netherlands)

    Hangelbroek, R.W.J.; Fazelzadeh, P.; Tieland, C.A.B.; Boekschoten, M.V.; Hooiveld, G.J.E.J.; Duynhoven, van J.P.M.; Timmons, James; Verdijk, L.; Groot, de C.P.G.M.; Loon, van L.J.C.; Müller, M.R.

    2016-01-01

    Background
    The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre-)frail older adults. Additionally, we examine the effect of resistance-ty

  2. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  3. Estimation of skeletal muscle mass from body creatine content

    Science.gov (United States)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  4. NO-DEPENDENT SIGNALING PATHWAYS IN UNLOADED SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Boris Stivovich Shenkman

    2015-10-01

    Full Text Available The main focus of the current review is the nitric oxide (NO-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.

  5. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  6. Premature aging in skeletal muscle lacking serum response factor.

    Directory of Open Access Journals (Sweden)

    Charlotte Lahoute

    Full Text Available Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.

  7. Augmentation of alignment and differentiation in C2C12 skeletal myoblasts through use of nano-to-microscale biochemical patterns

    OpenAIRE

    Chung, Kevin

    2009-01-01

    Interactions between cell surfaces and the extracellular matrix have been shown in previous studies to play an essential role in cell mobility, adhesion, proliferation, differentiation, polarity, and apoptosis. Mimicking this extracellular microenvironment with nanoscale patterns is an approach in which we can manipulate cellular responses at a molecular level for use in future tissue engineering applications or in vitro models. The use of electron beam lithography was explored in this study ...

  8. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  9. Skeletal muscle deiodinase type 2 regulation during illness in mice

    NARCIS (Netherlands)

    J. Kwakkel; H.C. van Beeren; M.T. Ackermans; M. Platvoet-ter Schiphorst; E. Fliers; W.M. Wiersinga; A. Boelen

    2009-01-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is up-regulated in an animal model of acute illness. However, human Studies on the expression Of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of skel

  10. Skeletal muscle perfusion measured by positron emission tomography during exercise

    NARCIS (Netherlands)

    Ament, W; Lubbers, J; Rakhorst, G; Vaalburg, W; Verkerke, GJ; Paans, AMJ; Willemsen, ATM

    1998-01-01

    The applicability of (H2O)-O-15-positron emission tomographic (PET) imaging for the assessment of skeletal muscle perfusion during exercise was investigated in five healthy subjects performing intermittent isometric contractions on a calf ergometer. The workload of the left calf muscles was kept con

  11. Revised planimetric model of unipennate skeletal muscle: a mechanical approach

    NARCIS (Netherlands)

    Linden, van der B.J.J.J.; Koopman, H.F.J.M.; Huijing, P.A.; Grootenboer, H.J.

    1998-01-01

    Objective. Planimetric models which are simple, in the sense that small numerical effort is needed, are used to study functional consequences of skeletal muscle architecture. This paper argues with the approach to derive force of a unipennate muscle based on only equilibrium of the aponeurosis (tend

  12. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  13. A method for preparing skeletal muscle fiber basal laminae

    International Nuclear Information System (INIS)

    Previous attempts to prepare skeletal muscle basal laminae (BL) for ultrastructural analyses have been hampered by difficulties in successfully removing skeletal muscle proteins and cellular debris from BL tubes. In the present study the authors describe a two phase method which results in an acellular muscle preparation, the BL of which are examined by light, transmission electron, and scanning electron microscopy. In the first phase, excised rat extensor digitorum longus muscles are subjected to x-radiation and then soaked in Marcaine to inhibit muscle regeneration and to destroy peripheral muscle fibers. The muscles are then grafted back into their original sites and allowed to remain in place 7-14 days to allow for maximal removal of degenerating muscle tissue with minimal scar tissue formation. In the second phase, the muscle grafts are subjected sequentially to EDTA, triton X-100, DNAase, and sodium deoxycholate to remove phagocytizing cells and associated degenerating muscle tissue. These procedures result in translucent, acellular muscle grafts which show numerous empty tubes of BL backed by endomysial collagenous fibers. These preparations should be useful for morphological analyses of isolated muscle BL and for possible in vitro studies by which the biological activity of muscle BL can be examined

  14. Musclin:a novel skeletal muscle-derived secretory factor related to insulin resistance%Musclin:一种新的与胰岛素抵抗有关的骨骼肌细胞源性因子

    Institute of Scientific and Technical Information of China (English)

    刘英; 刘赫; 刘国良

    2009-01-01

    肌肉素(muselin)是与利钠肽相似的多肽,其蛋白与利钠肽家族的切割方式小同,因此可能无利钠肽的活性.重组musclin与糖脂代谢有关,其降低了胰岛素诱导的成肌细胞C2C12葡萄糖摄取及糖原合成的能力.由此表明,muselin可能参与骨骼肌胰岛素抵抗(IR).然而,同前对musclin的研究很少,其参与IR的具体机制尚不清楚,还需进一步研究.%Musclin is a peptide similar to natriuretic peptides (NP). Different from the N P family, the conserved 17 amino acids of musclin are not positioned between two cysteine residues, which are crucial for physiological protein folding to produce natriuretic activity. Musclin significantly attenuated insulin-stimu-lated 2-DG uptake and glycogen synthesis at both basal and insulin-stimulated status in C2C12 myoblasts. Musclin might be involved in insulin resistance (IR) in skeletal muscle. However,there is little research on the musclin by now,and the specific mechanisms involved in IR is not clear, which need to be further stud-ied.

  15. Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1.

    OpenAIRE

    Adams, J. C.; Lawler, J

    1994-01-01

    Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronect...

  16. Perlecan and synaptophysin changes in denervated skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kai Ma; Zhifeng Huang; Jianfeng Ma; Longquan Shao; Huiming Wang; Yanliang Wang

    2012-01-01

    The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix com-ponent, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degen-erated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synap-tophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.

  17. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly

    DEFF Research Database (Denmark)

    Iversen, Ninna; Krustrup, Peter; Rasmussen, Hans N;

    2011-01-01

    The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly people...... recovery. Capillarization was detected histochemically and oxidative enzyme activities were determined on isolated mitochondria. GLUT4, HKII, Cyt c and VEGF protein expression was measured on muscle lysates from Pre-biopsies, phosphorylation of AMPK and P38 on lysates from Pre and 0h biopsies, while PGC-1a......, VEGF, HKII and TFAM mRNA content was determined at all time points. ET had ~40% higher PDH, CS, SDH, a-KG-DH and ATP synthase activities and 27% higher capillarization than UT, reflecting increased skeletal muscle oxidative capacity with lifelong endurance exercise training. In addition, acute exercise...

  18. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2012-07-01

    Full Text Available Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.

  19. Evaluation of skeletal muscle satellite cell activity in rodent models depicting muscle hypertrophy and atrophy

    OpenAIRE

    Sidique, Idris L.

    2013-01-01

    Satellite cells are muscle-specific progenitor cells involved in the routine maintenance of skeletal muscle homeostasis, growth and regeneration. They are activated by various stimuli (myotrauma, growth factors etc), undergo rounds of proliferation as skeletal muscle myoblasts, to differentiate and fuse with each other to generate new myotubes or onto existing myofibres to augment growth or repair damaged fibres. Satellite cells contribute to hypertrophy by facilitating nuclear addition, whic...

  20. Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages

    Directory of Open Access Journals (Sweden)

    Huub Maas

    2010-01-01

    Full Text Available The classic view of skeletal muscle is that force is generated within its muscle fibers and then directly transmitted in-series, usually via tendon, onto the skeleton. In contrast, recent results suggest that muscles are mechanically connected to surrounding structures and cannot be considered as independent actuators. This article will review experiments on mechanical interactions between muscles mediated by such epimuscular myofascial force transmission in physiological and pathological muscle conditions. In a reduced preparation, involving supraphysiological muscle conditions, it is shown that connective tissues surrounding muscles are capable of transmitting substantial force. In more physiologically relevant conditions of intact muscles, however, it appears that the role of this myofascial pathway is small. In addition, it is hypothesized that connective tissues can serve as a safety net for traumatic events in muscle or tendon. Future studies are needed to investigate the importance of intermuscular force transmission during movement in health and disease.

  1. Expanding roles for AMPK in skeletal muscle plasticity

    OpenAIRE

    Mounier, Rémi; Théret, Marine; Lantier, Louise; Foretz, Marc; Viollet, Benoit

    2015-01-01

    Skeletal muscle possesses a remarkable plasticity and responds to environmental and physiological challenges by changing its phenotype in terms of size, composition, and metabolic properties. Muscle fibers rapidly adapt to drastic changes in energy demands during exercise through fine-tuning of the balance between catabolic and anabolic processes. One major sensor of energy demand in exercising muscle is AMP-activated protein kinase (AMPK). Recent advances have shed new light on the relevance...

  2. No-dependent signaling pathways in unloaded skeletal muscle

    OpenAIRE

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation...

  3. Skeletal muscle as a regulator of the longevity protein, Klotho

    OpenAIRE

    KeithGAvin; PaulMCoen; DonnaStolz; JohnJDubé; FabrisiaAmbrosio

    2014-01-01

    Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and Klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating Klotho and skeletal muscle has not been investigated. In this paper, we present a review of the liter...

  4. Impact of Oxidative Stress on Exercising Skeletal Muscle

    OpenAIRE

    Peter Steinbacher; Peter Eckl

    2015-01-01

    It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased ex...

  5. Different modes of hypertrophy in skeletal muscle fibers

    OpenAIRE

    Paul, Angelika C.; Rosenthal, Nadia

    2002-01-01

    Skeletal muscles display a remarkable diversity in their arrangement of fibers into fascicles and in their patterns of innervation, depending on functional requirements and species differences. Most human muscle fascicles, despite their great length, consist of fibers that extend continuously from one tendon to the other with a single nerve endplate band. Other mammalian muscles have multiple endplate bands and fibers that do not insert into both tendons but terminate intrafascicularly. We in...

  6. Altered Macrophage Phenotype Transition Impairs Skeletal Muscle Regeneration

    OpenAIRE

    Wang, Hanzhou; Melton, David W.; Porter, Laurel; Sarwar, Zaheer U.; McManus, Linda M.; Shireman, Paula K.

    2014-01-01

    Monocyte/macrophage polarization in skeletal muscle regeneration is ill defined. We used CD11b-diphtheria toxin receptor transgenic mice to transiently deplete monocytes/macrophages at multiple stages before and after muscle injury induced by cardiotoxin. Fat accumulation within regenerated muscle was maximal when ablation occurred at the same time as cardiotoxin-induced injury. Early ablation (day 1 after cardiotoxin) resulted in the smallest regenerated myofiber size together with increased...

  7. Skeletal muscle metastases: primary tumours, prevalence, and radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey; Spielmann, Rolf Peter; Behrmann, Curd [Martin-Luther-University Halle-Wittenberg, Department of Radiology, Halle (Germany); Hainz, Michael; Holzhausen, Hans-Juergen [Martin-Luther-University Halle-Wittenberg, Department of Pathology, Halle (Germany); Arnold, Dirk [Martin-Luther-University Halle-Wittenberg, Department of Haematology/Oncology, Halle (Germany); Katzer, Michaela [Martin-Luther-University Halle-Wittenberg, Department of Urology, Halle (Germany); Schmidt, Joerg [Martin-Luther-University Halle-Wittenberg, Department of Medical Statistics and Controlling, Halle (Germany)

    2010-03-15

    Although skeletal muscles comprise nearly 50% of the total human body mass and are well vascularised, metastases in the musculature are rare. The reported prevalence of skeletal muscle metastases from post-mortem studies of patients with cancer is inconstant and ranges from 0.03 to 17.5%. Of 5,170 patients with metastasised cancer examined and treated at our institution during the period from January 2000 to December 2007, 61 patients with muscle metastases (80 lesions) were identified on computed tomography (CT). Genital tumours (24.6%) were the most frequent malignancies metastasising into the skeletal musculature, followed by gastrointestinal tumours (21.3%), urological tumours (16.4%), and malignant melanoma (13.1%). Other primary malignancies were rarer, including bronchial carcinoma (8.2%), thyroid gland carcinoma (4.9%), and breast carcinoma (3.3%). In 8.2%, carcinoma of unknown primary was diagnosed. Skeletal muscle metastases (SMM) were located in the iliopsoas muscle (27.5%), paravertebral muscles (25%), gluteal muscles (16.3%), lower extremity muscles (12.5%), abdominal wall muscles (10%), thoracic wall muscles (5%), and upper extremity muscles (3.8%). Most (76.3%) of the 80 SMM were diagnosed incidentally during routine staging CT examinations, while 23.7% were symptomatic. Radiologically, SMM presented with five different types of lesions: focal intramuscular masses (type I, 52.5% of SMM), abscess-like intramuscular lesions (type II, 32.5%), diffuse metastatic muscle infiltration (type III, 8.8%), multifocal intramuscular calcification (type IV, 3.7%) and intramuscular bleeding (type V, 2.5%). (orig.)

  8. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  9. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  10. What governs skeletal muscle VO2max? New evidence.

    Science.gov (United States)

    Richardson, R S

    2000-01-01

    Recent investigations into the determinants of skeletal muscle maximal oxygen consumption (VO2) have provided further evidence regarding the role of O2 supply and demand in governing exercise metabolism. Specifically, four studies utilizing both animal and human exercise models are highlighted here: 1) the role of the diffusive O2 component was examined in the exercising canine gastrocnemius muscle by a rightward shift in the O2 dissociation curve while maintaining O2 delivery constant; 2) the role of peripheral and central components was examined by studying the human quadriceps muscle, already recognized to have a very high mass specific O2 delivery, under conditions of increased (hyperoxia) and reduced O2 availability (hypoxia); 3) the role of intracellular PO2 in the progressive increase in lactate efflux from skeletal muscle from submaximal to maximal effort; and finally 4) the role of intracellular PO2 itself as a determinant of maximal mitochondrial O2 consumption. In summary, these investigations illustrate 1) the importance of the diffusion gradient from blood to muscle cell; 2) illustrate that even in functionally isolated trained skeletal muscle the highest recorded metabolic rates can be increased by increasing O2 supply; 3) that a constant intracellular PO2 during graded exercise is therefore unrelated to increasing lactate efflux; and 4) that only in hyperoxia does trained human skeletal muscle approaching very high mitochondrial metabolic limits, as shown by a disproportionate increase in intracellular PO2 for the recorded change in VO2max. PMID:10647536

  11. Skeletal muscle pathology in Huntington’s Disease.

    Directory of Open Access Journals (Sweden)

    Daniel eZielonka

    2014-10-01

    Full Text Available Huntington’s disease (HD is a hereditary neurodegenerative disorder caused by the expansion of a polyglutamine stretch within the huntingtin protein (HTT. The neurological symptoms, that involve motor, cognitive and psychiatric disturbances, are caused by neurodegeneration that is particularly widespread in the basal ganglia and cereberal cortex. HTT is ubiquitously expressed and in recent years it has become apparent that HD patients experience a wide array of peripheral organ dysfunction including severe metabolic phenotype, weight loss, HD-related cardiomyopathy and skeletal muscle wasting, . Although skeletal muscles became a hallmark of HD, the mechanisms underlying muscular atrophy in this disorder are unknown. Skeletal muscles account for approximately 40% of body mass and are highly adaptive to physiological and pathological conditions that may result in muscle hypertrophy (due to increased mechanical load or atrophy (inactivity, chronic disease states. The atrophy is caused by degeneration of myofibers and their replacement by fibrotic tissue is the major pathological feature in many genetic muscle disorders. Under normal physiological conditions the muscle function is orchestrated by a network of intrinsic hypertrophic and atrophic signals linked to the functional properties of the motor units that are likely to be imbalanced in HD. In this article, we highlight the emerging field of research with particular focus on the recent studies of the skeletal muscle pathology and the identification of new disease-modifying treatments.

  12. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  13. Primary non-Hodgkin lymphoma of skeletal muscle: imaging findings

    International Nuclear Information System (INIS)

    Objective: To analyze the imaging manifestations of primary non-Hodgkin lymphoma of skeletal muscle and improve the recognition of this rare disease. Methods: Five cases of primary non- Hodgkin lymphoma of skeletal muscle proved pathologically underwent imaging exam, including MRI and CT in 3 cases, only MRI in 1 case, only CT in 1 case, X-ray in 2 cases and bone scintigraphy in 2 cases. Results: Diffuse enlargements of involved muscle with presentation of overall configuration were observed in all five cases. All 4 cases manifested as homogeneous soft masses, which is isoattenuating to normal muscle on unenhanced CT images. After intravenous injection of contrast media, the masses enhanced homogeneously and slightly (2 cases) or moderately (1 case) on CT images. The lesions were homogenous and had isointense or slightly low signal intensity compared with that of uninvolved muscle on T1-weighted images and high signal intensity on T2-weighted images. After intravenous injection of contrast media, all 2 cases enhanced homogeneously and moderately with the enhanced signal intensity of involved muscle greatly higher than that of uninvolved muscle on MR images. Two cases of X-ray plain showed no destruction of bone and 2 cases of bone scintigraphy exams showed increased radiotracer uptake of involved muscle with no infiltration of bone marrow. Conclusion: There are several characteristics on the imaging of primary non-Hodgkin lymphoma of skeletal muscle. MRI is the optimal imaging method for the diagnosis of this disease. (authors)

  14. Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells*

    OpenAIRE

    Perdomo, German; Martinez-Brocca, Maria A.; Bhatt, Bankim A.; Brown, Nicholas F.; O'Doherty, Robert M.; Garcia-Ocaña, Adolfo

    2008-01-01

    Skeletal muscle plays a major role in glucose and lipid metabolism. Active hepatocyte growth factor (HGF) is present in the extracellular matrix in skeletal muscle. However, the effects of HGF on glucose and lipid metabolism in skeletal muscle are completely unknown. We therefore examined the effects of HGF on deoxyglucose uptake (DOGU), glucose utilization, and fatty acid oxidation (FAO) in skeletal muscle cells. HGF significantly enhanced DOGU in mouse soleus muscles in vitro. Furthermore, ...

  15. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  16. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  17. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Feveile Young, Jette; Oksbjerg, Niels;

    2003-01-01

    C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2......C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2...

  18. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  19. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter;

    2007-01-01

    recovery without any changes in muscle IL-15 protein content or plasma IL-15 at any of the investigated time points. In conclusion, IL-15 mRNA level is enhanced in skeletal muscles dominated by type 2 fibres and resistance exercise induces increased muscular IL-15 mRNA levels. IL-15 mRNA levels in skeletal......The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus......) compared with the soleus muscle (type 1 fibre dominance), but Western blotting and immunohistochemistry revealed that muscle IL-15 protein content did not differ between triceps brachii, quadriceps and soleus muscles. Following resistance exercise, IL-15 mRNA levels were up-regulated twofold at 24 h of...

  20. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies......Skeletal muscle is well known to exhibit a high degree of plasticity depending on environmental changes, such as various oxygen concentrations. Studies of the oxygen-sensitive subunit alpha of hypoxia-inducible factor-1 (HIF-1) are difficult owing to the large variety of functionally diverse muscle...... a significantly higher VEGF protein content than vastus lateralis and triceps muscle. In conclusion, we have shown that there are muscle-specific differences in HIF-1alpha and VEGF expression within human skeletal muscle at rest in normoxic conditions. Recent results, when combined with the findings described...

  1. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  2. Apoptosis in skeletal muscle and its relevance to atrophy

    Institute of Scientific and Technical Information of China (English)

    Esther E Dupont-Versteegden

    2006-01-01

    Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less well defined. Apoptosis during muscle atrophy occurs in both myonuclei and other muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as -independent pathways have been implicated and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required for different causes of skeletal muscle loss.

  3. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  4. Skeletal muscle as a regulator of the longevity protein, Klotho

    Directory of Open Access Journals (Sweden)

    Keith G Avin

    2014-06-01

    Full Text Available Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating klotho and skeletal muscle has not been investigated. In this paper, we present a review of the literature and preliminary evidence that, together, suggests klotho expression may be modulated by skeletal muscle activity. Our pilot clinical findings performed in young and aged individuals suggest that circulating klotho levels are upregulated in response to an acute exercise bout, but that the response may be dependent on fitness level. A similar upregulation of circulating klotho is also observed in response to an acute exercise in young and old mice, suggesting this may be a good model for mechanistically probing the role of physical activity on klotho expression. Finally, we highlight overlapping signaling pathways that are modulated by both klotho and skeletal muscle and propose potential mechanisms for cross-talk between the two. It is hoped that this review will stimulate further consideration of the relationship between skeletal muscle activity and klotho expression, potentially leading to important insights into the well-documented systemic anti-aging effects of exercise.

  5. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  6. PGC-1alpha-mediated adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    Lifestyle-related diseases are rapidly increasing at least in part due to less physical activity. The health beneficial effects of regular physical activity include metabolic adaptations in skeletal muscle, which are thought to be elicited by cumulative effects of transient gene responses to each...... involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1alpha transcription and potentially PGC-1alpha activity through post-translational modifications, and concomitant PGC-1alpha-mediated gene regulation is suggested to be an...... underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...

  7. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation......In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...

  8. DIMINISHED FATIGUE AT REDUCED MUSCLE LENGTH IN HUMAN SKELETAL MUSCLE

    OpenAIRE

    Lee, Samuel C. K.; Braim, Anthony; Becker, Cara N.; Prosser, Laura A.; Tokay, Ann M.; Binder-Macleod, Stuart A.

    2007-01-01

    Understanding muscle fatigue properties at different muscle lengths is essential to improve electrical stimulation applications in which impaired muscle is activated to produce function or to serve as an orthotic assist. This study examined the effects of muscle length on fatigue in human quadriceps muscle. Twelve healthy subjects were tested at short and long muscle lengths (15° and 90° of knee flexion, respectively) before and after a fatigue-producing protocol using low-, high-, and variab...

  9. STRUCTURAL ALTERATIONS OF SKELETAL MUSCLE IN COPD

    Directory of Open Access Journals (Sweden)

    Sunita eMathur

    2014-03-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is a respiratory disease associated with a systemic inflammatory response. Peripheral muscle dysfunction has been well characterized in individuals with COPD and results from a complex interaction between systemic and local factors. Objective: In this narrative review, we will describe muscle wasting in people with COPD, the associated structural changes, muscle regenerative capacity and possible mechanisms for muscle wasting. We will also discuss how structural changes relate to impaired muscle function and mobility in people with COPD. Key Observations: Approximately 30-40% of individuals with COPD experience muscle mass depletion. Furthermore, muscle atrophy is a predictor of physical function and mortality in this population. Associated structural changes include a decreased proportion and size of type-I fibers, reduced oxidative capacity and mitochondrial density mainly in the quadriceps. Observations related to impaired muscle regenerative capacity in individuals with COPD include a lower proportion of central nuclei in the presence or absence of muscle atrophy and decreased maximal telomere length, which has been correlated with reduced muscle cross-sectional area. Potential mechanisms for muscle wasting in COPD may include excessive production of reactive oxygen species, altered amino acid metabolism and lower expression of peroxisome proliferator-activated receptors-gamma-coactivator 1-alpha mRNA. Despite a moderate relationship between muscle atrophy and function, impairments in oxidative metabolism only seems weakly related to muscle function. Conclusion: This review article demonstrates the cellular modifications in the peripheral muscle of people with COPD and describes the evidence of its relationship to muscle function. Future research will focus on rehabilitation strategies to improve muscle wasting and maximize function.

  10. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  11. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin.

    Science.gov (United States)

    Jähn, K; Lara-Castillo, N; Brotto, L; Mo, C L; Johnson, M L; Brotto, M; Bonewald, L F

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability. PMID:22972510

  12. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin

    Directory of Open Access Journals (Sweden)

    K Jähn

    2012-09-01

    Full Text Available It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex, a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s that preserve osteocyte viability.

  13. Primary skeletal muscle tuberculosis at an unusual site

    International Nuclear Information System (INIS)

    Tuberculosis can involve virtually any organ and it manifests itself in various forms. The selective involvement of muscles by a tuberculous process without coexisting active skeletal or extra skeletal tuberculosis is very rarely seen. A case of isolated tuberculosis of the biceps brachii muscle without any evident primary focus revealed as an intramuscular mass in a 37 years old immunocompetent female is presented. Diagnosis was established by histology and acid fast stain culture. The patient showed marked improvement with a standard four drug regimen with no evidence of disease activity at the four year follow up. This rare case is presented with review of literature. (author)

  14. Toll-like receptor 4 modulates skeletal muscle substrate metabolism

    OpenAIRE

    Frisard, Madlyn I.; McMillan, Ryan P.; Marchand, Julie; Wahlberg, Kristin A.; Wu, Yaru; Voelker, Kevin A.; Heilbronn, Leonie; Haynie, Kimberly; Muoio, Brendan; Li, Liwu; Hulver, Matthew W.

    2010-01-01

    Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activation would result in reduced fatty acid oxidation and increased partitioning of fatty acids toward n...

  15. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features.

    Science.gov (United States)

    Maggi, Lorenzo; Carboni, Nicola; Bernasconi, Pia

    2016-01-01

    LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases. PMID:27529282

  16. Genetic architecture of gene expression in ovine skeletal muscle

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony;

    2011-01-01

    -based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...... architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value...

  17. Lower Physical Activity is Associated with Skeletal Muscle Fat Content in Girls

    OpenAIRE

    Joshua N Farr; Van Loan, Marta D; Lohman, Timothy G.; Going, Scott B.

    2012-01-01

    Fat contained within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Physical inactivity may be a risk factor for greater fat infiltration within skeletal muscle during growth.

  18. Changes in skeletal muscle with aging: effects of exercise training.

    Science.gov (United States)

    Rogers, M A; Evans, W J

    1993-01-01

    There is an approximate 30% decline in muscle strength and a 40% reduction in muscle area between the second and seventh decades of life. Thus, the loss of muscle mass with aging appears to be the major factor in the age-related loss of muscle strength. The loss of muscle mass is partially due to a significant decline in the numbers of both Type I and Type II muscle fibers plus a decrease in the size of the muscle cells, with the Type II fibers showing a preferential atrophy. There appears to be no loss of glycolytic capacity in senescent skeletal muscle whereas muscle oxidative enzyme activity and muscle capillarization decrease by about 25%. Vigorous endurance exercise training in older people, where the stimulus is progressively increased, elicits a proliferation of muscle capillaries, an increase in oxidative enzyme activity, and a significant improvement in VO2max. Likewise, progressive resistive training in older individuals results in muscle hypertrophy and increased strength, if the training stimulus is of a sufficient intensity and duration. Since older individuals adapt to resistive and endurance exercise training in a similar fashion to young people, the decline in the muscle's metabolic and force-producing capacity can no longer be considered as an inevitable consequence of the aging process. Rather, the adaptations in aging skeletal muscle to exercise training may prevent sarcopenia, enhance the ease of carrying out the activities of daily living, and exert a beneficial effect on such age-associated diseases as Type II diabetes, coronary artery disease, hypertension, osteoporosis, and obesity. PMID:8504850

  19. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    Directory of Open Access Journals (Sweden)

    Andrew T Kwon

    2011-12-01

    Full Text Available We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  20. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian;

    2008-01-01

    skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of...... approximately 50% of peak power output and arterial-femoral venous differences were obtained. Arterial plasma concentrations for calprotectin increased 2-fold compared to rest and there was a net release of calprotectin from the working muscle. In conclusion, IL-6 infusion and muscle contractions induce...

  1. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content...... expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review will...... discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  2. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P muscle protein breakdown (P muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  3. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  4. Effects of skeletal muscle lipotoxicity on muscle protein synthesis: implications for athletic and ageing populations

    OpenAIRE

    Guillet, Christelle

    2015-01-01

    Ectopic lipid accumulation in skeletal muscle is linked to reduced insulin sensitivity in various groups of subjects. The increased lipid content within muscle in older people is independently associated with insulin resistance. Physical exercise improves muscle lipid infiltration and insulin resistance in postmenopausal women. Beside the consequence of muscle fat accumulation on insulin sensitivity, some evidences clearly show that high fat feeding in young mice influences the ability of mus...

  5. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34)

    OpenAIRE

    Madison, Roger D.; McGee, Christopher; Rawson, Renee; Robinson, Grant A.

    2014-01-01

    Introduction: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy.Background: When a peripheral nerve is damaged, the communication between spinal cord ...

  6. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K; Serrano, Antonio L

    2013-01-01

    been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL-6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to...... synthesize and release IL-6. Paradoxically, deleterious actions for IL-6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications....

  7. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    OpenAIRE

    Paolo Bonaldo; Paolo Grumati

    2012-01-01

    Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis o...

  8. Skeletal muscle mitochondrial depletion and dysfunction in chronic kidney disease

    OpenAIRE

    Yazdi, Puya G.; Moradi, Hamid; Yang, Jia-Ying; Wang, Ping H.; Vaziri, Nasratola D

    2013-01-01

    Advanced chronic kidney disease (CKD) is associated with impaired exercise capacity, skeletal muscle dysfunction, and oxidative stress. Mitochondria are the primary source for energy production and generation of reactive oxygen species (ROS). Mitochondrial state 3 respiration, mitochondrial complex I enzyme activity, and tissue porin/actin ratio were determined in the gastrocnemius muscle of male SD rats 14 weeks after 5/6 nephrectomy (CKD) or sham-operation (control). The CKD group exhibited...

  9. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    Science.gov (United States)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  10. Time course of gene expression during mouse skeletal muscle hypertrophy

    OpenAIRE

    Chaillou, Thomas; Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.

    2013-01-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50...

  11. Research on cachexia, sarcopenia and skeletal muscle in cardiology

    OpenAIRE

    Coats, Andrew J S

    2012-01-01

    Background The awareness of cardiac cachexia, i.e. involuntary weight loss in patients with underlying cardiovascular disease, has increased over the last two decades. Methods and results This mini-review looks at recent research in the cardiovascular literature that is relevant to the areas of interest of the Journal of Cachexia, Sarcopenia and Muscle. It identifies significant research in the last 3 years on the obesity paradox, the causes and effects of skeletal muscle wasting, animal mode...

  12. Cholinesterase of skeletal muscle and its subcellular components.

    OpenAIRE

    Fujii,Masafumi; Namba, Tatsuji

    1982-01-01

    The cholinesterase activity of skeletal muscle and its subcellular components, including motor endplates, was compared chemically in human, mouse and rat. The total cholinesterase activity of muscle per unit protein was in the descending order of human, mouse and rat. Cholinesterase was present in all subcellular components fractionated by differential centrifugation, and was greatest in the microsome fraction followed, in descending order, by the mitochondria, myofibril, and supernatant frac...

  13. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2

    Directory of Open Access Journals (Sweden)

    Lan eYe

    2012-09-01

    Full Text Available Rapamycin, an inhibitor of mTOR complex 1 (mTORC1, improves insulin sensitivity in acute studies in vitro and in vivo by disrupting a negative feedback loop mediated by S6 kinase. We find that rapamycin has a clear biphasic effect on insulin sensitivity in C2C12 myotubes, with enhanced responsiveness during the first hour that declines to almost complete insulin resistance by 24-48 hours. We and others have recently observed that chronic rapamycin treatment induces insulin resistance in rodents, at least in part due to disruption of mTORC2, an mTOR-containing complex that is not acutely sensitive to the drug. Chronic rapamycin treatment may also impair insulin action via the inhibition of mTORC1-dependent mitochondrial biogenesis and activity, which could result in a buildup of lipid intermediates that are known to trigger insulin resistance. We confirmed that rapamycin inhibits expression of PGC-1α, a key mitochondrial transcription factor, and acutely reduces respiration rate in myotubes. However, rapamycin did not stimulate phosphorylation of PKCθ, a central mediator of lipid-induced insulin resistance. Instead, we found dramatic disruption of mTORC2, which coincided with the onset of insulin resistance. Selective inhibition of mTORC1 or mTORC2 by shRNA-mediated knockdown of specific components (Raptor and Rictor, respectively confirmed that mitochondrial effects of rapamycin are mTORC1-dependent, whereas insulin resistance was recapitulated only by knockdown of mTORC2. Thus, mTORC2 disruption, rather than inhibition of mitochondria, causes insulin resistance in rapamycin-treated myotubes, and this system may serve as a useful model to understand the effects of rapamycin on mTOR signaling in vivo.

  14. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard

    2007-01-01

    High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large...

  15. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    Science.gov (United States)

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  16. Globular adiponectin induces differentiation and fusion of skeletal muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Maria Serio; Paola Chiarugi

    2009-01-01

    The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu-lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus-cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func-tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or eaveolin-3, as well as to provoke cell fusion into multinucleated syneytia and, finally, muscle fibre formation, gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path-ways. Interestingly, differentiating myoblasts are autocrine for adiponectiu, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.

  17. Sex hormones and skeletal muscle weakness

    DEFF Research Database (Denmark)

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael;

    2013-01-01

    properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...

  18. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle...

  19. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  20. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa;

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis tha...

  1. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan;

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  2. Unclassified polysaccharidosis of the heart and skeletal muscle in siblings

    OpenAIRE

    Schoser, Benedikt; Bruno, Claudio; Schneider, Hans-Christian; Shin, Yoon S.; Podskarbi, Teodor; Goldfarb, Lev; Müller-Felber, Wolfgang; Müller-Höcker, Josef

    2008-01-01

    We describe a 15-year-old boy and his 19-year-old sister with progressive dilated cardiomyopathy and mild non-progressive proximal lower limb myopathy, secondary to the accumulation of amylopectin-like fibrillar glycogen, (polyglucosan) bodies, in heart and skeletal muscle.

  3. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  4. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  5. Exploring the whereabouts of GLUT4 in skeletal muscle (review)

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Ralston, Evelyn

    2002-01-01

    or brain? Or vice-versa? Can one use cultures to predict GLUT4 behaviour in fully differentiated tissues? This review summarizes the authors' knowledge of GLUT4 biology in skeletal muscle, which is the predominant tissue for glucose homeostasis. The results are compared to those obtained with the fat cell...... system, and an attempt is made to assess the universality principle....

  6. Skeletal muscle mitochondrial respiration in AMPKa2 kinase dead mice

    DEFF Research Database (Denmark)

    Larsen, Steen; Kristensen, Jonas Møller; Stride, Nis;

    2012-01-01

    AIM: To study if the phenotypical characteristics (exercise intolerance; reduced spontaneous activity) of the AMPKa2 kinase-dead (KD) mice can be explained by a reduced mitochondrial respiratory flux rates (JO(2) ) in skeletal muscle. Secondly, the effect of the maturation process on JO(2...

  7. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    Science.gov (United States)

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  8. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  9. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J;

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  10. Glucose metabolism in rats submitted to skeletal muscle denervation

    OpenAIRE

    Wilton Marlindo Santana Nunes; Maria Alice Rostom de Mello

    2005-01-01

    This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the...

  11. Postmortem calpain changes in ostrich skeletal muscle.

    Science.gov (United States)

    Chang, Ya-Shiou; Hsu, Dun-Hui; Stromer, Mavin H; Chou, Rong-Ghi R

    2016-07-01

    The objective of this study was to study the postmortem calpain change in ostrich muscle. Iliotibialis cranialis and Obturatorius medialis muscles were removed from the both sides of carcasses (n=8). The muscles from the left side were sampled after 0, 1, 2, 3, and 7days of storage at 5°C, while the right-side muscles were taken at 1-, 3-, and 7-day postmortem for shear force measurements. The results showed that the calpain-1 activity was not detected in ostrich muscle during the entire 7-day postmortem storage period, while the calpain-11 was. The unautolyzed calpain-11 activity decreased and the autolyzed calpain-11 activity increased with time postmortem. Desmin content and shear force did not change during postmortem storage although a minor degradation of desmin was observed. Therefore, our results suggest that limited postmortem proteolysis (as suggested by the limited degradation of desmin) and tenderization might be due to the lack of calpain-1 and/or insufficient calpain-11 activity present in ostrich muscle. PMID:26971307

  12. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology.

    Science.gov (United States)

    Favier, F B; Britto, F A; Freyssenet, D G; Bigard, X A; Benoit, H

    2015-12-01

    Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization. PMID:26298291

  13. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  14. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperemic response remains unexplained. It is plausible...

  15. The formation of skeletal muscle: from somite to limb.

    Science.gov (United States)

    Buckingham, Margaret; Bajard, Lola; Chang, Ted; Daubas, Philippe; Hadchouel, Juliette; Meilhac, Sigolène; Montarras, Didier; Rocancourt, Didier; Relaix, Frédéric

    2003-01-01

    During embryogenesis, skeletal muscle forms in the vertebrate limb from progenitor cells originating in the somites. These cells delaminate from the hypaxial edge of the dorsal part of the somite, the dermomyotome, and migrate into the limb bud, where they proliferate, express myogenic determination factors and subsequently differentiate into skeletal muscle. A number of regulatory factors involved in these different steps have been identified. These include Pax3 with its target c-met, Lbx1 and Mox2 as well as the myogenic determination factors Myf5 and MyoD and factors required for differentiation such as Myogenin, Mrf4 and Mef2 isoforms. Mutants for genes such as Lbx1 and Mox2, expressed uniformly in limb muscle progenitors, reveal unexpected differences between fore and hind limb muscles, also indicated by the differential expression of Tbx genes. As development proceeds, a secondary wave of myogenesis takes place, and, postnatally, satellite cells become located under the basal lamina of adult muscle fibres. Satellite cells are thought to be the progenitor cells for adult muscle regeneration, during which similar genes to those which regulate myogenesis in the embryo also play a role. In particular, Pax3 as well as its orthologue Pax7 are important. The origin of secondary/fetal myoblasts and of adult satellite cells is unclear, as is the relation of the latter to so-called SP or stem cell populations, or indeed to potential mesangioblast progenitors, present in blood vessels. The oligoclonal origin of postnatal muscles points to a small number of founder cells, whether or not these have additional origins to the progenitor cells of the somite which form the first skeletal muscles, as discussed here for the embryonic limb. PMID:12587921

  16. Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice.

    Directory of Open Access Journals (Sweden)

    Maziar Divangahi

    2009-07-01

    Full Text Available Cystic fibrosis (CF patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR-deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr(-/- mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1 involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.

  17. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim;

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design....... In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......B transgenic mice accumulated 28% less triglycerides in skeletal myocytes after one year of fat-feeding as compared with WT mice (32 ± 5, n = 10 vs. 44 ± 4 nmol/mg ww, n = 13, p = 0.04). Moreover, expression of human apoB in fat-fed mice was associated with 32% (p = 0.02) and 37% (p = 0.01) lower plasma...

  18. Cholinesterase of skeletal muscle and its subcellular components.

    Directory of Open Access Journals (Sweden)

    Fujii,Masafumi

    1982-06-01

    Full Text Available The cholinesterase activity of skeletal muscle and its subcellular components, including motor endplates, was compared chemically in human, mouse and rat. The total cholinesterase activity of muscle per unit protein was in the descending order of human, mouse and rat. Cholinesterase was present in all subcellular components fractionated by differential centrifugation, and was greatest in the microsome fraction followed, in descending order, by the mitochondria, myofibril, and supernatant fractions. Each of these fractions had greater cholinesterase activity in human muscle than in mouse muscle, and in mouse muscle than in rat muscle. The ratio of the activity of the microsome fraction to the activity of muscle homogenate was 11.1 in human, 4.6 in mouse and 3.4 in rat. Because of its relatively greater proportion, the myofibril fraction seems to contribute most to the total cholinesterase activity of muscle. Muscle membrane contained high cholinesterase activity of motor endplates, and the activity was greater than the activity of the microsome fraction in rat. Cholinesterase activity per motor endplate was in the descending order of rat, human and mouse, and the variation was less than the variation in the total muscle cholinesterase activity among these species.

  19. MicroRNAs Involved in Skeletal Muscle Differentiation

    Institute of Scientific and Technical Information of China (English)

    Wen Luo; Qinghua Nie; Xiquan Zhang

    2013-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression by promoting degradation of target mRNAs or inhibiting their translation.Previous studies have expanded our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass,muscle fiber type and muscle-related diseases.The muscle-specific miRNAs,miR-206,miR-1 and miR-133,are among the most studied and best characterized miRNAs in skeletal muscle differentiation.They have a profound influence on multiple muscle differentiation processes,such as alternative splicing,DNA synthesis,and cell apoptosis.Many non-muscle-specific miRNAs are also required for the differentiation of muscle through interaction with myogenic factors.Studying the regulatory mechanisms of these miRNAs in muscle differentiation will extend our knowledge of miRNAs in muscle biology and will improve our understanding of the myogenesis regulation.

  20. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the......+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...

  1. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose......Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid...

  2. Rapidly aggravated skeletal muscle metastases from an intrahepatic cholangiocarcinoma

    Science.gov (United States)

    Lee, Jiyoung; Lee, Sung Wook; Han, Sang Young; Baek, Yang Hyun; Kim, Su Young; Rhyou, Hyo In

    2015-01-01

    We present a rare case of intrahepatic cholangiocarcinoma (ICC) with multiple skeletal muscle metastases. The patient was a 55-year-old Asian woman presenting with abdominal pain; abdominal and pelvic computed tomography and magnetic resonance cholangiopancreatography revealed an unresectable ICC with hepatic metastasis and metastastatic lymphadenopathy in the porto-caval area. After 3 mo of treatment with palliative radiotherapy and chemotherapy, magnetic resonance imaging of the thoracolumbar spine detected right psoas muscle and paraspinous muscle metastases. We performed an ultrasound-guided percutaneous fine-needle biopsy that confirmed a similar pattern of poorly differentiated adenocarcinoma. The patient treated with palliative chemotherapy and achieved 10 mo of survival. Here we report the first case quickly spread to multiple sites of muscle even though the three-month treatment, compare to the other cases reported muscle metastases at diagnosis. PMID:25684968

  3. Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure.

    Science.gov (United States)

    Coggan, Andrew R; Peterson, Linda R

    2016-08-01

    Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem. PMID:27271563

  4. CT-scanning of skeletal muscle in arthrogryposis multiplex congenita

    International Nuclear Information System (INIS)

    CT-scanning of skeletal muscles was performed on 14 patients with arthrogryposis multiplex congenita (AMC), according to an eight-slice protocol. Adipose tissue replacement and atrophy of muscles was found in six patients with neurogenic or myopathic origin of AMC, associated with severe muscle weakness. In the remaining patients with other forms of AMC, in which muscle weakness was less marked or absent, muscular CT-scanning was normal. It is stated that muscular CT-scanning is not a routine investigation in a screening procedure of all cases of AMC. However, CT-scanning appears to be useful in cases of severe AMC with associated muscle weakness in detecting the neurogenic and myopathic forms. It also facilitates the selection of a suitable site for EMG and biopsy and may provide important information for orthopaedic management. (author)

  5. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Angione Alison R

    2011-11-01

    Full Text Available Abstract Peroxisome proliferator-activated receptors (PPARs are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1 gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration.

  6. Decrease of muscle volume in chronic kidney disease: the role of mitochondria in skeletal muscle.

    OpenAIRE

    Yokoi, Hideki; Yanagita, Motoko

    2014-01-01

    Reduced muscle volume and impaired exercise endurance are well-documented phenomena in chronic kidney disease, and the relevant molecular mechanisms have been gradually unveiled. Tamaki et al. demonstrate a reduction of mitochondria content in skeletal muscles as a novel mechanism of reduced exercise endurance in renal insufficiency. In addition, they show that a high-protein diet reduces exercise endurance through an inhibition of muscle pyruvate dehydrogenase.

  7. Transduction of Skeletal Muscles with Common Reporter Genes Can Promote Muscle Fiber Degeneration and Inflammation

    OpenAIRE

    Catherine E Winbanks; Claudia Beyer; Hongwei Qian; Paul Gregorevic

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipul...

  8. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation.

    Science.gov (United States)

    Sharples, Adam P; Polydorou, Ioanna; Hughes, David C; Owens, Daniel J; Hughes, Thomas M; Stewart, Claire E

    2016-06-01

    Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that

  9. Mechanisms of protein balance in skeletal muscle.

    Science.gov (United States)

    Anthony, T G

    2016-07-01

    Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress. PMID:27345321

  10. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  11. Skeletal Muscle Oxidative Capacity in Patients with Cystic Fibrosis

    Science.gov (United States)

    Erickson, Melissa L.; Seigler, Nichole; McKie, Kathleen T.; McCully, Kevin K.; Harris, Ryan A.

    2016-01-01

    Introduction Exercise intolerance predicts mortality in patients with cystic fibrosis (CF); however, the mechanisms have yet to be fully elucidated. Using near infrared spectroscopy (NIRS), this study compared skeletal muscle oxidative capacity in patients with CF to healthy controls. Methods Thirteen patients and 16 demographically-matched controls participated in this study. NIRS was utilized to measure the recovery rate of oxygen consumption (musVO2max) of the vastus lateralis muscle after 15 s of electrical stimulation (4 Hz) and subsequent repeated transient arterial occlusions. Results musVO2max was reduced in patients with CF (1.82 ± 0.4 min−1) compared to controls (2.13 ± 0.5 min−1, p = 0.04). A significant inverse relationship between age and musVO2max was observed in patients (r = −0.676, p = 0.011), but not controls (r = −0.291, p = 0.274). Discussion Patients with CF exhibit a reduction in skeletal muscle oxidative capacity compared to controls. It appears as the reduced skeletal muscle oxidative capacity is accelerated by age and could likely contribute to exercise intolerance in patients with CF. PMID:25758606

  12. Implementation of skeletal muscle model with advanced activation control

    Directory of Open Access Journals (Sweden)

    Kocková H.

    2009-12-01

    Full Text Available The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the implemented composite model (involving the matrix, passive and active fibers is used to perform the isometric, concentric and excentric muscle contraction simulations.

  13. Skeletal muscle microvascular function in girls with Turner syndrome

    Science.gov (United States)

    West, Sarah L.; O'Gorman, Clodagh S.; Elzibak, Alyaa H.; Caterini, Jessica; Noseworthy, Michael D.; Rayner, Tammy; Hamilton, Jill; Wells, Greg D.

    2014-01-01

    Background Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal responses during recovery from exercise compared to HC. Methods Thirteen TS participants and 8 HC completed testing. BOLD MRI was used to measure skeletal muscle microvascular response during 60 second recovery, following 60 s of exercise at 65% of maximal workload. Exercise and recovery were repeated four times, and the BOLD signal time course was fit to a four-parameter sigmoid function. Results Participants were 13.7 ± 3.1 years old and weighed 47.9 ± 14.6 kg. The mean change in BOLD signal intensity following exercise at the end of recovery, the mean response time of the function/the washout of deoxyhemoglobin, and the mean half-time of recovery were similar between the TS and HC groups. Conclusions Our results demonstrate that compared to HC, peripheral skeletal muscle microvascular function following exercise in girls with TS is not impaired. General significance This study supports the idea that the aerobic energy pathway is not impaired in children with TS in response to submaximal exercise. Other mechanisms are likely responsible for exercise intolerance in TS; this needs to be further investigated. PMID:26676172

  14. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  15. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Science.gov (United States)

    Valero, M Carmen; Huntsman, Heather D; Liu, Jianming; Zou, Kai; Boppart, Marni D

    2012-01-01

    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45⁻) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy. PMID:22253772

  16. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    Directory of Open Access Journals (Sweden)

    Catherine E Winbanks

    Full Text Available Recombinant adeno-associated viral vectors (rAAV vectors are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal, human placental alkaline phosphatase (hPLAP, and green fluorescent protein (GFP as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  17. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Science.gov (United States)

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  18. Quantitative Proteomic Profiling of Muscle Type-Dependent and Age-Dependent Protein Carbonylation in Rat Skeletal Muscle Mitochondria

    OpenAIRE

    Feng, Juan; Xie, Hongwei; Meany, Danni L.; Thompson, LaDora V.; Arriaga, Edgar A.; Griffin, Timothy J.

    2008-01-01

    Carbonylation is a highly prevalent protein modification in skeletal muscle mitochondria, possibly contributing to its functional decline with age. Using quantitative proteomics, we identified mitochondrial proteins susceptible to carbonylation in a muscle type (slow- vs fast-twitch)-dependent and age-dependent manner from Fischer 344 rat skeletal muscle. Fast-twitch muscle contained twice as many carbonylated mitochondrial proteins than did slow-twitch muscle, with 22 proteins showing signif...

  19. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  20. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease.

    Science.gov (United States)

    Talbot, Jared; Maves, Lisa

    2016-07-01

    Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website. PMID:27199166

  1. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    OpenAIRE

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical ...

  2. A modified enrichment protocol for adult caprine skeletal muscle stem cell

    OpenAIRE

    Tripathi, Ajai K.; Ramani, Umed V.; Ahir, Viral B.; Rank, Dharamshi N.; Joshi, Chaitanya G.

    2010-01-01

    To establish an adequate model to study the proliferation and differentiation of adult caprine skeletal muscle in response to bioactive compounds, a pool of satellite cells (SC) was derived from the rectus abdominis muscle of adult goat. Skeletal muscle contains a population of adult stem cells, named as satellite cells that reside beneath the basal lamina of skeletal muscle fiber and other populations of cells. These SC are multipotent stem cells, since cells cultured in the presence of spec...

  3. Computational Model of Cellular Metabolic Dynamics in Skeletal Muscle Fibers during Moderate Intensity Exercise

    OpenAIRE

    Li, Yanjun; Lai, Nicola; Kirwan, John P; Saidel, Gerald M.

    2012-01-01

    Human skeletal muscles have different fiber types with distinct metabolic functions and physiological properties. The quantitative metabolic responses of muscle fibers to exercise provide essential information for understanding and modifying the regulatory mechanisms of skeletal muscle. Since in vivo data from skeletal muscle during exercise is limited, a computational, physiologically based model has been developed to quantify the dynamic metabolic responses of many key chemical species. Thi...

  4. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    OpenAIRE

    Yu Jun; Zhao Fa-Qing; Sun Yongqiao; Zhu Jingui; Craig Roger; Hu Songnian

    2009-01-01

    Abstract Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula) skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags) from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes i...

  5. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    OpenAIRE

    Kunihiro Sakuma; Akihiko Yamaguchi

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, e...

  6. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein12

    OpenAIRE

    Carbone, John W.; McClung, James P.; Pasiakos, Stefan M.

    2012-01-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the ...

  7. Myogenin Regulates Exercise Capacity and Skeletal Muscle Metabolism in the Adult Mouse

    OpenAIRE

    Flynn, Jesse M.; Eric Meadows; Marta Fiorotto; Klein, William H.

    2010-01-01

    Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were ana...

  8. Oxidative stress (Glutathionylation) and Na,K-ATPase activity in rat skeletal muscle

    OpenAIRE

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent ...

  9. Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin

    OpenAIRE

    Campbell, Troy L.; Quadrilatero, Joe

    2016-01-01

    Skeletal muscle apoptosis and autophagy are catabolic processes that contribute to muscle atrophy during aging, disease, and following muscle injury. In this article, we present data on skeletal muscle apoptosis, autophagy, and morphology in C57BL/6 mice following doxorubicin administration. More specifically, time-course data on caspase-3, caspase-8, caspase-9, calpain, and cathepsin activity are presented, along with data on ATG7, p62, LC3-I, and LC3-II protein expression. Data on skeletal ...

  10. Skeletal muscle molecular alterations precede whole-muscle dysfunction in NYHA Class II heart failure patients

    Directory of Open Access Journals (Sweden)

    Godard MP

    2012-11-01

    Full Text Available Michael P Godard,1 Samantha A Whitman,2 Yao-Hua Song,3 Patrice Delafontaine41Department of Nutrition and Kinesiology, University of Central Missouri, Warrensburg, MO, USA; 2Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA; 3Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China; 4Tulane University School of Medicine, Section of Cardiology, New Orleans, LA, USABackground: Heart failure (HF, a debilitating disease in a growing number of adults, exerts structural and neurohormonal changes in both cardiac and skeletal muscles. However, these alterations and their affected molecular pathways remain uncharacterized. Disease progression is known to transform skeletal muscle fiber composition by unknown mechanisms. In addition, perturbation of specific hormonal pathways, including those involving skeletal muscle insulin-like growth factor-1 (IGF-1 and insulin-like growth factor-binding protein-5 (IGFB-5 appears to occur, likely affecting muscle metabolism and regeneration. We hypothesized that changes in IGF-1 and IGFB-5 mRNA levels correlate with the transformation of single–skeletal muscle fiber myosin heavy chain isoforms early in disease progression, making these molecules valuable markers of skeletal muscle changes in heart failure.Materials and methods: To investigate these molecules during “early” events in HF patients, we obtained skeletal muscle biopsies from New York Heart Association (NYHA Class II HF patients and controls for molecular analyses of single fibers, and we also quantified isometric strength and muscle size.Results: There were more (P < 0.05 single muscle fibers coexpressing two or more myosin heavy chains in the HF patients (30% ± 7% compared to the control subjects (13% ± 2%. IGF-1 and IGFBP-5 expression was fivefold and 15-fold lower in patients with in HF compared to control subjects (P < 0.05, respectively. Strikingly

  11. Skeletal Muscle Metastasis from a Cecal Mucinous Adenocarcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyun; Lee, Young Hwan; Jung, Kyung Jae [Catholic University, Daegu (Korea, Republic of); Park, Young Chan; Kim, Ho Kyun; Cho, Seung Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-11-15

    Skeletal muscle metastasis is a relatively rare finding in the setting of mucinous adenocarcinoma of the colon, and it typically exhibits nonspecific imaging findings. We report a case of a skeletal muscle metastasis originating from mucinous adenocarcinoma of the cecum. The skeletal lesion closely resembled intramuscular myxoma with regard to imaging findings, due to abundant mucin and internal calcification.

  12. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier;

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ in the...... metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological...

  13. Skeletal muscle substrate metabolism during exercise: methodological considerations

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; González-Alonso, J; Sacchetti, M;

    1999-01-01

    The aim of the present article is to evaluate critically the various methods employed in studies designed to quantify precisely skeletal muscle substrate utilization during exercise. In general, the pattern of substrate utilization during exercise can be described well from O2 uptake measurements...... many substrates and metabolites may be both taken up and released by muscle at rest and during exercise, isotopes can be used to determine uptake and/or release and also fractional uptake can be accounted for. Furthermore, the use of isotopes opens up further possibilities for the estimation of...... oxidation rates of various substrates. There are several methodological concerns to be aware of when studying the metabolic response to exercise in human subjects. These concerns include: (1) the muscle mass involved in the exercise is largely unknown (bicycle or treadmill). Moreover, whether the muscle...

  14. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida;

    2016-01-01

    , in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  15. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    Science.gov (United States)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  16. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  17. Chemical radiation protection of sodium pump in mammalian skeletal muscle

    International Nuclear Information System (INIS)

    When male albino rats of the Wistar strain received wholebody gamma irradiation at a dose level of 8.5 Gy, 22N outward movement from the diaphragm muscle fibres slowed down, while its uptake was enhanced. When imidazole was intraperitoneally injected prior to irradiation both movements returned nearly to normal rates. Experiments carried out on the 7th day post irradiation, indicated that gamma irradiation had exerted some sort of damage upon the sodium pumping mechanism in mammalian skeletal muscle, and that imidazole injection prior to radiation exposure exerted a remarkable radioprotective effect on those vital biophysical processes. The results have been discussed in view of the relevant literature. (author)

  18. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael;

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease...... regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis...

  19. Characterization of KATP channels in intact mammalian skeletal muscle fibres

    OpenAIRE

    Barrett-Jolley, Richard; McPherson, Grant A

    1998-01-01

    The aim of this study was to characterize the KATP channel of intact rat skeletal muscle (rat flexor digitorum brevis muscle). Changes in membrane currents were recorded with two-electrode voltage-clamp of whole fibres.The KATP channel openers, levcromakalim and pinacidil (10–400 μM), caused a concentration-dependent increase in whole-cell chord conductance (up to approximately 1.5 mScm−2). The activated current had a weak inwardly rectifying current-voltage relation, a reversal potential nea...

  20. Insulin resistance in skeletal muscles of caveolin-3-null mice

    OpenAIRE

    Oshikawa, Jin; Otsu, Koji; Toya, Yoshiyuki; Tsunematsu, Takashi; Hankins, Raleigh; Kawabe, Jun-ichi; Minamisawa, Susumu; Umemura, Satoshi; Hagiwara, Yasuko; Ishikawa, Yoshihiro

    2004-01-01

    Type 2 diabetes is preceded by the development of insulin resistance, in which the action of insulin is impaired, largely in skeletal muscles. Caveolin-3 (Cav3) is a muscle-specific subtype of caveolin, an example of a scaffolding protein found within membranes. Cav is also known as growth signal inhibitor, although it was recently demonstrated that the genetic disruption of Cav3 did not augment growth in mice. We found, however, that the lack of Cav3 led to the development of insulin resista...

  1. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    DEFF Research Database (Denmark)

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi;

    2014-01-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle...... as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal...... muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and...

  2. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  3. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    Science.gov (United States)

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  4. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  5. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Loeffler, Jean-Philippe; Picchiarelli, Gina; Dupuis, Luc; Gonzalez De Aguilar, Jose-Luis

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly accepted that the pathological process leading to ALS is the result of multiple disease mechanisms that operate within motor neurons and other cell types both inside and outside the central nervous system. The implication of skeletal muscle has been the subject of a number of studies conducted on patients and related animal models. In this review, we describe the features of ALS muscle pathology and discuss on the contribution of muscle to the pathological process. We also give an overview of the therapeutic strategies proposed to alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic disturbances. However, the way by which the disease affects different types of myofibers depends on their contractile and metabolic features. Although the implication of muscle in nourishing the degenerative process is still debated, there is compelling evidence suggesting that it may play a critical role. Detailed understanding of the muscle pathology in ALS could, therefore, lead to the identification of new therapeutic targets. PMID:26780251

  6. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard;

    2013-01-01

    Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...... enrichment for phosphoproteins involved in amino acid and fatty acid metabolism in liver mitochondria, whereas heart and skeletal muscle were enriched for phosphoproteins involved in energy metabolism, in particular, tricarboxylic acid cycle and oxidative phosphorylation. Multiple tissue...

  7. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    OpenAIRE

    Murphy, Megan N.; Mizuno, Masaki; Mitchell, Jere H.; Smith, Scott A

    2011-01-01

    Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent...

  8. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian;

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...... metabolism, including glucose transport and glycogen synthesis. In addition, we discuss the plausible interplay between AMPK and insulin signaling regulating these processes....

  9. Exercise, PGC-1α and metabolic adaptation in skeletal muscle

    OpenAIRE

    Yan, Zhen

    2009-01-01

    Endurance exercise promotes skeletal muscle adaptation, and exercise-induced peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) gene expression may play a pivotal role in the adaptive processes. Recent applications of mouse genetic models and in vivo imaging in exercise studies started to delineate the signaling-transcription pathways that are involved in the regulation of the Pgc-1α gene. These studies revealed the importance of p38 mitogen-activated protein kinase (MAPK)/...

  10. Skeletal muscle tissue engineering: strategies for volumetric constructs

    OpenAIRE

    Cittadella Vigodarzere, Giorgio; Mantero, Sara

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field. Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only succes...

  11. Skeletal muscle tissue engineering: strategies for volumetric constructs

    OpenAIRE

    Giorgio eCittadella Vigodarzere; Sara eMantero

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field.Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only success...

  12. Coexistence of potentiation and fatigue in skeletal muscle

    OpenAIRE

    D.E. Rassier; B.R. MacIntosh

    2000-01-01

    Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of ...

  13. Computed tomography of skeletal muscles in neuromuscular disease

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S.O.; Kuether, G.

    1985-06-01

    CT-documentation of skeletal muscular lesions caused by neuromuscular diseases implies an essential contribution to conventional techniques in the macroscopic field. Size, distribution and degree of lesions as well as compensatory mechanisms are proved thereby. We report about the different effects on muscle appearance referring to 106 patients of our own experience in amyotrophic lateral sclerosis, spinal muscular atrophy, poliomyelitis, polyradiculitis, polyneuropathy as well as peripheral traumatic nerve lesions.

  14. Exercise and angiogenic growth factors in human skeletal muscle

    OpenAIRE

    Gustafsson, Thomas

    2005-01-01

    Long-term electrical stimulation and endurance exercise increase the amount of capillaries in skeletal muscle. VEGF-A is a well-characterized stimulatory angiogenic growth factor and has shown to play an important role in angiogenesis in pathological conditions in humans and in physiological conditions in animal models. A close relationship has recently been observed between VEGF-A and another group of endothelial specific growth factors, angiopoietins, during development an...

  15. Cancer cachexia-anorexia syndrome and skeletal muscle wasting

    OpenAIRE

    Jurdana, Mihaela

    2013-01-01

    Cachexia-anorexia syndrome is a common and important indicator of cancer. It occurs in 30% to 80% of cancer patients. Cachexia means "bad condition" and may be present in the early stages of tumor growth, before any signs of malignancy. Cancer cachexia is a syndrome of progressive body wasting, characterized by loss of adipose tissue and skeletal muscle mass. In most cancer patients, cachexia is characteriyed by anorexia, which implies a failure of food intake, regulated through a complex sys...

  16. Bone marrow-derived cell regulation of skeletal muscle regeneration

    OpenAIRE

    Sun, Dongxu; Martinez, Carlo O.; OCHOA, OSCAR; Ruiz-Willhite, Lourdes; Bonilla, Jose R.; Centonze, Victoria E.; Waite, Lindsay L.; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2009-01-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type ...

  17. Brain and skeletal muscle bioenergetic failure in familial hypobetalipoproteinaemia.

    OpenAIRE

    Lodi, R; R. Rinaldi; Gaddi, A.; Iotti, S; D'Alessandro, R.(INFN Sezione di Firenze, Firenze, Italy); Scoz, N; Battino, M; Carelli, V; Azzimondi, G; Zaniol, P; Barbiroli, B.

    1997-01-01

    OBJECTIVE: To determine whether a multisystemic bioenergetic deficit is an underlying feature of familial hypobetalipoproteinaemia. METHODS: Brain and skeletal muscle bioenergetics were studied by in vivo phosphorus MR spectroscopy (31P-MRS) in two neurologically affected members (mother and son) and in one asymptomatic member (daughter) of a kindred with familial hypobetalipoproteinaemia. Plasma concentrations of vitamin E and coenzyme Q10 (CoQ10) were also assessed. RESULTS: Brain 31P-MRS d...

  18. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian; Schjerling, Peter; Vernet, Erik; Steinberg, Gregory R; Richter, Erik A; Jørgensen, Sebastian B

    2015-07-15

    Members of the IL-6 family, IL-6 and ciliary neurotrophic factor (CNTF), have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well characterized. Effects of LIF on skeletal muscle glucose uptake and palmitate oxidation and signaling were investigated in ex vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat-fed mice. Inhibitors were used to investigate involvement of specific signaling pathways. LIF increased muscle glucose uptake in dose (50-5,000 pM/l) and time-dependent manners with maximal effects at the 30-min time point. LIF increased Akt Ser(473) phosphorylation (P) in soleus and EDL, whereas AMPK Thr(172) P was unaffected. Incubation with parthenolide abolished LIF-induced glucose uptake and STAT3 Tyr(705) P, whereas incubation with LY-294002 and wortmannin suppressed both basal and LIF-induced glucose uptake and Akt Ser(473) P, indicating that JAK and PI 3-kinase signaling is required for LIF-stimulated glucose uptake. Incubation with rapamycin and AZD8055 indicated that mammalian target of rapamycin complex (mTORC)2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin-resistant mice, whereas soleus developed LIF resistance. Lack of SOCS3 and AMPKα2 did not affect LIF-stimulated glucose uptake. In conclusion, LIF acutely increased muscle glucose uptake by a mechanism potentially involving the PI 3-kinase/mTORC2/Akt pathway and is not impaired in EDL muscle from obese insulin-resistant mice. PMID:25968579

  19. Cell death, clearance and immunity in the skeletal muscle.

    Science.gov (United States)

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    The skeletal muscle is an immunologically unique tissue. Leukocytes, virtually absent in physiological conditions, are quickly recruited into the tissue upon injury and persist during regeneration. Apoptosis, necrosis and autophagy coexist in the injured/regenerating muscles, including those of patients with neuromuscular disorders, such as inflammatory myopathies, dystrophies, metabolic and mitochondrial myopathies and drug-induced myopathies. Macrophages are able to alter their function in response to microenvironment conditions and as a consequence coordinate changes within the tissue from the early injury throughout regeneration and eventual healing, and regulate the activation and the function of stem cells. Early after injury, classically activated macrophages ('M1') dominate the picture. Alternatively activated M2 macrophages predominate during resolution phases and regulate the termination of the inflammatory responses. The dynamic M1/M2 transition is increasingly felt to be the key to the homeostasis of the muscle. Recognition and clearance of debris originating from damaged myofibers and from dying stem/progenitor cells, stromal cells and leukocytes are fundamental actions of macrophages. Clearance of apoptotic cells and M1/M2 transition are causally connected and represent limiting steps for muscle healing. The accumulation of apoptotic cells, which reflects their defective clearance, has been demonstrated in various tissues to prompt autoimmunity against intracellular autoantigens. In the muscle, in the presence of type I interferon, apoptotic myoblasts indeed cause the production of autoantibodies, lymphocyte infiltration and continuous cycles of muscle injury and regeneration, mimicking human inflammatory myopathies. The clearance of apoptotic cells thus modulates the homeostatic response of the skeletal muscle to injury. Conversely, defects in the process may have deleterious local effects, guiding maladaptive tissue remodeling with collagen and fat

  20. Skeletal muscle metabolism in hypokinetic rats

    Science.gov (United States)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  1. Automated extraction of skeletal muscles from torso X-ray CT images based on anatomical positional information between skeleton and skeletal muscles

    International Nuclear Information System (INIS)

    We propose an automated approach to extract skeletal muscles in torso X-ray CT images. It transforms 3-D anatomy into 2-D stretched images for simplifying anatomical relationships to getting pathognomonical points. The experimental results show that the proposed method was effective to extract skeletal muscles. (author)

  2. Comparing Simplification Strategies for the Skeletal Muscle Proteome

    Directory of Open Access Journals (Sweden)

    Bethany Geary

    2016-03-01

    Full Text Available Skeletal muscle is a complex tissue that is dominated by the presence of a few abundant proteins. This wide dynamic range can mask the presence of lower abundance proteins, which can be a confounding factor in large-scale proteomic experiments. In this study, we have investigated a number of pre-fractionation methods, at both the protein and peptide level, for the characterization of the skeletal muscle proteome. The analyses revealed that the use of OFFGEL isoelectric focusing yielded the largest number of protein identifications (>750 compared to alternative gel-based and protein equalization strategies. Further, OFFGEL led to a substantial enrichment of a different sub-population of the proteome. Filter-aided sample preparation (FASP, coupled to peptide-level OFFGEL provided more confidence in the results due to a substantial increase in the number of peptides assigned to each protein. The findings presented here support the use of a multiplexed approach to proteome characterization of skeletal muscle, which has a recognized imbalance in the dynamic range of its protein complement.

  3. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  4. Headache and muscle-skeletal pain in children and adolescents

    Directory of Open Access Journals (Sweden)

    Valeria Bachiocco

    2008-04-01

    Full Text Available Headache and muscle-skeletal pain are among the most diffuse kinds of pain in children and adolescents. To know the prevalence of these kinds of pain and the possible association with life habits in modern society, a study on 110 children attending a Tuscany secondary school has been carried out. Twenty-six students referred headache or muscle-skeletal pain and sixty-nine both of them. Headache had a higher prevalence in females (53% vs 46%, while muscle-skeletal pain was prevalent in males (54% vs 46%. Low back pain was present especially at the awakening (24% or following sitting position (11,5%, while the transport of school books was often accompanied by muscular pain (47%. Sport activity was associated to muscleskeletal pain (72%, as well as the forced and prolonged hypermotility (63%. From this study emerges that the presence of pain is particularly high in subjects in school age, and that some life habits are associated with its appearance.

  5. Signalling and the control of skeletal muscle size

    International Nuclear Information System (INIS)

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  6. Metastases of esophageal carcinoma to skeletal muscle:Single center experience

    Institute of Scientific and Technical Information of China (English)

    Jan Cincibuch; Miroslav Myslive(c)ek; Bohuslav Melichar; (C)estmír Neoral; Iva Metelková; Michaela Zezulová; Hana Procházková-(S)tudentová

    2012-01-01

    Metastases of esophageal carcinoma to the skeletal muscle are rare,but the incidence may be increasing because of better diagnosis resulting from widespread use of positron emission tomography/computed tomography (PET/CT).A cohort of 205 patients with esophageal carcinoma treated at our center who had PET/CT between 2006 and 2010 was retrospectively evaluated for the presence of skeletal muscle metastases.Four patients had skeletal muscle metastases of esophageal carcinoma,including two patients with squamous cell carcinoma.In another patient with squamous cell carcinoma of the esophagus and synchronous skeletal muscle metastases,muscle metastases were subsequently shown to be related to second primary pancreatic adenocarcinoma.In all cases,skeletal muscle metastases were the first manifestation of systemic disease.In three patients palliation was obtained with the combination of external beam radiation therapy,systemic chemotherapy or surgical resection.Skeletal muscle metastases are a rare complication of esophageal carcinoma.

  7. Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin.

    Science.gov (United States)

    Campbell, Troy L; Quadrilatero, Joe

    2016-06-01

    Skeletal muscle apoptosis and autophagy are catabolic processes that contribute to muscle atrophy during aging, disease, and following muscle injury. In this article, we present data on skeletal muscle apoptosis, autophagy, and morphology in C57BL/6 mice following doxorubicin administration. More specifically, time-course data on caspase-3, caspase-8, caspase-9, calpain, and cathepsin activity are presented, along with data on ATG7, p62, LC3-I, and LC3-II protein expression. Data on skeletal muscle reactive oxygen species (ROS) production, muscle morphology, as well as body and muscle weights are also presented. PMID:27077080

  8. Training-induced apoptosis in skeletal muscle.

    Science.gov (United States)

    Boffi, F M; Cittar, J; Balskus, G; Muriel, M; Desmaras, E

    2002-09-01

    Apoptosis or programmed cell death is a genetically controlled response of cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include Ca2+i and oxygen free radicals/oxidative stress, which are also implicated in the pathogenesis of exercise-induced myopathies. To examine training-induced apoptosis, Thoroughbred horses were subjected to 3 months training programme on a treadmill. At the end of the training programme venous blood samples were taken for a creatine kinase (CK) assay. In addition, muscle biopsy samples were obtained for a membrane lipid peroxidation measurement by malondialdehyde (MDA) assay and for apoptosis detection. Apoptosis was studied by visualising the apoptotic myocytes on the paraffin sections by the modified TUNEL method. DNA laddering was evaluated by subjecting the DNA obtained from the biopsies to 1.5% agarose gel electrophoresis. There was a significant increase (Psupercompensation cycle, when unaccustomed muscle cells activate programmed cell death and are replaced by new and stronger cells, which is the mechanism for training-induced increases in fitness. PMID:12405700

  9. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles.

    Science.gov (United States)

    Banks, R W

    2006-06-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g(-1) of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  10. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  11. Optical reflectance in fibrous tissues and skeletal muscles

    Science.gov (United States)

    Ranasinghesagara, Janaka C.

    We studied two biological tissues with optically anisotropic structures: high moisture soy protein extrudates and skeletal muscles. High moisture extrusion has been used to produce vegetable meat analogs that resemble real animal meat and have significant health benefits. Since visual and textural properties are key factors for consumer acceptance, assessing fiber formation in the extruded soy protein product is important for quality control purpose. A non-destructive method based on photon migration was developed to measure fiber formation in extruded soy proteins. The measured fiber formation index in intact samples showed good agreement with that obtained from image analysis on peeled samples. By implementing this new method in a fast laser scanning system, we have acquired two dimensional mappings of fiber formation and orientation in the entire sample in real time. In addition to fibrous structures, skeletal muscles have a unique periodic sarcomere structure which produces strong light diffractions. However, inconsistent experimental results have been reported in single fiber diffraction studies. By applying the three-dimensional coupled wave theory in a physical sarcomere model, we found that a variety of experimental observations can be explained if inhomogeneous muscle morphological profiles are considered. We also discovered that the sarcomere structure produced a unique optical reflectance pattern in whole muscle. None of the existing light propagation theories are able to describe this pattern. We developed a Monte Carlo model incorporating the sarcomere diffraction effect. The simulated results quantitatively resemble the unique patterns observed in experiments. We used a set of parameters to quantify the optical reflectance profiles produced by a point incident light in whole muscle. Two parameters, q and B, were obtained by numerically fitting the equi-intensity contours of the reflectance pattern. Two spatial gradients were calculated along the

  12. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study.

    Science.gov (United States)

    Bentley, Rachel; Gray, Stuart R; Schwarzbauer, Christian; Dawson, Dana; Frenneaux, Michael; He, Jiabao

    2014-07-01

    Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia-dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and replenishment by assessment of tissue oxygenation maximal change and recovery change, respectively. Eleven healthy subjects were enrolled, of whom 9 (age 33.3 ± 4.4 years, five males) completed the study. Each subject took part in three MRI visits, with dietary nitrate (7cl concentrated beetroot juice) consumed before the third visit. During each visit fMRIs were conducted concurrently with plantar flexion exercise at workloads of 15% and 25% maximum voluntary contraction (MVC). No significant changes were found between visits 1 and 2 in the fMRI measures. A decrease in maximal change was found at 15% MVC in soleus between visits 2 and 3 (5.12 ± 2.36 to 2.55 ± 1.42, P = 0.004) and between visits 1 and 3 (4.43 ± 2.12 to 2.55 ± 1.42, P = 0.043), but not at 25% MVC or within gastrocnemius. There was no difference in recovery change between visits. We found that dietary nitrate supplementation reduces tissue oxygenation alterations during physical exercise in skeletal muscle. This effect is more prominent in muscles with predominantly type 1 fibers and at lower workloads. This indicates that in healthy subjects dietary nitrate predominantly affects skeletal muscle energy efficiency with no change in oxygen delivery. PMID:25052493

  13. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells.

    Science.gov (United States)

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Housmekeridou, Anastasia; Karapouliou, Christina; Kerasioti, Efthalia; Aligiannis, Nektarios; Skaltsounis, Alexios L; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-08-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074

  14. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Martina Piccoli

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  15. Impact of Oxidative Stress on Exercising Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    2015-04-01

    Full Text Available It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.

  16. Neural control of glutamine synthetase activity in rat skeletal muscles.

    Science.gov (United States)

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  17. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    OpenAIRE

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, urs...

  18. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    . Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross......The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  19. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten; Nordsborg, Nikolai Baastrup; Bangsbo, Jens

    2014-01-01

    P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle....

  20. Exercise and nutrition to target protein synthesis impairments in aging skeletal muscle

    OpenAIRE

    Dickinson, Jared M.; Volpi, Elena; Rasmussen, Blake B.

    2013-01-01

    The loss of skeletal muscle size and function with aging, sarcopenia, may be related, in part, to an age-related muscle protein synthesis impairment. In this review, we discuss to what extent aging affects skeletal muscle protein synthesis and how nutrition and exercise can be strategically employed to overcome age-related protein synthesis impairments and slow the progression of sarcopenia.

  1. Adipophilin distribution and colocalization with lipid droplets in skeletal muscle.

    LENUS (Irish Health Repository)

    Shaw, Christopher S

    2009-05-01

    Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalization of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 +\\/- 0.4, aged 31 +\\/- 2 years, W (max) 346 +\\/- 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalization analysis demonstrated that 61 +\\/- 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 +\\/- 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogeneous, as the majority but not all IMCL contain adipophilin.

  2. Erythropoietin treatment enhances mitochondrial function in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ulla ePlenge

    2012-03-01

    Full Text Available Abstract Erythropoietin (Epo treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS capacity in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over eight weeks with oral iron (100 mg supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis before and after rhEpo treatment. OXPHOS was determined with the mitochondrial complex I substrates malate, glutamate, pyruvate and complex II substrate succinate in the presence of saturating ADP concentrations, while maximal electron transport capacity (ETS was assessed by addition of an uncoupler. rhEpo treatment increased OXPHOS (from 92±5 to 113±7 pmol.sec-1.mg-1 and ETS (107±4 to 143±14 pmol.sec-1.mg-1, P<0.05, demonstrating that Epo treatment induces an upregulation of OXPHOS and ETS in human skeletal muscle.

  3. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    Science.gov (United States)

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  4. Defective Homocysteine Metabolism: Potential Implications for Skeletal Muscle Malfunction

    Directory of Open Access Journals (Sweden)

    Suresh C. Tyagi

    2013-07-01

    Full Text Available Hyperhomocysteinemia (HHcy is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.

  5. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  6. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  7. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  8. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair

    OpenAIRE

    Parisi, Alice; Lacour, Floriane; Giordani, Lorenzo; Colnot, Sabine; Maire, Pascal; Le Grand, Fabien

    2015-01-01

    The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle ste...

  9. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S;

    1989-01-01

    The purpose of this study was to determine the effect of increasing muscle mass involvement in dynamic exercise on both sympathetic nervous activation and local hemodynamic variables of individual active and inactive skeletal muscle groups. Six male subjects performed 15-min bouts of one...... both legs. Arterial and venous plasma concentrations of norepinephrine (NE) and epinephrine were analyzed, and the calculated NE spillover was used as an index of sympathetic nervous activity to the limb. NE spillover increased gradually both in the resting, and to a larger extent in the exercising...... legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise in...

  10. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. PMID:26610066

  11. Skeletal muscle vasodilation during systemic hypoxia in humans.

    Science.gov (United States)

    Dinenno, Frank A

    2016-01-15

    In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived substances during conditions of sympathoadrenal blockade to isolate local vascular control mechanisms: nitric oxide (NO) and prostaglandins (PGs). Our findings indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia, however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle. When the stimulus is exacerbated via combined submaximal rhythmic exercise and systemic hypoxia to cause further red blood cell (RBC) deoxygenation, skeletal muscle blood flow is augmented compared with normoxic exercise via local dilator mechanisms to maintain oxygen delivery to active tissue. Data obtained in a follow-up study indicate that combined NO and PG inhibition during hypoxic exercise blunts augmented vasodilation and hyperemia compared with control (normoxic) conditions by ∼50%; however, in contrast to hypoxia alone, the response is not abolished, suggesting that other local substances are involved. Factors associated with greater RBC deoxygenation such as ATP release, or nitrite reduction to NO, or both likely play a role in regulating this response. PMID:26023228

  12. Three-dimensionally printed biological machines powered by skeletal muscle.

    Science.gov (United States)

    Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H Harry; Saif, M Taher A; Bashir, Rashid

    2014-07-15

    Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design. PMID:24982152

  13. In situ microdialysis of intramuscular prostaglandin and thromboxane in contracting skeletal muscle in humans

    DEFF Research Database (Denmark)

    Karamouzis, M; Langberg, Henning; Skovgaard, D;

    2001-01-01

    amounts of prostaglandins and thromboxanes in the interstitial space of skeletal muscle. Furthermore, the concentration of prostaglandin E2 is unchanged during static calf exercise and increased markedly with dynamic thigh muscle exercise, which together with an exercise induced increase in muscle blood......Arachidonic acid metabolites, especially prostacyclin I2, are regulators of vascular tone, and may be released from contracting muscle. In the present study, the influence of exercise on accumulation of prostaglandins and thromboxane in skeletal muscle was determined by the use of microdialysis...... flow indicate, that prostaglandin E2 is released from skeletal muscle during exercise in humans....

  14. Sprint-Interval Training Induces Heat Shock Protein 72 in Rat Skeletal Muscles

    OpenAIRE

    Yuji Ogura; Hisashi Naito; Mitsutoshi Kurosaka; Takao Sugiura; Junichiro Aoki; Shizuo Katamoto

    2006-01-01

    Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs) in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT) on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old) were randomly assigned t...

  15. A simple and rapid method to characterize lipid fate in skeletal muscle

    OpenAIRE

    Massart, Julie; Zierath, Juleen R.; Chibalin, Alexander V.

    2014-01-01

    Background Elevated fatty acids contribute to the development of type 2 diabetes and affect skeletal muscle insulin sensitivity. Since elevated intramuscular lipids and insulin resistance is strongly correlated, aberrant lipid storage or lipid intermediates may be involved in diabetes pathogenesis. The aim of this study was to develop a method to determine the dynamic metabolic fate of lipids in primary human skeletal muscle cells and in intact mouse skeletal muscle. We report a simple and fa...

  16. Myostatin (GDF-8) as a Key Factor Linking Muscle Mass and Skeletal Form

    OpenAIRE

    Elkasrawy, Moataz N.; Hamrick, Mark W.

    2010-01-01

    Myostatin (GDF-8) is a member of the transforming growth factor-b