WorldWideScience

Sample records for c2c12 myotubes studied

  1. THE NUCLEOTIDE RECEPTORS ON MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; NELEMANS, A; VANDENAKKER, J; DENHERTOG, A

    1992-01-01

    1 The response of C2C12 mouse myotubes to stimulation with adenosine triphosphate (ATP) and other nucleotides was studied by measuring changes in membrane potential. 2 A transient hyperpolarization followed by a slowly declining depolarization of the cells was observed in the presence of ATP (10-mu-

  2. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O;

    2010-01-01

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower...... to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite...... levels of several metabolites, mainly amino acids; however, higher levels of alanine were apparent in the (13)C spectra after incubation with [(13)C(1)]glucose. In the (13)C spectra [(13)C(3)]lactate tended to increase after exposure to increasing concentrations of H(2)O(2); conversely, a tendency...

  3. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  4. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.

    Directory of Open Access Journals (Sweden)

    Yasuko Manabe

    Full Text Available A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺ transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt, 5' AMP-activated protein kinase (AMPK, p38 mitogen-activated protein kinase (p38, and c-Jun NH2-terminal kinase (JNK1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise, in situ (hindlimb muscles in an anesthetized animal, and invitro (dissected muscle tissues in incubation buffer by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction.

  5. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(

  6. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  7. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    2016-06-01

    Full Text Available The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals.

  8. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    Science.gov (United States)

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes. PMID:26449458

  9. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.

    Directory of Open Access Journals (Sweden)

    Masaki Horie

    Full Text Available Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2 transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

  10. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O;

    2010-01-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR......-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift...

  11. The collagen derived dipeptide hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and myotube hypertrophy.

    Science.gov (United States)

    Kitakaze, Tomoya; Sakamoto, Tomotaka; Kitano, Takehiro; Inoue, Naoki; Sugihara, Fumihito; Harada, Naoki; Yamaji, Ryoichi

    2016-09-23

    The majority of studies on possible roles for collagen hydrolysates in human health have focused on their effects on bone and skin. Hydroxyprolyl-glycine (Hyp-Gly) was recently identified as a novel collagen hydrolysate-derived dipeptide in human blood. However, any possible health benefits of Hyp-Gly remain unclear. Here, we report the effects of Hyp-Gly on differentiation and hypertrophy of murine skeletal muscle C2C12 cells. Hyp-Gly increased the fusion index, the myotube size, and the expression of the myotube-specific myosin heavy chain (MyHC) and tropomyosin structural proteins. Hyp-Gly increased the phosphorylation of Akt, mTOR, and p70S6K in myoblasts, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited their phosphorylation by Hyp-Gly. LY294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin repressed the enhancing effects of Hyp-Gly on MyHC and tropomyosin expression. The peptide/histidine transporter 1 (PHT1) was highly expressed in both myoblasts and myotubes, and co-administration of histidine inhibited Hyp-Gly-induced phosphorylation of p70S6K in myoblasts and myotubes. These results indicate that Hyp-Gly can induce myogenic differentiation and myotube hypertrophy and suggest that Hyp-Gly promotes myogenic differentiation by activating the PI3K/Akt/mTOR signaling pathway, perhaps depending on PHT1 for entry into cells. PMID:27553280

  12. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    Science.gov (United States)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes.

  13. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  14. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    International Nuclear Information System (INIS)

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using 3H-labelled phenylalanine. Protein breakdown was measured using 3H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion

  15. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Lomax Michael A

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA, relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.

  16. Infectious prions accumulate to high levels in non proliferative C2C12 myotubes.

    Directory of Open Access Journals (Sweden)

    Allen Herbst

    Full Text Available Prion diseases are driven by the strain-specific, template-dependent transconformation of the normal cellular prion protein (PrP(C into a disease specific isoform PrP(Sc. Cell culture models of prion infection generally use replicating cells resulting in lower levels of prion accumulation compared to animals. Using non-replicating cells allows the accumulation of higher levels of PrP(Sc and, thus, greater amounts of infectivity. Here, we infect non-proliferating muscle fiber myotube cultures prepared from differentiated myoblasts. We demonstrate that prion-infected myotubes generate substantial amounts of PrP(Sc and that the level of infectivity produced in these post-mitotic cells, 10(5.5 L.D.50/mg of total protein, approaches that observed in vivo. Exposure of the myotubes to different mouse-adapted agents demonstrates strain-specific replication of infectious agents. Mouse-derived myotubes could not be infected with hamster prions suggesting that the species barrier effect is intact. We suggest that non-proliferating myotubes will be a valuable model system for generating infectious prions and for screening compounds for anti-prion activity.

  17. Effect of High Temperature- and High Pressure-Treated Red Ginseng on Lipolysis and Lipid Oxidation in C2C12 Myotubes.

    Science.gov (United States)

    Yu, Seok-Yeong; Lee, Jin-Ha; Cho, MyoungLae; Lee, Jong Seok; Hong, Hee-Do; Lee, Young-Chul; Kim, Young-Chan; Cho, Chang-Won; Kim, Kyung-Tack; Lee, Ok-Hwan

    2016-01-01

    Korean red ginseng (KRG), a highly valuable medicinal herb in oriental societies, has biological activity similar to that of Panax ginseng. Recently, it has been discovered that the biological activities of red ginseng can vary according to heating and steaming processes under different conditions that change the principal components of KRG and result in changes in biological activity. This study evaluated and compared the effects of high temperature- and high pressure-treated red ginseng (HRG) and commercial red ginseng (RG) on β-oxidation in C2C12 myotubes. HRG enhanced the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), but RG did not affect the phosphorylation of AMPK in C2C12 myotubes. HRG also promoted the nuclear translocation of forkhead box protein O1 (FoxO1), and the translocation exerted an increase in the protein expression of adipose triglyceride lipase (ATGL). As a consequence, HRG increased the mRNA expression level of carnitine palmitoyltransferase 1 (CPT-1) compared to the control. Taken together, our results indicated that HRG promotes the lipolysis of triglycerides and mitochondrial β-oxidation of fatty acids in C2C12 myotubes, suggesting that alterations to the principal components by high temperature and pressure may positively influence the nutraceutical functions of HRG. PMID:26501225

  18. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    International Nuclear Information System (INIS)

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA

  19. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, Takumi [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Sato, Koji [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Iwanaka, Nobumasa [The Graduate School of Science and Engineering, Ritsumeikan University, Shiga (Japan); Honda, Hiroki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Higashida, Kazuhiko [Faculty of Sport Science, Waseda University, Saitama (Japan); Iemitsu, Motoyuki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Hayashi, Tatsuya [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan)

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  20. DHA Inhibits Protein Degradation More Efficiently than EPA by Regulating the PPARγ/NFκB Pathway in C2C12 Myotubes

    OpenAIRE

    Yue Wang; Qiao-wei Lin; Pei-pei Zheng; Jian-song Zhang; Fei-ruo Huang

    2013-01-01

    This study was conducted to evaluate the mechanism by which n-3 PUFA regulated the protein degradation in C2C12 myotubes. Compared with the BSA control, EPA at concentrations from 400 to 600 µM decreased total protein degradation (P < 0.01). However, the total protein degradation was decreased when the concentrations of DHA ranged from 300 µM to 700 µM (P < 0.01). DHA (400 µM, 24 h) more efficiently decreased the I κ B α phosphorylation and increased in the I κ B α protein level than 400 µM E...

  1. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  2. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes

    International Nuclear Information System (INIS)

    Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. WF decreased the viability of C2C12 myotubes, especially at concentrations of 20–25 μg.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model

  3. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.

    Science.gov (United States)

    Kaji, Hirokazu; Ishibashi, Takeshi; Nagamine, Kuniaki; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2010-09-01

    A porous membrane-based cell culture device was developed to electrically stimulate a confluent monolayer of C2C12 myotubes. The device's cell culture substrate is a microporous alumina membrane-modified by attaching an atelocollagen membrane on the upperside and a hole-spotted poly(dimethylsiloxane) (PDMS) film on the underside. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the focused current at the PDMS hole can electrically stimulate the cells. C2C12 myoblasts were cultured on the substrate and differentiated into myotubes. When the electrical pulses were applied, myotubes started to contract slightly in and near the hole, and that the continuous stimulation increased both the number of stimuli-responding myotubes and the magnitude of the contraction considerably owing to the underlying atelocollagen membrane with muscle tissue-like stiffness. Also, the generation of contractile myotubes on a wider region of the membrane substrate was possible by applying the electrical pulses through the array of holes in the PDMS film. Using the present system, the glucose uptake by contractile myotubes was examined with fluorescence-labeled glucose, 2-NBDG, which displayed a positive correlation between the contractile activity of myotubes and the uptake of 2-NBDG. PMID:20561677

  4. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2

    Directory of Open Access Journals (Sweden)

    Lan eYe

    2012-09-01

    Full Text Available Rapamycin, an inhibitor of mTOR complex 1 (mTORC1, improves insulin sensitivity in acute studies in vitro and in vivo by disrupting a negative feedback loop mediated by S6 kinase. We find that rapamycin has a clear biphasic effect on insulin sensitivity in C2C12 myotubes, with enhanced responsiveness during the first hour that declines to almost complete insulin resistance by 24-48 hours. We and others have recently observed that chronic rapamycin treatment induces insulin resistance in rodents, at least in part due to disruption of mTORC2, an mTOR-containing complex that is not acutely sensitive to the drug. Chronic rapamycin treatment may also impair insulin action via the inhibition of mTORC1-dependent mitochondrial biogenesis and activity, which could result in a buildup of lipid intermediates that are known to trigger insulin resistance. We confirmed that rapamycin inhibits expression of PGC-1α, a key mitochondrial transcription factor, and acutely reduces respiration rate in myotubes. However, rapamycin did not stimulate phosphorylation of PKCθ, a central mediator of lipid-induced insulin resistance. Instead, we found dramatic disruption of mTORC2, which coincided with the onset of insulin resistance. Selective inhibition of mTORC1 or mTORC2 by shRNA-mediated knockdown of specific components (Raptor and Rictor, respectively confirmed that mitochondrial effects of rapamycin are mTORC1-dependent, whereas insulin resistance was recapitulated only by knockdown of mTORC2. Thus, mTORC2 disruption, rather than inhibition of mitochondria, causes insulin resistance in rapamycin-treated myotubes, and this system may serve as a useful model to understand the effects of rapamycin on mTOR signaling in vivo.

  5. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  6. CHARACTERIZATION OF P2-PURINOCEPTOR MEDIATED CYCLIC-AMP FORMATION IN MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The formation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), induced by ATP and other nucleotides was investigated in mouse C2Cl2 myotubes. 2 ATP (100 muM) and ATPgammaS (100 muM) caused a sustained increase in cyclic AMP content of the cells,

  7. Capric Acid Up-Regulates UCP3 Expression without PDK4 Induction in Mouse C2C12 Myotubes.

    Science.gov (United States)

    Abe, Tomoki; Hirasaka, Katsuya; Kohno, Shohei; Tomida, Chisato; Haruna, Marie; Uchida, Takayuki; Ohno, Ayako; Oarada, Motoko; Teshima-Kondo, Shigetada; Okumura, Yuushi; Choi, Inho; Aoyama, Toshiaki; Terao, Junji; Nikawa, Takeshi

    2016-01-01

    Uncoupling protein 3 (UCP3) and pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle are key regulators of the glucose and lipid metabolic processes that are involved in insulin resistance. Medium-chain fatty acids (MCFAs) have anti-obesogenic effects in rodents and humans, while long-chain fatty acids (LCFAs) cause increases in body weight and insulin resistance. To clarify the beneficial effects of MCFAs, we examined UCP3 and PDK4 expression in skeletal muscles of mice fed a MCFA- or LCFA-enriched high-fat diet (HFD). Five-week feeding of the LCFA-enriched HFD caused high body weight gain and induced glucose intolerance in mice, compared with those in mice fed the MCFA-enriched HFD. However, the amounts of UCP3 and PDK4 transcripts in the skeletal muscle of mice fed the MCFA- or LCFA-enriched HFD were similar. To further elucidate the specific effects of MCFAs, such as capric acid (C10:0), on lipid metabolism in skeletal muscles, we examined the effects of various FAs on expression of UCP3 and PDK4, in mouse C2C12 myocytes. Although palmitic acid (C16:0) and lauric acid (C12:0) significantly induced expression of both UCP3 and PDK4, capric acid (C10:0) upregulated only UCP3 expression via activation of peroxisome proliferator-activated receptor-δ. Furthermore, palmitic acid (C16:0) disturbed the insulin-induced phosphorylation of Akt, while MCFAs, including lauric (C12:0), capric (C10:0), and caprylic acid (C12:0), did not. These results suggest that capric acid (C10:0) increases the capacity for fatty acid oxidation without inhibiting glycolysis in skeletal muscle. PMID:27117849

  8. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction.

    Science.gov (United States)

    Miyatake, Shouta; Bilan, Philip J; Pillon, Nicolas J; Klip, Amira

    2016-01-15

    Muscle inflammation following exercise is characterized by expression of inflammatory cytokines and chemokines. Exercise also increases muscle macrophages derived from circulating monocytes. However, it is unknown whether muscle cells themselves attract circulating monocytes, or what is the underlying mechanism. We used an in vitro system of electrical stimulation (ES) causing C2C12 myotube contraction to explore whether monocyte chemoattraction ensues and investigated the mediating chemoattractants. Conditioned medium from ES-contracted myotubes caused robust chemoattraction of THP-1 monocytes across Boyden chambers. Following ES, expression of several known monocyte chemokines [C-C motif ligand 2 (CCL2) and C-X-C motif ligand (CXCL)1, -2, and -5] was elevated, but of these, only recombinant CCL2 effectively reproduced monocyte migration. Electrically stimulated myotubes secreted CCL2, and neutralization of CCL2 in conditioned medium or antagonizing the CCL2 receptor (CCR2) in THP-1 monocytes inhibited ES-induced monocyte migration. N-benzyl-p-toluene sulfonamide (BTS), a myosin II-ATPase inhibitor, prevented ES-induced myotube contraction but not CCL2 gene expression and secretion. The membrane-permeant calcium chelator BAPTA-AM reduced ES-induced CCL2 secretion. Hence, electrical depolarization, rather than mechanical contraction, drives the rise in CCL2, with partial calcium input. ES activated the NF-κB pathway; NF-κB inhibitors reduced ES-induced CCL2 gene expression and secretion and repressed ES-induced THP-1 chemoattraction. Thus, electrically stimulated myotubes chemoattract monocytes through NF-κB-regulated CCL2 secretion. PMID:26554595

  9. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    Science.gov (United States)

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  10. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    Science.gov (United States)

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  11. Inulin increases glucose transport in C2C12 myotubes and HepG2 cells via activation of AMP-activated protein kinase and phosphatidylinositol 3-kinase pathways.

    Science.gov (United States)

    Yun, Hee; Lee, Jong Hwa; Park, Chang Eun; Kim, Min-Jung; Min, Byung-Il; Bae, Hyunsu; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2009-10-01

    Inulin, a naturally occurring, functional food ingredient found in various edible plants, has been reported to exert potential health benefits, including decreased risk of colonic diseases, non-insulin-dependent diabetes, obesity, osteoporosis, and cancer. However, the mechanism of the antidiabetic activity of inulin has not yet been elucidated. In this study, we showed that inulin increased the uptake of glucose in C2C12 myotubes, which was associated with both AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways, but both of these pathways appeared to transmit their signals in an independent manner. Moreover, we found that inulin was able to increase the uptake of glucose in C2C12 myotubes in which insulin resistance was induced by exposing cells to high glucose concentrations. The identical effects of inulin were also observed in HepG2 hepatoma cells. Collectively, we report the antidiabetic activity of inulin and further demonstrate for the first time that such activity is associated with AMPK and PI3-K activation.

  12. Ethanol extract of the Prunus mume fruits stimulates glucose uptake by regulating PPAR-γ in C2C12 myotubes and ameliorates glucose intolerance and fat accumulation in mice fed a high-fat diet.

    Science.gov (United States)

    Shin, Eun Ju; Hur, Haeng Jeon; Sung, Mi Jeong; Park, Jae Ho; Yang, Hye Jeong; Kim, Myung Sunny; Kwon, Dae Young; Hwang, Jin-Taek

    2013-12-15

    In this study, we performed in vitro and in vivo studies to examine whether a 70% ethanol extract of Prunus mume fruits (EMS) exhibits anti-diabetic effects. Treatment with EMS increased glucose uptake in C2C12 myotubes, and also increased PPAR-γ activity or PPAR-γ mRNA expression. To confirm these in vitro results, we next conducted an animal experiment. A high-fat diet significantly increased the body weight, fat accumulation, and glucose levels in mice. Under the same conditions, 5% EMS attenuated the high-fat diet-induced increase in body weight and fat accumulation and improved the impaired fasting glucose level and glucose tolerance. High performance liquid chromatography analysis demonstrated that EMS contained chlorogenic acid, caffeic acid, rutin, luteolin-7-glucoside, naringin, apigenin-7-glucoside, and hesperidin. Taken together, these findings suggest that EMS exerts an anti-diabetic effect both in vitro and in vivo, which is mediated, at least in part, by the activation of PPAR-γ. PMID:23993593

  13. TNF-α and IFN-s-Dependent Muscle Decay Is Linked to NF-κB- and STAT-1α-Stimulated Atrogin1 and MuRF1 Genes in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Barbara Pijet

    2013-01-01

    Full Text Available TNF-α was shown to stimulate mitogenicity in C2C12 myoblasts. Selected cytokines TNF-α, IFNα, or IFNγ reduced the expression of myosin heavy chain (MyHC IIa when given together. Molecular mechanisms of cytokine activities were controlled by NF-κB and JAK/STAT signaling pathways, as metabolic inhibitors, curcumin and AG490, inhibited some of TNF-α and IFNα/IFNγ effects. Insulin was hardly antagonistic to TNF-α- and IFNα/IFNγ-dependent decrease in MyHC IIa protein expression. Cytokines used individually or together also repressed myogenesis of C2C12 cells. Moreover, TNF-α- and IFNα/IFNγ-dependent effects on C2C12 myotubes were associated with increased activity of Atrogin1 and MuRF1 genes, which code ubiquitin ligases. MyHC IIa gene activity was unaltered by cytokines. Inhibition of NF-κB or JAK/STAT with specific metabolic inhibitors decreased activity of Atrogin1 and MuRF1 but not MyHC IIa gene. Overall, these results suggest cooperation between cytokines in the reduction of MyHC IIa protein expression level via NF-κB/JAK/STAT signaling pathways and activation of Atrogin1 and MuRF1 genes as their molecular targets. Insulin cotreatment or pretreatment does not protect against muscle decay induced by examined proinflammatory cytokines.

  14. Induction of group VIA phospholipase A2 activity during in vitro ischemia in C2C12 myotubes is associated with changes in the level of its splice variants

    DEFF Research Database (Denmark)

    Poulsen, K A; Petersen, Stine Helene Falsig; Kolko, M;

    2007-01-01

    by specific short interfering (si)RNA knockdown of iPLA(2)-VIA. OGD was associated with an increase in iPLA(2)-VIA protein levels, whereas mRNA levels were unchanged. The levels of iPLA(2)-VIB mRNA and protein were not increased by OGD. RT-PCR and Western blot analysis identified a mouse iPLA(2)-VIA homolog...... to catalytically inactive 50-kDa iPLA(2)-VIA-ankyrin variants previously identified in humans. Both the mRNA and protein levels of this approximately 50-kDa variant were reduced significantly within 1 h following OGD. In C2C12 myoblasts, iPLA(2)-VIA seemed to predominantly reside at the endoplasmatic reticulum......, these data demonstrate that OGD in C2C12 myotubes is associated with an increase in iPLA(2)-VIA activity that decreases cell viability. iPLA(2)-VIA activation may be modulated by changes in the levels of active and inactive iPLA(2)-VIA isoforms. Udgivelsesdato: 2007-Nov...

  15. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  16. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation

    Science.gov (United States)

    Zhong, Yuechun; Zou, Liyi; Wang, Zonggui; Pan, Yaqiong; Dai, Zhong; Liu, Xinguang; Cui, Liao; Zuo, Changqing

    2016-01-01

    Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling. PMID:27633041

  17. Effects of myostatin propeptide gene tranfection on glucose metabolism in cultured C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    张莎莎

    2014-01-01

    Objective To investigate the effects of recombinant adeno-associated virus-mediated myostatin propeptide(MPRO)on uptake and oxidation of glucose,and glycogen synthesis in C2C12 myotubes,as well as the associated molecular mechanism.Methods Mature C2C12myotubes were assigned to the following 6 groups:control,insulin,green fluorescent protein(GFP),insulin+

  18. Proliferative effect of Hachimijiogan, a Japanese herbal medicine, in C2C12 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Takeda T

    2015-02-01

    Full Text Available Takashi Takeda,1,2 Kenji Tsuiji,2 Bin Li,2 Mari Tadakawa,2 Nobuo Yaegashi2 1Division of Women’s Health, Research Institute of Traditional Asian Medicine, Kinki University School of Medicine, Osaka, Japan; 2Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan Background: Hachimijiogan (HJG, Ba-Wei-Di-Huang-Wan in Chinese, is one of the most popular herbal medicines in Japanese Kampo. HJG is often prescribed for the prevention and treatment of age-related diseases. Muscle atrophy plays an important role in aging-related disabilities such as sarcopenia. The purpose of this study was to investigate the possible beneficial effect of HJG on skeletal muscle.Methods: Cells of murine skeletal muscle myoblast cell line C2C12 were used as an in vitro model of muscle cell proliferation and differentiation. The effect of HJG on C2C12 cell proliferation and differentiation was assessed. We counted the number of myotubes morphologically to assess the degree of differentiation.Results: HJG treatment (200 µg/mL for 3 days significantly increased C2C12 cell number by 1.23-fold compared with that of the control. HJG promoted the proliferation of C2C12 cells through activation of the ERK1/2 signaling pathway without affecting the Akt signaling pathway. HJG did not affect the differentiation of C2C12 cells. Conclusion: HJG had beneficial effects on skeletal muscle myoblast proliferation. These findings may provide a useful intervention for the prevention and treatment of sarcopenia. Keywords: ERK1/2 signaling pathway, herbal medicine, myoblast, proliferation, sarcopenia

  19. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    Directory of Open Access Journals (Sweden)

    Michelle A Arya

    Full Text Available The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  20. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Highlights: ► Change in the epigenetic landscape during myogenesis was optically investigated. ► Mobility of nuclear proteins was used to state the epigenetic status of the cell. ► Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. ► Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  1. Truncated Human LMP-1 Triggers Differentiation of C2C12 Cells to an Osteoblastic Phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    LIM mineralization protein-1 (LMP-1) is a novel intracellular osteoinductive protein that has been shown to induce bone formation both in vitro and in vivo. LMP-1 contains an N-terminal PDZ domain and three C-terminal LIM domains. In this study, we investigated whether a truncated form of human LMP-1 (hLMP-1 [t]), lacking the three C-terminal LIM domains, triggers the differentiation of pluripotent myoblastic C2C12 cells to the osteoblast lineage. C2C12 cells were transiently transduced with Ad5-hLMP-1(t)-green fluorescent protein or viral vector control. The expression of hLMP-1 (t) RNA and the truncated protein were examined. The results showed that hLMP-1(t) blocked myotube formation in C2C12 cultures and significantly enhanced the alkaline phosphatase (ALP) activity. In addition, the expressions of ALP,osteocalcin, and bone morphogenetic protein (BMP)-2 and BMP-7 genes were also increased. The induction of these key osteogenic markers suggests that hLMP-1(t) can trigger the pluripotent myoblastic C2C12 cells to differentiate into osteoblastic lineage, thus extending our previous observation that LMP-1 and LMP-1 (t)enhances the osteoblastic phenotype in cultures of cells already committed to the osteoblastic lineage.Therefore, C2C12 cells are an appropriate model system for the examination of LMP-1 induction of the osteoblastic phenotype and the study of mechanisms of LMP- 1 action.

  2. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Manami [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yang, Zeyu [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang (China); Nakagawa, Kentaro; Maruyama, Junichi [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Xu, Xiaoyin [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Sarkar, Aradhan; Ichimura, Ayana [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Nasu, Yusuke [Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Ozawa, Takeaki [Department of Chemistry, School of Science, The University of Tokyo, Tokyo (Japan); Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Ishigami-Yuasa, Mari [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Shigeru [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); Kagechika, Hiroyuki [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  3. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    International Nuclear Information System (INIS)

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced

  4. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    Science.gov (United States)

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  5. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.

    2016-01-01

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  6. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    Directory of Open Access Journals (Sweden)

    Dupuy Fabrice

    2009-10-01

    Full Text Available Abstract Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries, providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.

  7. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  8. Two-dimensional differential adherence and alignment of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Surface microstructure is a critical parameter for scaffolds used in skeletal muscle tissue engineering. We have developed micromachined surfaces using matrix assisted pulsed laser evaporation-direct write (MAPLE-DW) that demonstrate differential adherence of C2C12 myoblast cells. The 60-400 μm diameter channels were micromachined onto 2% agarose surfaces using an ArF excimer laser and lined with Matrigel[reg] basement membrane matrix solution. Suspensions containing C2C12 myoblast cells were then placed on the surface of these micromachined channels. The C2C12 myoblast cells aligned themselves parallel to the 60-150 μm channels. Live/dead assays over 72 h demonstrated that cell number, cell size, and number of nuclei per cell increased within these channels. In addition, some of the myoblasts fused and differentiated into multinucleated myotubes. These results provide the basis for the development of direct-write scaffolds for skeletal muscle tissue engineering

  9. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Long Jia

    2013-12-01

    Full Text Available MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs of messenger RNAs (mRNAs. Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.

  10. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  11. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    International Nuclear Information System (INIS)

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro

  12. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  13. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast

    OpenAIRE

    Tamotsu Tsukahara; Hisao Haniu

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the ...

  14. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  15. Lysophosphatidic Acid Stimulates MCP-1 Secretion from C2C12 Myoblast.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-01-01

    Chemokines are regulatory proteins that play an important role in muscle cell migration and proliferation. In this study, C2C12 cells treated with lysophosphatidic acid (LPA) showed an increase in endogenous monocyte chemotactic protein-1 (MCP-1) expression and secretion. LPA is a naturally occurring bioactive lysophospholipid with hormone- and growth-factor-like activities. LPA is produced by activated platelets, cytokine-stimulated leukocytes, and possibly by other cell types. However, the LPA analog cyclic phosphatidic acid (cPA) had no effect on the expression and secretion of MCP-1. LPA, although similar in structure to cPA, had potent inducing effects on MCP-1 expression in C2C12 cells. In this study, we showed that LPA enhanced MCP-1 mRNA expression and protein secretion in a dose-dependent manner. Taken together, these results suggest that LPA enhances MCP-1 secretion in C2C12 cells and thus may play an important role in cell proliferation. PMID:24049655

  16. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  17. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  18. Effect of dehydroepiandrosterone on insulin action and development of insulin-induced resistance in C2C12 muscle cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydroepiandrosterone (DHEA), a precursor of androgens and estrogens, has been demonstrated to have effect of preventing insulin resistance and development of diabetes mellitus. Administration of testosterone appears to induce a marked insulin resistance. How these two hormones affect insulin resistance through regulation of sensitivity of tissues to insulin deserves further studies. Here, the effects of DHEA and testosterone on response to insulin in C2C12 muscle cells are analyzed. After 24 h of DHEA (10-6 mol/L) treatment, C2C12 cells showed an increased insulin- stimulated glucose uptake and enhanced activities of glycogen synthase (GS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), whereas testosterone gave the opposite effects. Incubation of C2C12 cells with high-dose insulin (5×10-7 mol/L) for 24 hours decreased their sensitivity to insulin and led to a state of resistance as assessed on insulin-stimulated glucose uptake and activities of GS, PFK and PDH. Addition of DHEA to insulin-resistant C2C12 cells could reverse the response of these cells to high-dose insulin, but testosterone could further impair insulin sensitivity in insulin-resistant C2C12 cells. These results suggest that the two hormones may influence the development or inhibition of insulin-resistance in type 2 diabetes through regulating glucose uptake, glycogenesis and glycolysis to some extent.

  19. Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway.

    Science.gov (United States)

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman; Germot, Agnès

    2015-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.

  20. Astragalus Polysaccharide Inhibits Autophagy and Apoptosis from Peroxide-Induced Injury in C2C12 Myoblasts.

    Science.gov (United States)

    Yin, Yi; Lu, Lu; Wang, Dongtao; Shi, Ying; Wang, Ming; Huang, Yanfeng; Chen, Dexiu; Deng, Cong; Chen, Jiebin; Lv, Peijia; Wang, Yanjing; Li, Chengjie; Wei, Lian-Bo

    2015-11-01

    The aim is to study the effects and underlying mechanisms of astragalus polysaccharide (APS) on the peroxide-induced injury in C2C12 myoblasts in vitro. Cell viability in the presence or absence of APS was detected by the methyl thiazolyl tetrazolium colorimetric assay. The autophagosomes were observed by electron microscopy to examine the influence of APS on autophagy caused by H2O2 in C2C12 cells, and the percentage of apoptosis cells was measured by flow cytometry. To further confirm the effect of H2O2 on C2C12 cells, the protein expression of LC3 and RARP, which are the markers of autophagy and apoptosis, respectively, was analyzed by Western blot, as well as the expression levels of p-p70S6K, p70S6K, Bcl-2, Bax, cyto-C, and Caspase-3, to reveal the underlying mechanisms. We observed multiple effects of APS on C2C12 functionality. APS treatment of C2C12 cells at 1 mg/mL reduced cell viability to less than 70 %, and analysis by electron microscopy revealed that APS also reduced the number of H2O2-induced autophagosome formation. Similarly, APS abated the H2O2-mediated increase in cell apoptosis, which was accompanied by the inhibition of LC3 II and RARP that are normally upregulated by H2O2. The expression of p-p70S6K and p70S6K, however, remained unchanged in C2C12 cells in the Control, H2O2 and H2O2 + APS groups. In addition, APS promoted the expression of protein Bcl-2 in H2O2-treated C2C12 cells, but did not change Bax, thus reducing the Bax/Bcl-2 ratio that in turn prevented the release of cytochrome c and the activation of caspase-3. APS inhibits the autophagy and apoptosis induced by peroxide injury in C2C12 myoblasts through two independent signaling pathways: the mTOR-independent pathway for the inhibition of autophagy, and the caspase-3-dependent pathway for the suppression of apoptosis. PMID:27352334

  1. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells.

    Science.gov (United States)

    Massaccesi, Luca; Goi, Giancarlo; Tringali, Cristina; Barassi, Alessandra; Venerando, Bruno; Papini, Nadia

    2016-08-01

    Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc. PMID:26728070

  2. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    Science.gov (United States)

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost.

  3. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    Science.gov (United States)

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost. PMID:23201486

  4. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion

    Directory of Open Access Journals (Sweden)

    Poussard S

    2015-02-01

    Full Text Available Sylvie Poussard,1,2 Marion Decossas,1,2 Olivier Le Bihan,1,2 Stéphane Mornet,3 Grégoire Naudin,1,2 Olivier Lambert1,2 1Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France; 2Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France; 3ICMCB, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS UPR9048, Université de Bordeaux, Pessac, France Abstract: The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion. Keywords: silica, nanoparticle, muscle, cell encapsulation, transmission electron microscopy, apoptosis

  5. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG, 5.6 mM (MG, or 23.3 mM(HG under normoxic or hypoxic (1% oxygen condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production.

  6. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  7. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  8. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available We previously demonstrated that cinnamon extract (CE ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4 translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  9. Establishment and Identification of a Stable Human ASB12-Expressed C2C12 Cell Line%稳定表达人ASB12的C2C12细胞系的建立及鉴定

    Institute of Scientific and Technical Information of China (English)

    文斗斗; 周军媚; 赵明一; 胡维新; 吴秀山; 王跃群

    2012-01-01

    The human ASB12 (Homo sapiens ankyrin repeat and SOCS box containing 12) protein contains five ANK (ankyrin repeat sequence) domains and a SOCS (suppressor of cytokine signaling) box domain, belonging to the ASBs family. It was reported that ASB12 especially expressed in skeletal and cardiac muscles of adult tissues, which suggested that ASB12 closely associated with skeleton muscle development. To construct a stable ASB12-expressed C2C12 cell line, the fusion expression plasmid pCMV-tag2B-ASB12, which was identified by enzyme digestion and sequencing analysis, was transfected into C2C12 cell by cationic polymer. After screening culture by G418, the expression of ASB12 was detected by immunofluorescfence, RT-PCR and Western-blotting. The C2C12 cell line that expressing ASB12 stably was established successfully, which provide a cell model for studying the molecular function of ASB12 in skeleton muscle development.%ASB12 (homo sapiens ankyrin repeat and SOCS box containing 12)蛋白含有5个ANK (ankyrin repeat sequence)序列和一个保守的SOCS (suppressor of cytokine signaling)盒结构域,是ASBs (human ankyrin repeat and SOCS box containing protein family,ASB family)家族的成员.人类ASB12基因在成体心肌和骨骼肌组织中特异表达,是成肌分化的候选基因.利用阳离子聚合物转染技术将重组表达质粒pCMV-tag2B-ASB 12转染小鼠骨骼肌细胞系C2C12细胞,通过G418筛选、免疫荧光检测、RT-PCR分析、Western blotting检测建立了稳定表达ASB12的细胞系C2C12-ASB12,为研究ASB12在骨骼肌发育及其相关功能提供有用的细胞研究模型.

  10. Effect of mitochondrial fission inhibition on C2C12 differentiation.

    Science.gov (United States)

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The differentiation of skeletal muscle is commonly examined in cell culture using the C2C12 line of mouse skeletal myoblasts. This process shares many similarities with that which occurs during embryonic development, such as the transient activation of caspases. Here, we examined the effect of inhibiting mitochondrial fission, using mdivi-1, on the ability of C2C12 cells to terminally differentiate. This was performed using immunofluorescent identification of cell morphology and myosin expression, as well as immunoblotting for markers of muscle differentiation. Furthermore, the effect of mdivi-1 administration on activation of caspase-2 and -3 was assessed using spectrofluorometric measurement of specific enzyme activity. PMID:27054170

  11. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  12. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2014-12-01

    Full Text Available This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz. Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE significantly attenuated hydrogen peroxide (H2O2-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1 and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.

  13. Adeno-associated virus-mediated bone morphogenetic protein-7 gene transfer induces C2C12 cell differentiation into osteoblast lineage cells

    Institute of Scientific and Technical Information of China (English)

    Min YANG; Qing-jun MA; Geng-ting DANG; Kang-tao MA; Ping CHEN; Chun-yan ZHOU

    2005-01-01

    Aim: To investigate the effects of bone morphogenetic protein-7 (BMP7)-expressing recombinant adeno-associated virus (AAV) vector on the differentiation of C2C12 cells. Methods: AAV-BMP7 was packaged by infecting the stable cell clone BHK-21 (integrated with recombinant AAV vector plasmid pSNAV-BMP7)with recombinant herpes simplex virus type 1, which expresses AAV-2 Rep and Cap and possesses AAV packaging functions. Following infection with AAVBMP7 at multiplicities of infection of 1× 105 vector genomes per cell and subsequent culture, C2C12 cells were assessed qualitatively for BMP7 production, alkaline phosphatase activity, osteocalcin production and Cbfal and MyoD expression.Results: C2C 12 cells transduced with AAV-BMP7 could produce BMP7 protein until d 28. Alkaline phosphatase in the cultured C2C12 cell lysate was elevated.Secreted osteocalcin in the culture medium was detectable at d 12 and Cbfal mRNA expression level was upregulated, coinciding with downregulation of MyoD in a temporal manner. Conclusion: The present in vitro study demonstrated that AAV-BMP7 could infect and efficiently convert C2C12 cells from myoblasts into osteoblast lineage cells.

  14. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    Science.gov (United States)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  15. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  16. Effects of Sunphenon and Polyphenon 60 on proteolytic pathways, inflammatory cytokines and myogenic markers in H22-treated C2C12 cells

    Indian Academy of Sciences (India)

    Allur Subramaniyan Sivakumar; Inho Hwang

    2015-03-01

    The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF- and NF-kB, as well as proteolytic enzymes, such as -calpain and m-calpain. The pre-treatment of Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of -calpain and m-calpain were significantly ( < 0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely -calpain and m-calpain. Furthermore, the mRNA expression of TNF- and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) significantly ( < 0.05) down-regulated it when compared to the untreated control group. Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, -calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of -calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.

  17. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.

    2006-01-01

    in mice. Using PCR-cloning we identified a PCR-fragment that had a 29 bp insertion between exon 9 and 10. This sequence has high homology to the first part of the 53 bp human exon 9a. The 29 bp insertion induces a frame-shift and the introduction of a stop codon in exon 10. The protein product...

  18. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation.

    Science.gov (United States)

    Ramazzotti, Giulia; Faenza, Irene; Gaboardi, Gian Carlo; Piazzi, Manuela; Bavelloni, Alberto; Fiume, Roberta; Manzoli, Lucia; Martelli, Alberto M; Cocco, Lucio

    2008-11-01

    Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.

  19. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-09-01

    Preclinical Research The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2 O2 )-induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO-1 pathway. BBH preconditioning attenuated H2 O2 -induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and elevated HO-1 activity. However, the protective effects of BBH against H2 O2 -induced ROS generation and cell growth reduction were abolished by an HO-1 inhibitor. Moreover, BBH-mediated induction and activation of HO-1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2 O2 -induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress-induced injury and this effect involved activation of the Nrf2/HO-1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc. PMID:27535021

  20. Effects ShRNA-mediated Gene Silencing Smad4 on the Myofibrogenesis of C2C12 Myoblasts%ShRNA介导的Smad4基因沉默对C2C12成肌细胞纤维化的影响

    Institute of Scientific and Technical Information of China (English)

    陈始秋; 陈疾忤; 陈世益; 李宏云; 尚西亮; 蒋佳

    2011-01-01

    Objective To study the effect of Smad4-shRNA on the myofibrosis process. Methods (1) The most efficient silencing Smad4-shRNA was designed and used to produce lentivirus-Smad4 shRNA to infect C2C12 myoblasts. The Smad4 expression was examined. (2) According to the model that TGF-β1 induced the myofibrosis process of the C2C12 myoblasts, the lentivirus mediated cells were divided into four groups: group A, B, C, and D, respectively presenting the normal C2C12 cells group, the TGF-β1 induced C2C12 cells group, the lentivirus-mediated cells group and the TGF-β1 induced lentivirus-mediated cells group. Results (1) The mRNA and protein expression of Smad4 showed a lower level in Smad4-shRNAl Lentivirus-mediated C2C12 cells (P 0.05 ) . Conclusion Smad4 down-regulation could effectively suppress myofibrosis induced by TGF-β1, and Smad4 inhibition was a potential method for anti-fibrosis of the injured skeletal muscle.%目的:研究慢病毒介导的Smad4-shRNA对TGF-β1诱导的纤维化进程的影响.方法:(1)设计并选择抑制效能最高的Smad4-shRNA,包装生产慢病毒,转染C2C12成肌细胞,并检测转染后细胞的Smad4表达;(2)根据TGF-β1诱导C2C12成肌细胞向成肌纤维细胞分化的模型,以慢病毒介导的Smad4-shRNA转染细胞,将不同处理的细胞分为A、B、C、D四组,分别为C2C12细胞组、TGF-β1诱导组、C2C12细胞转染组和TGF-β1诱导后转染组.通过荧光Realtime-PCR和Westerblot检测各组collagen Ⅰ和α-SMA表达水平.结果:(1)慢病毒介导Smad4-shRNA1转染C2C12细胞后,其Smad4 mRNA和蛋白表达显著低于未转染组(P<0.05);(2) TGF-β1诱导组α-SMA和Collagen Ⅰ mRNA及蛋白表达均显著高于C2C12细胞组(P<0.05);(3) TGF-β1诱导后转染组α-SMA与collagen Ⅰ mRNA及蛋白表达显著低于TGF-β1诱导组(P<0.05),与C2C12细胞组和C2C12细胞转染组相比则无明显差异(P>0.05).结论:降低Smad4表达能有效抑制成肌细胞及受TGF-β1诱导成肌纤维

  1. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    Science.gov (United States)

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway. PMID:27279047

  2. An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts.

    Science.gov (United States)

    Kurth, Felix; Franco-Obregón, Alfredo; Bärtschi, Christoph A; Dittrich, Petra S

    2015-01-01

    Here we present a stage perfusion incubation system that allows for the cultivation of mammalian cells within PDMS microfluidic devices for long-term microscopic examination and analysis. The custom-built stage perfusion incubator is adaptable to any x-y microscope stage and is enabled for temperature, gas and humidity control as well as equipped with chip and tubing holder. The applied double-layered microfluidic chip allows the predetermined positioning and concentration of cells while the gas permeable PDMS material facilitates pH control via CO2 levels throughout the chip. We demonstrate the functionality of this system by culturing C2C12 murine myoblasts in buffer free medium within its confines for up to 26 hours. We moreover demonstrated the system's compatibility with various chip configurations, other cells lines (HEK-293 cells) and for longer-term culturing. The cost-efficient system are applicable for any type of PDMS-based cell culture system. Detailed technical drawings and specification to reproduce this perfusion incubation system is provided in the ESI.

  3. Biocompatibility of Sylgard184 coated with different matrix materials and C2C12 cells%不同基质材料修饰的Sylgard184与C2C12细胞的相容性

    Institute of Scientific and Technical Information of China (English)

    王齐; 廖华; 秦建强; 余磊; 邱小忠; 于巧莲; 艾鹤英

    2009-01-01

    目的 筛选能提高硅酮橡胶弹性体(Sylgard184)与C2C12相容性的理想基质材料. 方法Sylgard184双组分以10:1的比例均匀混合,倒入6孔板的其中4孔,室温下静置固化,其余2孔做为空白对照培养组(A组);固化后的Sylgard184表面依次经过以下处理:I型胶原包被(B组)、层黏连蛋白包被(C组)、多聚赖氨酸包被(D组);未经包被(E组),每组共6个样本.在不同基质材料修饰的Sylgard 184表面培养C2C12细胞,利用倒置显微镜观察5组C2C12细胞的增殖、分化状态,流式细胞术(FCM)检测增殖培养48h后C2C12细胞的分裂增殖情况,RT-PCR检测增殖和分化培养48h后C2C12细胞内MyoD、myogenin mRNA的表达.结果 Sylgard184材料存在细胞毒性,E组接种的C2C12细胞在24h内全部漂浮死亡;D组的大多数细胞出现死亡,仅少数贴壁存活;而B、C两组材料包被后明显减少Syhgard 184的毒性,增强其表面与C2C12细胞的相容性,且C组细胞处于合成期的百分比以及增殖期的MyoD和分化期Myogenin基因mRNA的表达水平均显著高于A、B两组(P<0.05). 结论 经层黏连蛋白包被后的Sylgard184表面更有利于C2C12细胞的增殖及分化活性的表达.

  4. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Yuanfei Zhou

    2016-10-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 integrates amino acid (AA availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2 activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser, arginine (Arg, threonine (Thr, alanine (Ala, methionine (Met, glutamine (Gln, and glycine (Gly, Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.

  5. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Science.gov (United States)

    Zhou, Yuanfei; Ren, Jiao; Song, Tongxing; Peng, Jian; Wei, Hongkui

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism. PMID:27727170

  6. Induced differentiation of C2C12 to osteoblast via adenovirus-mediated Cbfa1 in vitro%体外诱导C2C12细胞向成骨细胞的分化

    Institute of Scientific and Technical Information of China (English)

    张勇; 杨彤涛; 胡运生; 廖博; 文艳华; 范清宇

    2013-01-01

    目的 成骨细胞特异性转录因子a1(core binding factor a1,Cbfa1)通过调节生长因子和骨特异性细胞外基质蛋白的基因表达而参与成骨细胞的分化和骨发育过程.文中构建成Cbfa1,以腺病毒载体转染成肌细胞C2C12,为种子细胞构建组织工程化骨.方法 体外培养小鼠成肌细胞C2C12,用重组腺病毒质粒pAd-IL-31介导Cbfa1/Osf2基因瞬时转染小鼠成肌C2C12细胞,Western blot检测Cbfa1蛋白表达.结果 Cbfa1蛋白表达、碱性磷酸酶(alkaline phosphatase,ALP)活性测定、骨钙素(osteocalcin,OCN)分泌量以及茜素红染色感染组明显高于对照组.结论 成肌细胞C2C12可以作为种子细胞构建组织工程化骨.%Objective Osteoblast core binding factor a 1 ( Cbfal) plays a role in osteoblast differentiation and development by regulating the gene of growth factor and extracellular matrix proteins . Recombinant adenovirus vector mediated Cbfa 1 was transferred to myoblast C2C12 to construct the tissue-engineered bone. Methods The myoblast C2C12 was cultured in vitro, and then transiently transfected with recombinant adenovirus vector pAd -IL-31 mediated-Cbfal/Osf2. Western blot was used to detect the expression of Cbfal. Results Compared with the control group , the expression of Cbfal, activity of alkaline phosphtase (ALP) , secretory volume of osteocalcin (OCN) and staining via alizarin bordeaux were higher in the transfection group . Conclusion Myoblast C2C12 acts as a seed cell for constructing tissue -engineered bone.

  7. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    International Nuclear Information System (INIS)

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146a by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.

  8. Transcriptional profile of a myotube starvation model of atrophy

    Science.gov (United States)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  9. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    OpenAIRE

    Bloemberg, Darin; Quadrilatero, Joe

    2016-01-01

    Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpa...

  10. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  11. Construction of highly organized three-dimensional muscle tissue induced by C2C12 cells in vitro%C2C12细胞诱导构建三维骨骼肌组织

    Institute of Scientific and Technical Information of China (English)

    王齐; 廖华; 秦建强; 余磊; 艾鹤英; 汪海仪; 邱小忠

    2010-01-01

    目的 利用修饰并铸型后的Sylgard 184凹槽与C2C12细胞复合培养、诱导分化,获取三维极性骨骼肌组织. 方法 Sylgard 184双组分以10∶1的比例均匀混合并倒板,室温下静置固化并对其表面压槽铸型,Hank液冲洗凹槽,Matrigel和胶原的混合液均匀铺被凹槽底部,置生物安全柜待细胞基质自然干燥、紫外线照射消毒1h以上时接种C2C12细胞悬液,细胞增殖约80%汇合时改用分化培养基进行分化诱导,倒置显微镜下观察肌管的分化状态, RT-PCR方法检测肌管内myogenin和desmin基因mRNAs的表达,免疫荧光检测生肌转录因子myogenin和desmin蛋白的表达,扫描电镜观察肌管形态和肌管间的连接. 结果 C2C12细胞在Sylgard 184弹性体铸型压槽中培养分化7d后,倒置显微镜下可见肌管呈极性分化,且肌管之间融合紧密;21d后,扫描电镜检测可见肌管之间排列紧密且相互重叠,形成膜样结构,厚度可达0.15mm,具有三维性;RT-PCR、免疫荧光检测证实极性分化肌管内具有myogenin和desmin的阳性表达. 结论 修饰并铸型的Sylgard 184凹槽具有一定的方向引导效应,能促进C2C12细胞分化形成多核肌管,且肌管呈极性重叠排列,形成三维极性骨骼肌组织结构.

  12. miR-143-3p促进C2C12成肌细胞分化%miR-143-3p Is Implicated in C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    云青; 吴国芳; 魏欢; 庞卫军; 杨公社; 沈清武

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNA that play important roles in skeletal muscle development.To explore the function of miR-143-3p in the differentiation of C2C12 myoblasts,we detected miR-143-3p levels by real-time PCR in different mouse tissues,as well as C2C12 myoblasts during myogenesis.After the trasfection of miR-143-3p mimics and inhibitor in C2C12 myoblasts,the expression of myogenic regulatory factor MyoG and myogenic marker gene MyHC were detected by realtime PCR and Western blotting.The myotubule formation was detected by immunofluorescent staining.The results showed that miR-143-3p was ubiquitously expressed in various tissues and was upregulated during cell differentiation.The differentiation of C2C12 myoblasts was promoted with miR-143-3p overexpression as significant upregulation of MyoG and MyHC,and increased number of myotubules.The inhibitor of miR-143-3p significantly repressed cell differentiation.Interestingly,the transfection of miR-143-3p mimics had little effect on the expression of MyHCs.Our data suggested that miR-143-3p might be involved during the myogeneis of C2C12 myoblasts,but not directly impact MyHC expression.%MicroRNAs (miRNAs)是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用real-time PCR检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p的模拟物和特异性抑制剂分别处理细胞,采用real-time PCR和Western印迹分别检测成肌因子MyoG和成肌标志基因MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分

  13. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    Science.gov (United States)

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-06-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro.

  14. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract.

    Science.gov (United States)

    Lee, Yong-Hyeon; Kim, Dae-Hyun; Kim, Yoon Suk; Kim, Tack-Joong

    2013-01-01

    Cell injury associated with reactive oxygen species (ROS) has been reported in various muscular disorders. We found that a Cichorium intybus (Cii) extract reduced H(2)O(2)-induced viability loss in C2C12 myoblasts, inhibited oxidative stress-induced apoptosis and increased intracellular heat shock protein 70 (Hsp 70) expression. Cii also inhibited the level of intracellular ceramide. These results indicate that Cii may prevent skeletal muscle atrophy by inducing the expression of Hsp 70 and inhibiting the level of ceramide. PMID:23391909

  15. Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program

    OpenAIRE

    Salmon, Morgan; Owens, Gary K.; Zehner, Zendra E.

    2009-01-01

    Myogenesis involves the complex interplay between the down-regulation of non-muscle genes and the up-regulation of muscle-specific genes. This interplay is controlled by the myogenic regulatory factors Myf5, MRF4, MyoD and myogenin. To trigger the up-regulation of these muscle-specific factors, certain environmental cues, such as the removal of serum, signal C2C12 myoblast cells to withdraw from cell cycle, fuse and activate muscle-specific genes. Here, the level of ZBP-89 (zfp148), a Krüppel...

  16. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Jeffrey eKim

    2014-03-01

    Full Text Available Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25µM of arachidonate (AA or docosahexaenoate (DHA, 25µM of EC [anandamide (AEA, 2-arachidonoylglycerol (2-AG, docosahexaenoylethanolamide (DHEA], 1µM of CB1 antagonist NESS0327, and CB2 antagonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.Key Words: endocannabinoid system •C2C12 myoblasts cannabinoid receptors glucose uptake gene expression DHEA • polyunsaturated fatty acids

  17. Mechanically loaded myotubes affect osteoclast formation.

    Science.gov (United States)

    Juffer, Petra; Jaspers, Richard T; Klein-Nulend, Jenneke; Bakker, Astrid D

    2014-03-01

    In response to mechanical loading skeletal muscle produces numerous growth factors and cytokines that enter the circulation. We hypothesized that myotubes produce soluble factors that affect osteoclast formation and aimed to identify which osteoclastogenesis-modulating factors are differentially produced by mechanically stimulated myotubes. C2C12 myotubes were subjected to mechanical loading by cyclic strain for 1 h, and postincubated with or without cyclic strain for 24 h. The effect of cyclic strain on gene expression in myotubes was determined by PCR. Conditioned medium (CM) was collected from cultures of unloaded and loaded myotubes and from MLO-Y4 osteocytes. CM was added to mouse bone marrow cells containing osteoclast precursors, and after 6 days osteoclasts were counted. Compared to unconditioned medium, CM from unloaded osteocytes increased osteoclast formation, while CM from unloaded myotubes decreased osteoclast formation. Cyclic strain strongly enhanced IL-6 expression in myotubes. CM from cyclically strained myotubes increased osteoclast formation compared to CM from unloaded myotubes, but this effect did not occur in the presence of an IL-6 antibody. In conclusion, mechanically loaded myotubes secrete soluble factors, among others IL-6, which affect osteoclast formation. These results suggest that muscle could potentially affect bone homeostasis in vivo via production of growth factors and/or cytokines. PMID:24264813

  18. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays

    Directory of Open Access Journals (Sweden)

    A Huber

    2007-10-01

    Full Text Available The stable culture of myogenic cells and their differentiation into myotubes in vitro is often hindered by the mechanical destabilisation of the spontaneously contractile neotissue formed, resulting in the complete loss of differentiating myotubes. Electrospun, parallel aligned nylon 6/6 microfibre arrays were use successfully for the culture of C2C12 myoblasts and their differentiation to form mechanically stable, orientated myotubes in vitro. Myoblasts adhered strongly to the parallel fibre array, forming a compact cell sheath across the entire array, aligning individual cells in parallel to the direction of the fibrous substratum. The myogenic potential of C2C12 myoblasts was not impaired and resulted in the formation of elongated myotubes expressing alpha-actinin, adult myosin heavy chain and nicotinic acetylcholine receptors as muscle-specific marker proteins. Newly formed C2C12 myotubes were themselves orientated in parallel to the direction of the underlying fibrous substratum and exhibited a high level of structural integration with the surrounding cells. In contrast, non-woven, non-orientated nylon 6/6 meshes, produced by conventional electrospinning, exhibited greatly reduced levels of C2C12 myoblast attachment and adherent myoblasts did not differentiate into myotubes. In conclusion, parallel microfibre arrays provided a superior microscale topography for the stable maintenance and differentiation of myotubes in vitro.

  19. Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12 Effects of continuous therapeutic ultrasound on proliferation and viability of C2C12 muscle cells

    Directory of Open Access Journals (Sweden)

    Paola Pelegrineli Artilheiro

    2010-06-01

    Full Text Available O ultra-som terapêutico (US é um recurso bioestimulante utilizado para propiciar reparo muscular de melhor qualidade e menor duração, mas o potencial terapêutico do US contínuo não está totalmente estabelecido. O objetivo deste trabalho foi avaliar o efeito do US contínuo sobre a proliferação e viabilidade de células musculares precursoras (mioblastos C2C12. Mioblastos C2C12 foram cultivados em meio de cultura contendo 10% de soro fetal bovino e irradiados com US contínuo nas freqüências de 1 e 3 MHz nas intensidades de 0,2 e 0,5 W/cm2, durante 2 e 5 minutos. A viabilidade e proliferação celular foram avaliadas após 24, 48 e 72 h de incubação. Grupos não-irradiados serviram como controle. Foram realizados experimentos independentes em cada condição acima, e os dados obtidos submetidos à análise estatística. Os resultados mostram que não houve diferença estatisticamente significativa na proliferação e viabilidade celular entre os mioblastos tratados com US e as culturas controles após os diferentes períodos de incubação, em todos os parâmetros avaliados. Conclui-se que o US contínuo, nos parâmetros avaliados, não foi capaz de alterar a proliferação e viabilidade dos mioblastos.Therapeutic ultrasound (US is a biophysical stimulation resource widely used in order to promote better, faster muscle repair, but the effectiveness of continuous US in treating injuries is not fully established. The aim of the present in vitro study was to assess the effects of continuous ultrasound on viability and proliferation of skeletal muscle precursor cells (C2C12 myoblasts. C2C12 myoblasts were cultured in a medium containing 10% foetal bovine serum and irradiated with continuous ultrasound at 1 and 3 MHz frequencies, at intensities of 0.2 and 0.5 W/cm² for 2 and 5 minutes. Cell viability and proliferation were assessed after different incubation periods (24, 48 and 72 h. Non-irradiated groups served as control and data were

  20. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes.

    Science.gov (United States)

    Chapnik, Nava; Rozenblit-Susan, Sigal; Genzer, Yoni; Froy, Oren

    2016-08-01

    In the liver, fructose bypasses the main rate-limiting step of glycolysis at the level of phosphofructokinase, allowing it to act as an unregulated substrate for de novo lipogenesis. It has been reported that consumption of large amounts of fructose increases de novo lipogenesis in the liver. However, the effect of fructose on ectopic deposition of muscle fat has been under dispute. Our aim was to study the effect of fructose on levels of genes and proteins involved in fatty acid oxidation and synthesis in hepatocytes vs. muscle cells. In addition, as fat accumulation leads to disruption of daily rhythms, we tested the effect of fructose treatment on clock gene expression. AML-12 hepatocytes and C2C12 myotubes were treated with fructose or glucose for 2 consecutive 24-h cycles and harvested every 6h. In contrast to glucose, fructose disrupted clock gene rhythms in hepatocytes, but in myotubes, it led to more robust rhythms. Fructose led to low levels of phosphorylated AMP-activated protein kinase (pAMPK) and high levels of LIPIN1 in hepatocytes compared with glucose. In contrast, fructose led to high pAMPK and low LIPIN1 and microsomal triacylglycerol transfer protein (MTTP) levels in myotubes compared with glucose. Analysis of fat content revealed that fructose led to less fat accumulation in myotubes compared to hepatocytes. In summary, fructose shifts metabolism towards fatty acid synthesis and clock disruption in hepatocytes, but not in myotubes. PMID:27240446

  1. Effect of Excess Gravitational Force on Cultured Myotubes in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.

  2. Extracellular vesicles from a muscle cell line (C2C12 enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34

    Directory of Open Access Journals (Sweden)

    Roger D. Madison

    2014-02-01

    Full Text Available Introduction: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. Background: When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. Methods: We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Conclusion: Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.

  3. 人参皂苷Rg1对体外培养C2C12成肌细胞凋亡的影响%Effect of ginsenoside Rg1 during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    叶东明; 余磊; 王乐禹; 邱小忠; 欧阳钧

    2011-01-01

    Objective: To investigate the effect and possible mechanism of ginsenoside Rgl during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro. Methods: The effect of different concentrations of ginsenoside Rgl during the cell apoptosis was assessed by MTT assay, Hoechst 33258-PI double staining and RT-PCR analysis. Results: After 48 h treatment, various doses of ginsenoside Rgl increased cell viability in serum-deprived C2C12 myoblasts using MTT assay. Hoechst 33258-PI double staining showed that the rate of apoptosis cells significantly decreased after being treated by ginsenoside Rgl. RT-PCR showed that ginsenoside Rgl caused the downregulation of pro-apoptotic caspase-3, Bax and AIF genes, while caused the up-regulation of anti-apoptotic Bcl-2 gene. Conclusion: Ginsenoside Rgl can protect the serum-deprived apoptosis in C2C12 myoblasts.%目的:研究人参皂苷Rg1对体外无血清诱导培养的C2C12成肌细胞凋亡的影响及其可能机制.方法:采用MTT法、人参皂苷Rg1处理48 h后hoechst 33258-PI染色,以及RT-PCR方法观察不同浓度人参皂苷Rg1对C2C12成肌细胞凋亡的影响.结果:MTT法结果显示人参皂苷Rg1处理48 h后可抑制C2C12成肌细胞凋亡;Hoechst 33258-PI染色可见C2C12成肌细胞凋亡率人参皂苷处理前后差异有统计学意义,人参皂苷处理后C2C12成肌细胞凋亡率显著下降;RT-PCR法结果显示人参皂苷Rg1可抑制Caspase-3、Bax和AIF mRNA表达,并能诱导Bcl-2 mRNA表达.结论:人参皂苷Rg1对C2C12成肌细胞凋亡具有保护作用.

  4. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    Science.gov (United States)

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  5. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Bauman, William A. [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Cardozo, Christopher, E-mail: chris.cardozo@va.gov [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  6. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    International Nuclear Information System (INIS)

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  7. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity. PMID:26830132

  8. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city.

  9. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress.

    Science.gov (United States)

    Rodriguez-Ortiz, Carlos J; Flores, Julio C; Valenzuela, Joanna A; Rodriguez, Gema J; Zumkehr, Joannee; Tran, Diana N; Kimonis, Virginia E; Kitazawa, Masashi

    2016-06-01

    Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration. PMID:27106764

  10. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity.

    Science.gov (United States)

    Barbieri, Elena; Guescini, Michele; Calcabrini, Cinzia; Vallorani, Luciana; Diaz, Anna Rita; Fimognari, Carmela; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano; Battistelli, Michela; Falcieri, Elisabetta; Romanello, Vanina; Sandri, Marco; Stocchi, Vilberto; Ciacci, Caterina; Sestili, Piero

    2016-01-01

    Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function. PMID:27610211

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-01

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. PMID:26687163

  12. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H;

    2011-01-01

    to specific receptors on the cell surface. We showed that mechanical stimuli promote an increase of FAK phosphorylation. In order to further shed light in the process of myoblast induced differentiation by mechanical stimuli, we performed a proteomic analysis. Thirteen proteins were found to be affected...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  13. Cell entry of lymphocytic choriomeningitis virus is restricted in myotubes.

    Science.gov (United States)

    Iwasaki, Masaharu; Urata, Shuzo; Cho, Yoshitake; Ngo, Nhi; de la Torre, Juan C

    2014-06-01

    In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube's resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication.

  14. 核仁素表达下调对C2C12细胞增殖与凋亡的影响%Effect of nucleolin down-regulation on the proliferation and apoptosis in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    王慷慨; 蒋磊; 鄂顺梅; 刘可; 张玲莉; 刘梅冬; 肖献忠

    2005-01-01

    目的:探讨核仁素反义寡核苷酸对细胞增殖与凋亡的影响.方法:采用反义寡核苷酸技术以抑制C2C12细胞中核仁素的表达后,用MTT法检测细胞增殖状况,流式细胞术及DNA琼脂糖凝胶电泳检测细胞凋亡.结果:免疫印迹结果显示,反义寡核苷酸导入细胞后24 h,核仁素的表达受到明显抑制,同时反义寡核苷酸处理组细胞的增殖能力亦明显受到抑制,细胞凋亡百分率显著升高,并能检测到清晰的"梯状条带".而正义及随机核酸导入细胞后不能降低核仁素的表达,对细胞增殖及凋亡均无明显影响.结论:核仁素表达下调能抑制C2C12细胞增殖并能触发C2C12细胞凋亡.

  15. Expression of Basic Fibroblast Growth Factor Results in the Decrease of Myostatin mRNA in Murine C2C12 Myoblasts

    Institute of Scientific and Technical Information of China (English)

    Hua-Zhong LIU; Qing LI; Xing-Yuan YANG; Lin LIU; Lei LIU; Xiao-Rong AN; Yong-Fu CHEN

    2006-01-01

    During the development and regeneration of skeletal muscle, many growth factors, such as basic fibroblast growth factor (bFGF, FGF-2) and myostatin, have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle, whereas myostatin plays a series of contrasting roles. In order to elucidate whether the expression of bFGF has any relationship with the expression of myostatin in skeletal muscle cells, we constructed a eukaryotic expression vector for the expression of exogenous bFGF in murine C2C12 myoblasts. Quantitative RT-PCR assays indicated that with the increase of the expression of exogenous bFGF gene, the expression of endogenous myostatin gene was suppressed at mRNA level and protein level.

  16. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    Abstract Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation. A. Grossi, M. A. Lawson; Department of Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark The process of muscle...... development and growth is a complex sequence of events whereby muscle cells respond to a number of stimuli in order to form organised muscle tissue. Increase in muscle mass is greatly influenced by the rate of skeletal muscle protein synthesis and degradation, processes that can be altered by mechanical...... forces. Stretch- or load-induced signaling is now beginning to be understood as a factor which affects the mass and phenotype of muscles as well as the expression of a number of proteins within muscle cells. Use of magnetic field to produce mechanical forces to stimulate cell populations has been well...

  17. The Cytoprotective Effect of Petalonia binghamiae Methanol Extract against Oxidative Stress in C2C12 Myoblasts: Mediation by Upregulation of Heme Oxygenase-1 and Nuclear Factor-Erythroid 2 Related Factor 2

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2015-04-01

    Full Text Available This study was designed to examine the protective effects of the marine brown algae Petalonia binghamiae against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms. P. binghamiae methanol extract (PBME prevented hydrogen peroxide (H2O2-induced growth inhibition and exhibited scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2 in mouse-derived C2C12 myoblasts. PBME also significantly attenuated H2O2-induced comet tail formation in a comet assay, histone γH2A.X phosphorylation, and annexin V-positive cells, suggesting that PBME prevented H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, PBME increased the levels of heme oxygenase-1 (HO-1, a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a HO-1 competitive inhibitor, significantly abolished the protective effects of PBME on H2O2-induced ROS generation, growth inhibition, and apoptosis. Collectively, these results demonstrate that PBME augments the antioxidant defense capacity through activation of the Nrf2/HO-1 pathway.

  18. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  19. APS improves free fatty acid metabolism by activating AMPK and promoting translocation of FAT/CD36 in C2C12 myoblasts%黄芪多糖通过活化AMPK和促进骨骼肌FAT/CD36转位改善成肌细胞FFAs代谢

    Institute of Scientific and Technical Information of China (English)

    胡阳黔; 李静; 刘坚; 欧阳静萍; 宋杰

    2013-01-01

    AIM: To investigate the effect of Astragalus polysaccharides (APS) on the metabolism of free fatty acids (FFAs) in C2C12 myoblasts. METHODS: Cultured C2C12 myoblasts were used in the study. The viability of C2C12 myoblasts treated with FFAs at different concentrations for different time was observed by MTT assay. The concentrations of FFAs in the medium were detected by acetyl-CoA synthase (ACS) -acetyl-CoA oxidase (ACOD) method. The expression of fatty acid translocase (FAT/CD36), AMPK and p-AMPK protein was examined by Western blotting. RESULTS; FFAs decreased the viability of C2C12 myoblasts in a time- and concentration-dependent manner. Compared with FFAs group, the expression of cellular membrane FAT/CD36 and p-AMPK proteins increased in FFAs + APS group, but total AMPK and FAT/CD36 protein expression was not significantly changed. Meanwhile, the concentration of FFAs in the medium decreased and the cell viability increased in FFAs + APS group as compared with the group. CONCLUSION: APS improves the metabolism of FFAs by activating AMPK and promoting translocation of FAT/CD36 in C2C12 myoblasts.%目的:探讨黄芪多糖(Astragalus polysaccharides,APS)对骨骼肌游离脂肪酸(free fatty acids,FFAs)代谢的影响及其机制.方法:培养小鼠C2C12成肌细胞;MTT法检测不同浓度FFAs作用不同时间对细胞活性的影响.根据MTT结果选取FFAs最适浓度和时间处理细胞并用APS干预,采用乙酰辅酶A合成酶-乙酰辅酶A氧化酶法检测APS干预前后培养液FFAs浓度;Western blotting测APS干预前后细胞膜脂肪酸转位酶(FAT/CD36)、总FAT/CD36、磷酸化腺苷酸活化蛋白激酶(phosphorylated AMP-activated protein kinase,p-AMPK)和总AMPK蛋白表达.结果:FFAs对细胞的毒性呈浓度和时间依赖性.与FFAs组比较,FFAs+ APS组细胞膜FAT/CD36及p-AMPK蛋白表达增加(P<0.05),而总FAT/CD36及总AMPK蛋白表达无明显差异(P>0.05),同时培养液FFAs浓度降低,细胞活性增加(P<0.05).

  20. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  1. Irisin response to exercise training in adults and its effect on the regulation of C2C12 cell proliferation and differentiation

    OpenAIRE

    Qiu, Shanhu

    2015-01-01

    Irisin is now recognized as an exercise-induced hormone that is produced primarily by skeletal muscles and adipose tissue. However, its physiological characteristics in the response to acute or chronic exercise training still remains somewhat controversial. By using serum samples at different time points before and after an acute bout of exercise among trained and untrained healthy adults, this study showed that serum irisin transiently increases in response to acute exercise, which is indepe...

  2. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    Science.gov (United States)

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level. PMID:26902224

  3. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    Directory of Open Access Journals (Sweden)

    Nielsen Niels

    2010-02-01

    Full Text Available Abstract Background Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. Methods Differentiated mouse myotube cultures (C2C12 were exposed to 5 mM creatine monohydrate (CMH for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional 1H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH2 oxidation after 24 h pre-incubation with CMH. Results The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while down-regulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the

  4. Human epicardium-derived cells fuse with high efficiency with skeletal myotubes and differentiate toward the skeletal muscle phenotype: a comparison study with stromal and endothelial cells.

    Science.gov (United States)

    Gentile, Antonietta; Toietta, Gabriele; Pazzano, Vincenzo; Tsiopoulos, Vasileios D; Giglio, Ada Francesca; Crea, Filippo; Pompilio, Giulio; Capogrossi, Maurizio C; Di Rocco, Giuliana

    2011-03-01

    Recent studies have underscored a role for the epicardium as a source of multipotent cells. Here, we investigate the myogenic potential of adult human epicardium-derived cells (EPDCs) and analyze their ability to undergo skeletal myogenesis when cultured with differentiating primary myoblasts. Results are compared to those obtained with mesenchymal stromal cells (MSCs) and with endothelial cells, another mesodermal derivative. We demonstrate that EPDCs spontaneously fuse with pre-existing myotubes with an efficiency that is significantly higher than that of other cells. Although at a low frequency, endothelial cells may also contribute to myotube formation. In all cases analyzed, after entering the myotube, nonmuscle nuclei are reprogrammed to express muscle-specific genes. The fusion competence of nonmyogenic cells in vitro parallels their ability to reconstitute dystrophin expression in mdx mice. We additionally show that vascular cell adhesion molecule 1 (VCAM1) expression levels of nonmuscle cells are modulated by soluble factors secreted by skeletal myoblasts and that VCAM1 function is required for fusion to occur. Finally, treatment with interleukin (IL)-4 or IL-13, two cytokines released by differentiating myotubes, increases VCAM1 expression and enhances the rate of fusion of EPDCs and MSCs, but not that of endothelial cells. PMID:21209317

  5. 热休克蛋白70过表达对骨骼肌细胞内 ATP水平的影响%Effect of over-expression Hsp70 on the intracellular ATP level in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    王磊; 王尊; 刘跃飞; 顾一煌

    2013-01-01

    Objective To examine the effect of over-expression Hsp70 on the intracellular ATP level in C2C12 cells. Methods Hsp70 gene was amplified from pAT153 plasmids and then cloned into pTRE2hyg vector. After the transfection of recombinant plasmids of pTRE2hyg-Hsp70 into the C2C12 cells, the expression of Hsp70 was examined by Western blot. Furthermore, the intracellular ATP level was evaluated in C2C12 cells at different time points (0 d, 3 d, 7 d) during cell culture. Results Compared with controls, the intracellular ATP level was significantly increased (P<0.05) at different time points,(14.5 ± 2.87)nmol/mg protein (3 d), (15.3 ± 3.12) nmol/mg protein(7 d) after transfection. Conclusion The C2C12 cells of over-expression Hsp70 can increase the intracellular ATP level, indicating that Hsp70 may play a role in the metabolism in skeletal muscle cells.%目的:探讨热休克蛋白70(heat shock protein 70,Hsp70)过表达对骨骼肌细胞(C2C12)内ATP水平的影响。方法通过构建重组pTRE2hyg-Hsp70质粒,稳定转染C2C12细胞系,建立Hsp70过表达的C2C12细胞系。分别在转染后细胞培养的不同时间点(0 d,3 d,7 d),检测细胞内ATP的水平。结果 Hsp70过表达的C2C12细胞系在培养的3 d,7 d,细胞内ATP的水平分别达到(14.5±2.87)nmol/mg蛋白质、(15.3±3.12)nmol/mg 蛋白质,与对照组相比明显增高(P<0.05)。结论 Hsp70过表达的骨骼肌细胞可以提高细胞内的ATP水平,提示Hsp70对骨骼肌细胞的能量代谢产生影响。

  6. Metabolic flexibility is conserved in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2007-01-01

    The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation......, respectively; P metabolic...... inflexibility described in obese and diabetic patients is not an intrinsic defect; rather, it is based on an extramuscular mechanism (i.e., the inability to vary extracellular fatty acid concentrations during insulin stimulation). Thus, skeletal muscles are metabolic-flexible per se....

  7. Dexamethasone rapidly inhibits glucose uptake via non-genomic mechanisms in contracting myotubes.

    Science.gov (United States)

    Gong, Hong; Liu, Lei; Ni, Chen-Xu; Zhang, Yi; Su, Wen-Jun; Lian, Yong-Jie; Peng, Wei; Zhang, Jun-Ping; Jiang, Chun-Lei

    2016-08-01

    Glucocorticoids (GCs) are a class of steroid hormones that regulate multiple aspects of glucose homeostasis. In skeletal muscle, it is well established that prolonged GC excess inhibits glucose uptake and utilization through glucocorticoid receptor (GR)-mediated transcriptional changes. However, it remains obscure that whether the rapid non-genomic effects of GC on glucose uptake are involved in acute exercise stress. Therefore, we used electric pulse stimulation (EPS)-evoked contracting myotubes to determine whether the non-genomic actions of GC were involved and its underlying mechanism(s). Pretreatment with dexamethasone (Dex, 10 μM) significantly prevented contraction-stimulated glucose uptake and glucose transporter 4 (Glut4) translocation within 20 min in C2C12 myotubes. Neither GC nuclear receptor antagonist (RU486) nor protein synthesis inhibitor (cycloheximide, Chx) affected the rapid inhibition effects of Dex. AMPK and CaMKII-dependent signaling pathways were associated with the non-genomic effects of Dex. These results provide evidence that GC rapidly suppresses glucose uptake in contracting myotubes via GR-independent non-genomic mechanisms. AMPK and CaMKII-mediated Glut4 translocation may play a critical role in GC-induced rapid inhibition of glucose uptake. PMID:27246478

  8. JNK deficiency enhances fatty acid utilization and diverts glucose from oxidation to glycogen storage in cultured myotubes.

    Science.gov (United States)

    Vijayvargia, Ravi; Mann, Kara; Weiss, Harvey R; Pownall, Henry J; Ruan, Hong

    2010-09-01

    Although germ-line deletion of c-Jun NH(2)-terminal kinase (JNK) improves overall insulin sensitivity in mice, those studies could not reveal the underlying molecular mechanism and the tissue site(s) in which reduced JNK activity elicits the observed phenotype. Given its importance in nonesterified fatty acids (NEFA) and glucose utilization, we hypothesized that the insulin-sensitive phenotype associated with Jnk deletion originates from loss of JNK function in skeletal muscle. Short hairpin RNA (shRNA)-mediated gene silencing was used to identify the functions of JNK subtypes in regulating energy metabolism and metabolic responses to elevated concentrations of NEFA in C2C12 myotubes, a cellular model of skeletal muscle. We show for the first time that cellular JNK2- and JNK1/JNK2-deficiency divert glucose from oxidation to glycogenesis due to increased glycogen synthase (GS) activity and induction of Pdk4. We further show that JNK2- and JNK1/JNK2-deficiency profoundly increase cellular NEFA oxidation, and their conversion to phospholipids and triglyceride. The increased NEFA utilization was coupled to increased expressions of selective NEFA handling genes including Cd36, Acsl4, and Chka, and enhanced palmitic acid (PA)-dependent suppression of acetyl-CoA carboxylase (Acc). In JNK-intact cells, PA inhibited insulin signaling and glycogenesis. Although silencing Jnk1 and/or Jnk2 prevented PA-induced inhibition of insulin signaling, it did not completely block decreased insulin-mediated glycogenesis, thus indicating JNK-independent pathways in the suppression of glycogenesis by PA. Muscle-specific inhibition of JNK2 (or total JNK) improves the capacity of NEFA utilization and glycogenesis, and is a potential therapeutic target for improving systemic insulin sensitivity in type 2 diabetes (T2D). PMID:20094041

  9. Reduced TCA Flux in Diabetic Myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP...... production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no......The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP...

  10. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.

  11. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991744

  12. Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-helix transcription factors in otherwise non-differentiation growth conditions.

    Science.gov (United States)

    Grubišić, Vladimir; Gottipati, Manoj K; Stout, Randy F; Grammer, J Robert; Parpura, Vladimir

    2014-02-01

    We used a synthetic biology approach to produce myotubes from mammalian C2C12 myoblasts in non-differentiation growth conditions using the expression of basic helix-loop-helix transcription factors, MyoD and E12, in various combinations and configurations. Our approach not only recapitulated the basics of muscle development and physiology, as the obtained myotubes showed qualities similar to those seen in striated muscle fibers in vivo, but also allowed for the synthesis of populations of myotubes which assumed distinct morphology, myofibrillar development and Ca(2+) dynamics. This fashioned class of biomaterials is suitable for the building blocks of soft actuators in micro-scale biomimetic robotics. This production line strategy can be embraced in reparative medicine as synthetic human myotubes with predetermined morphological/functional properties could be obtained using this very approach. This methodology can be adopted beyond striated muscle for the engineering of other tissue components/cells whose differentiation is governed by the principles of basic helix-loop-helix transcription factors, as in the case, for example, of neural or immune cell types.

  13. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production.

    Science.gov (United States)

    Juffer, Petra; Bakker, Astrid D; Klein-Nulend, Jenneke; Jaspers, Richard T

    2014-07-01

    Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.

  14. Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2014-01-01

    Full Text Available Cisplatin (CisPt is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.

  15. Expressed sequence tags for bovine muscle satellite cells, myotube formed-cells and adipocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available BACKGROUND: Muscle satellite cells (MSCs represent a devoted stem cell population that is responsible for postnatal muscle growth and skeletal muscle regeneration. An important characteristic of MSCs is that they encompass multi potential mesenchymal stem cell activity and are able to differentiate into myocytes and adipocytes. To achieve a global view of the genes differentially expressed in MSCs, myotube formed-cells (MFCs and adipocyte-like cells (ALCs, we performed large-scale EST sequencing of normalized cDNA libraries developed from bovine MSCs. RESULTS: A total of 24,192 clones were assembled into 3,333 clusters, 5,517 singletons and 3,842contigs. Functional annotation of these unigenes revealed that a large portion of the differentially expressed genes are involved in cellular and signaling processes. Database for Annotation, Visualization and Integrated Discovery (DAVID functional analysis of three subsets of highly expressed gene lists (MSC233, MFC258, and ALC248 highlighted some common and unique biological processes among MSC, MFC and ALC. Additionally, genes that may be specific to MSC, MFC and ALC are reported here, and the role of dimethylarginine dimethylaminohydrolase2 (DDAH2 during myogenesis and hemoglobin subunit alpha2 (HBA2 during transdifferentiation in C2C12 were assayed as a case study. DDAH2 was up-regulated during myognesis and knockdown of DDAH2 by siRNA significantly decreased myogenin (MYOG expression corresponding with the slight change in cell morphology. In contrast, HBA2 was up-regulated during ALC formation and resulted in decreased intracellular lipid accumulation and CD36 mRNA expression upon knockdown assay. CONCLUSION: In this study, a large number of EST sequences were generated from the MSC, MFC and ALC. Overall, the collection of ESTs generated in this study provides a starting point for the identification of novel genes involved in MFC and ALC formation, which in turn offers a fundamental resource to

  16. Coculture of rat embryonic proprioceptive sensory neurons and myotubes

    NARCIS (Netherlands)

    Copray, S; Liem, R; MantinghOtter, [No Value; Brouwer, N

    1996-01-01

    With the aim to study the cellular mechanisms underlying the process of muscle spindle (re)generation, dorsal root ganglia (DRG) neurons derived from 16-day rat embryos were cocultured with developing myotubes in a compartmentalized culture device. To accomplish the selective survival and neurite fo

  17. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    OpenAIRE

    Sirivisoot S; Harrison BS

    2011-01-01

    Sirinrath Sirivisoot, Benjamin S Harrison Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA Background: This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results: After electrical stimulation,...

  18. Kinetics of lactate and pyruvate transport in cultured rat myotubes

    DEFF Research Database (Denmark)

    von Grumbckow, Lena; Elsner, Peter; Hellsten, Ylva;

    1999-01-01

    Skeletal muscle transport of lactate and pyruvate was studied in primary cultures of rat myotubes, applying the pH-sensitive fluorescent indicator 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The initial rate of decrease in intracellular pH (pHi) upon lactate or pyruvate incubation was used to...

  19. Mechanically loaded myotubes affect osteoclast formation

    NARCIS (Netherlands)

    P. Juffer; R.T. Jaspers; J. Klein-Nulend; A.D. Bakker

    2014-01-01

    In response to mechanical loading skeletal muscle produces numerous growth factors and cytokines that enter the circulation. We hypothesized that myotubes produce soluble factors that affect osteoclast formation and aimed to identify which osteoclastogenesis-modulating factors are differentially pro

  20. In Vitro Palmitate Treatment of Myotubes from Postmenopausal Women Leads to Ceramide Accumulation, Inflammation and Affected Insulin Signaling

    DEFF Research Database (Denmark)

    Abildgaard, Julie; Henstridge, Darren C; Pedersen, Anette Tønnes;

    2014-01-01

    Menopause is associated with an increased incidence of insulin resistance and metabolic diseases. In a chronic palmitate treatment model, we investigated the role of skeletal muscle fatty acid exposure in relation to the metabolic deterioration observed with menopause. Human skeletal muscle...... satellite cells were isolated from premenopausal (n = 6) and postmenopausal (n = 5) women. In an in vitro model, the myotubes were treated with palmitate (300 µM) for one-, two- or three days during differentiation. Effects on lipid accumulation, inflammation and insulin signaling were studied. Palmitate...... treatment led to a 108% (CI 95%: 50%; 267%) increase in intramyocellular ceramide in the myotubes from the postmenopausal women (post-myotubes) compared with a 26% (CI 95%: -57%; 96%) increase in myotubes from the premenopausal women (pre-myotubes), (p

  1. Park7 expression influences myotube size and myosin expression in muscle.

    Directory of Open Access Journals (Sweden)

    Hui Yu

    Full Text Available Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+ and Park7 (-/- mice were used to examine the effect of differential expression of Park7. The Park7 (+/+ myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (-/- myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+ myotubes relative to Park7 (-/-. The level of AKT phosphorylation was increased in Park7 (+/+ myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+ myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.

  2. Expression profiling of insulin action in human myotubes

    DEFF Research Database (Denmark)

    Hansen, Lars; Gaster, Michael; Oakeley, Edward J;

    2004-01-01

    ), 0.5, 1, 2, 4, 8, and 24 h, mRNA contents were analyzed in human myotubes for each time point using Affymetrix DNA chip technology. Insulin treatment induced an inflammatory and pro-angiogenic response in the myotubes, with expression of early response factors followed by inflammatory chemokines...... of diabetic skeletal muscle. We conclude, (i) that insulin induces a time-dependent inflammatory and pro-angiogenic transcriptional response in cultured human myotubes, (ii) that myotubes in vitro retain a gene expression pattern specific for type 2 diabetes and sharing five genes with that of type 2 diabetic...

  3. Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors.

    Science.gov (United States)

    Hughes, David C; Stewart, Claire E; Sculthorpe, Nicholas; Dugdale, Hannah F; Yousefian, Farzad; Lewis, Mark P; Sharples, Adam P

    2016-06-01

    We have previously highlighted the ability of testosterone (T) to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy via multiple population doublings (PD) versus their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (picropodophyllin/PPP, 150 nM) for 72 h and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin gene expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was also unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-IR, myoD and myogenin with increases in myostatin mRNA in both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger T induced increases in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. Importantly, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed

  4. A role for phospholipase D3 in myotube formation.

    Directory of Open Access Journals (Sweden)

    Mary Osisami

    Full Text Available Phospholipase D3 (PLD3 is a non-classical, poorly characterized member of the PLD superfamily of signaling enzymes. PLD3 is a type II glycoprotein associated with the endoplasmic reticulum, is expressed in a wide range of tissues and cells, and undergoes dramatic upregulation in neurons and muscle cells during differentiation. Using an in vitro skeletal muscle differentiation system, we define the ER-tethering mechanism and report that increased PLD3 expression enhances myotube formation, whereas a putatively dominant-negative PLD3 mutant isoform reduces myotube formation. ER stress, which also enhances myotube formation, is shown here to increase PLD3 expression levels. PLD3 protein was observed to localize to a restricted set of subcellular membrane sites in myotubes that may derive from or constitute a subdomain of the endoplasmic reticulum. These findings suggest that PLD3 plays a role in myogenesis during myotube formation, potentially in the events surrounding ER reorganization.

  5. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes.

    Science.gov (United States)

    Lu, Gang; Seta, Karen A; Millhorn, David E

    2005-06-10

    Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells. PMID:15824106

  6. Emissions of C2 - C12 hydrocarbons in the Hsuehshan tunnel, Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chia-Hsiang Lai; Yen-Ping Peng

    2011-01-01

    The concentrations of 56 hydrocarbons from C2 to C12 were measured simultaneously in the southbound bore, the northbound bore and the exhaust air shafts of the Hsuehshan tunnel near Yilan, Taiwan for 12 days during 2007 and 2008.A total of 60 integrated air samples were collected using stainless steel canisters and analyzed using GC/FID and GC/MS.The five most abundant species in all samples were ethylene, acetylene, isopentane, propylene and toluene.The exit/entrance ratios of total non-methane hydrocarbons (NMHC) concentration were 7.8 and 4.8 for the southbound and northbound bores, respectively.Furthermore, the exhaust from the vertical shafts affects air quality in the neighborhood.The most abundant species of emission rate (ER) was toluene (21.93-42.89 mg/sec), followed by isopentane, ethylene, propylene and l~butene, with ER ranging from 2.50 to 9.31 mg/sec.The species in the three exhaust air shafts showed that the reacfivifies of these emissions are similar to those of vehicle emissions.Notably, the control of emissions in the vertical shafts of the vehicle tunnel will be important in the future.

  7. Human epicardium-derived cells fuse with high efficiency with skeletal myotubes and differentiate toward the skeletal muscle phenotype: a comparison study with stromal and endothelial cells

    OpenAIRE

    A. Gentile; G. Toietta; V. Pazzano; V. Tsiopoulos; A. Giglio; F. Crea; Pompilio, G; Capogrossi, M.; G. Di Rocco

    2011-01-01

    Recent studies have underscored a role for the epicardium as a source of multipotent cells. Here, we investigate the myogenic potential of adult human epicardium-derived cells (EPDCs) and analyze their ability to undergo skeletal myogenesis when cultured with differentiating primary myoblasts. Results are compared to those obtained with mesenchymal stromal cells (MSCs) and with endothelial cells, another mesodermal derivative. We demonstrate that EPDCs spontaneously fuse with pre-existing myo...

  8. Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes

    DEFF Research Database (Denmark)

    Wiik, A.; Hellsten, Ylva; Berthelson, P.;

    2009-01-01

    The aim of the present study was to investigate the activation of estrogen response elements (EREs) by estrogen and muscle contractions in rat myotubes in culture and to assess whether the activation is dependent on the estrogen receptors (ERs). In addition, the effect of estrogen and contraction...... then differentiated into myotubes and subjected to either estrogen or electrical stimulation. Activation of the ERE sequence was determined by measurement of luciferase activity. The results show that both ERalpha and ERbeta are expressed in myotubes from rats. Both estrogen stimulation and muscle contraction...... increased (P muscle contraction. Use of ER antagonists showed that, whereas the estrogen-induced transactivation is mediated via ERs, the effect of muscle contraction...

  9. Involvement of Protein Kinase C Activation in L-Leucine-Induced Stimulation of Protein Synthesis in L6 Myotubes

    OpenAIRE

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-01-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhib...

  10. Triacylglycerol Accumulation is not primarily affected in Myotubes established from Type 2 Diabetic Subjects

    DEFF Research Database (Denmark)

    Gaster, Michael; Beck-Nielsen, Henning

    2006-01-01

    In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA) concentra......In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA......-stimulated FA uptake (P<0.001), but did not correlate with insulin-stimulated glucose uptake for PA or OA (P>0.05). These results indicate that (1) TAG accumulation is not primarily affected in skeletal muscle tissue of obese and T2D; (2) induced inhibition of oxidative phosphorylation is followed by TAG...... skeletal muscle of obese and T2D subjects is adaptive....

  11. FA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Beck-Nielsen, Henning; Gaster, Michael

    2013-01-01

    /FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic FA1 on the intermediary metabolism in myotubes established from lean, obese, and type 2 diabetic (T2D) subjects. Methods: Myotube cultures were established from lean and obese control subjects, and...... established from lean, obese, and T2D subjects. Instead, chronic FA1 exposure induced pro-inflammatory cytokines expression (IL-6 and CCL2) in association with reducing adipogenic markers (ADD1, AP2, CD36, and PPARg2) in myotubes. Consistent with this observation, addition of FA1 to cultured myotubes was show...... to significantly inhibit their differentiation into adipocyte. Conclusion: Our results exclude direct effects of FA1 on glucose and lipid metabolism in cultured myotubes established from lean, obese, and T2D subjects. Therefore, the pathogenesis of FA1-induced IR might mainly be mediated via the FA1...

  12. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes

    OpenAIRE

    García Sánchez, Tomás; Azan, Antoine; Leray, Isabelle; Rosell Ferrer, Francisco Javier; Bragós Bardia, Ramon; Mir, Lluís M.

    2015-01-01

    In this study, electrical impedance spectroscopy measurements are performed during electroporation of monolayers of differentiated myotubes. The time resolution of the system (1 spectrum/ms) enable 860 full spectra (21 frequencies from 5 kHz to 13 MHz) to be acquired during the time gap between consecutive pulses (interpulse) of a classical electroporation treatment (8 pulses, 100 mu s, 1 Hz). Additionally, the characteristics of the custom microelectrode assembly used allow the experiments t...

  13. Long-chain Acyl-CoA is not primarily increased in myotubes established from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Just, Malene; Faergeman, Nils J; Knudsen, Jens;

    2006-01-01

    Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean ...

  14. File list: Oth.Myo.05.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.05.AllAg.Myotube mm9 TFs and others Muscle Myotube SRX497486,SRX497487,SRX2...27232,SRX227230 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.05.AllAg.Myotube.bed ...

  15. File list: InP.Myo.10.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.10.AllAg.Myotube mm9 Input control Muscle Myotube SRX497488,SRX236484,SRX49...7489 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.10.AllAg.Myotube.bed ...

  16. File list: ALL.Myo.10.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.10.AllAg.Myotube mm9 All antigens Muscle Myotube SRX497486,SRX497487,SRX227...232,SRX497488,SRX236484,SRX227230,SRX497489 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.10.AllAg.Myotube.bed ...

  17. File list: Oth.Myo.20.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Myotube mm9 TFs and others Muscle Myotube SRX497486,SRX497487,SRX2...27232,SRX227230 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.AllAg.Myotube.bed ...

  18. File list: ALL.Myo.05.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.05.AllAg.Myotube mm9 All antigens Muscle Myotube SRX497489,SRX497486,SRX497...487,SRX227232,SRX497488,SRX236484,SRX227230 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.05.AllAg.Myotube.bed ...

  19. File list: ALL.Myo.50.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.50.AllAg.Myotube mm9 All antigens Muscle Myotube SRX497486,SRX227232,SRX497...488,SRX497487,SRX497489,SRX227230,SRX236484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.50.AllAg.Myotube.bed ...

  20. File list: ALL.Myo.20.AllAg.Myotube [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.20.AllAg.Myotube mm9 All antigens Muscle Myotube SRX497486,SRX497487,SRX227...232,SRX497488,SRX236484,SRX497489,SRX227230 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Myo.20.AllAg.Myotube.bed ...

  1. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    Science.gov (United States)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  2. Mechanistic investigation of adult myotube response to exercise and drug treatment in vitro using a multiplexed functional assay system

    OpenAIRE

    McAleer, C. W.; Smith, A. S. T.; Najjar, S.; Pirozzi, K.; Long, C.J.; Hickman, J.J.

    2014-01-01

    The ability to accurately measure skeletal muscle functional performance at the single-cell level would be advantageous for exercise physiology studies and disease modeling applications. To that end, this study characterizes the functional response of individual skeletal muscle myotubes derived from adult rodent tissue to creatine treatment and chronic exercise. The observed improvements to functional performance in response to these treatments appear to correlate with alterations in hypertro...

  3. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from le...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  4. Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-11-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [(3)H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A(2) and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C. PMID:19003213

  5. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

    Science.gov (United States)

    Li, Yiming; Tran, Van H; Duke, Colin C; Roufogalis, Basil D

    2012-09-01

    In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of nonpolar to moderately polar compounds, using a short-column vacuum chromatographic method. The most active fraction (F7) was further purified for identification of its active components. The effect of the extract, fractions, and purified compounds on glucose uptake was evaluated using radioactive labelled 2-[1,2-³H]-deoxy-D-glucose in L6 myotubes. The pungent phenolic gingerol constituents were identified as the major active compounds in the ginger extract enhancing glucose uptake. (S)-[6]-Gingerol was the most abundant component among the gingerols, however, (S)-[8]-gingerol was the most potent on glucose uptake. The activity of (S)-[8]-gingerol was found to be associated primarily with an increase in surface distribution of GLUT4 protein on the L6 myotube plasma membrane, as detected by expression of hemagglutinin epitope-tagged GLUT4 in L6 muscle cells. The enhancement of glucose uptake in L6 rat skeletal muscle cells by the gingerol pungent principles of the ginger extract supports the potential of ginger and its pungent components for the prevention and management of hyperglycemia and type 2 diabetes. PMID:22828920

  6. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars;

    2013-01-01

    stimulated glucose uptake nor glycogen synthesis in insulin-resistant myotubes generated by excess glucose exposure. CONCLUSIONS: Primary porcine myotubes were established as a model of skeletal muscles for measuring glucose uptake and glycogen synthesis, and we showed that PA can play a role in stimulating...

  7. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation.

    Science.gov (United States)

    Harisseh, Rania; Chatelier, Aurélien; Magaud, Christophe; Déliot, Nadine; Constantin, Bruno

    2013-05-01

    Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.

  8. Effects of inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate induced insulin resistance in L6 myotubes.

    Directory of Open Access Journals (Sweden)

    Agnieszka Mikłosz

    Full Text Available BACKGROUND: The objective of this study was to examine the effects of short (2 h and prolonged (18 h inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate (PA induced insulin resistance in L6 myotubes. METHODS: L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor or PA and Ski II (SphK1inhibitor for different time periods (2 h and 18 h. Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA, ceramide (CER, sphingosine (SFO, sphingosine-1-phosphate (S1P] were estimated by HPLC. RESULTS: Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. CONCLUSION: Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor. Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

  9. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation

    Directory of Open Access Journals (Sweden)

    Atilgan Yilmaz

    2015-11-01

    Full Text Available In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA, bone morphogenetic protein 4 (BMP4 and fibroblast growth factor 1 (FGF1. Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells.

  10. Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2007-01-01

    lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while......In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain...... (Antimycin A), the ATP synthase (oligomycin) or respiratory uncoupling (2,4-dinitrophenol). Direct inhibition of the electron transport chain or the ATP synthase was followed by increased glucose uptake and lactate production, reduced glycogen synthesis, reduced lipid and glucose oxidation and unchanged...

  11. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K;

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  12. Effects of electrostimulation on glycogenolysis in cultured rat myotubes

    DEFF Research Database (Denmark)

    Elsner, Peter; Grunnet, Niels; Quistorff, Bjørn

    2003-01-01

    A model for electrostimulation causing contractions of primary cultures of rat myotubes was established. The kinetics of glycogen degradation was investigated for a 2-h period to elucidate the coupling between contraction and glycogenolytic flux. Electrostimulation caused contraction and increased...... glycogenolytic flux, but had no effect on glycogen phosphorylase-a activity. Forskolin increased glycogenolytic flux more than electrostimulation, and caused a fast activation of glycogen phosphorylase, while it did not elicit contraction. The effects of electrostimulation and forskolin on glycogenolytic flux...... were partly additive. The metabolism of glucose and glycogen was almost equally anaerobic and aerobic. The ATP content remained constant during glycogenolysis, but phosphocreatine decreased with the largest decrease in electrostimulated cells. The calculated ATP turnover rate increased about 3 times...

  13. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  14. Characterization of human myotubes from type 2 diabetic and non-diabetic subjects using complementary quantitative mass spectrometric methods

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Bak, Steffen; Beck-Nielsen, Henning;

    2011-01-01

    2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery...... strategy using iTRAQ and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring (SRM) to identify, quantify and validate changes in protein abundance between human myotubes obtained from non-diabetic lean, non-diabetic obese and type 2 diabetic subjects...

  15. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes

    OpenAIRE

    1984-01-01

    Coated vesicles are present in the myoplasm of embryonic chick myotubes grown in vitro. They are most numerous beneath regions of the surface membrane that contain a high density of acetylcholine receptors (AChR). Prolonged exposure of myotubes to saline extract of chick brain increases the number of intracellular AChR and the number of coated vesicles. This suggests that coated vesicles contain AChR, and this hypothesis was tested with horseradish peroxidase-alpha-bungarotoxin (HRP-alpha BTX...

  16. Effect of Solanum surattense on mitochondrial enzymes in diabetic rats and in vitro glucose uptake activity in L6 myotubes

    Directory of Open Access Journals (Sweden)

    Muruhan Sridevi

    2015-01-01

    Full Text Available Background: S. surattense is widely used in Siddha medicine for various ailments. Objective: The aim was to evaluate the impact of alcoholic leaf-extract of S. surattense on mitochondrial enzymes in streptozotocin (STZ induced diabetic rats and to study the in vitro muscle glucose uptake activity on L6 myotubes. Materials and Methods: The male albino Wistar rats were randomly divided into five groups of six animals each. Diabetes was induced by intraperitoneal injection of STZ (40 mg/kg body weight. After being confirmed the diabetic rats were treated with alcoholic leaf-extract of S. surattense (100 mg/kg body weight for 45 days. The biochemical estimations (liver mitochondrial enzymes, antioxidants, thiobarbituric acid reactive substances [TBARS] and histopathological studies were performed. Further, the in vitro muscle glucose uptake activity in L6 myotubes and messenger RNA (mRNA expression of glucose transporter-4 (GLUT-4 was performed. Results: In diabetic rats, the activities of liver mitochondrial enzymes were found to be significantly lowered. The mitochondrial TBARS level increased, whereas the activities/level of enzymatic and non-enzymatic antioxidants decreased in diabetic rats. Administration of S. surattense to diabetic rats significantly reversed the above parameters toward normalcy. Furthermore in diabetic rats, the histopathological studies showed growth of adipose tissue and shrinkage of islets in the pancreas, liver showed fatty change with mild inflammation of portal triad, and kidney showed messangial capillary proliferation of glomeruli and fatty infiltration of tubules. Treatment with S. surattense brought back these changes to near normalcy. The extract was analyzed for in vitro muscle glucose uptake activity in L6 myotubes and mRNA expression of GLUT-4 by semi-quantitative reverse transcriptase-polymerase chain reaction. One nano gram per millilitre of S. surattense leaf-extract gave 115% glucose uptake on L6 myotubes

  17. Possible involvement of phospholipase A2 and cyclooxygenase in stimulatory action of L-histidine on protein synthesis in L6 myotubes

    OpenAIRE

    Yagasaki, Kazumi; Hatano, Naoko; Fujii, Motoki; Miura, Yutaka; Funabiki, Ryuhei

    2002-01-01

    Effects of L-histidine and related compounds on protein synthesiswere studied in cultured L6 myotubes. L-Histidine specifically stimulated protein synthesis, whereas D-histidine, histamine, L-arginine and L-lysine did not. Inhibitors of phospholipase A2, phospholipase C and cyclooxygenase intercepted the stimulatory action of L-histidine on protein synthesis, while inhibitors of protein kinase C and 5-lipoxygenase did not. These results suggest an involvement of phospholipase A2 and cyclooxyg...

  18. Anti-Differentiation Effect of Oncogenic Met Receptor in Terminally-Differentiated Myotubes

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2015-02-01

    Full Text Available Activation of the hepatocyte growth factor/Met receptor is involved in muscle regeneration, through promotion of proliferation and inhibition of differentiation in myogenic stem cells (MSCs. We previously described that the specific expression of an oncogenic version of the Met receptor (Tpr–Met in terminally-differentiated skeletal muscle causes muscle wasting in vivo. Here, we induced Tpr–Met in differentiated myotube cultures derived from the transgenic mouse. These cultures showed a reduced protein level of myosin heavy chain (MyHC, increased phosphorylation of Erk1,2 MAPK, the formation of giant sacs of myonuclei and the collapse of elongated myotubes. Treatment of the cultures with an inhibitor of the MAPK kinase pathway or with an inhibitor of the proteasome increased the expression levels of MyHC. In addition, the inhibition of the MAPK kinase pathway prevented the formation of myosacs and myotube collapse. Finally, we showed that induction of Tpr–Met in primary myotubes was unable to produce endoreplication in their nuclei. In conclusion, our data indicate that multinucleated, fused myotubes may be forced to disassemble their contractile apparatus by the Tpr–Met oncogenic factor, but they resist the stimulus toward the reactivation of the cell cycle.

  19. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    Science.gov (United States)

    Kim, Cy Hyun; Shin, Jin-Hong; Hwang, Sung Jun; Choi, Yung Hyun; Kim, Dae-Seong; Kim, Cheol Min

    2016-01-01

    Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 μg/mL) of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 μg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged with sarcopenia and the patients with disuse atrophy. PMID:27330287

  20. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.

    Science.gov (United States)

    García-Sánchez, Tomás; Azan, Antoine; Leray, Isabelle; Rosell-Ferrer, Javier; Bragós, Ramon; Mir, Lluis M

    2015-10-01

    In this study, electrical impedance spectroscopy measurements are performed during electroporation of monolayers of differentiated myotubes. The time resolution of the system (1 spectrum/ms) enable 860 full spectra (21 frequencies from 5 kHz to 1.3 MHz) to be acquired during the time gap between consecutive pulses (interpulse) of a classical electroporation treatment (8 pulses, 100 μs, 1 Hz). Additionally, the characteristics of the custom microelectrode assembly used allow the experiments to be performed directly in situ in standard 24 multi-well plates. The impedance response dynamics are studied for three different electric field intensities (400, 800 and 1200 V/cm). The multifrequency information, analysed with the Cole model, reveals a short-term impedance recovery after each pulse in accordance with the fast resealing of the cell membrane, and a long-term impedance decay over the complete treatment in accordance with an accumulated effect pulse after pulse. The analysis shows differences between the lowest electric field condition and the other two, suggesting that different mechanisms that may be related with the reversibility of the process are activated. As a result of the multifrequency information, the system is able to measure simultaneously the conductivity variations due to ion diffusion during electroporation. Finally, in order to reinforce the physical interpretation of the results, a complementary electrical equivalent model is used.

  1. Uncertainty assessment in measurement of myotube thickness in cells culture treated with and without therapeutic ultrasound

    International Nuclear Information System (INIS)

    Effectiveness of an ultrasound treatment shall be assessed by experiments. A reliable cell culture protocol is available and spatial discrepancies could arise. To assure if the spatial difference are relevant or not, and how they should be dealt with, an uncertainty model for the treatment result is a metrological reliable solution. The present work reports a metrological approach to assess myotube thickness and to validate a primary cell culture of muscle after a therapeutic ultrasound treatment, comparing it with a control group. The results reinforced the importance of such approach and show an efficacy of treatment on myotube differentiation

  2. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  3. Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival

    DEFF Research Database (Denmark)

    Vachon, P H; Loechel, F; Xu, H;

    1996-01-01

    Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin-2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or exp...

  4. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Nehlin, Jan O; Just, Marlene; Rustan, Arild C;

    2011-01-01

    that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength....

  5. Thrombin action decreases acetylcholine receptor aggregate number and stability in cultured mouse myotubes.

    Science.gov (United States)

    Davenport, R W; Lanuza, M; Kim, S; Jia, M; Snyder, E; Nelson, P G

    2000-08-30

    Neurons develop and make very stable, long-term synaptic connections with other nerve cells and with muscle. Synaptic stability at the neuromuscular junction changes over development in that a proliferation of synaptic input are made to individual myotubes and synapses from all but one neuron are lost during development. In an established co-culture paradigm in which spinal motoneurons synaptically contact myotubes, thrombin and associated protease inhibitors have been shown to affect the loss of functional synaptic contacts [6]. Evidence has not been provided which clearly demonstrate whether protease/protease inhibitors affect either the pre- or postsynaptic terminal, or both. In an effort to determine whether these reagents directly affect postsynaptic receptors on myotubes, myotubes were cultured in the absence of neurons and the spontaneous presence and stability of aggregates of acetylcholine receptors (AChR) in control and thrombin-containing media were evaluated. In dishes fixed after treatment and in dishes in which individual aggregates were observed live, thrombin action appeared to increase loss of AChR aggregates over time. Hirudin, a specific inhibitor of the thrombin protease, diminished this loss. Neither reagent affected the overall incorporation or degradation of AChR; therefore, it appears these protease/protease inhibitors affect the state of AChR aggregation. PMID:10960680

  6. Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes.

    Directory of Open Access Journals (Sweden)

    Lauren M Sparks

    Full Text Available OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D. We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control. Mitochondrial content, (14C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2 (p<0.001, isoproterenol-stimulated lipolysis (p = 0.01, triacylglycerol (TAG storage (p<0.05 and mitochondrial DNA copy number (p = 0.01 and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001. CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes.

  7. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  8. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways

    OpenAIRE

    Xingcai Cai; Canjun Zhu; Yaqiong Xu; Yuanyuan Jing; Yexian Yuan; Lina Wang; Songbo Wang; Xiaotong Zhu; Ping Gao; Yongliang Zhang; Qingyan Jiang; Gang Shu

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotub...

  9. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    OpenAIRE

    Miao Xu; Yuanyuan Xiao; Jun Yin; Wolin Hou; Xueying Yu; Li Shen; Fang Liu; Li Wei; Weiping Jia

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation wer...

  10. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  11. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Audrey Schlernitzauer

    Full Text Available Chicoric acid (CA is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans. In L6 myotubes, CA was a potent reactive oxygen species (ROS scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK pathway and displayed various features associated with AMPK activation: CA (a enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx and superoxide dismutase (SOD activities, (b favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5-100 μM. These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.

  12. Expression of Muscle-Specific Ribosomal Protein L3-Like Impairs Myotube Growth.

    Science.gov (United States)

    Chaillou, Thomas; Zhang, Xiping; McCarthy, John J

    2016-09-01

    The ribosome has historically been considered to have no cell-specific function but rather serve in a "housekeeping" capacity. This view is being challenged by evidence showing that heterogeneity in the protein composition of the ribosome can lead to the functional specialization of the ribosome. Expression profiling of different tissues revealed that ribosomal protein large 3-like (Rpl3l) is exclusively expressed in striated muscle. In response to a hypertrophic stimulus, Rpl3l expression in skeletal muscle was significantly decreased by 82% whereas expression of the ubiquitous paralog Rpl3 was significantly increased by ∼fivefold. Based on these findings, we developed the hypothesis that Rpl3l functions as a negative regulator of muscle growth. To test this hypothesis, we used the Tet-On system to express Rpl3l in myoblasts during myotube formation. In support of our hypothesis, RPL3L expression significantly impaired myotube growth as assessed by myotube diameter (-23%) and protein content (-14%). Further analysis showed that the basis of this impairment was caused by a significant decrease in myoblast fusion as the fusion index was significantly lower (-17%) with RPL3L expression. These findings are the first evidence to support the novel concept of ribosome specialization in skeletal muscle and its role in the regulation of skeletal muscle growth. J. Cell. Physiol. 231: 1894-1902, 2016. © 2015 Wiley Periodicals, Inc. PMID:26684695

  13. Hypoglycemic Constituents Isolated from Trapa natans L. Pericarps.

    Science.gov (United States)

    Huang, Hui-Chi; Chao, Chien-Liang; Liaw, Chia-Ching; Hwang, Syh-Yuan; Kuo, Yao-Haur; Chang, Tsu-Chung; Chao, Chih-Hua; Chen, Chao-Jung; Kuo, Yueh-Hsiung

    2016-05-18

    Trapa natans L., called water chestnut or water caltrop, is a floating aquarium plant. Its fruits are widely used as food. Two new tannins, 1 and 2, one new neolignan, 14, one new norlignan, 17, and 20 known compounds, 3-13, 15, 16, and 18-24 were isolated from T. natans pericarps in this study. The 1, 2, 14, and 17 structures were elucidated using a chemical method and extensive spectral evidence. A series of hydrolyzable tannins, 1-8, a lignin, 13, a flavonoid, 16, a norlignan, 17, and phenolic compounds, 18, 20, 21, and 24 resulted in the enhanced glucose uptake activity in C2C12 myotubes. Compounds 4 and 5 significantly increased GLUT4 protein expression in C2C12 myotubes. In addition, 4 and 5 improved the phosphorylation of AMPK, AKT(S473), and AKT(T308). The involvement of AMPK and PI3K in the mechanism of action of compounds 4 and 5 was confirmed by use of AMPK and PI3K inhibitors, which completely suppressed the 4- and 5-mediated activities of glucose uptake in C2C12 myotubes. We also demonstrated that 4 and 5 could increase GLUT4 protein levels in plasma membranes. PMID:27115849

  14. Astragalus polysaccharide stimulates glucose uptake in L6 myotubes through AMPK activation and AS160/TBC1D4 phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jian LIU; Si-tu YANG; Lang BU; Jing-ping OU-YANG; Jing-fang ZHANG; Jin-zhi LU; De-ling ZHANG; Ke LI; Ke SU; Jing WANG; Ye-min ZHANG; Nian WANG

    2013-01-01

    Aim:To establish the mechanism responsible for the stimulation of glucose uptake by Astragalus polysaccharide (APS),extracted from Astragalus membranaceus Bunge,in L6 myotubes in vitro.Methods:APS-stimulated glucose uptake in L6 myotubes was measured using the 2-deoxy-[3H]-D-glucose method.The adenine nucleotide contents in the cells were measured by HPLC.The phosphorylation of AMP-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) was examined using Western blot analysis.The cells transfected with 4P mutant AS160 (AS160-4P) were constructed using gene transfer approach.Results:Treatment of L6 myotubes with APS (100-1600 μg/mL) significantly increased glucose uptake in time-and concentration-dependent manners.The maximal glucose uptake was reached in the cells treated with APS (400 μg/mL) for 36 h.The APS-stimulated glucose uptake was significantly attenuated by pretreatment with Compound C,a selective AMPK inhibitor or in the cells overexpressing AS160-4P.Treatment of L6 myotubes with APS strongly promoted the activation of AMPK.We further demonstrated that either Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) or liver kinase B1 (LKB1) mediated APS-induced activation of AMPK in L6 myotubes,and the increased cellular AMP:ATP ratio was also involved.Treatment of L6 myotubes with APS robustly enhanced the phosphorylation of AS160,which was significantly attenuated by pretreatment with Compound C.Conclusion:Our results demonstrate that APS stimulates glucose uptake in L6 myotubes through the AMP-AMPK-AS160 pathway,which may contribute to its hypoglycemic effect.

  15. Effects of Zinc on Glucose Consumption and AKT/GSK3β Phosphorylation in L6 Myotubes

    Institute of Scientific and Technical Information of China (English)

    Hui-zi LU; Yun-tang WU; Zhong SUN; Yong-zhe LIU; Yong-ming WANG; Qian SANG; Xin-yan LIU

    2014-01-01

    ObjectiveTo investigate the effects of zinc on glucose consumption in normal and insulin-resistant L6 myotubes and elucidate its association with AKT/GSK3β phosphorylation, two key components in the insulin-signaling pathway.Methods The insulin-resistant cell model was prepared by treating L6 myotubes with 0.4mmol/L palmitic acid for 24h and then exposed to different concentrations of zinc (0, 10, 20, 50, 100μmol/L) in the presence or absence of insulin (100 nmol/L) for 3h. Glucose consumption was determined by glucose oxidase method. AKT /GSK3β phosphorylation was detected by Western blotting method.ResultsIn normal L6 myotubes, zinc (10-50μmol/L) alone could significantly increase glucose consumption. In the presence or absence of insulin, zinc significantly enhanced AKT/GSK3β phosphorylation. In insulin-resistant L6 myotubes, zinc (10-50μmol/L) could increase glucose consumption and GSK3β phosphorylation, which was accompanied by enhanced AKT phosphorylation in the presence of insulin.ConclusionCollectively, these results showed that zinc at the concentrations of 10-50μmol/L could increase glucose consumption in L6 myotubes. The mechanism was related to the activation of the insulin signaling pathway by zinc through AKT/GSK3β phosphorylation.

  16. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34)

    OpenAIRE

    Madison, Roger D.; McGee, Christopher; Rawson, Renee; Robinson, Grant A.

    2014-01-01

    Introduction: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy.Background: When a peripheral nerve is damaged, the communication between spinal cord ...

  17. Calcitonin gene-related peptide regulation of glial cell-line derived neurotrophic factor in differentiated rat myotubes.

    Science.gov (United States)

    Rosa, Elyse; Cha, Jieun; Bain, James R; Fahnestock, Margaret

    2015-03-01

    Glial cell-line derived neurotrophic factor (GDNF) is the most potent trophic factor for motoneuron survival and neuromuscular junction formation. GDNF is upregulated in injured or denervated skeletal muscle and returns to normal levels following reinnervation. However, the mechanism by which GDNF is regulated in denervated muscle is not well understood. The nerve-derived neurotransmitter calcitonin gene-related peptide (CGRP) is upregulated following neuromuscular injury and is subsequently released from motoneurons at the neuromuscular junction. CGRP also promotes nerve regeneration, but the mechanism is not well understood. The current study investigates whether this increase in CGRP regulates GDNF, thus playing a key role in promoting regeneration of injured nerves. This study demonstrates that CGRP increases GDNF secretion without affecting its transcription or translation. Rat L6 myoblasts were differentiated into myotubes and subsequently treated with CGRP. GDNF mRNA expression levels were quantified by quantitative real-time reverse transcription-polymerase chain reaction, and secreted GDNF was quantified in the conditioned medium by ELISA. CGRP treatment increased secreted GDNF protein without altering GDNF mRNA levels. The translational inhibitor cycloheximide did not affect CGRP-induced GDNF secreted protein levels, whereas the secretional inhibitor brefeldin A blocked the CGRP-induced increase in GDNF. This study highlights the importance of injury-induced upregulation of CGRP by exposing its ability to increase GDNF levels and demonstrates a secretional mechanism for regulation of this key regeneration-promoting neurotrophic factor.

  18. A cellular model system of differentiated human myotubes

    DEFF Research Database (Denmark)

    Gaster, M; Kristensen, S R; Beck-Nielsen, H;

    2001-01-01

    The aim of this study was to select an effective and stable protocol for the differentiation of human satellite cells (Sc) and to identify the optimal time period for the experimental use of differentiated human Sc-cultures. In order to identify the differentiation conditions which give a good su...

  19. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes

    Science.gov (United States)

    Hansen, Jan; Timmers, Silvie; Moonen-Kornips, Esther; Duez, Helene; Staels, Bart; Hesselink, Matthijs K. C.; Schrauwen, Patrick

    2016-01-01

    Cell and animal studies have demonstrated that circadian rhythm is governed by autonomous rhythmicity of clock genes. Although disturbances in circadian rhythm have been implicated in metabolic disease development, it remains unknown whether muscle circadian rhythm is altered in human models of type 2 diabetes. Here we used human primary myotubes (HPM) to investigate if rhythmicity of clock- and metabolic gene expression is altered in donors with obesity or type 2 diabetes compared to metabolically healthy donors. HPM were obtained from skeletal muscle biopsies of four groups: type 2 diabetic patients and their BMI- and age-matched obese controls and from lean, healthy and young endurance trained athletes and their age-matched sedentary controls. HPM were differentiated for 7 days before synchronization by serum shock followed by gene expression profiling over the next 72 hours. HPM display robust circadian rhythms in clock genes, but REVERBA displayed dampened rhythmicity in type 2 diabetes. Furthermore, rhythmicity in NAMPT and SIRT1 expression was only observed in HPM from trained athletes. Rhythmicity in expression of key-regulators of carbohydrate and lipid metabolism was modest. We demonstrate that in human skeletal muscle REVERBA/B, NAMPT and SIRT1 circadian rhythms are affected in donors of sedentary life style and poor health status. PMID:27756900

  20. Insulin-like growth factor I (IGF-I) is a more potent regulator of gene expression than insulin in primary human myoblasts and myotubes

    DEFF Research Database (Denmark)

    Palsgaard, J.; Brown, A.E.; Jensen, M.;

    2009-01-01

    regulation was investigated in primary human skeletal muscle cells before and after differentiation. Cell cultures were treated with 100 nM insulin, IGF-I or nothing for 4h, and gene expression was subsequently determined using the Affymetrix microarray platform. Insulin and IGF-I receptor levels were......Conventionally, insulin is believed to induce a metabolic response, and IGF-I a mitogenic/differentiation response in vivo. However, several studies indicate that the roles of insulin and IGF-I may not be that easy to separate. In this study, insulin and IGF-I specificity in terms of gene......-I receptors as determined by radioligand binding assays. In the myotubes, we did not identify any ligand specificity in terms of functional categories. The major difference between the two ligands was their respective potencies in gene regulation, which was higher for IGF-I than for insulin. This was true for...

  1. Increased FAT/CD36 cycling and lipid accumulation in myotubes derived from obese type 2 diabetic patients.

    Directory of Open Access Journals (Sweden)

    Celine Aguer

    Full Text Available BACKGROUND: Permanent fatty acid translocase (FAT/CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D and from healthy subjects (Control were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP-activated protein kinase (AMPK pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.

  2. Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death.

    Directory of Open Access Journals (Sweden)

    Viktor Yarotskyy

    Full Text Available Store-operated calcium entry (SOCE channels play an important role in Ca(2+ signaling. Recently, excessive SOCE was proposed to play a central role in the pathogenesis of malignant hyperthermia (MH, a pharmacogenic disorder of skeletal muscle. We tested this hypothesis by characterizing SOCE current (ISkCRAC magnitude, voltage dependence, and rate of activation in myotubes derived from two mouse models of anesthetic- and heat-induced sudden death: 1 type 1 ryanodine receptor (RyR1 knock-in mice (Y524S/+ and 2 calsequestrin 1 and 2 double knock-out (dCasq-null mice. ISkCRAC voltage dependence and magnitude at -80 mV were not significantly different in myotubes derived from wild type (WT, Y524S/+ and dCasq-null mice. However, the rate of ISkCRAC activation upon repetitive depolarization was significantly faster at room temperature in myotubes from Y524S/+ and dCasq-null mice. In addition, the maximum rate of ISkCRAC activation in dCasq-null myotubes was also faster than WT at more physiological temperatures (35-37°C. Azumolene (50 µM, a more water-soluble analog of dantrolene that is used to reverse MH crises, failed to alter ISkCRAC density or rate of activation. Together, these results indicate that while an increased rate of ISkCRAC activation is a common characteristic of myotubes derived from Y524S/+ and dCasq-null mice and that the protective effects of azumolene are not due to a direct inhibition of SOCE channels.

  3. Substrate overload: Glucose oxidation in human myotubes conquers palmitate oxidation through anaplerosis

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    by increasing concentrations of the other in human myotubes established from healthy, lean subjects exposed to acute stepwise increases in glucose and PA levels. At high substrate levels; PA oxidation was reduced while release of acid soluble metabolites was increased and, both glucose oxidation and release...... of citrate was increased which could be abolished by phenylacetic acid (inhibitor of pyruvate carboxylase (PC)). The present data challenges above preconceptions. Although they operate at low-moderate substrate levels additional two principles determine substrate oxidation at higher substrate concentrations......To date, two cardinal principles govern oxidation of glucose and fatty acids in skeletal muscle; exogenous fatty acid reduces glucose oxidation and glucose reduces fatty acid oxidation. Both glucose and palmitate (PA) oxidation was increased by increasing their concentration and inhibited...

  4. ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    To date, it is unknown whether mitochondrial dysfunction in skeletal muscle from subjects with type 2 diabetes is based on primarily reduced mitochondrial mass and/or a primarily decreased mitochondrial ATP synthesis. Mitochondrial mass were determined in myotubes established from eight lean, eight...... of muscle mitochondria in type 2 diabetes in vivo is an adaptive trait and mitochondrial dysfunction in type 2 diabetes in vivo is based both on primarily impaired ATP synthesis and an adaptive loss of mitochondrial mass....... obese and eight subjects with type 2 diabetes precultured under normophysiological conditions. Furthermore, mitochondria were isolated and ATP production was measured by luminescence at baseline and during acute insulin stimulation with or without concomitant ATP utilization by hexokinase. Mitochondrial...

  5. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  6. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  7. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    DEFF Research Database (Denmark)

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla;

    2013-01-01

    derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy...... chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma...... membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells...

  8. EFFECTS OF MECHANICAL STRETCH WITH VARIANT FREQUENCIES ON ALIGNMENT AND DIFFERENTIATION OF MULTILAYER MYOTUBES CULTURED IN VITRO%不同频率周期性应力加载对体外多层肌管极性及分化的影响

    Institute of Scientific and Technical Information of China (English)

    黄维一; 刘幸卉; 陈荣; 冯利强; 廖华; 余磊; 曾慧君

    2012-01-01

    .05). Conclusion Low frequency (0.25 Hz) and suitable time (7 days) periodic mechanical stretch is beneficial to the differentiation of the multilayer myotubes cultured in the groove casts of Sylgard 184, but as the stretch time goes on the aging of myotubes will be accelerated.%目的 探讨不同频率的周期性应力加载对体外培养多层肌管极性与分化的影响,筛选优化的肌组织体外应力加载培养条件. 方法 体外培养C2C12成肌细胞于Sylgard 184铸型凹槽诱导分化形成多层肌管组织,采用自制体外细胞拉伸仪,对培养并分化的肌管进行间歇性应力加载:加载幅度10%,加载频率分别为0(A组)、0.25(B组)、0.50(C组)、1.00 Hz (D组),加载时间3次/d,每次1h.连续加载5、7、10 d时,观察各组肌管形态;RT-PCR和实时荧光定量PCR(real-time fluorescent quantitative PCR,QRT-PCR)分析检测成肌相关基因成肌分化抗原(myogenic differentiation antigen,MyoD)、肌细胞生成素(Myogenin)、结蛋白(Desmin)、肌球重链蛋白(myosin heavy chain,MyHC) mRNA的表达差异. 结果 倒置相差显微镜观察示,应力加载促进各组肌管的极性融合及数量增加,其中B组加载培养7d时,多层肌管排列紧密,极性显著.加载条件能促进成肌相关基因mRNA的表达:组内随加载时间延长,各组MyoD的mRNA表达逐渐下降,7、10d与5d比较差异均有统计学意义(P< 0.05); Myogenin、Desmin、MyHC的mRNA表达呈先升高后降低趋势,以7d表达量最高;B组除7d与10d Desmin的mRNA表达比较差异无统计学意义(P>0.05)外,其余各时间点比较差异均有统计学意义(P<0.05).同时间点随加载频率增加,MyoD、Myogenin、Desmin、MyHC的mRNA表达呈先升高后降低趋势,以B组表达量最高;除5dB、C组Desmin和10dA、B组MyHC的mRNA表达比较差异无统计学意义(P>0.05)外,其余各组与B组各相关基因mRNA表达比较,差异均有统计学意义(P<0.05).结论 低频(0.25 Hz)、适时(7 d)的周期性应

  9. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression.

    Directory of Open Access Journals (Sweden)

    Tipwadee Bunprajun

    Full Text Available Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs normally active or middle-aged (56.6 yrs individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.

  10. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiuwei, E-mail: qiuwei_xu@merck.com; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H. [Merck Research Laboratories (United States)

    2011-04-15

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid {beta}-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  11. The FSHD atrophic myotube phenotype is caused by DUX4 expression.

    Directory of Open Access Journals (Sweden)

    Céline Vanderplanck

    Full Text Available BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD is linked to deletions in 4q35 within the D4Z4 repeat array in which we identified the double homeobox 4 (DUX4 gene. We found stable DUX4 mRNAs only derived from the most distal D4Z4 unit and unexpectedly extended to the flanking pLAM region that provided an intron and a polyadenylation signal. DUX4 encodes a transcription factor expressed in FSHD but not control primary myoblasts or muscle biopsies. The DUX4 protein initiates a large transcription deregulation cascade leading to muscle atrophy and oxidative stress, which are FSHD key features. METHODOLOGY/PRINCIPAL FINDINGS: We now show that transfection of myoblasts with a DUX4 expression vector leads to atrophic myotube formation associated with the induction of E3 ubiquitin ligases (MuRF1 and Atrogin1/MAFbx typical of muscle atrophy. DUX4 induces expression of downstream targets deregulated in FSHD such as mu-crystallin and TP53. We developed specific siRNAs and antisense oligonucleotides (AOs targeting the DUX4 mRNA. Addition of these antisense agents to primary FSHD myoblast cultures suppressed DUX4 protein expression and affected expression of the above-mentioned markers. CONCLUSIONS/SIGNIFICANCE: These results constitute a proof of concept for the development of therapeutic approaches for FSHD targeting DUX4 expression.

  12. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  13. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  14. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  15. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  16. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes.

    Science.gov (United States)

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno

    2012-12-01

    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.

  17. NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Bross, Peter;

    2010-01-01

    and separation of the control samples from the different time points after heat stress primarily are in the metabolites glucose, leucine, lysine, phenylalanine, creatine, glutamine, and acetate. In addition, PC scores revealed a maximum change in metabolite composition 4 h after the stress exposure; thereafter......, samples returned toward control samples, however, without reaching the control samples even 10 h after stress. The results also indicate that the myotubes efficiently regulate the pH level by release of lactate to the culture medium at a heat stress level of 42 degrees C, which is a temperature level...

  18. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans.

    Science.gov (United States)

    Bhattacharya, Sumangala; Christensen, Kathrine B; Olsen, Louise C B; Christensen, Lars P; Grevsen, Kai; Færgeman, Nils J; Kristiansen, Karsten; Young, Jette F; Oksbjerg, Niels

    2013-11-20

    Obesity and insulin resistance in skeletal muscles are major features of type 2 diabetes. In the present study, we examined the potential of Sambucus nigra flower (elderflowers) extracts to stimulate glucose uptake (GU) in primary porcine myotubes and reduce fat accumulation (FAc) in Caenorhabditis elegans. Bioassay guided chromatographic fractionations of extracts and fractions resulted in the identification of naringenin and 5-O- caffeoylquinic acid exhibiting a significant increase in GU. In addition, phenolic compounds related to those found in elderflowers were also tested, and among these, kaempferol, ferulic acid, p-coumaric acid, and caffeic acid increased GU significantly. FAc was significantly reduced in C. elegans, when treated with elderflower extracts, their fractions and the metabolites naringenin, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, quercetin-3-O-5″-acetylglycoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside and the related phenolic compounds kaempferol and ferulic acid. The study indicates that elderflower extracts contain bioactive compounds capable of modulating glucose and lipid metabolism, suitable for nutraceutical and pharmaceutical applications. PMID:24156563

  19. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  20. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  1. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    There is little consensus on the nature of the storage compartment of the glucose transporter GLUT4, in non-stimulated cells of muscle and fat. More specifically, it is not known whether GLUT4 is localized to unique, specialized intracellular storage vesicles, or to vesicles that are part...... (alpha mannosidase II and giantin), of the trans-Golgi network (TGN38), of lysosomes (lgp110), and of early and late endosomes (transferrin receptor and mannose-6-phosphate receptor, respectively), to define the position of their subcellular compartments. By immunofluorescence, GLUT4 appears concentrated...... in the core of the myotubes. It is primarily found around the nuclei, in a pattern suggesting an association with the Golgi complex, which is further supported by colocalization with giantin and by immunogold electron microscopy. GLUT4 appears to be in the trans-most cisternae of the Golgi complex...

  2. Construction and Myogenic Differentiation of 3D Myoblast Tissues Fabricated by Fibronectin-Gelatin Nanofilm Coating

    Science.gov (United States)

    Gribova, Varvara; Liu, Chen Yun; Nishiguchi, Akihiro; Matsusaki, Michiya; Boudou, Thomas; Picart, Catherine; Akashi, Mitsuru

    2016-01-01

    In this study, we used a recently developed approach of coating the cells with fibronectin-gelatin nanofilms to build 3D skeletal muscle tissue models. We constructed the microtissues from C2C12 myoblasts and subsequently differentiated them to form muscle-like tissue. The thickness of the constructs could be successfully controlled by altering the number of seeded cells. We were able to build up to ~ 76 µm thick 3D constructs that formed multinucleated myotubes. We also found that Rho-kinase inhibitor Y27632 improved myotube formation in thick constructs. Our approach makes it possible to rapidly form 3D muscle tissues and is promising for the in vitro construction of physiologically relevant human skeletal muscle tissue models. PMID:27125461

  3. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway. PMID:17588539

  4. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway.

  5. Ecdysteroids: A novel class of anabolic agents?

    Science.gov (United States)

    Parr, M K; Botrè, F; Naß, A; Hengevoss, J; Diel, P; Wolber, G

    2015-06-01

    Increasing numbers of dietary supplements with ecdysteroids are marketed as "natural anabolic agents". Results of recent studies suggested that their anabolic effect is mediated by estrogen receptor (ER) binding. Within this study the anabolic potency of ecdysterone was compared to well characterized anabolic substances. Effects on the fiber sizes of the soleus muscle in rats as well the diameter of C2C12 derived myotubes were used as biological readouts. Ecdysterone exhibited a strong hypertrophic effect on the fiber size of rat soleus muscle that was found even stronger compared to the test compounds metandienone (dianabol), estradienedione (trenbolox), and SARM S 1, all administered in the same dose (5 mg/kg body weight, for 21 days). In C2C12 myotubes ecdysterone (1 µM) induced a significant increase of the diameter comparable to dihydrotestosterone (1 µM) and IGF 1 (1.3 nM). Molecular docking experiments supported the ERβ mediated action of ecdysterone. To clarify its status in sports, ecdysterone should be considered to be included in the class "S1.2 Other Anabolic Agents" of the list of prohibited substances of the World Anti-Doping Agency.

  6. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Directory of Open Access Journals (Sweden)

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  7. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Directory of Open Access Journals (Sweden)

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  8. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    International Nuclear Information System (INIS)

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process

  9. The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun, and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis

    OpenAIRE

    Salmon, Morgan; Zehner, Zendra E.

    2009-01-01

    Currently, considerable information is available about how muscle-specific genes are activated during myogenesis, yet little is known about how non-muscle genes are down-regulated. The intermediate filament protein vimentin is known to be “turned off” during myogenesis to be replaced by desmin, the muscle-specific intermediate filament protein. Here, we demonstrate that vimentin down-regulation is the result of the combined effect of several transcription factors. Levels of the positive activ...

  10. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    Science.gov (United States)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  11. Role of vitamin D on the expression of glucose transporters in L6 myotubes

    Directory of Open Access Journals (Sweden)

    Bubblu Tamilselvan

    2013-01-01

    Full Text Available Altered expression of glucose transporters is a major characteristic of diabetes. Vitamin D has evolved widespread interest in the pathogenesis and prevention of diabetes. The present study was designed to investigate the effect of vitamin D in the overall regulation of muscle cell glucose transporter expression. L6 cells were exposed to type 1 and type 2 diabetic conditions and the effect of calcitriol (1,25, dihydroxy cholicalciferol on the expression of glucose transporters was studied by real time polymerase chain reaction (RT-PCR. There was a significant decrease in glucose transporter type 1 (GLUT1, GLUT4, vitamin D receptor (VDR, and IR expression in type 1 and 2 diabetic model compared to control group. Treatment of myoblasts with 10-7 M calcitriol for 24 h showed a significant increase in GLUT1, GLUT4, VDR, and insulin receptor (IR expression. The results indicate a potential antidiabetic function of vitamin D on GLUT1, GLUT4, VDR, and IR by improving receptor gene expression suggesting a role for vitamin D in regulation of expression of the glucose transporters in muscle cells.

  12. Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo.

    Science.gov (United States)

    Arha, Deepti; Pandeti, Sukanya; Mishra, Akansha; Srivastava, Swayam Prakash; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2015-12-01

    Skeletal muscle is the principal site for postprandial glucose utilization and augmenting the rate of glucose utilization in this tissue may help to control hyperglycemia associated with diabetes mellitus. Here, we explored the effect of Deoxyandrographolide (DeoAn) isolated from the Andrographis paniculata Nees on glucose utilization in skeletal muscle and investigated its antihyperglycemic effect in vivo in streptozotocin-induced diabetic rats and genetically diabetic db/db mice. In L6 myotubes, DeoAn dose-dependently stimulated glucose uptake by enhancing the translocation of glucose transporter 4 (GLUT4) to cell surface, without affecting the total cellular GLUT4 and GLUT1 content. These effects of DeoAn were additive to insulin. Further analysis revealed that DeoAn activated PI-3-K- and AMPK-dependent signaling pathways, account for the augmented glucose transport in L6 myotubes. Furthermore, DeoAn lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats and also suppressed the rises in the fasting blood glucose, serum insulin, triglycerides and LDL-Cholesterol levels of db/db mice. These findings suggest the therapeutic efficacy of the DeoAn for type 2 diabetes mellitus and can be potential phytochemical for its management. PMID:26528798

  13. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun;

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  14. Experiment list: DRX013455 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available q of Pol II-Ser5ph, C2C12 myotube sample_name=DRS013213 || sample comment=The sample was fixed with 0.5% formaldehyde for 5 min. Diff...erentiation from myoblast state was done by transferring to Dulbecco's modified Eag

  15. Creatine supplementation with methylglyoxal: a potent therapy for cancer in experimental models.

    Science.gov (United States)

    Pal, Aparajita; Roy, Anirban; Ray, Manju

    2016-08-01

    The anti-cancer effect of methylglyoxal (MG) is now well established in the literature. The main aim of this study was to investigate the effect of creatine as a supplement in combination with MG both in vitro and in vivo. In case of the in vitro studies, two different cell lines, namely MCF-7 (human breast cancer cell line) and C2C12 (mouse myoblast cell line) were chosen. MG in combination with creatine showed enhanced apoptosis as well as higher cytotoxicity in the breast cancer MCF-7 cell line, compared to MG alone. Pre-treatment of well-differentiated C2C12 myotubes with cancerogenic 3-methylcholanthrene (3MC) induced a dedifferentiation of these myotubes towards cancerous cells (that mimic the effect of 3MC observed in solid fibro-sarcoma animal models) and subsequent exposure of these induced cancer cells with MG proved to be cytotoxic. Thus, creatine plus ascorbic acid enhanced the anti-cancer effects of MG. In contrast, when normal C2C12 muscle cells or myotubes (mouse normal myoblast cell line) were treated with MG or MG plus creatine and ascorbic acid, no detrimental effects were seen. This indicated that cytotoxic effects of MG are specifically limited towards cancer cells and are further enhanced when MG is used in combination with creatine and ascorbic acid. For the in vivo studies, tumors were induced by injecting Sarcoma-180 cells (2 × 10(6) cells/mouse) in the left hind leg. After 7 days of tumor inoculation, treatments were started with MG (20 mg/kg body wt/day, via the intravenous route), with or without creatine (150 mg/kg body wt/day, fed orally) and ascorbic acid (50 mg/kg body wt/day, fed orally) and continued for 10 consecutive days. Significant regression of tumor size was observed when Sarcoma-180 tumor-bearing mice were treated with MG and even more so with the aforesaid combination. The creatine-supplemented group demonstrated better overall survival in comparison with tumor-bearing mice without creatine. In conclusion, it may be

  16. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  17. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    International Nuclear Information System (INIS)

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells

  18. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    Science.gov (United States)

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. PMID:20441791

  19. Metformin Treatment Prevents Sedentariness Related Damages in Mice

    Directory of Open Access Journals (Sweden)

    Pamela Senesi

    2016-01-01

    Full Text Available Metformin (METF, historical antihyperglycemic drug, is a likely candidate for lifespan extension, treatment and prevention of sedentariness damages, insulin resistance, and obesity. Skeletal muscle is a highly adaptable tissue, capable of hypertrophy response to resistance training and of regeneration after damage. Aims of this work were to investigate METF ability to prevent sedentariness damage and to enhance skeletal muscle function. Sedentary 12-week-old C57BL/6 mice were treated with METF (250 mg/kg per day, in drinking water for 60 days. METF role on skeletal muscle differentiation was studied in vitro using murine C2C12 myoblasts. Muscular performance evaluation revealed that METF enhanced mice physical performance (Estimated VO2max. Biochemical analyses of hepatic and muscular tissues indicated that in liver METF increased AMPK and CAMKII signaling. In contrast, METF inactivated ERKs, the principal kinases involved in hepatic stress. In skeletal muscle, METF activated AKT, key kinase in skeletal muscle mass maintenance. In in vitro studies, METF did not modify the C2C12 proliferation capacity, while it positively influenced the differentiation process and myotube maturation. In conclusion, our novel results suggest that METF has a positive action not only on the promotion of healthy aging but also on the prevention of sedentariness damages.

  20. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications.

    Science.gov (United States)

    Song, Juqing; Gao, Huichang; Zhu, Guanglin; Cao, Xiaodong; Shi, Xuetao; Wang, Yingjun

    2016-01-01

    The development of modern biomedical nanotechnology requires three-dimensional macrostructures with nanotextures to meet the requirements for practical applications in intricate biological systems. Additionally, the restoration and regeneration of some specific body tissues and organs rely on the function of conductive polymers, which can provide electrical cues for cells. In this study, we fabricated three-dimensional composite nanofibre macrostructures of polycaprolactone (PCL) with different concentrations of polyaniline (PANi) by employing an improved electrospinning technology with a specially designed collector. The 3D structures possessed cap-like macrostructures with centimetre-scale thickness and interconnected pore nanotextures with nanometre-scale nanofibres. To estimate the biocompatibility of the 3D PCL/PANi composite nanofibre macrostructures, mouse myoblasts (C2C12 cells) were cultured as model cells. The initial responses of C2C12 cells to the 3D PCL/PANi composite macrostructures were significantly superior to those to pure PCL, that is, the cells exhibited typical myoblast-like morphologies with obvious pseudopodia and the moderate incorporation (less than 2.0 wt%) of conductive PANi facilitated cell proliferation, which indicated that PANi has appreciable cell affinity. Moreover, the addition of conductive PANi to the 3D composite nanofibre macrostructures considerably enhanced myoblast differentiation and myotube maturation. These results suggest that electrospun 3D PCL/PANi composite nanofibre macrostructures would have promising applications in tissue engineering. PMID:27563025

  1. Nrf2 Protects Against TWEAK-mediated Skeletal Muscle Wasting

    Science.gov (United States)

    Al-Sawaf, Othman; Fragoulis, Athanassios; Rosen, Christian; Kan, Yuet Wai; Sönmez, Tolga Taha; Pufe, Thomas; Wruck, Christoph Jan

    2014-01-01

    Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.

  2. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    Science.gov (United States)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  3. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  4. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth

    DEFF Research Database (Denmark)

    Markljung, Ellen; Jiang, Lin; Jaffe, Jacob D;

    2009-01-01

    and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (Ch......IP) sequencing using C2C12 cells identified about 2,500 ZBED6 binding sites in the genome, and the deduced consensus motif gave a perfect match with the established binding site in Igf2. Genes associated with ZBED6 binding sites showed a highly significant enrichment for certain Gene Ontology classifications...

  5. Coding elements in exons 2 and 3 target c-myc mRNA downregulation during myogenic differentiation.

    OpenAIRE

    Yeilding, N M; W.M. Lee

    1997-01-01

    Downregulation in expression of the c-myc proto-oncogene is an early molecular event in differentiation of murine C2C12 myoblasts into multinucleated myotubes. During differentiation, levels of c-myc mRNA decrease 3- to 10-fold despite a lack of change in its transcription rate. To identify cis-acting elements that target c-myc mRNA for downregulation during myogenesis, we stably transfected C2C12 cells with mutant myc genes or chimeric genes in which various myc sequences were fused to the h...

  6. Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1α mRNA in Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Xingyuan Wen

    2014-01-01

    Full Text Available PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3′ splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle during physical exercise with different intensities. We report here that NT-PGC-1α-a mRNA expression derived from a canonical exon 1 (exon 1a is increased by high-intensity exercise and AMPK activator AICAR in mouse skeletal muscle but not altered by low- and medium-intensity exercise and β2-adrenergic receptor agonist clenbuterol. In contrast, the alternative exon 1b-driven NT-PGC-1α-b (PGC-1α4 and NT-PGC-1α-c are highly induced by low-, medium-, and high-intensity exercise, AICAR, and clenbuterol. Ectopic expression of NT-PGC-1α-a in C2C12 myotube cells upregulates myosin heavy chain (MHC I, MHC II a and Glut4, which represent oxidative fibers, and promotes the expression of mitochondrial genes (Cyc1, COX5B, and ATP5B. In line with gene expression data, citrate synthase activity was significantly increased by NT-PGC-1α-a in C2C12 myotube cells. Our results indicate the regulatory role for NT-PGC-1α-a in mitochondrial biogenesis and adaptation of skeletal muscle to endurance exercise.

  7. Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Byung Geun Ha

    Full Text Available The aim of this study was to determine the effects of balanced deep-sea water (BDSW on hyperglycemia and glucose intolerance in streptozotocin (STZ-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000-4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.

  8. Protein kinase D2 is an essential regulator of murine myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Alexander Kleger

    Full Text Available Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC family. The protein kinase D (PKD isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12 as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration.

  9. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  10. Delta-like 1 homolog (dlk1: a marker for rhabdomyosarcomas implicated in skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Louise H Jørgensen

    Full Text Available Dlk1, a member of the Epidermal Growth Factor family, is expressed in multiple tissues during development, and has been detected in carcinomas and neuroendocrine tumors. Dlk1 is paternally expressed and belongs to a group of imprinted genes associated with rhabdomyosarcomas but not with other primitive childhood tumors to date. Here, we investigate the possible roles of Dlk1 in skeletal muscle tumor formation. We analyzed tumors of different mesenchymal origin for expression of Dlk1 and various myogenic markers and found that Dlk1 was present consistently in myogenic tumors. The coincident observation of Dlk1 with a highly proliferative state in myogenic tumors led us to subsequently investigate the involvement of Dlk1 in the control of the adult myogenic programme. We performed an injury study in Dlk1 transgenic mice, ectopically expressing ovine Dlk1 (membrane bound C2 variant under control of the myosin light chain promotor, and detected an early, enhanced formation of myotubes in Dlk1 transgenic mice. We then stably transfected the mouse myoblast cell line, C2C12, with full-length Dlk1 (soluble A variant and detected an inhibition of myotube formation, which could be reversed by adding Dlk1 antibody to the culture supernatant. These results suggest that Dlk1 is involved in controlling the myogenic programme and that the various splice forms may exert different effects. Interestingly, both in the Dlk1 transgenic mice and the DLK1-C2C12 cells, we detected reduced myostatin expression, suggesting that the effect of Dlk1 on the myogenic programme might involve the myostatin signaling pathway. In support of a relationship between Dlk1 and myostatin we detected reciprocal expression of these two transcripts during different cell cycle stages of human myoblasts. Together our results suggest that Dlk1 is a candidate marker for skeletal muscle tumors and might be involved directly in skeletal muscle tumor formation through a modulatory effect on the

  11. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway.

    Science.gov (United States)

    Huang, Jian; Hsu, Yi-Hsiang; Mo, Chenglin; Abreu, Eduardo; Kiel, Douglas P; Bonewald, Lynda F; Brotto, Marco; Karasik, David

    2014-07-01

    Sarcopenia and osteoporosis are important public health problems that occur concurrently. A bivariate genome-wide association study (GWAS) identified METTL21c as a suggestive pleiotropic gene for both bone and muscle. The METTL21 family of proteins methylates chaperones involved in the etiology of both myopathy and inclusion body myositis with Paget's disease. To validate these GWAS results, Mettl21c mRNA expression was reduced with siRNA in a mouse myogenic C2C12 cell line and the mouse osteocyte-like cell line MLO-Y4. At day 3, as C2C12 myoblasts start to differentiate into myotubes, a significant reduction in the number of myocytes aligning/organizing for fusion was observed in the siRNA-treated cells. At day 5, both fewer and smaller myotubes were observed in the siRNA-treated cells as confirmed by histomorphometric analyses and immunostaining with myosin heavy chain (MHC) antibody, which only stains myocytes/myotubes but not myoblasts. Intracellular calcium (Ca(2+)) measurements of the siRNA-treated myotubes showed a decrease in maximal amplitude peak response to caffeine, suggesting that less Ca(2+) is available for release due to the partial silencing of Mettl21c, correlating with impaired myogenesis. In siRNA-treated MLO-Y4 cells, 48 hours after treatment with dexamethasone there was a significant increase in cell death, suggesting a role of Mettl21c in osteocyte survival. To investigate the molecular signaling machinery induced by the partial silencing of Mettl21c, we used a real-time PCR gene array to monitor the activity of 10 signaling pathways. We discovered that Mettl21c knockdown modulated only the NF-κB signaling pathway (ie, Birc3, Ccl5, and Tnf). These results suggest that Mettl21c might exert its bone-muscle pleiotropic function via the regulation of the NF-κB signaling pathway, which is critical for bone and muscle homeostasis. These studies also provide rationale for cellular and molecular validation of GWAS, and warrant additional in vitro

  12. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NFκB signaling pathway

    Science.gov (United States)

    Mo, Chenglin; Abreu, Eduardo; Kiel, Douglas P.; Bonewald, Lynda F.

    2014-01-01

    Sarcopenia and osteoporosis are important public health problems that occur concurrently. A bivariate genome-wide association study (GWAS) identified METTL21c as a suggestive pleiotropic gene for both bone and muscle. METTL21 family of proteins methylates chaperones involved in the etiology of both Inclusion Body Myositis with Paget's disease. To validate these GWAS results, Mettl21c mRNA expression was reduced with siRNA in a mouse myogenic C2C12 cell line and the mouse osteocyte-like cell line MLO-Y4. At day 3, as C2C12 myoblasts start to differentiate into myotubes, a significant reduction in the number of myocytes aligning/organizing for fusion was observed in the siRNA-treated cells. At day 5, both fewer and smaller myotubes were observed in the siRNA-treated cells as confirmed by histomorphometric analyses and immunostaining with Myosin Heavy Chain (MHC) antibody, which only stains myocytes/myotubes but not myoblasts. Intracellular calcium (Ca2+) measurements of the siRNA-treated myotubes showed a decrease in maximal amplitude peak response to caffeine suggesting that less Ca2+ is available for release due to the partial silencing of Mettl21c, correlating with impaired myogenesis. In siRNA-treated MLO-Y4 cells, 48 hours after treatment with dexamethasone, there was a significant increase in cell death, suggesting a role of Mettl21c in osteocyte survival. To investigate the molecular signaling machinery induced by the partial silencing of Mettl21c, we monitored with a real-time PCR gene array the activity of 10 signaling pathways. We discovered that Mettl21c knockdown modulated only the NFκB signaling pathway (i.e., Birc3, Ccl5 and Tnf). These results suggest that Mettl21c might exert its bone-muscle pleiotropic function via the regulation of the NFκB signaling pathway, which is critical for bone and muscle homeostasis. These studies also provide rationale for cellular and molecular validation of GWAS, and warrant additional in vitro and in vivo studies to

  13. Functional analysis of the Myostatin gene promoter in sheep

    Institute of Scientific and Technical Information of China (English)

    DU; Rong; AN; XiaoRong; CHEN; YongFu; QIN; Jian

    2007-01-01

    Compared with the understanding for the functional mechanism of the myostatin gene, little is known about the regulatory mechanism of the myostatin gene transcription and expression. To better understand the function of the myostatin gene promoter (MSTNpro) in the transcriptional regulation of the myostatin gene and to further investigate the transcriptional regulation mechanism of the myostatin gene, the promoter region of the myostatin gene in sheep has been cloned in our recent study (AY918121). In this study, the wild (W) type MSTNProW-EGFP vectors and E-box (E) (CANNTG) mutant (M) type MSTNProE(3+5+7)M-EGFP vectors were constructed and the transcriptional regulation activities were compared by detecting the fluorescent strength of EGFP (enhanced green fluorescent protein) in C2C12 myoblasts (or myotubes) and sheep fibroblasts transfected with the vectors. Results showed that the 0.3―1.2 kb sheep myostatin promoter could activate the transcription and expression of EGFP gene in C2C12 myoblasts to different extent and the 1.2 kb promoter was the strongest. However, fluorescence was not observed in the sheep fibroblasts transfected with the 1.2 kb sheep myostatin promoter. These results suggested that the specific nature of the myostatin gene expression in skeletal muscle was attributed to the specific nature of the myostatin promoter activity. The increasing growth density of C2C12 myoblasts inhibited the transcriptional regulation activity of the wild type sheep myostatin promoter by a mechanism of feedback. The transcriptional regulation activity of the 1.2 kb wild type sheep myostatin promoter increased significantly after C2C12 myoblasts were differentiated, while the activity of 1.2 kb E(3+5+7)-mutant type myostatin promoter had no obvious change. This result suggested that MyoD may be responsible for the difference of the myostatin gene transcription and expression between growing and differentiating conditions by binding to E-box of the myostatin

  14. Expression of Lecithin: Cholesterol Acyltransferaseand/or apoA-I Mediated by Recombinant Adeno-as-sociated Virus in Myogenic Cell

    Institute of Scientific and Technical Information of China (English)

    王立峰; 范乐明; 陈丙莺; 刘宝瑞; 王若宁; 魏恩会

    2002-01-01

    Objective Lecithia: cholesterol acyltrmsfer ase (LCAT) is the major enzyme producing most plasma cholesterol esters( CE )and a key partiipant in the process of reverse cholesterol traansfer ( RCT). The aim of the study was to co-express LCAT and its nature activator apoA- I medi ated by recombinant adeno-associated virus vectors in the skeletal muscle cells, and open a new avenue of gene therapy touard the primary or secondary LCAT deficiency. Methods 293T cells were cotrans fected with pDG and rAAVAIL/rAAVL plasmid to produce infectious rAAV, and non-iouic iodixanol gradients centri f ngation followed by heparin affinity chromatography was per formed f or separation . pu rification and concentration of rAAV. The particle numbers of rAAV were assayed by dot-blot, then these vectors transduced C2C12 myoblasts. ELISA and Western Blot asasayed for human apoA- I and 3H-cholesterol labeled radiochemical methods for LCAT activity. Genomic DNA was extracted from transduced C2C12 and analyzed fo the presence of vector sequence by PCR amplifiations. Results The particle mumbers of rAAV were 7× 1014/L (rAAAIL) and 1 × 1014/L (rAAVL). The expres sion of human apoA- I cDNA and/or human LCAT cDNA in transduced C2C12 cells lasted for 3 0 d, even after myoblasts were differentiated into myotubes. PCR products for transgene indiated the long-term persistence of transduced vector sequences. Conclusion The result indicated that the meth ods used for production and purification of rAAV is an effiient and rAAV vector mediate the expres sion and secretion of LCAT and apoA- I gene in C2C12 myoblasts successfully. It suggested that the use of rAAV vectors mediating the high efficiency, long-term expression of human LCAT cDNA and/ or apoA- I cDNA in skeletal muscle in vivo might be a safe and fessible strategy to the gene therapy of LCAT deficiency.

  15. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB and β-Alanine in Late Middle-Aged Mice.

    Directory of Open Access Journals (Sweden)

    Julian Vallejo

    Full Text Available There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB, in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03. HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03 and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01. Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02. At submaximal frequency of stimulation (20 Hz, EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025 and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021. Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025, while HMB reduced the time to reach peak contractile force (TTP, with a significant effect at 80 Hz (P = 0.0156. In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  16. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    Science.gov (United States)

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, Pionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID:26953693

  17. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.

    Science.gov (United States)

    Abrigo, Johanna; Rivera, Juan Carlos; Simon, Felipe; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-05-01

    Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration, and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterised by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β. Atrophy also results in increased myosin heavy chain (MHC) degradation and the expression of two muscle-specific E3 ubiquitin ligases, atrogin-1 and MuRF-1. Reactive oxygen species (ROS) are modulators of muscle wasting, and NAD(P)H oxidase (NOX) is one of the main sources of ROS. While it was recently found that TGF-β1 induces atrophy in skeletal muscle, the underlying mechanism is not fully understood. In this study, the role of NOX-derived ROS in skeletal muscle atrophy induced by TGF-β was assessed. TGF-β1 induced an atrophic effect in C2C12 myotubes, as evidenced by decreased myotube diameter and MHC levels, together with increased MuRF-1 levels. Concomitantly, TGF-β increased NOX-induced ROS contents. Interestingly, NOX inhibition through apocynin and the antioxidant treatment with N-acetyl cysteine (NAC) decreased increased ROS levels in myotubes. Additionally, both apocynin and NAC completely prevented the decreased MHC, decreased myotube diameter, and increased MuRF-1 induced by TGF-β. Injection of TGF-β1 into the tibialis anterior muscle induced atrophy, as observed by decreased fibre diameter and MHC levels, together with increased MuRF-1 levels. Likewise, TGF-β increased the ROS contents in the smaller fibres of skeletal muscle. Additionally, the administration of NAC to mice prevented all atrophic effects and the increase in ROS induced by TGF-β in the tibialis anterior. This is the first study to report that TGF-β has an atrophic effect dependent on NOX-induced ROS in skeletal muscle.

  18. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    International Nuclear Information System (INIS)

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%–85% and 10%–22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: ► Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers ► Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. ► Protein adsorption depended on the macromolecular composition and surface properties. ► Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  19. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Mariacristina, E-mail: mariacristina.gagliardi@iit.it

    2012-12-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%-85% and 10%-22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: Black-Right-Pointing-Pointer Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers Black-Right-Pointing-Pointer Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. Black-Right-Pointing-Pointer Protein adsorption depended on the macromolecular composition and surface properties. Black-Right-Pointing-Pointer Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  20. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Larsen, Lotte Bach; Malmendal, Anders;

    2010-01-01

    -free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating...

  1. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    Science.gov (United States)

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2016-10-01

    Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering

  2. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  3. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  4. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  5. Upregulation of glucose uptake in L8 myotubes by the extract from Lagerstroemia speciosa: a possible mechanism of action

    Directory of Open Access Journals (Sweden)

    Juntipa Purintrapiban

    2009-12-01

    Full Text Available The leaf of Lagerstroemia speciosa L. is used as an anti-diabetic herbal remedy in many countries. In an attempt to discover mechanisms of action of the L. speciosa extract that stimulate glucose uptake, a cell-based radioactive assay of glucose uptake was performed using L8 muscle cells. In this study, the methanol fraction of L. speciosa leaves (LSE contained a high level of phenolic compounds and showed strong capability to stimulate glucose uptake in a dose-dependent manner. The LSE stimulation was slightly inhibited (8.8% by SB203580. The inhibitory effect (23.6% of wortmannin on LSE-stimulated glucose uptake was demonstrated, suggesting LSE action on glucose transporter translocation. LSE-induced glucose uptake was completely reversed by cycloheximide. In addition, an increased amount of total glucose-transporter-1 protein was observed indicating that new protein synthesis is necessary for elevated glucose transport. LSE also enhanced insulin-stimulated glucose transport. These results suggest that LSE action may be mediated primarily via the synthesis of new transporters and involve both insulin-dependent and independent pathways.

  6. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle.

    Science.gov (United States)

    Duffy, Rebecca M; Sun, Yan; Feinberg, Adam W

    2016-06-01

    Skeletal muscle lost through trauma or disease has proven difficult to regenerate due to the challenge of differentiating human myoblasts into aligned, contractile tissue. To address this, we investigated microenvironmental cues that drive myoblast differentiation into aligned myotubes for potential applications in skeletal muscle repair, organ-on-chip disease models and actuators for soft robotics. We used a 2D in vitro system to systematically evaluate the role of extracellular matrix (ECM) protein composition and geometric patterning for controlling the formation of highly aligned myotubes. Specifically, we analyzed myotubes differentiated from murine C2C12 cells and human skeletal muscle derived cells (SkMDCs) on micropatterned lines of laminin compared to fibronectin, collagen type I, and collagen type IV. Results showed that laminin supported significantly greater myotube formation from both cells types, resulting in greater than twofold increase in myotube area on these surfaces compared to the other ECM proteins. Species specific differences revealed that human SkMDCs uniaxially aligned over a wide range of micropatterned line dimensions, while C2C12s required specific line widths and spacings to do the same. Future work will incorporate these results to engineer aligned human skeletal muscle tissue in 2D for in vitro applications in disease modeling, drug discovery and toxicity screening. PMID:26983843

  7. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kolmus

    Full Text Available The proinflammatory cytokine Tumour Necrosis Factor (TNF-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1 and β2-adrenoreceptors (β2-ARs. TNF-α activated the canonical Nuclear Factor-κB (NF-κB pathway and Mitogen-Activated Protein Kinases (MAPKs, culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6 and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB, CREB-binding protein (CBP and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

  8. Integrated strain array for cellular mechanobiology studies

    Science.gov (United States)

    Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.

    2011-05-01

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.

  9. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion

    Directory of Open Access Journals (Sweden)

    Pornthida Poosala

    2016-05-01

    Full Text Available Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6 modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4, which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation.

  10. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  11. Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise.

    Science.gov (United States)

    Wallace, Marita A; Hock, M Benjamin; Hazen, Bethany C; Kralli, Anastasia; Snow, Rod J; Russell, Aaron P

    2011-04-15

    The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1β (CPT-1β) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1β, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1β levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1β mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1β.

  12. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs

    Directory of Open Access Journals (Sweden)

    Hoffman Eric P

    2009-07-01

    Full Text Available Abstract Background Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. Results De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability ≤ 0.001. We identified significant increases (1.7- to 3.1- fold in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1, and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. Conclusion We describe novel

  13. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23 Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shimoda

    Full Text Available Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23 is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.

  14. Bioabsorbable fish scale for the internal fixation of fracture: a preliminary study.

    Science.gov (United States)

    Chou, Cheng-Hung; Chen, Yong-Guei; Lin, Chien-Chen; Lin, Shang-Ming; Yang, Kai-Chiang; Chang, Shih-Hsin

    2014-09-01

    Fish scales, which consist of type I collagen and hydroxyapatite (HA), were used to fabricate a bioabsorbable bone pin in this study. Fresh fish scales were decellularized and characterized to provide higher biocompatibility. The mechanical properties of fish scales were tested, and the microstructure of an acellular fish scale was examined. The growth curve of a myoblastic cell line (C2C12), which was cultured on the acellular fish scales, implied biocompatibility in vitro, and the morphology of the cells cultured on the scales was observed using scanning electron microscopy (SEM). A bone pin made of decellularized fish scales was used for the internal fixation of femur fractures in New Zealand rabbits. Periodic X-ray evaluations were obtained, and histologic examinations were performed postoperatively. The present results show good cell growth on decellularized fish scales, implying great biocompatibility in vitro. Using SEM, the cell morphology revealed great adhesion on a native, layered collagen structure. The Young's modulus was 332 ± 50.4 MPa and the tensile strength was 34.4 ± 6.9 MPa for the decellularized fish scales. Animal studies revealed that a fish-scale-derived bone pin improved the healing of bone fractures and degraded with time. After an 8-week implantation, the bone pin integrated with the adjacent tissue, and new extracellular matrix was synthesized around the implant. Our results proved that fish-scale-derived bone pins are a promising implant material for bone healing and clinical applications. PMID:25211643

  15. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    Science.gov (United States)

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-01

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  16. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes.

    Science.gov (United States)

    Sangeetha, M K; Priya, C D Mohana; Vasanthi, Hannah R

    2013-02-15

    Tinospora cordifolia is a well reported plant possessing numerous medicinal values including anti-diabetic property. Aim of the present study is to study the mechanism of action of Tinospora cordifolia and its active compound in differentiated myocytes, L6 cells. Key marker of diabetes in cells is the insulin dependent glucose transporter-4 (Glut-4) which also responds to exogenous chemicals, and is over expressed up to 5- and 4-fold, by Tinospora cordifolia and palmatine, respectively. Next to Glut-4, the predominant protein influencing glucose metabolism is PPARα and γ whose expressions were also positively modulated. Further, the inhibitors of insulin pathway prevented glucose uptake mediated by Tinospora cordifolia and palmatine which shows that the activity is majorly mediated through insulin pathway. PMID:23290487

  17. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Directory of Open Access Journals (Sweden)

    Rachelle N Palchesko

    Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  18. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Science.gov (United States)

    Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  19. The serine protease, dipeptidyl peptidase IV as a myokine: dietary protein and exercise mimetics as a stimulus for transcription and release.

    Science.gov (United States)

    Neidert, Leslie E; Mobley, C Brooks; Kephart, Wesley C; Roberts, Michael D; Kluess, Heidi A

    2016-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme with numerous roles within the body, mostly related to regulating energy metabolism. DPP-IV is also a myokine, but the stimulus for its release is poorly understood. We investigated the transcription and release of DPP-IV from skeletal muscle in a three-part study using C2C12 myotube cultures, an acute rat exercise and postexercise feeding model, and human feeding or human exercise models. When myotubes were presented with leucine only, hydrolyzed whey protein, or chemicals that cause exercise-related signaling to occur in cell culture, all caused an increase in the mRNA expression of DPP-IV (1.63 to 18.56 fold change, P protein caused a significant increase in DPP-IV activity in the cell culture media. When rats were fed whey protein concentrate immediately following stimulated muscle contractions, DPP-IV mRNA in both the exercised and nonexercised gastrocnemius muscles significantly increased 2.5- to 3.7-fold (P protein up to 1 h post consumption, after a 10 min bout of vigorous running, or during the completion of three repeated lower body resistance exercise bouts. Our cell culture and rodent data suggest that whey protein increases DPP-IV mRNA expression and secretion from muscle cells. However, our human data suggest that DPP-IV is not elevated in the bloodstream following acute whey protein ingestion or exercise. PMID:27335432

  20. Potent Dystrophin knock-Down in Vitro and in Vivo Using RNAi Technonlogy and Expression Signature of Myotubes with Dystrophin knocked Down: Attempts at Unravelling the Mystery

    Directory of Open Access Journals (Sweden)

    MM Ghahramani Seno

    2005-10-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is one of a group of genetically heterogeneous muscular dystrophies that are characterized by progressive weakness and wasting of skeletal muscle. Loss of myofibres occurs in response to a deficiency of dystrophin, a protein which is believed to be responsible for myofibre maintenance and integrity. Dystrophin forms a link between the cytoskeleton and the membrane-spanning dystrophin-associated glycoprotein complex (DAPC, indicative of a structural role for dystrophin. The application of gene therapy protocols for DMD still presents many daunting challenges due partly to intrinsic features of the dystrophin gene. Hence, improvement in the understanding of the underlying primary molecular events leading to a dystrophic pathology might pave the way for the discovery of new starting points. Here we present a strategy to use RNAi technology to study the events occurring in muscle cell development due to dystrophin deficiency. RNAi has been proven to be a powerful technology to study molecular effects due to knockdown of single genes. We have used a series of siRNAs to target and knock down the expression of dystrophin in primary cultures of mouse muscle, and subsequently used transcriptomic array analysis to identify genes whose expression were affected in response to dystrophin deficiency. The data obtained from this experiment, which include some very interesting potential new targets, are currently being analysed. We have also developed a recombinant adeno-associated virus (rAAV vector expressing an shRNA targeting dystrophin. The use of such rAAV-shDNA vectors enables us to target dystrophin in vivo to obtain a better and potentially curative insight into the pathophysiology of DMD.

  1. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  2. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: a data mining prediction followed by experimental exploration of the molecular mechanism.

    Science.gov (United States)

    Nagashima, Takuya; Shirakawa, Hisashi; Nakagawa, Takayuki; Kaneko, Shuji

    2016-01-01

    Atypical antipsychotics are associated with an increased risk of hyperglycaemia, thus limiting their clinical use. This study focused on finding the molecular mechanism underlying antipsychotic-induced hyperglycaemia. First, we searched for drug combinations in the FDA Adverse Event Reporting System (FAERS) database wherein a coexisting drug reduced the hyperglycaemia risk of atypical antipsychotics, and found that a combination with vitamin D analogues significantly decreased the occurrence of quetiapine-induced adverse events relating diabetes mellitus in FAERS. Experimental validation using mice revealed that quetiapine acutely caused insulin resistance, which was mitigated by dietary supplementation with cholecalciferol. Further database analysis of the relevant signalling pathway and gene expression predicted quetiapine-induced downregulation of Pik3r1, a critical gene acting downstream of insulin receptor. Focusing on the phosphatidylinositol 3-kinase (PI3K) signalling pathway, we found that the reduced expression of Pik3r1 mRNA was reversed by cholecalciferol supplementation in skeletal muscle, and that insulin-stimulated glucose uptake into C2C12 myotube was inhibited in the presence of quetiapine, which was reversed by concomitant calcitriol in a PI3K-dependent manner. Taken together, these results suggest that vitamin D coadministration prevents antipsychotic-induced hyperglycaemia and insulin resistance by upregulation of PI3K function. PMID:27199286

  3. Clones of ectopic stem cells in the regeneration of muscle defects in vivo.

    Directory of Open Access Journals (Sweden)

    Rujing Yang

    Full Text Available Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells. Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ∼9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ∼3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.

  4. Syringaresinol induces mitochondrial biogenesis through activation of PPARβ pathway in skeletal muscle cells.

    Science.gov (United States)

    Thach, Trung Thanh; Lee, Chan-Kyu; Park, Hyun Woo; Lee, Sang-Jun; Lee, Sung-Joon

    2016-08-15

    Activation of peroxisome proliferator-activated receptors (PPARs) plays a crucial role in cellular energy metabolism that directly impacts mitochondrial biogenesis. In this study, we demonstrate that syringaresinol, a pharmacological lignan extracted from Panax ginseng berry, moderately binds to and activates PPARβ with KD and EC50 values of 27.62±15.76μM and 18.11±4.77μM, respectively. Subsequently, the expression of peroxisome proliferator-activated receptor γ coactivator-1α together with PPARβ transcriptional targets, mitochondrial carnitine palmitoyltransferase 1 and uncoupling protein 2, was also enhanced in terms of both mRNA and protein levels. The activation of these proteins induced mitochondrial biogenesis by enrichment of mitochondrial replication and density within C2C12 myotubes. Importantly, knockdown of PPARβ reduced the syringaresinol-induced protein expression followed by the significant reduction of mitochondrial biogenesis. Taken together, our results indicate that syringaresinol induces mitochondrial biogenesis by activating PPARβ pathway. PMID:27450788

  5. CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome.

    Directory of Open Access Journals (Sweden)

    Mohadeseh Mehrabian

    Full Text Available The molecular function of the cellular prion protein (PrPC and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer's disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼ 120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.

  6. L6E9 Myoblasts Are Deficient of Myostatin and Additional TGF- Members Are Candidates to Developmentally Control Their Fiber Formation

    Directory of Open Access Journals (Sweden)

    Stefania Rossi

    2010-01-01

    Full Text Available This work provides evidence that the robust myoblast differentiation observed in L6E9 cells is causally linked to deficiency of myostatin, which, conversely, has been found to be expressed in C2C12 cells. However, despite the absence of endogenous myostatin, L6E9 myoblasts expressed functional Activin receptors type II (ActRIIs and follistatin as well as the highly related TGF- members Activins and GDF11, suggesting that in this cell line the regulation of fiber size might be under the control of multiple regulators regardless of myostatin. In line with this hypothesis, delivery of a dominant-negative ActRIIb form or the increase of follistatin, as obtained via Trichostatin treatment or stable transfection of a short human follistatin form, enhanced the L6E9 cell differentiation and further increased the size of myotubes, suggesting that L6E9 myoblasts provide a spontaneous myostatin knock-out in vitro model to study TGF- ligands involved in developmental regulation of fiber size.

  7. An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes

    OpenAIRE

    Heather Kirk-Ballard; Wang, Zhong Q.; Priyanka Acharya; Zhang, Xian H.; Yongmei Yu; Gail Kilroy; David Ribnicky; Cefalu, William T.; Z Elizabeth Floyd

    2013-01-01

    Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin signaling extends to regulation of the ubiquitin-proteasome system. C2C12 myotubes and the KK-A(y) murine model of type 2 diabetes were use...

  8. Yin-Yang Regulation of Adiponectin Signaling by APPL Isoforms in Muscle Cells*

    OpenAIRE

    Wang, Changhua; Xin, Xiaoban; Xiang, Ruihua; Ramos, Fresnida J.; Liu, Meilian; Lee, Hak Joo; Chen, Hongzhi; Mao, Xuming; Kikani, Chintan K.; Liu, Feng; Dong, Lily Q.

    2009-01-01

    APPL1 is a newly identified adiponectin receptor-binding protein that positively mediates adiponectin signaling in cells. Here we report that APPL2, an isoform of APPL1 that forms a dimer with APPL1, can interacts with both AdipoR1 and AdipoR2 and acts as a negative regulator of adiponectin signaling in muscle cells. Overexpression of APPL2 inhibits the interaction between APPL1 and AdipoR1, leading to down-regulation of adiponectin signaling in C2C12 myotubes. In contrast, suppressing APPL2 ...

  9. CD36 is required for myoblast fusion during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Yoon [Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714 (Korea, Republic of); Yun, Youngeun [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, In-San, E-mail: iskim@knu.ac.kr [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Biomedical Research Institute, Korea Institute Science and Technology, Seoul (Korea, Republic of)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  10. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    Science.gov (United States)

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-01-01

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both

  11. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse

    Directory of Open Access Journals (Sweden)

    White James P

    2012-07-01

    Full Text Available Abstract Background Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1 determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2 to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia. Methods ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts. Results Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2 protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1 was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression

  12. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    Science.gov (United States)

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  13. A Novel Synaptobrevin/VAMP Homologous Protein (VAMP5) Is Increased during In Vitro Myogenesis and Present in the Plasma Membrane

    Science.gov (United States)

    Zeng, Qi; Subramaniam, V. Nathan; Wong, Siew Heng; Tang, Bor Luen; Parton, Robert G.; Rea, Shane; James, David E.; Hong, Wanjin

    1998-01-01

    cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102–amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the mRNA for VAMP5 is preferentially expressed in the skeletal muscle and heart, whereas significantly lower levels are detected in several other tissues but not in the brain. During in vitro differentiation (myogenesis) of C2C12 myoblasts into myotubes, the mRNA level for VAMP5 is increased ∼8- to 10-fold. Immunoblot analysis using antibodies specific for VAMP5 shows that the protein levels are also elevated ∼6-fold during in vitro myogenesis of C2C12 cells. Indirect immunofluorescence microscopy and immunoelectron microscopy reveal that VAMP5 is associated with the plasma membrane as well as intracellular perinuclear and peripheral vesicular structures of myotubes. Epitope-tagged versions of VAMP5 are similarly targeted to the plasma membrane. PMID:9725904

  14. Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism

    Science.gov (United States)

    Hassan-Smith, Zaki K; Doig, Craig L; Sherlock, Mark; Stewart, Paul M; Lavery, Gareth G

    2016-01-01

    The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, ‘Cushing’s syndrome’, create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use

  15. Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism.

    Science.gov (United States)

    Morgan, Stuart A; Hassan-Smith, Zaki K; Doig, Craig L; Sherlock, Mark; Stewart, Paul M; Lavery, Gareth G

    2016-06-01

    The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, 'Cushing's syndrome', create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of

  16. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Science.gov (United States)

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. PMID:27122162

  17. Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation.

    Science.gov (United States)

    Wei, Yingying; Tao, Xuelian; Xu, Huaming; Chen, Yan; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Jiang, Yanzhi; Li, Xuewei

    2016-10-30

    Accumulating evidence has indicated that microRNAs (miRNAs) and endoplasmic reticulum (ER) stress play critical roles in myoblast differentiation. However, the regulation roles of miRNAs and ER stress in myogenic differentiation have not been fully revealed and need to be further studied. Here, we discovered that the expression levels of miR-181a-5p were strongly upregulated during C2C12 cell differentiation. miR-181a-5p overexpression promoted ER stress and differentiation of C2C12 cells, which was accompanied by increasing expression levels of marker genes related to ER stress-mediated apoptosis and myogenic differentiation. Opposite results were observed after inhibition of the miR-181a-5p expression. The gain- and loss-of-function experiments on C2C12 cells showed that miR-181a-5p affected the development of muscle fiber type, but had no significant influence on C2C12 cell proliferation. In the ER-stressed C2C12 cells induced by thapsigargin (Tg), the expression levels of both miR-181a-5p and marker genes related to ER stress and myogenesis were upregulated. In the ER-stressed C2C12 cells and porcine muscle fibroblast (PMF) cells pretreated with Tg, we found that miR-181a-5p targeted glucose-regulated protein, 78kDa/binding immunoglobulin protein (GRP78/BIP), and influenced cell apoptosis. In conclusion, these results indicate that miR-181a-5p and ER stress have positive synergistic effects on myogenic differentiation by increasing the expression levels of myogenic differentiation key genes and activating the ER stress-mediated apoptosis signaling pathway.

  18. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    Science.gov (United States)

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  19. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available BACKGROUND: The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets. METHODOLOGY/PRINCIPAL FINDINGS: The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets. CONCLUSIONS/SIGNIFICANCE: The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  20. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor

    OpenAIRE

    John, Scott A.; Ottolia, Michela; James N Weiss; Ribalet, Bernard

    2007-01-01

    To study intracellular glucose homeostasis, the glucose nanosensor FLIPglu-600µM, which undergoes changes in fluorescence resonance energy transfer (FRET) upon interaction with glucose, was expressed in four mammalian cell lines: COS-7, CHO, HEK293, and C2C12. Upon addition of extracellular glucose, the intracellular FRET ratio decreased rapidly as intracellular glucose increased. The kinetics were fast (τ =5 to 15 s) in COS and C2C12 cells and slow (τ =20 to 40 s) in HEK and CHO cells. Upon ...

  1. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia.

    Science.gov (United States)

    Seto, Danielle N; Kandarian, Susan C; Jackman, Robert W

    2015-08-01

    Cachexia is an exacerbating event in many types of cancer that is strongly associated with a poor prognosis. We have identified cytokine, signaling, and transcription factors that are required for cachexia in the mouse C26 colon carcinoma model of cancer. C2C12 myotubes treated with conditioned medium from C26 cancer cells induced atrophy and activated a STAT-dependent reporter gene but not reporter genes dependent on SMAD, FOXO, C/EBP, NF-κB, or AP-1. Of the gp130 family members IL-11, IL-6, oncostatin M (OSM), and leukemia inhibitory factor (LIF), only OSM and LIF were sufficient to activate the STAT reporter in myotubes. LIF was elevated in C26 conditioned medium (CM), but IL-6, OSM, TNFα, and myostatin were not. A LIF-blocking antibody abolished C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and myotube atrophy but blocking antibodies to IL-6 or OSM did not. JAK2 inhibitors also blocked C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and atrophy in myotubes. LIF at levels found in the C26 CM was sufficient for STAT reporter activation and atrophy in myotubes. In vivo, an increase in serum LIF preceded the increase in IL-6 in mice with C26 tumors. Overexpression of a dominant negative Stat3Cβ-EGFP gene in myotubes and in mouse muscle blocked the atrophy caused by C26 CM or C26 tumors, respectively. Taken together, these data support an important role of LIF-JAK2-STAT3 in C26 cachexia and point to a therapeutic approach for at least some types of cancer cachexia.

  2. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia*

    Science.gov (United States)

    Seto, Danielle N.; Kandarian, Susan C.; Jackman, Robert W.

    2015-01-01

    Cachexia is an exacerbating event in many types of cancer that is strongly associated with a poor prognosis. We have identified cytokine, signaling, and transcription factors that are required for cachexia in the mouse C26 colon carcinoma model of cancer. C2C12 myotubes treated with conditioned medium from C26 cancer cells induced atrophy and activated a STAT-dependent reporter gene but not reporter genes dependent on SMAD, FOXO, C/EBP, NF-κB, or AP-1. Of the gp130 family members IL-11, IL-6, oncostatin M (OSM), and leukemia inhibitory factor (LIF), only OSM and LIF were sufficient to activate the STAT reporter in myotubes. LIF was elevated in C26 conditioned medium (CM), but IL-6, OSM, TNFα, and myostatin were not. A LIF-blocking antibody abolished C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and myotube atrophy but blocking antibodies to IL-6 or OSM did not. JAK2 inhibitors also blocked C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and atrophy in myotubes. LIF at levels found in the C26 CM was sufficient for STAT reporter activation and atrophy in myotubes. In vivo, an increase in serum LIF preceded the increase in IL-6 in mice with C26 tumors. Overexpression of a dominant negative Stat3Cβ-EGFP gene in myotubes and in mouse muscle blocked the atrophy caused by C26 CM or C26 tumors, respectively. Taken together, these data support an important role of LIF-JAK2-STAT3 in C26 cachexia and point to a therapeutic approach for at least some types of cancer cachexia. PMID:26092726

  3. A prescribed Chinese herbal medicine improves glucose profile and ameliorates oxidative stress in Goto-Kakisaki rats fed with high fat diet.

    Directory of Open Access Journals (Sweden)

    Lin Wu

    Full Text Available Oxidative stress (OS plays a role in hyperglycemia induced islet β cell dysfunction, however, studies on classic anti-oxidants didn't show positive results in treating diabetes. We previously demonstrated that the prescribed Chinese herbal medicine preparation "Qing Huo Yi Hao" (QHYH improved endothelial function in type 2 diabetic patients. QHYH protected endothelial cells from high glucose-induced damages by scavenging superoxide anion and reducing production of reactive oxygen species. Its active component protected C2C12 myotubes against palmitate-induced oxidative damage and mitochondrial dysfunction. In the present study, we investigated whether QHYH protected islet β cell function exacerbated by high fat diet (HFD in hyperglycemic GK rats. 4-week-old male rats were randomly divided into high HFD feeding group (n = 20 and chow diet feeding group (n = 10. Each gram of HFD contained 4.8 kcal of energy, 52% of which from fat. Rats on HFD were further divided into 2 groups given either QHYH (3 ml/Kg/d or saline through gastric tube. After intervention, serum glucose concentrations were monitored; IPGTTs were performed without anesthesia on 5 fasting rats randomly chosen from each group on week 4 and 16. Serum malondialdehyde (MDA concentrations and activities of serum antioxidant enzymes were measured on week 4 and 16. Islet β cell mass and OS marker staining was done by immunohistochemistry on week 16. QHYH prevented the exacerbation of hyperglycemia in HFD feeding GK rats for 12 weeks. On week 16, it improved the exacerbated glucose tolerance and prevented the further loss of islet β cell mass induced by HFD. QHYH markedly decreased serum MDA concentration, increased serum catalase (CAT and SOD activities on week 4. However, no differences of serum glucose concentration or OS were observed on week 16. We concluded that QHYH decreased hyperglycemia exacerbated by HFD in GK rats by improving β cell function partly via its

  4. Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE.

    Science.gov (United States)

    Hage Hassan, Rima; Pacheco de Sousa, Ana Catarina; Mahfouz, Rana; Hainault, Isabelle; Blachnio-Zabielska, Agnieszka; Bourron, Olivier; Koskas, Fabien; Górski, Jan; Ferré, Pascal; Foufelle, Fabienne; Hajduch, Eric

    2016-02-01

    In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells. PMID:26698173

  5. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  6. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344).

    Science.gov (United States)

    Park, Ji Seon; Rhee, Sang Dal; Kang, Nam Sook; Jung, Won Hoon; Kim, Hee Youn; Kim, Jun Hyoung; Kang, Seung Kyu; Cheon, Hyae Gyeong; Ahn, Jin Hee; Kim, Ki Young

    2011-04-15

    The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), as a 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and C57BL/6-Lep(ob/ob) mice. KR-66344 concentration-dependently inhibited 11β-HSD1 activity in human liver microsome, mouse C2C12 myotube and human SW982 cells. In the C57BL/6-Lep(ob/ob) mice study, the administration of KR-66344 (200mg/kg/d, orally for 5 days) improved the glucose intolerance as determined by the oral glucose tolerance test, in which the area under the curve (AUC) of the plasma glucose concentration was significantly reduced by 27% compared with the vehicle treated group. Further, KR-66344 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, G3PD, PPARγ2 and Glut4, and 11β-HSD1 expression and activity. Our results additionally demonstrate evidence showing that KR-66344 improved glycemic control and inhibited adipogenesis via 11β-HSD1 enzyme activity. Taken together, these results may provide evidence of the therapeutic potential of KR-66344, as a 11β-HSD1 inhibitor, in obesity and type 2 diabetes patients with metabolic syndrome.

  7. Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE.

    Science.gov (United States)

    Hage Hassan, Rima; Pacheco de Sousa, Ana Catarina; Mahfouz, Rana; Hainault, Isabelle; Blachnio-Zabielska, Agnieszka; Bourron, Olivier; Koskas, Fabien; Górski, Jan; Ferré, Pascal; Foufelle, Fabienne; Hajduch, Eric

    2016-02-01

    In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells.

  8. LIM homeobox transcription factor Lhx2 inhibits skeletal muscle differentiation in part via transcriptional activation of Msx1 and Msx2.

    Science.gov (United States)

    Kodaka, Yusaku; Tanaka, Kiyoko; Kitajima, Kenji; Tanegashima, Kosuke; Matsuda, Ryoichi; Hara, Takahiko

    2015-02-15

    LIM homeobox transcription factor Lhx2 is known to be an important regulator of neuronal development, homeostasis of hair follicle stem cells, and self-renewal of hematopoietic stem cells; however, its function in skeletal muscle development is poorly understood. In this study, we found that overexpression of Lhx2 completely inhibits the myotube-forming capacity of C2C12 cells and primary myoblasts. The muscle dedifferentiation factors Msx1 and Msx2 were strongly induced by the Lhx2 overexpression. Short interfering RNA-mediated knockdown of Lhx2 in the developing limb buds of mouse embryos resulted in a reduction in Msx1 and Msx2 mRNA levels, suggesting that they are downstream target genes of Lhx2. We found two Lhx2 consensus-binding sites in the -2097 to -1189 genomic region of Msx1 and two additional sites in the -536 to +73 genomic region of Msx2. These sequences were shown by luciferase reporter assay to be essential for Lhx2-mediated transcriptional activation. Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that Lhx2 is present in chromatin DNA complexes bound to the enhancer regions of the Msx1 and Msx2 genes. These data demonstrate that Msx1 and Msx2 are direct transcriptional targets of Lhx2. In addition, overexpression of Lhx2 significantly enhanced the mRNA levels of bone morphogenetic protein 4 and transforming growth factor beta family genes. We propose that Lhx2 is involved in the early stage of skeletal muscle development by inducing multiple differentiation inhibitory factors.

  9. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. PMID:26831516

  10. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin.

    Science.gov (United States)

    Kwon, Bumsup; Querfurth, Henry W

    2015-11-01

    Excessive saturated free fatty acids (SFFAs; e.g. palmitate) in blood are a pathogenic factor in diabetes, obesity, cardiovascular disease and liver failure. In contrast, monounsaturated free fatty acids (e.g. oleate) prevent the toxic effect of SFFAs in various types of cells. The mechanism is poorly understood and involvement of the mTOR complex is untested. In the present study, we demonstrate that oleate preconditioning, as well as coincubation, completely prevented palmitate-induced markers of inflammatory signaling, insulin resistance and cytotoxicity in C2C12 myotubes. We then examined the effect of palmitate and/or oleate on the mammalian target of rapamycin (mTOR) signal path and whether their link is mediated by AMP-activated protein kinase (AMPK). Palmitate decreased the phosphorylation of raptor and 4E-BP1 while increasing the phosphorylation of p70S6K. Palmitate also inhibited phosphorylation of AMPK, but did not change the phosphorylated levels of mTOR or rictor. Oleate completely prevented the palmitate-induced dysregulation of mTOR components and restored pAMPK whereas alone it produced no signaling changes. To understand this more, we show activation of AMPK by metformin also prevented palmitate-induced changes in the phosphorylations of raptor and p70S6K, confirming that the mTORC1/p70S6K signaling pathway is responsive to AMPK activity. By contrast, inhibition of AMPK phosphorylation by Compound C worsened palmitate-induced changes and correspondingly blocked the protective effect of oleate. Finally, metformin modestly attenuated palmitate-induced insulin resistance and cytotoxicity, as did oleate. Our findings indicate that palmitate activates mTORC1/p70S6K signaling by AMPK inhibition and phosphorylation of raptor. Oleate reverses these effects through a metformin-like facilitation of AMPK. PMID:26344902

  11. Antcin K, a Triterpenoid Compound from Antrodia camphorata, Displays Antidiabetic and Antihyperlipidemic Effects via Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in Muscles

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2016-01-01

    Full Text Available The purpose of this study was to screen firstly the potential effects of antcin K (AnK, the main constituent of the fruiting body of Antrodia camphorata, in vitro and further evaluate the activities and mechanisms in high-fat-diet- (HFD- induced mice. Following 8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno, metformin (Metf, or vehicle for 4 weeks afterward. In C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and leptin levels in AnK-treated groups. Of interest, AnK at 40 mg/kg/day dosage displayed both antihyperglycemic effect comparable to Metf (300 mg/kg/day and antihypertriglyceridemic effect comparable to Feno (250 mg/kg/day. The combination of significantly increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4 but decreased hepatic glucose-6-phosphatase (G6 Pase mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK expressions in the muscle and liver. Moreover, AnK treatment exhibited inhibition of hepatic fatty acid synthase (FAS but enhancement of fatty acid oxidation peroxisome proliferator-activated receptor α (PPARα expression coincident with reduced sterol response element binding protein-1c (SREBP-1c mRNA levels in the liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia.

  12. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Xingxing Kong

    Full Text Available BACKGROUND: Sirtuin 3 (SIRT3 is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS-detoxifying enzymes, but the molecular mechanism underlying this is not well understood. RESULTS: Here we show that PGC-1alpha strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1alpha led to decreased Sirt3 gene expression. PGC-1alpha activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR binding element (ERRE (-407/-399 mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRalpha bound to the identified ERRE and PGC-1alpha co-localized with ERRalpha in the mSirt3 promoter. Knockdown of ERRalpha reduced the induction of Sirt3 by PGC-1alpha in C(2C(12 myotubes. Furthermore, Sirt3 was essential for PGC-1alpha-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1alpha in C(2C(12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1alpha on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1alpha on mitochondrial biogenesis in C(2C(12 myotubes. CONCLUSION: Our results indicate that Sirt3 functions as a downstream target gene of PGC-1alpha and mediates the PGC-1alpha effects on cellular ROS production and mitochondrial biogenesis. Thus

  13. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bhattacharya, Sumangala; Christensen, Kathrine B.; Olsen, Louise C.B.;

    2013-01-01

    , kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside and the related phenolic compounds kaempferol and ferulic acid. The study indicates that elderflower extracts contain bioactive compounds capable of modulating glucose and lipid metabolism, suitable for nutraceutical...

  14. Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy

    Science.gov (United States)

    Bosch-Morató, Mònica; Iriondo, Cinta; Guivernau, Biuse; Valls-Comamala, Victòria; Vidal, Noemí; Olivé, Montse; Querfurth, Henry; Muñoz, Francisco J.

    2016-01-01

    GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-peptide (Aβ) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aβ1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aβ1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aβ1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aβ1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aβ1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients. PMID:26968811

  15. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  16. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    Directory of Open Access Journals (Sweden)

    Andrew T Kwon

    2011-12-01

    Full Text Available We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  17. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice

    Institute of Scientific and Technical Information of China (English)

    Zhidan Luo; Tingbing Cao; Daoyan Liu; Bernd Nilius; Yu Huang; Zhencheng Yan; Zhiming Zhu; Liqun Ma; Zhigang Zhao; Hongbo He; Dachun Yang; Xiaoli Feng; Shuangtao Ma; Xiaoping Chen; Tianqi Zhu

    2012-01-01

    Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases.Acute administration of capsaicin enhances exercise endurance in rodents,but the long-term effect of dietary capsaicin is unknown.The capsaicin receptor,the transient receptor potential vanilloid 1(TRPV1)cation channel has been detected in skeletal muscle,the role of which remains unclear.Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice.In vitro,capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α)expression in C2C12 myotubes through activating TRPV1.In vivo,PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice.TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration,promoted mitochondrial biogenesis,increased oxidative fibers,enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders.Importantly,these effects of capsaicin were absent in TRPV1-deficient mice.We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles.The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.

  18. Myogenic factors that regulate expression of muscle-specific microRNAs.

    Science.gov (United States)

    Rao, Prakash K; Kumar, Roshan M; Farkhondeh, Mina; Baskerville, Scott; Lodish, Harvey F

    2006-06-01

    Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.

  19. Biocompatibility of fluorescent nanoparticles NaYF4:Yb,Er as imaging media%荧光纳米颗粒NaYF4:Yb,Er作为显像介质的生物相容性

    Institute of Scientific and Technical Information of China (English)

    虞永江; 马晓荣; 于国鹏; 高同斌; 齐隽; 陈方

    2011-01-01

    Objective To investigate the biocompatibility of upconversion fluorescent nanoparticles in vivo and in vitro, and verify its safety as imaging media.Methods Mouse bone mesenchymal stem cells (BMSC), mouse embryonic fibroblasts (NIH/3T3) and primary myoblasts (C2C12) were incubated with different concentrations of NaYF4: Yb, Er (0, 10, 50, 100 and 200 μg/mL).Cell proliferation was determined by MTT assay, and the formation of myotube cells from C2C12 myoblasts was detected.DMEM with NaYF4: Yb, Er nanoparticles were injected into C57BL/6 mice, and liver function and renal function were examined.HE staining was performed for main body organs, and toxicity was detected.Results MTT assay revealed that the cytotoxicity of NaYF4: Yb, Er on NIH/3T3 and C2C12 was positively correlated with incubation dose and time ( NIH/3T3: r =0.974, P <0.05; C2C12: r =0.996, P <0.05), while the same result was not found for BMSC ( r = - 0.218, P > 0.05).The formation of myotube cells from C2C12 myoblasts was not significantly affected by incubation with NaYF4: Yb, Er for 48 h.No obvious damage of liver and renal function and main body organs was observed after injection of DMEM with NaYF4: Yb, Er nanoparticles in mice.Conclusion As biological luminescent labels with strong intensity, NaYF4: Yb, Er has less toxicity both in vivo and in vitro to the requirement of imaging, and is an ideal biological imaging media.%目的 检测上转频荧光纳米颗粒的生物学体内、外相容性,证实其作为显像介质的生物安全性.方法 将培育后的小鼠骨髓间充质干细胞(BMSC)、胚胎成纤维细胞(NIH/3T3)及成肌细胞(C2C12)分别与不同浓度(0、10、50、100、200μg/mL)的NaYF4:Yb,Er共孵育,采用MTT法检测细胞的增殖活性,并测定C2C12成肌细胞形成肌管细胞的功能.将NaYF4:Yb,Er纳米颗粒DMEM混悬液注射入C57BL/6小鼠,行小鼠肝肾功能测定;并对重要脏器行HE组织学染色,检测小鼠的体内毒性.结果 MTT法细

  20. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Science.gov (United States)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  1. Chromium Picolinate did not Effect on the Proliferation and Differentiation of Myoblasts

    Directory of Open Access Journals (Sweden)

    M. C. Tsa

    2007-01-01

    Full Text Available This experiment is conducted in vitro to investigate trivalent chromium picolinate affects the proliferation and differentiation of myoblasts. A myoblasts cell line (C2C12 from rats was used in the experiment. These were randomly divided into the control group, the Pic group (50ppb picolinate and the CrPic group (50ppb chromium picolinate. The differentiation of myoblasts reveals that the number of differentiated myotubes, creatine kinase (CK activity and the aldolase (ALB activity do not differ among the three groups (P > 0.05. The activity of hexokinase in the CrPic and Pic groups clearly exceeds that in the control group (P 0.05. Myoblast proliferation was the same across the three groups (P > 0.05, and the quantity of DNA in the control group exceeded that in the Pic group (P < 0.05. The experiment indicated that 200ppb chromium picolinate did not influence the proliferation and differentiation of myoblasts.

  2. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S;

    2009-01-01

    AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2......C12 skeletal muscle cells were electrically stimulated to mimic contraction. L6 myotubes and isolated rat extensor digitorum longus muscles were treated with BDNF and phosphorylation of the proteins AMP-activated protein kinase (AMPK) (Thr(172)) and acetyl coenzyme A carboxylase beta (ACCbeta) (Ser......(79)) were analysed, as was fatty acid oxidation (FAO). Finally, we electroporated a Bdnf vector into the tibialis cranialis muscle of mice. RESULTS: BDNF mRNA and protein expression were increased in human skeletal muscle after exercise, but muscle-derived BDNF appeared not to be released...

  3. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  4. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells.

    Science.gov (United States)

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  5. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease.

    Science.gov (United States)

    Davignon, Laurianne; Chauveau, Claire; Julien, Cédric; Dill, Corinne; Duband-Goulet, Isabelle; Cabet, Eva; Buendia, Brigitte; Lilienbaum, Alain; Rendu, John; Minot, Marie Christine; Guichet, Agnès; Allamand, Valérie; Vadrot, Nathalie; Fauré, Julien; Odent, Sylvie; Lazaro, Leïla; Leroy, Jean Paul; Marcorelles, Pascale; Dubourg, Odile; Ferreiro, Ana

    2016-04-15

    Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation inTRIP4encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted inTRIP4mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and inTrip4knocked-down C2C12 led to a significant reduction in myotube diameterex vivoandin vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the firstTRIP4mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism. PMID:27008887

  6. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.

  7. CaMK Ⅱ在收缩促进骨骼肌细胞GLUT4转位中的作用%The Role of CaMKⅡ in Contraction-Stimulated GLUT4 Translocation in Skeletal Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    于俊娜; 牛文彦

    2011-01-01

    Objective: To study the role of calcium-/calmodulin- dependent protein kinase Ⅱ (CaMK Ⅱ) in the mechanism of contraction-stimulated translocation of glucose transporter 4(GLUT4) in skeletal muscle cells. Methods:C2C12GLUT4myc myotubes were divided into two groups treated with or without carbachol (Cch). CaMK Ⅱ inhibitor KN93or KN62 was added to the medium prior to treatment, respectively. Then cell surface levels of GLUT4myc were measured by enzyme linked immunosorbent assay(ELISA). The phosphorylation of CaMK Ⅱ was detected by immunoblotting after pre-incubation with KN93. Results: Carbachol increased phosphorylation of CaMK Ⅱ which was reduced by KN93. KN93 and KN62 inhibited the gain of cell surface GLUT4myc induced by Cch. KN93 did not affect the phosphorylation of CaMK Ⅱ but it inhibited the CaMK Ⅱ phosphorylation stimulated by Cch. Conclusion: CaMK Ⅱ is the downstream signal of CaZ+ and mediates contraction-stimulated GLUT4myc traffic in skeletal muscle cells.%目的:探讨钙一钙调蛋白依赖性蛋白激酶Ⅱ(CaMK Ⅱ)在收缩促进骨骼肌细胞葡萄糖转运子4(GLUT4)转位机制中的作用.方法:将接种在培养板中的C2C12 GLUT4myc小鼠肌管随机分为对照组和氨乙酰胆碱(Cch)组,各组分为抑制剂亚组和对照亚组.分别用10 μmol/L CaMK Ⅱ的特异性抑制剂KN93或KN62预孵育,用酶联免疫吸附法(ELISA)测定细胞膜上GLUT4myc的含量(转位);用KN93预孵育后,免疫印迹法测定蛋白激酶CaMKⅡ的磷酸化.结果:氨乙酰胆碱使细胞膜上GLUT4myc的水平显著增加.KN93和KN62抑制氨乙酰胆碱刺激的GLUT4myc转位.氨乙酰胆碱可增加CaMKⅡ的磷酸化,KN93不影响对照组CaMK Ⅱ的磷酸化水平,但可以抑制Cch刺激的CaMK Ⅱ磷酸化.结论:CaMK Ⅱ位于Ca2+下游并有介导收缩促进骨骼肌细胞GLUT4myc转位的作用.

  8. Health promoting factors from milk of cows fed green plant material-The role of phytanic acid

    DEFF Research Database (Denmark)

    Che, Brita Ngum

    2012-01-01

    cultured to generate differentiated primary porcine myotubes. Viability studies were performed to determine which concentrations or length of treatments could be tolerated by the myotubes under glucose uptake, glycogen synthesis, and FA oxidation (FAO) experiments. Optimization of glucose uptake assay...... using cytochalasin B revealed that both the insulin-mediated and non-insulin mediated mechanisms of glucose uptake were functioning in the myotubes. Exposures to myotubes of excess glucose during the analysis of glucose uptake, and palmitate during the analysis of acylcarnitine, rendered the myotubes...... an insulin-dependent and insulin-independent fashion. When the myotubes were rendered insulin resistant by exposure to excess glucose, it was neither possible for PA nor insulin to stimulate glucose uptake or glycogen synthesis. During the analysis of β-oxidation using acylcarnitine profiling, we could show...

  9. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂ activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Andrew Philp

    Full Text Available Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR coactivator-1α (PGC-1α and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4: control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]. Gastrocnemius (GTN muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E finished with higher AMPK-α2 activity (147%, p<0.05, nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal

  10. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    Science.gov (United States)

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  11. PGC-1α is important for maintaining the balance of muscle mass and myofiber types in unloaded muscle atrophy

    Science.gov (United States)

    Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong

    2016-07-01

    PGC-1α, a transcriptional co-activator, has been shown mainly to determine the development of oxidative myofibers in skeletal muscle. However, whether PGC-1α functions to regulate the unloaded muscle atrophy and composition of myofiber types keeps unclear. MCK-PGC-1α overexpression transgenic mice (TG) and its wild type littermates (WT) were subjected to hindlimb unloading (HU) and induced unloaded muscle atrophy. After 14 days of HU, the mass of gastrocnemius, soleus, and plantaris muscles in WT mice decreased 17.9%, 28.2%, and 14.8%, respectively (Pmuscles. PGC-1α transgenic mice showed a 14.0% (Pmuscles mass after HU. To further confirm the effect of PGC-1α over-expression on the muscle mass loss under HU, change rate of muscle-body weight ratio was calculated, and the results indicated that the reduction of change rate of muscle-body weight ratio in PGC-1α transgenic gastrocnemius and soleus was significantly less than in WT mice (Pmuscle atrophy and myofiber switching from oxidative to glycolytic associated with a decrease in pSmad3 level after 14 days of HU. Importantly, overexpression of PGC-1α in C2C12 myoblasts protected PGC-1α-transfected myotubes from atrophy in vitro and the effect could be partially blocked by inducing pSmad3 with constitutively activated Smad3(C.A. smad3) transfection. Therefore, this study demonstrated a novel role and mechanism for PGC-1α in maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human

  12. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    Directory of Open Access Journals (Sweden)

    Andrea Bonetto

    Full Text Available BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6, and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26-carcinoma cachexia. METHODOLOGY/PRINCIPAL FINDINGS: Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. CONCLUSIONS/SIGNIFICANCE: These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and

  13. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    OpenAIRE

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  14. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    OpenAIRE

    Hyoungshin Park; Michael C. Yip; Beata Chertok; Joseph Kost; James B. Kobler; Robert Langer; Zeitels, Steven M.

    2010-01-01

    Low-intensity ultrasound (LIUS) treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12) and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diff...

  15. Development of a Neuromuscular Junction Model on Surfaces Modified by Plasma Polymerization

    OpenAIRE

    E. Zuñiga-Aguilar; R. Godínez; O. Ramírez-Fernández; Morales, J.; R. Olayo

    2013-01-01

    The aim of this work is to implement a biological model of neuromuscular junctions to study the mechanisms involved in intra and inter cellular processes using cell co-cultures. To optimize growth and development of the neuromuscular junction, cells were seeded on plasma polymerized pyrrole which has proven suitable for other types of cell cultures. The cell lines used were motor neuron NG108-15 and skeletal muscle C2C12. Cells were evaluated according to their morphology and elect...

  16. Inhibitory Effect of High Temperature- and High Pressure-Treated Red Ginseng on Exercise-Induced Oxidative Stress in ICR Mouse

    OpenAIRE

    Seok-Yeong Yu; Bo-Ra Yoon; Young-Jun Lee; Jong Seok Lee; Hee-Do Hong; Young-Chul Lee; Young-Chan Kim; Chang-Won Cho; Kyung-Tack Kim; Ok-Hwan Lee

    2014-01-01

    As previously reported, high temperature- and high pressure-treated red ginseng (HRG) contain higher contents of phenolic compounds and protect C2C12 muscle cells and 3T3-L1 adipocytes against oxidative stress. This study investigated the effect of HRG on oxidative stress using a mouse model. Our results show that the levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, hepatic malondialdehyde in the HRG group were significantly lower than those of the exercise grou...

  17. Antisnake Venom Activity of Hibiscus aethiopicus L. against Echis ocellatus and Naja n. nigricollis

    OpenAIRE

    Hasson, S. S.; Al-Jabri, A. A.; Sallam, T. A.; Al-balushi, M. S.; Mothana, R. A. A.

    2010-01-01

    The objective of the study is to investigate whether the Hibiscus aethiopicus L. plant has neutralization activity against venoms of two clinically important snakes. The H. aethiopicus was dried and extracted with water. Different assays were performed to evaluate the plant's acute toxicity and its anti-snake venom activities. The results showed that H. aethiopicus extract alone had no effect on the viability of C2C12 muscle cells, but significantly (P < .05) protected muscle cells against th...

  18. The interplay between physical and chemical properties of protein films affects their bioactivity.

    Science.gov (United States)

    Grover, Chloe N; Farndale, Richard W; Best, Serena M; Cameron, Ruth E

    2012-09-01

    Although mechanical properties, roughness, and receptor molecule expression have all been shown to influence the cellular reactivity of collagen-based biomaterials, their relative contribution, in a given system remains unclear. Here, we study films containing combinations of collagen, gelatin, and soluble and insoluble elastin, crosslinking of which results in altered film stiffness and roughness. Collagen and gelatin have similar amino acid sequences but altered cell-binding sites. We studied cell response with both C2C12 myoblast cells (which possess RGD-recognizing integrins α(V)β(3) and α(5)β(1)) and C2C12-α2+ cells (which, in addition, express the collagen-binding integrin α(2)β(1)) to establish the effect of altering the available binding sites on cell adhesion and spreading on films. Systematically altering the composition, crosslinking and cell type, allows us to deconvolute the effects of physical parameters and available binding sites on the cell reactivity of films in this system. Collagen-based films were rougher and stiffer and supported lower cell surface coverage than gelatin-based films. Additionally, C2C12-α2+ cells showed preferential attachment to collagen-based films compared with C2C12 cells, but no significant difference was seen using gelatin-based films. The cell count and surface coverage were found to decrease significantly on all films after crosslinking (Coll XL coverage = 2-6%, Gel XL coverage = 20-32%), but cell area and aspect ratio on collagen films were affected to a greater extent than on gelatin films. The results show that, in this system, the composition, and more significantly, crosslinking, of films affects the cell reactivity to a greater extent than their stiffness or roughness.

  19. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  20. Studies on the role of microtubules in myofibrillogenesis

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; HOWARDHOLTZER

    1990-01-01

    Co-localization of microtubule (MT) and muscle myosin (MHC) myofibril immunofluoresoonoe in developing myotubes of chicken skeletal muscle cultures was observed by using double staining of tubulin and MHC indirect immunofluorescence.120-tetradecanoyl-phorbol-12-acetate (TPA) selectively and reversibly blocks myofibrillogenesis and alters the morphology of myotubes in to myosacs where MTs are present in radiating pattern.When the arrested myogenic cells recover and start myofibrillogenesis after released from TPA,prior to the emergence of myofibrils,the pre-ecisting MTs become bipolarly aligned coincidently with the tubular restoration of cell shape.Single nascent myofibrils overlapping with MTs extend into the base of growth tips where MTs go farther to the end of the tips.That MT might act as scaffold in guiding the bipolar elongation of the growing myofibrils was suggested.Taxol and colcemid disturbed MT polymerization and disposition,and interfered with the normal spatial assembly of myofibrils in developing myotubes.

  1. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    Science.gov (United States)

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction. PMID:26581843

  2. Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Diana Mora-Obando

    Full Text Available Two subtypes of phospholipases A2 (PLA2s with the ability to induce myonecrosis, 'Asp49' and 'Lys49' myotoxins, often coexist in viperid snake venoms. Since the latter lack catalytic activity, two different mechanisms are involved in their myotoxicity. A synergism between Asp49 and Lys49 myotoxins from Bothrops asper was previously observed in vitro, enhancing Ca2+ entry and cell death when acting together upon C2C12 myotubes. These observations are extended for the first time in vivo, by demonstrating a clear enhancement of myonecrosis by the combined action of these two toxins in mice. In addition, novel aspects of their synergism were revealed using myotubes. Proportions of Asp49 myotoxin as low as 0.1% of the Lys49 myotoxin are sufficient to enhance cytotoxicity of the latter, but not the opposite. Sublytic amounts of Asp49 myotoxin also enhanced cytotoxicity of a synthetic peptide encompassing the toxic region of Lys49 myotoxin. Asp49 myotoxin rendered myotubes more susceptible to osmotic lysis, whereas Lys49 myotoxin did not. In contrast to myotoxic Asp49 PLA2, an acidic non-toxic PLA2 from the same venom did not markedly synergize with Lys49 myotoxin, revealing a functional difference between basic and acidic PLA2 enzymes. It is suggested that Asp49 myotoxins synergize with Lys49 myotoxins by virtue of their PLA2 activity. In addition to the membrane-destabilizing effect of this activity, Asp49 myotoxins may generate anionic patches of hydrolytic reaction products, facilitating electrostatic interactions with Lys49 myotoxins. These data provide new evidence for the evolutionary adaptive value of the two subtypes of PLA2 myotoxins acting synergistically in viperid venoms.

  3. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Feveile Young, Jette; Oksbjerg, Niels;

    2003-01-01

    C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2......C2C12, calcium, cell volume regulation, 5-lipoxygenase, melittin, anoxia, secretory phospholipase A2...

  4. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin.

    Science.gov (United States)

    Jähn, K; Lara-Castillo, N; Brotto, L; Mo, C L; Johnson, M L; Brotto, M; Bonewald, L F

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability. PMID:22972510

  5. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin

    Directory of Open Access Journals (Sweden)

    K Jähn

    2012-09-01

    Full Text Available It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex, a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s that preserve osteocyte viability.

  6. Emergent behavior of cells on microfabricated soft polymeric substrates

    Science.gov (United States)

    Anand, Sandeep Venkit

    ) with a single cell scale (micro scale) cross section. We plate C2C12 cells on the platform and characterize their migration, proliferation, and differentiation patterns in contrast to 2D culture. We find that the cells land on the 2D surface, and then migrate to the filament only when the 2D surface has become nearly confluent. Individual and isolated cells randomly approaching the filament always retract away towards the 2D surface. Once on the filament, their differentiation to myotubes is expedited compared to that on 2D substrate. The myotubes generate periodic twitching forces that deform the filament producing more than 17 um displacement at the tip. Such flagellar motion can be used to develop autonomous micro scale bio-bots. Finally, the design and fabrication of a polymeric micro-pillar based force sensor capable of measuring cellular focal-adhesion forces under externally applied stretch is discussed. The force sensor consists of arrays of uniformly spaced PDMS micro-pillars of 1-2 um diameter and 2-3 um spacing on a macroscale PDMS substrate. The tips of the micro-pillars are selectively patterned with fluorescently labeled ECM proteins using micro-contact printing to promote cell adhesion while simultaneously acting as markers for strain measurements. Cells adhere and spread on top of the pillars causing them to deform. When stretched, the cells reorganize their internal structure and modulate their traction forces in response to the applied stretch. The dynamically varying cellular forces in response to the stretch are computed by measuring the cell induced displacements estimated by isolating the displacements caused by the applied stretch from the net displacements of the tips.

  7. Experiment list: SRX956813 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 45079115,96.0,22.7,572 GSM1633918: IgG parental C2C12, T24; Mus musculus; ChIP-Seq s...ource_name=C2C12 cells || cell line=parental C2C12 || antibody=normal rabbit IgG http://dbarchive.bioscience

  8. Experiment list: SRX956812 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 49892791,96.2,19.4,629 GSM1633917: anti-Flag parental C2C12, T24; Mus musculus; ChIP...-Seq source_name=C2C12 cells || cell line=parental C2C12 || antibody=anti-Flag http://dbarchive.biosciencedb

  9. Identification of retinoic acid in a high content screen for agents that overcome the anti-myogenic effect of TGF-beta-1.

    Directory of Open Access Journals (Sweden)

    Chateen Krueger

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGF-β1 is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1. METHODOLOGY/PRINCIPAL FINDINGS: A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells. CONCLUSIONS/SIGNIFICANCE: Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be

  10. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  11. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise.

    Science.gov (United States)

    Min, Pil-Ki; Park, Joseph; Isaacs, Stephanie; Taylor, Beth A; Thompson, Paul D; Troyanos, Chris; D'Hemecourt, Pierre; Dyer, Sophia; Chan, Stephen Y; Baggish, Aaron L

    2016-03-15

    Statins exacerbate exercise-induced skeletal muscle injury. Muscle-specific microRNAs (myomiRs) increase in plasma after prolonged exercise, but the patterns of myomiRs release after statin-associated muscle injury have not been examined. We examined the relationships between statin exposure, in vitro and in vivo muscle contraction, and expression of candidate circulating myomiRs. We measured plasma levels of myomiRs, circulating microRNA-1 (c-miR-1), c-miR-133a, c-miR-206, and c-miR-499-5p from 28 statin-using and 28 nonstatin-using runners before (PRE), immediately after (FINISH), and 24 h after they ran a 42-km footrace (the 2011 Boston marathon) (POST-24). To examine these cellular-regulation myomiRs, we used contracting mouse C2C12 myotubes in culture with and without statin exposure to compare intracellular and extracellular expression of these molecules. In marathoners, c-miR-1, c-miR-133a, and c-miR-206 increased at FINISH, returned to baseline at POST-24, and were unaffected by statin use. In contrast, c-miR-499-5p was unchanged at FINISH but increased at POST-24 among statin users compared with PRE and runners who did not take statins. In cultured C2C12 myotubes, extracellular c-miR-1, c-miR-133a, and c-miR-206 were significantly increased by muscle contraction regardless of statin use. In contrast, extracellular miR-499-5p was unaffected by either isolated statin exposure or isolated carbachol exposure but it was increased when muscle contraction was combined with statin exposure. In summary, we found that statin-potentiated muscle injury during exercise is accompanied by augmented extracellular release of miR-499-5p. Thus c-miR-499-5p may serve as a biomarker of statin-potentiated muscle damage. PMID:26472872

  12. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    Science.gov (United States)

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth.

  13. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    Science.gov (United States)

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. PMID:27237374

  14. A SINGLE TETRACYCLINE-REGULATED VECTOR DEVISED FOR CONTROLLED INSULIN GENE EXPRESSION

    Institute of Scientific and Technical Information of China (English)

    Xue-yang Zhang; Ben-li Su; Hong Li; Ran Bai; Zhao-hui Xu; Chang-chen Li

    2004-01-01

    Objective To construct a single plasmid vector mediating doxycycline-inducible recombined human insulin gene expression in myotube cell line.Methods An expression cassette of rtTAnls driven by promoter of human cytomegalovirus and a furin-cuttable recom bined human insulin expression cassette driven by a reverse poly-tetO DNA motif were cloned into a single plasmid vector (prTR-tetO-mINS). The prTR-tetO-mINS and pLNCX were co-transfected into a myotube cell line (C2C12) and pLNCX vector were used as a control. After selection with G418, the transfected cells were induced with doxycycline at concentrations of 0, 2, and 10 μg/mL. RT-PCR was used to determine expression levels of recombinant insulin mRNA at the 5th day.Insulin production in cell cultures medium (at different incubation time) and cell extracts (at the 7th day) were analyzed with human pro/insulin RIA kits.Results Immune reactive insulin (IRI) level in cell medium was found increased at 24 hours of doxycycline incubation,and still increased at the 5th day. After withdrawn of doxycycline, IRI decreased sharply and was at baseline three days later. IRI and human insulin mRNA levels were positively related to different levels of doxycycline. A 25-fold increase in IRI was found against background expression at the 7th day.Conclusion Human insulin expression can be successfully regulated by doxycycline and the background was very low.This single ret-on insulin expression system may provide a new approach to a controlled insulin gene therapy in skeletal muscle.

  15. Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Minet, A D; Gaster, M

    2011-01-01

    Increased oxidative stress and mitochondrial dysfunction have been implicated in the development of insulin resistance in type 2 diabetes. To date, it is unknown whether increased mitochondrial reactive oxygen species (ROS) production in skeletal muscle from patients with type 2 diabetes is prima......Increased oxidative stress and mitochondrial dysfunction have been implicated in the development of insulin resistance in type 2 diabetes. To date, it is unknown whether increased mitochondrial reactive oxygen species (ROS) production in skeletal muscle from patients with type 2 diabetes...

  16. Intact primary mitochondrial function in myotubes established from women with PCOS

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Minet, Ariane Denise; Glintborg, Dorte;

    2011-01-01

    Polycystic ovary syndrome (PCOS) affects 5-8% of fertile women and is often accompanied by insulin resistance, leading to increased risk of developing type 2 diabetes. Skeletal muscle from insulin-resistant PCOS subjects display reduced expression of nuclear encoded genes involved in mitochondria...... oxidative metabolism....

  17. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype?

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was sign......The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA...

  18. Electric pulse stimulation of myotubes as an in vitro exercise model

    NARCIS (Netherlands)

    Evers-Van Gogh, Inkie J.A.; Alex, Sheril; Stienstra, Rinke; Brenkman, Arjan B.; Kersten, Sander; Kalkhoven, Eric

    2015-01-01

    Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this cr

  19. Insulin Resistance Is Not Conserved in Myotubes Established from Women with PCOS

    DEFF Research Database (Denmark)

    Eriksen, Mette; Pørneki, Ann Dorte; Skov, Vibe;

    2010-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS) is an intrinsic defect, by investigating...

  20. Biochemical and cytochemical evidence indicates that coated vesicles in chick embryo myotubes contain newly synthesized acetylcholinesterase

    OpenAIRE

    1985-01-01

    We have isolated highly purified coated vesicles from 17-d-old chick embryo skeletal muscle. These isolated coated vesicles contain acetylcholinesterase (AChE) in a latent, membrane-protected form as demonstrated enzymatically and morphologically using the Karnovsky and Roots histochemical procedure (J. Histochem. Cytochem., 1964, 12:219- 221). By the use of appropriate inhibitors the cholinesterase activity can be shown to be specific for acetylcholine. It also can be concluded that most of ...

  1. NOV/CCN3 impairs muscle cell commitment and differentiation.

    Science.gov (United States)

    Calhabeu, Frederico; Lafont, Jérome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Martinerie, Cécile; Dubois, Catherine

    2006-06-10

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.

  2. Contraction-induced Interleukin-6 Gene Transcription in Skeletal Muscle Is Regulated by c-Jun Terminal Kinase/Activator Protein-1*

    Science.gov (United States)

    Whitham, Martin; Chan, M. H. Stanley; Pal, Martin; Matthews, Vance B.; Prelovsek, Oja; Lunke, Sebastian; El-Osta, Assam; Broenneke, Hella; Alber, Jens; Brüning, Jens C.; Wunderlich, F. Thomas; Lancaster, Graeme I.; Febbraio, Mark A.

    2012-01-01

    Exercise increases the expression of the prototypical myokine IL-6, but the precise mechanism by which this occurs has yet to be identified. To mimic exercise conditions, C2C12 myotubes were mechanically stimulated via electrical pulse stimulation (EPS). We compared the responses of EPS with the pharmacological Ca2+ carrier calcimycin (A23187) because contraction induces marked increases in cytosolic Ca2+ levels or the classical IκB kinase/NFκB inflammatory response elicited by H2O2. We demonstrate that, unlike H2O2-stimulated increases in IL-6 mRNA, neither calcimycin- nor EPS-induced IL-6 mRNA expression is under the transcriptional control of NFκB. Rather, we show that EPS increased the phosphorylation of JNK and the reporter activity of the downstream transcription factor AP-1. Furthermore, JNK inhibition abolished the EPS-induced increase in IL-6 mRNA and protein expression. Finally, we observed an exercise-induced increase in both JNK phosphorylation and IL-6 mRNA expression in the skeletal muscles of mice after 30 min of treadmill running. Importantly, exercise did not increase IL-6 mRNA expression in skeletal muscle-specific JNK-deficient mice. These data identify a novel contraction-mediated transcriptional regulatory pathway for IL-6 in skeletal muscle. PMID:22351769

  3. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis

    Science.gov (United States)

    Qiu, H; Liu, N; Luo, L; Zhong, J; Tang, Z; Kang, K; Qu, J; Peng, W; Liu, L; Li, L; Gou, D

    2016-01-01

    Myogenesis is an important biological process that occurs during both skeletal muscle regeneration and postnatal growth. Growing evidence points to the critical role of microRNAs (miRNAs) in myogenesis. Our analysis of miRNA expression patterns reveal that miRNAs of miR-17-92 cluster are dramatically downregulated in C2C12 cells after myogenesis stimulation, are strongly induced in mouse skeletal muscle after injury and decrease steadily thereafter and are downregulated with age in skeletal muscle during mouse and porcine postnatal growth. However, their roles in muscle developmental processes remain elusive. We show that the miR-17-92 cluster promotes mouse myoblast proliferation but inhibits myotube formation. miR-17, -20a and -92a target the actin-associated protein enigma homolog 1 (ENH1). The silencing of ENH1 increased the nuclear accumulation of the inhibitor of differentiation 1 (Id1) and represses myogenic differentiation. Furthermore, the injection of adenovirus expressing miR-20a into the tibialia anterior muscle downregulates ENH1 and delays regeneration. In addition, the downregulation of miR-17-92 during myogenesis is transcriptionally regulated by E2F1. Overall, our results reveal a E2F1/miR-17-92/ENH1/Id1 regulatory axis during myogenesis. PMID:27315298

  4. Aegeline from Aegle marmelos stimulates glucose transport via Akt and Rac1 signaling, and contributes to a cytoskeletal rearrangement through PI3K/Rac1.

    Science.gov (United States)

    Gautam, Sudeep; Ishrat, Nayab; Singh, Rohit; Narender, Tadigoppula; Srivastava, Arvind K

    2015-09-01

    Aegeline is an alkaloidal-amide, isolated from the leaves of Aegle marmelos and have shown antihyperglycemic as well as antidyslipidemic activities in the validated animal models of type 2 diabetes mellitus. Here we delineate, aegeline enhanced GLUT4 translocation mediated 2-deoxy-glucose uptake in both time and concentration-dependent manner. 2-deoxy-glucose uptake was completely stymied by the transport inhibitors (wortmannin and genistein) in C2C12 myotubes. Pharmacological inhibition of Akt (also known as protein kinase B) and Ras-related C3 botulinum toxin substrate 1 (Rac1) suggest that both Akt and Rac1 operate aegeline-stimulated glucose transport via distinct parallel pathways. Moreover, aegeline activates p21 protein-activated kinase 1 (PAK1) and cofilin (an actin polymerization regulator). Rac1 inhibitor (Rac1 inhib II) and PAK1 inhibitor (IPA-3) completely blocked aegeline-induced phosphorylation of cofilin and p21 protein-activated kinase 1 (PAK1). In summary, these findings suggest that aegeline stimulates the glucose transport through Akt and Rac1 dependent distinct parallel pathways and have cytoskeletal roles via stimulation of the PI3-kinase-Rac1-PAK1-cofilin pathway in the skeletal muscle cells. Therefore, multiple targets of aegeline in the improvement of insulin sensitivity of the skeletal muscle cells may be suggested.

  5. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    Science.gov (United States)

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  6. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    Science.gov (United States)

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  7. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    Full Text Available BACKGROUND: Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control. METHODOLOGY/PRINCIPAL FINDINGS: Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. CONCLUSIONS/SIGNIFICANCE: We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  8. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  9. Measurement of Periodical Contraction of Cultured Muscle Tube with Laser

    Directory of Open Access Journals (Sweden)

    Jun Takase

    2009-06-01

    Full Text Available Periodical contraction of a cultured muscle tube has been measured with laser in vitro. C2C12 (mouse myoblast cell line was cultured with High-glucose Dulbecco's Modified Eagle's Medium on a dish to make muscle tubes. Differentiation from myoblasts to myotubes was induced with an additional horse serum. Repetitive contraction of the tube was generated by electric pulses lower than sixty volts of amplitude with one milli-second of width through the electrodes of platinum, and observed with a phase-contrast microscope. A laser beam of 632.8 nm wavelength was restricted to 0.096 mm diameter, and applied to the muscle tubes on the bottom of the culture dish. Fluctuating intensity of the transmitted laser beam through the periodically contracting muscle tubes was measured, and its spectrum was analyzed. The analyzed data show that the repetitive contraction is synchronized with stimulation of the periodical electric pulses between 0.2 s and 2 s.

  10. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan); Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Tsusu, K.; Minami, K. [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Nakanishi, Y. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan)

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  11. Autophagic degradation contributes to muscle wasting in cancer cachexia.

    Science.gov (United States)

    Penna, Fabio; Costamagna, Domiziana; Pin, Fabrizio; Camperi, Andrea; Fanzani, Alessandro; Chiarpotto, Elena M; Cavallini, Gabriella; Bonelli, Gabriella; Baccino, Francesco M; Costelli, Paola

    2013-04-01

    Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system. PMID:23395093

  12. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury.

    Science.gov (United States)

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M

    2014-03-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα(-/-) (M-ERRα(-/-)) mice after injury by intramuscular cardiotoxin injection. M-ERRα(-/-) mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα(-/-) muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (-45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα(-/-) muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.

  13. Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice

    Science.gov (United States)

    Hayashi, Shinichiro; Manabe, Ichiro; Suzuki, Yumi; Relaix, Frédéric; Oishi, Yumiko

    2016-01-01

    Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2. DOI: http://dx.doi.org/10.7554/eLife.17462.001 PMID:27743478

  14. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    Science.gov (United States)

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.

  15. Synthesis and properties of novel gemini surfactant with short spacer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cationic gemini surfactant dimethylene-1,2-bis(dodecyldiethylammonium bromide), referred to as C12C2C12(Et) was synthesized, and its surface property and aggregation behavior in aqueous solution were studied. The value of γat the critical micelle concentration (γcmc) is much smaller than that of the surfactant homologues with longer spacer. Spherical and elongated micelles were formed in the aqueous solution of this gemini surfactant,and the spherical micelles were absolutely dominant compared to the elongated micelles at our studied concentration quantitatively.

  16. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Mesenchymal stromal cells (MSCs are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies.

  17. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  18. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    Science.gov (United States)

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  19. 骨骼肌成肌干细胞体外三维与平面培养的比较研究%Comparative study of spatial and monolayer cultures of myoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    艾鹤英; 秦建强; 余磊; 廖华

    2010-01-01

    目的 比较三维与平面培养C2C12细胞形态及功能差异.方法 Ⅰ型胶原和MatrigelMatrix修饰Sylgard 184铸槽和普通培养皿,分别接种C2C12细胞悬液,细胞增殖至80%融合时换含2%马血清的DMEM/F12诱导分化获取成熟的肌管;倒置显微镜观察肌管形态,RT-PCR和免疫荧光检测.结果 Sylgard 184铸槽表面的C2C12细胞诱导分化5d出现多核、极性肌管,17 d时肌管增粗成熟、极性平行,融合形成肌组织类似物,厚0.15 mm,有自主收缩性;扫描电镜见肌管之间排列紧密、重叠,具有三维性;而平面培养肌管小而排列紊乱.RT-PCR表明三维培养的MyoD、Myogenin mRNA表达更为显著;Myogenin、Desmin、F-actin、MHC和nAChR蛋白检测显示,极性肌管内荧光蛋白的表达更密集.结论 三维培养更有利于成肌细胞的体外极性分化和肌管间细胞连接的形成,分化肌管的存活时间较长,有利于成肌分化因子和收缩蛋白的表达,是骨骼肌的发生发育、应力加载和骨骼肌肌病良好的体外研究模型.

  20. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    OpenAIRE

    Huang, Yong-Zhen; Liang-zhi ZHANG; Lai, Xin-Sheng; Li, Ming-xun; Sun, Yu-Jia; Li, Cong-jun; Lan, Xian-yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-01-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter...

  1. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    OpenAIRE

    Joy, Jordan M; Gundermann, David M.; Ryan P. Lowery; Jäger, Ralf; McCleary, Sean A; Purpura, Martin; Roberts, Michael D.; Wilson, Stephanie MC; Hornberger, Troy A.; Wilson, Jacob M.

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimula...

  2. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NFκB signaling pathway

    OpenAIRE

    Huang, Jian; Hsu, Yi-Hsiang; Mo, Chenglin; Abreu, Eduardo; Kiel, Douglas P; Bonewald, Lynda F.; Brotto, Maxrco; Karasik, David

    2014-01-01

    Sarcopenia and osteoporosis are important public health problems that occur concurrently. A bivariate genome-wide association study (GWAS) identified METTL21c as a suggestive pleiotropic gene for both bone and muscle. METTL21 family of proteins methylates chaperones involved in the etiology of both Inclusion Body Myositis with Paget's disease. To validate these GWAS results, Mettl21c mRNA expression was reduced with siRNA in a mouse myogenic C2C12 cell line and the mouse osteocyte-like cell l...

  3. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  4. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3.

    Science.gov (United States)

    Zhu, X; Walton, R G; Tian, L; Luo, N; Ho, S-R; Fu, Y; Garvey, W T

    2013-03-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  5. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    Directory of Open Access Journals (Sweden)

    Yoo-hwan Lee

    2016-03-01

    Full Text Available Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL against oxidative stress (hydrogen peroxide, H2O2 and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS generation and deoxyribonucleic acid (DNA damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2-specific small interfering ribonucleic acid (siRNA was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX, a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1, with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL

  6. Modulation of Cell Cycle Progression by 5-Azacytidine Is Associated with Early Myogenesis Induction in Murine Myoblasts

    Science.gov (United States)

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  7. Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts.

    Science.gov (United States)

    Montesano, Anna; Luzi, Livio; Senesi, Pamela; Terruzzi, Ileana

    2013-01-01

    Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein

  8. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  9. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals.

    Science.gov (United States)

    Kase, Eili T; Feng, Yuan Z; Badin, Pierre-Marie; Bakke, Siril S; Laurens, Claire; Coue, Marine; Langin, Dominique; Gaster, Michael; Thoresen, G Hege; Rustan, Arild C; Moro, Cedric

    2015-09-01

    A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.

  10. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies.

    Science.gov (United States)

    L'Ecuyer, T; Horenstein, M S; Thomas, R; Vander Heide, R

    2001-11-01

    Anthracyclines are effective antitumor agents whose chief limitation has been cardiotoxicity directly related to free radical production. Therefore, strategies designed to selectively overexpress antioxidant proteins in the heart could protect against drug-induced toxicity and allow higher doses of chemotherapy. However, to date an adequate cardiac model system that is susceptible to anthracycline injury and can express foreign genes in a controlled fashion has been lacking. Developing a cardiac model system would permit examination of the relationship between the expression level of a potentially protective foreign gene and the degree of protection from injury. In this study we have examined the potential of the H9C2 rat cardiac myocyte cell line in this regard. H9C2 cells differentiate in a reproducible fashion, as shown by progressive increases in muscle tropomyosin-expressing cells, the organization of this thin filament protein, and the percentage of muscle cells contained within myotubes. Exposure of this cell line to the anthracycline doxorubicin produces cell injury as indicated by release of the intracellular enzyme lactate dehydrogenase into the culture medium. This injury is preceded by generation of reactive oxygen species, indicated by fluorescence after loading with carboxy-dichlorodihydrofluorescein diacetate. Stable transfection of H9C2 cells with a plasmid producing a tetracycline transactivator protein allows foreign genes to be expressed at a level tightly controlled by the concentration of tetracycline in the culture medium. Since H9C2 cells differentiate, can be injured by anthracycline exposure, and can express foreign genes at controllable levels, this is a suitable system in which to design genetic approaches to prevent this important clinical problem. PMID:11708868

  11. Virulence diversity among bacteremic Aeromonas isolates: ex vivo, animal, and clinical evidences.

    Directory of Open Access Journals (Sweden)

    Po-Lin Chen

    Full Text Available BACKGROUND: The objective of this study was to compare virulence among different Aeromonas species causing bloodstream infections. METHODOLOGY/PRINCIPAL FINDINGS: Nine of four species of Aeromonas blood isolates, including A. dhakensis, A. hydrophila, A. veronii and A. caviae were randomly selected for analysis. The species was identified by the DNA sequence matching of rpoD. Clinically, the patients with A. dhakensis bacteremia had a higher sepsis-related mortality rate than those with other species (37.5% vs. 0%, P = 0.028. Virulence of different Aeromonas species were tested in C. elegans, mouse fibroblast C2C12 cell line and BALB/c mice models. C. elegans fed with A. dhakensis and A. caviae had the lowest and highest survival rates compared with other species, respectively (all P values <0.0001. A. dhakensis isolates also exhibited more cytotoxicity in C2C12 cell line (all P values <0.0001. Fourteen-day survival rate of mice intramuscularly inoculated with A. dhakensis was lower than that of other species (all P values <0.0001. Hemolytic activity and several virulence factor genes were rarely detected in the A. caviae isolates. CONCLUSIONS/SIGNIFICANCE: Clinical data, ex vivo experiments, and animal studies suggest there is virulence variation among clinically important Aeromonas species.

  12. Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress.

    Science.gov (United States)

    Zeng, Xiaobin; Tian, Jun; Cai, Kangyong; Wu, Xin; Wang, Yang; Zheng, Yayuan; Su, Yanjie; Cui, Liao

    2014-02-15

    Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly. Previous studies indicated that green tea exerted osteoprotective effect in vivo. This study aims to investigate the constituents in Huangshan Maofeng tea and systemically evaluate their antioxidative and osteogenic effects in vitro. Five flavanes, isolated from Huangshan Maofeng tea, showed effects on proliferation of osteoblastic cells and ameliorated H2O2-induced C2C12 mouse myoblast cell apoptosis at 3.125-50 μg/ml. (-)-Epicatechin observably increased alkaline phosphatase (ALP) activity and hydroxyproline content. (-)-Epiafzelechin at 25 μg/ml significantly increased the area of mineralized bone nodules. The activities of flavanes in promoting osteblastic proliferation and differentiation are positively correlated with activities in protecting against apoptosis in C2C12 cells. It indicates that anti-osteoporosis effect of these flavanes may be linked to their antioxidative activity. The observed effects of these flavanes suggest that these flavanes may have beneficial effects on bone health.

  13. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zirong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Jin, Guorong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Lin, Shuibin [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Lin, Xiumei [Department of Hematology, Guangzhou First Municipal People' s Hospital, Guangzhou 510180 (China); Gu, Yumei [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Wu, Lizi [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Shen, Huangxuan, E-mail: shenhx@mail.sysu.edu.cn [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  14. In vitro and in vivo studies of creatine monohydrate supplementation to Duroc and Landrace pigs

    DEFF Research Database (Denmark)

    Young, J F; Bertram, H C; Theil, P K;

    2007-01-01

    Duroc and Landrace pigs as well as primary myotubes from these breeds were used to investigate mechanisms behind differences in their response to creatine monohydrate (CMH). Pigs were supplemented with 0, 12.5, 25 or 50g CMH/d for 5 days (n=10 per treatment and breed). Plasma levels of creatine...... increased dose-dependently in both breeds, while muscle-creatine phosphate content increased only in the Duroc pigs. (1)H NMR metabolic profiling showed a tendency towards clustering according to CMH supplementation only among Duroc pigs, revealing a stronger response compared to Landrace pigs. The...... abundance of insulin-like growth factor I and myostatin mRNA was decreased by CMH supplementation while that of type 1 IGF-receptor and creatine transporter was unaffected. Protein synthesis, increased in the myotubes from both breeds, indicating protein accretion, but no effect was observed on the m...

  15. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  16. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Yong-Hyeon Lee

    2015-01-01

    Full Text Available Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS. This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy.

  17. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  18. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  19. Musclin:a novel skeletal muscle-derived secretory factor related to insulin resistance%Musclin:一种新的与胰岛素抵抗有关的骨骼肌细胞源性因子

    Institute of Scientific and Technical Information of China (English)

    刘英; 刘赫; 刘国良

    2009-01-01

    肌肉素(muselin)是与利钠肽相似的多肽,其蛋白与利钠肽家族的切割方式小同,因此可能无利钠肽的活性.重组musclin与糖脂代谢有关,其降低了胰岛素诱导的成肌细胞C2C12葡萄糖摄取及糖原合成的能力.由此表明,muselin可能参与骨骼肌胰岛素抵抗(IR).然而,同前对musclin的研究很少,其参与IR的具体机制尚不清楚,还需进一步研究.%Musclin is a peptide similar to natriuretic peptides (NP). Different from the N P family, the conserved 17 amino acids of musclin are not positioned between two cysteine residues, which are crucial for physiological protein folding to produce natriuretic activity. Musclin significantly attenuated insulin-stimu-lated 2-DG uptake and glycogen synthesis at both basal and insulin-stimulated status in C2C12 myoblasts. Musclin might be involved in insulin resistance (IR) in skeletal muscle. However,there is little research on the musclin by now,and the specific mechanisms involved in IR is not clear, which need to be further stud-ied.

  20. An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism.

    Science.gov (United States)

    Chellan, N; Muller, C J F; de Beer, D; Joubert, E; Page, B J; Louw, J

    2012-06-15

    Athrixia phylicoides DC. is an aromatic shrub indigenous to the eastern parts of Southern Africa. Indigenous communities brew "bush tea" from dried twigs and leaves of A. phylicoides, which is consumed as a beverage and used for its medicinal properties. Plant polyphenols have been shown to be beneficial to Type 2 diabetes mellitus (T2D) and obesity. Aqueous extracts of the plant have been shown to be rich in polyphenols, in particular phenolic acids, which may enhance glucose uptake and metabolism. The aim of this study was to determine the phenolic composition of a hot water A. phylicoides extract and assess its in vitro effect on cellular glucose utilisation. The most abundant phenolic compounds in the extract were 6-hydroxyluteolin-7-O-glucoside, chlorogenic acid, protocatechuic acid, a di-caffeoylquinic acid and a methoxy-flavonol derivative. The extract increased glucose uptake in C2C12, Chang and 3T3-L1 cells, respectively. Intracellular glucose was utilised by both oxidation (C2C12 myocytes and Chang cells; p < 0.01 and p < 0.05, respectively) and by increased glycogen storage (Chang cells; p < 0.05). No cytotoxicity was observed in Chang cells at the concentrations tested. The effects of the extract were not dose-dependent. A. phylicoides aqueous extract stimulated in vitro glucose uptake and metabolism, suggesting that consumption of this phenolic-rich extract could potentially ameliorate metabolic disorders related to obesity and T2D. PMID:22516895

  1. Lamin A/C mutants disturb sumo1 localization and sumoylation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Émilie Boudreau

    Full Text Available A-type lamins A and C are nuclear intermediate filament proteins in which mutations have been implicated in multiple disease phenotypes commonly known as laminopathies. A few studies have implicated sumoylation in the regulation of A-type lamins. Sumoylation is a post-translational protein modification that regulates a wide range of cellular processes through the attachment of small ubiquitin-related modifier (sumo to various substrates. Here we showed that laminopathy mutants result in the mislocalization of sumo1 both in vitro (C2C12 cells overexpressing mutant lamins A and C and in vivo (primary myoblasts and myopathic muscle tissue from the Lmna(H222P/H222P mouse model. In C2C12 cells, we showed that the trapping of sumo1 in p.Asp192Gly, p.Gln353Lys, and p.Arg386Lys aggregates of lamin A/C correlated with an increased steady-state level of sumoylation. However, lamin A and C did not appear to be modified by sumo1. Our results suggest that mutant lamin A/C alters the dynamics of sumo1 and thus misregulation of sumoylation may be contributing to disease progression in laminopathies.

  2. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    Science.gov (United States)

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment.

  3. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  4. Non-invasive monitoring of osteogenic differentiation on microtissue arrays under physiological conditions using scanning electrochemical microscopy

    NARCIS (Netherlands)

    Sridhar, Adithya; Berg, van den Albert; Le Gac, Séverine

    2014-01-01

    In this paper, we present a non-invasive assay using scanning electrochemical microscopy (SECM) for detecting osteogenic differentiation at physiological conditions (pH 7.5) on arrays of C2C12 microtissues. Upon exposure to bone morphogenic protein 2 (BMP-2), C2C12 microtissues differentiate and exp

  5. Application of cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract

    Science.gov (United States)

    Liu, Yi; Zhao, Yanping; Zhang, Heming; Liu, Songhao

    2009-11-01

    The exercise-induced fatigue eliminated by Chinese medicine offers advantages including good efficiency and smaller side-effects, however, the exact mechanisms have not been classified. A lot of literatures indicated the cytosolic free Ca2+ concentrations of skeletal muscle cells increased significantly during exercise-induced fatigue. This study is aimed to establish a rat skeletal muscle cell model of exercise-induced fatigue. We applied cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract. In our research, the muscle tissues from the newborn 3 days rats were taken out and digested into cells. The cells were randomly divided into the ginseng extract group and the control group. The cells from the two groups were cultured in the medium respectively added 2mg/ml ginseng extract and 2mg/ml D-hanks solution. After differentiating into myotubes, the two groups of cells treated with a fluorescent probe Fluo-3 AM were put on the confocal microscope and the fluorescence intensity of cells pre- and post- stimulation with dexamethasone were detected. It was found that cytoplasmic Ca2+ concentrations of the two groups of cells both increased post-stimulation, however, the increasing amplitude of fluorescence intensity of the ginseng extract group was significantly lower than that of the control group. In conclusion, stimulating the cells with dexamethasone is a kind of workable cell models of exercise-induced fatigue, and the molecular mechanisms of exercise-induced fatigue eliminated by ginseng extract may be connected to regulatating cytosolic free Ca2+ concentrations.

  6. Promise and Ontological Ambiguity in the In vitro Meat Imagescape: From Laboratory Myotubes to the Cultured Burger

    Science.gov (United States)

    Stephens, Neil; Ruivenkamp, Martin

    2016-01-01

    Abstract In vitro meat (IVM), also known as cultured meat, involves growing cells into muscle tissue to be eaten as food. The technology had its most high-profile moment in 2013 when a cultured burger was cooked and tasted in a press conference. Images of the burger featured in the international media and were circulated across the Internet. These images—literally marks on a two-dimensional surface—do important work in establishing what IVM is and what it can do. A combination of visual semiotics and narrative analysis shows that images of IVM afford readings of their story that are co-created by the viewer. Before the cultured burger, during 2011, images of IVM fell into four distinct categories: cell images, tissue images, flowcharts, and meat in a dish images. The narrative infrastructure of each image type affords different interpretations of what IVM can accomplish and what it is. The 2013 cultured burger images both draw upon and depart from these image types in an attempt to present IVM as a normal food stuff, and as ‘matter in place’ when placed on the plate. The analysis of individual images and the collection of images about a certain object or subject—known as the imagescape—is a productive approach to understanding the ontology and promise of IVM and is applicable to other areas of social life. PMID:27695202

  7. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes

    DEFF Research Database (Denmark)

    Frederiksen, C M; Højlund, K; Hansen, L;

    2008-01-01

    . It is unknown whether reduced mitochondrial biogenesis or other transcriptional alterations co-exist with impaired insulin responsiveness in primary human muscle cells from patients with type 2 diabetes. METHODS: Using cDNA microarray technology and global pathway analysis with the Gene Map Annotator...

  8. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production

    NARCIS (Netherlands)

    P. Juffer; A.D. Bakker; J. Klein-Nulend; R.T. Jaspers

    2014-01-01

    Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways i

  9. Impaired primary mouse myotube formation on crosslinked type i collagen films is enhanced by laminin and entactin

    NARCIS (Netherlands)

    Grefte, S.; Adjobo-Hermans, M.J.W.; Versteeg, E.M.M.; Koopman, W.J.H.; Daamen, W.F.

    2016-01-01

    In skeletal muscle, the stem cell niche is important for controlling the quiescent, proliferation and differentiation states of satellite cells, which are key for skeletal muscle regeneration after wounding. It has been shown that type I collagen, often used as 3D-scaffolds for regenerative medic

  10. Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects

    NARCIS (Netherlands)

    Evers-van Gogh, I.; Alex, S.; Stienstra, R.; Brenkman, A.B.; Kersten, S.; Kalkhoven, E.

    2015-01-01

    Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this cross

  11. Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients

    OpenAIRE

    Celine Aguer; Marc Foretz; Louise Lantier; Sophie Hebrard; Benoit Viollet; Jacques Mercier; Magali Kitzmann

    2011-01-01

    BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine th...

  12. Raman and infrared study of electrospun PLLA/PCL nanofiber blends for use in tissue engineering

    Science.gov (United States)

    Enriquez Carrejo, Jose Luis

    Recently, the biomedical engineering field has developed at a very fast pace as improved techniques and materials become available to promote its growth. Consequently, the research in polymeric biomaterials has been highly stimulated by this trend. The goal of the current research is to demonstrate the usefulness of the Raman scattering, Raman mapping, and infrared absorption spectroscopies to tissue engineering, by spectroscopically characterizing blends of PLLA and PCL polymers, which were prepared by electrospinning with and without cell addition. The proposed use of these blends is as primary biomaterials in biodegradable scaffolds used in tissue engineering. Both Raman and infrared absorption spectra showed a direct relation between the relative intensities of the characteristic molecular vibrations of the individual polymers with their concentrations in each blend. The confocal Raman mapping of the samples that were prepared by co-electrospinning allowed direct visualization of different polymeric fibers. These images not only reveal the microstructural characteristics of each polymer, but they are also in good agreement with the Raman scattering results. Furthermore, by performing Raman mapping inside a single fiber, the homogeneity of the polymeric mixture can be visualized. These results demonstrate the existence of sub-domains of non-interacting polymers. The broadening of the cell characteristic peak at 1661 cm -1 observed in the Raman spectra of the blends seeded with C2C12 myoblasts, could be an indication of cell attachment onto the scaffolds.

  13. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  14. Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells.

    Science.gov (United States)

    Fornaro, Mara; Hinken, Aaron C; Needle, Saul; Hu, Erding; Trendelenburg, Anne-Ulrike; Mayer, Angelika; Rosenstiel, Antonia; Chang, Calvin; Meier, Viktor; Billin, Andrew N; Becherer, J David; Brace, Arthur D; Evans, William J; Glass, David J; Russell, Alan J

    2014-01-15

    A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.

  15. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  16. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    Science.gov (United States)

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting. PMID:27094036

  17. Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom.

    Science.gov (United States)

    Corasolla Carregari, Victor; Stuani Floriano, Rafael; Rodrigues-Simioni, Lea; Winck, Flavia V; Baldasso, Paulo Aparecido; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2013-01-01

    Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25-37°C. Maximum PLA2 activity required Ca(2+) and in the presence of Cd(2+), Zn(2+), Mn(2+), and Mg(2+) it was reduced in the presence or absence of Ca(2+). Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12). The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena. PMID:23509754

  18. Biochemical, Pharmacological, and Structural Characterization of New Basic Bbil-TX from Bothriopsis bilineata Snake Venom

    Directory of Open Access Journals (Sweden)

    Victor Corasolla Carregari

    2013-01-01

    Full Text Available Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25–37∘C. Maximum PLA2 activity required Ca2+ and in the presence of Cd2+, Zn2+, Mn2+, and Mg2+ it was reduced in the presence or absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12. The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena.

  19. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    Science.gov (United States)

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions. PMID:26724921

  20. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    Science.gov (United States)

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting.

  1. Discovery of biaryl-4-carbonitriles as antihyperglycemic agents that may act through AMPK-p38 MAPK pathway.

    Science.gov (United States)

    Goel, Atul; Nag, Pankaj; Rahuja, Neha; Srivastava, Rohit; Chaurasia, Sumit; Gautam, Sudeep; Chandra, Sharat; Siddiqi, Mohammad Imran; Srivastava, Arvind K

    2014-08-25

    A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway.

  2. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    Energy Technology Data Exchange (ETDEWEB)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr

    2011-04-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  3. Prolonged activation of S6K1 does not suppress IRS or PI-3 kinase signaling during muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    MacKenzie Matthew G

    2010-05-01

    Full Text Available Abstract Background Myogenesis in C2C12 cells requires the activation of the PI3K/mTOR signaling pathways. Since mTOR signaling can feedback through S6K1 to inhibit the activation of PI3K, the aim of this work was to assess whether feedback from S6K1 played a role in myogenesis and determine whether siRNA mediated knockdown of S6K1 would lead to an increased rate of myotube formation. Results S6K1 activity increased in a linear fashion following plating and was more than 3-fold higher after Day 3 of differentiation (subconfluent = 11.09 ± 3.05, Day 3 = 29.34 ± 3.58. IRS-1 levels tended to increase upon serum withdrawal but decreased approximately 2-fold (subconfluent = 0.88 ± 0.10, Day 3 = 0.42 ± 0.06 3 days following differentiation whereas IRS-2 protein remained stable. IRS-1 associated p85 was significantly reduced upon serum withdrawal (subconfluent = 0.86 ± 0.07, Day 0 = 0.31 ± 0.05, remaining low through day 1. IRS-2 associated p85 decreased following serum withdrawal (subconfluent = 0.96 ± 0.05, Day 1 = 0.56 ± 0.08 and remained suppressed up to Day 3 following differentiation (0.56 ± 0.05. Phospho-tyrosine associated p85 increased significantly from subconfluent to Day 0 and remained elevated throughout differentiation. siRNA directed against S6K1 and S6K2 did not result in changes in IRS-1 levels after either 48 or 96 hrs. Furthermore, neither 48 nor 96 hrs of S6K1 knockdown caused a change in myotube formation. Conclusions Even though S6K1 activity increases throughout muscle cell differentiation and IRS-1 levels decrease over this period, siRNA suggests that S6K1 is not mediating the decrease in IRS-1. The decrease in IRS-1/2 associated p85 together with the increase in phospho-tyrosine associated p85 suggests that PI3K associates primarily with scaffolds other than IRS-1/2 during muscle cell differentiation.

  4. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  5. Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

    Directory of Open Access Journals (Sweden)

    Amna T

    2012-03-01

    Full Text Available Touseef Amna1, M Shamshi Hassan2, Ki-Taek Nam2, Yang You Bing3, Nasser AM Barakat2, Myung-Seob Khil2, Hak Yong Kim1,21Center for Healthcare Technology Development, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Korea; 3Animal Science and Technology College, Henan University of Science and Technology, Luoyang, ChinaAbstract: The aim of this study was to fabricate camptothecin/iron(III oxide (CPT/Fe2O3-loaded poly(D,L-lactide-co-glycolide (PLGA composite mats to modulate the CPT release and to improve the structural integrity and antitumor activity of the released drug. The CPT/ Fe2O3-loaded PLGA ultrafine fibers were prepared for the first time by electrospinning a composite solution of CPT/Fe2O3 and neat PLGA (4 weight percent. The physicochemical characterization of the electrospun composite mat was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction pattern. The medicated composite fibers were evaluated for their cytotoxicity on C2C12 cells using Cell Counting Kit-8 assay (Sigma-Aldrich Corporation, St Louis, MO. The in vitro studies indicated a slow and prolonged release over a period of 96 hours with mild initial burst. Scanning electron microscopy, thermogravimetry, and X-ray diffraction studies confirmed the interaction of CPT/Fe2O3 with the PLGA matrix and showed that the crystallinity of CPT decreased after loading. Incorporation of CPT in the polymer media affected both the morphology and the size of the CPT/Fe2O3-loaded PLGA composite fibers. Electron probe microanalysis and energy dispersive X-ray spectroscopy results confirmed well-oriented composite ultrafine fibers with good incorporation of CPT/Fe2O3. The cytotoxicity results illustrate that the pristine PLGA did not exhibit noteworthy cytotoxicity; conversely, the CPT

  6. Gene expression profiles and phosphorylation patterns of AMP-activated protein kinase subunits in various mesenchymal cell types

    Institute of Scientific and Technical Information of China (English)

    Wang Yugang; Fan Qiming; Ma Rui; Lin Wentao; Tang Tingting

    2014-01-01

    Background Recent studies on bone have shown an endocrine role of the skeleton,which could be impaired in various human diseases,including osteoporosis,obesity,and diabetes-associated bone diseases.As a sensor and regulator of energy metabolism,AMP-activated protein kinase (AMPK) may also play an important role in the regulation of bone metabolism.The current study aimed to establish the expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types.Methods Reverse transcription-polymerase chain reaction (PCR) for relative quantification,real-time PCR for absolute quantification,and Western blotting were used to investigate the gene expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types,including primary human mesenchymal stem cells (hMSCs) and hFOB,Saos-2,C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells.Results AMPKα1 and AMPKβ1 mRNAs were abundantly expressed in all cell types.AMPKY1 mRNA was abundantly expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 but not detected in human-derived cell types.AMPKY2 mRNA was mildly expressed in all cell types.AMPKα1 protein was highly expressed in all cell types and AMPKα2 protein was highly expressed only in hFOB and Saos-2 cells.AMPKβ1 protein was abundantly expressed in all cell types except for Saos-2,in which AMPKβ2 protein overwhelmed AMPKβ1 expression.AMPKy1 and AMPKY2 proteins were expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells and only AMPKY2 protein was expressed in hMSCs,hFOB and Saos2 cells.AMPKα was phosphorylated at Thr172 and Ser485 and AMPKβ1 was phosphorylated at Ser108 and Ser182 in all cell types with a specific pattern in each cell type.Conclusion The combination of AMPK α,β,and Y subunits and phosphorylation of AMPKα (Thr172 and Ser485) and AMPKβ1 (Ser108 and Ser182) showed a specific pattern in each cell type.

  7. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.

    Directory of Open Access Journals (Sweden)

    Mian-Bo Huang

    Full Text Available BACKGROUND: The insulin-like growth factor (IGF signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs, has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133. A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. CONCLUSION/SIGNIFICANCE: Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.

  8. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells.

    Science.gov (United States)

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Spanidis, Ypatios; Liosi, Maria; Apostolou, Anna; Priftis, Alexandros; Haroutounian, Serko; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-10-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  9. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    Science.gov (United States)

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (Pneon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  10. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E. T.; Feng, Y. Z.; Badin, P. M.;

    2015-01-01

    A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic....... HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol...... (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when...

  11. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro

    DEFF Research Database (Denmark)

    Wewer, U M; Iba, K; Durkin, M E;

    1998-01-01

    cells in dystrophic mdx mice. Murine C2C12 myogenic cells and pluripotent embryonic stem cells can undergo muscle cell differentiation in vitro. Tetranectin is not expressed in the undifferentiated myogenic cells, but during the progression of muscle differentiation, tetranectin mRNA is induced......Tetranectin, a plasminogen-binding protein with a C-type lectin domain, is found in both serum and the extracellular matrix. In the present study we report that tetranectin is closely associated with myogenesis during embryonic development, skeletal muscle regeneration, and muscle cell......, and both cytoplasmic and cell surface tetranectin immunostaining become apparent. Finally, we demonstrate that while tetranectin mRNA is translated to a similar degree in developing limbs and lung, the protein does not seem to be tissue associated in the lung as it is in the limbs. This indicates...

  12. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

    Science.gov (United States)

    Streppa, L.; Berguiga, L.; Boyer Provera, E.; Ratti, F.; Goillot, E.; Martinez Torres, C.; Schaeffer, L.; Elezgaray, Juan; Arneodo, A.; Argoul, F.

    2016-03-01

    We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

  13. Inhibitory Effect of High Temperature- and High Pressure-Treated Red Ginseng on Exercise-Induced Oxidative Stress in ICR Mouse

    Directory of Open Access Journals (Sweden)

    Seok-Yeong Yu

    2014-03-01

    Full Text Available As previously reported, high temperature- and high pressure-treated red ginseng (HRG contain higher contents of phenolic compounds and protect C2C12 muscle cells and 3T3-L1 adipocytes against oxidative stress. This study investigated the effect of HRG on oxidative stress using a mouse model. Our results show that the levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, hepatic malondialdehyde in the HRG group were significantly lower than those of the exercise groups supplemented with commercial red ginseng (CRG or not supplemented. The muscular glycogen level, glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities of the HGR group were higher than that of the CGR group. Furthermore, the HRG treatment group displayed upregulated mRNA expression of Cu/Zn-SOD and muscle regulatory factor 4. These results indicate that HRG may protect oxidative stress induced by exercise as well as improve exercise performance capacity.

  14. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2.

    Science.gov (United States)

    Zhang, Shihai; Yang, Qing; Ren, Man; Qiao, Shiyan; He, Pingli; Li, Defa; Zeng, Xiangfang

    2016-08-01

    Knowledge of regulation of glucose transport contributes to our understanding of whole-body glucose homoeostasis and human metabolic diseases. Isoleucine has been reported to participate in regulation of glucose levels in many studies; therefore, this study was designed to examine the effect of isoleucine on intestinal and muscular GLUT expressions. In an animal experiment, muscular GLUT and intestinal GLUT were determined in weaning pigs fed control or isoleucine-supplemented diets. Supplementation of isoleucine in the diet significantly increased piglet average daily gain, enhanced GLUT1 expression in red muscle and GLUT4 expression in red muscle, white muscle and intermediate muscle (P<0·05). In additional, expressions of Na+/glucose co-transporter 1 and GLUT2 were up-regulated in the small intestine when pigs were fed isoleucine-supplemented diets (P<0·05). C2C12 cells were used to examine the expressions of muscular GLUT and glucose uptake in vitro. In C2C12 cells supplemented with isoleucine in the medium, cellular 2-deoxyglucose uptake was increased (P<0·05) through enhancement of the expressions of GLUT4 and GLUT1 (P<0·05). The effect of isoleucine was greater than that of leucine on glucose uptake (P<0·05). Compared with newborn piglets, 35-d-old piglets have comparatively higher GLUT4, GLUT2 and GLUT5 expressions. The results of this study demonstrated that isoleucine supplementation enhanced the intestinal and muscular GLUT expressions, which have important implications that suggest that isoleucine could potentially increase muscle growth and intestinal development by enhancing local glucose uptake in animals and human beings. PMID:27464458

  15. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Haruka Amitani

    Full Text Available Hydrogen (H(2 acts as a therapeutic antioxidant. However, there are few reports on H(2 function in other capacities in diabetes mellitus (DM. Therefore, in this study, we investigated the role of H(2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2 promoted 2-[(14C]-deoxy-d-glucose (2-DG uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K, protein kinase C (PKC, and AMP-activated protein kinase (AMPK, although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p. and oral (p.o. administration. However, long-term p.o. administration of H(2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  16. 成骨细胞分化、骨形成与修复中转录因子Osx和Satb2的调控作用%Osx and Satb2 regulate osteoblast differentiation, bone formation and repair

    Institute of Scientific and Technical Information of China (English)

    侯秋科; 黄永铨; 李昀骏; 陈东风

    2016-01-01

    背景:成骨细胞主要来自于骨髓细胞向骨基质中的间充质细胞,一些转录因子或局部因素可促进骨髓基质细胞调节分化为成骨细胞。  目的:明确C2C12细胞以及Osx与Satb2在骨质疏松修复过程中的作用。  方法:取野生型SD大鼠20只,分为正常组10只,假手术组和骨质疏松模型组(模型组)各5只,同时取Osx-KO大鼠10只。模型组和Osx-KO大鼠切除双侧卵巢构建野生型大鼠与Osx-KO大鼠进行骨质疏松模型;假手术组找出双侧卵巢但不切除。检测各组大鼠术后体质量的变化及股骨骨密度含量。体外培养C2C12细胞,并设计了siRNA-Satb2、siRNA-Osx,通过细胞实验、基因沉默、western blot法,观察成骨细胞分化的相关Osx与Satb2的表达及对骨质疏松的影响。  结果与结论:①体质量:造模12周后,模型组、Osx-KO组大鼠较正常组和假手术组大鼠显著增加(P OBJECTIVE: To study the role of Osx and Satb2 in C2C12cels in the repair process of osteoporosis. METHODS: Twenty wild-type Sprague-Dawley rats were assigned into normal control group (n=10), sham group (n=5) and osteoporosis group (model group,n=5). Another 10 Osx-KO rats were enroled in the study. Osteoporosis models were established by removal of both ovaries in the model group and Osx-KO group. In the sham group, bilateral ovaries were exposed but not removed. Changes in body mass and femoral bone density were detected in the four groups post operation. C2C12 cels were culturedin vitro, and siRNA-Satb2 and siRNA-Osx were designed. Expressions of Osx and Satb2 and their effects on osteoporosis were observed using cel experiments, gene silencing and western blot assay. RESULTS AND CONCLUSION:After 12 weeks, the body mass in the model and Osx-KO groups was significantly increased compared with the normal control and sham groups (P< 0.01); the bone density in the model and Osx-KO group was significantly decreased

  17. NBD peptide promotes osteoblast differentiation%NBD多肽促进成骨细胞分化的实验研究

    Institute of Scientific and Technical Information of China (English)

    李文锋; 侯树勋; 张伟佳; 洪磊

    2011-01-01

    [ Objective ] To investigate the effect and molecular mechanism of NBD peptide on osteoblast differentiation. [ Method ] The C2C12 cells stimulated with BMP - 2 were used as an in vitro model for studying osteoblast differentiation. Transient transfection, luciferase reporter activity assay and real-time RT-PCR were performed to study the effect of NBD peptide on osteoblast differentiation. [ Result] TNF-a significantly reduced the ALP activities in a dose dependent manner in BMP2-induced C2C12 cells. TNF-a decreased the BMP-2 activity from 7. 12 to 1. 31 fold,and NBD peptide restored it back to 6. 7 fold, while mNBD peptide left it at 1.4 fold. [Conclusion]TNF-a inhibits osteoblast differentiation through the activation of NF-kB. Application of NBD peptide ameliorates this inhibitory effect.%[目的]探讨核因子κB必需分子(NF-κB essential modulator,NEMO)结合的小分子多肽(NEMO binding domain,NBD)通过阻断肿瘤坏死因子-α信号通路影响成骨细胞分化的作用及其分子机制.[方法]应用BMP -2体外诱导鼠肌源细胞C2C12向成骨细胞分化模型,外源添加TNF-α和/或BMP -2细胞因子培养,通过碱性磷酸酶(ALP)活性检测,瞬时转染和基因测定,研究NBD多肽对抗NF-κB活性和改善TNF-α抑制成骨细胞分化的过程.[结果]ALP染色显示NBD多肽能明显阻断TNF-α对C2C12向成骨细胞分化的抑制而促进其分化,荧光素酶活性测定显示TNF-α降低BMP -2活性从7.12倍到1.31倍,而NBD多肽使其恢复到6.7倍和mNBD肽恢复到1.4倍.[结论]TNF-α抑制成骨细胞分化的分子生物机制是通过激活NF-kB阻碍成骨细胞的分化.NBD多肽具有对抗NF-κB活性和改善TNF-α抑制成骨细胞分化过程的作用.

  18. Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Archana [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Bhat, Sumrita [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India); Nayak, Vijayashree, E-mail: vijayashree@goa.bits-pilani.ac.in [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Kumar, Ashok, E-mail: ashokkum@iitk.ac.in [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India)

    2015-02-01

    Three dimensional scaffolds synthesized using natural or synthetic polymers act as an artificial niche for cell adherence and proliferation. In this study, we have fabricated cryogels employing blend of poly (ethylene glycol) (PEG) and gelatin using two different crosslinkers like, glutaraldehyde and EDC-NHS by cryogelation technique. Synthesized matrices possessed interconnected porous structure in the range of 60–100 μm diameter and regained their original length after 90% compression without deformation. Visco-elastic behavior was studied by rheology and unconfined compression analysis, elastic modulus of these cryogels was observed to be > 10{sup 5} Pa which showed their elasticity and mechanical strength. TGA and DSC also showed the stability of these cryogels at different temperatures. In vitro degradation capacity was analyzed for 4 weeks at 37 °C. IMR-32, C2C12 and Cos-7 cells proliferation and ECM secretion on PEG–gelatin cryogels were observed by SEM and fluorescent analysis. In vitro biocompatibility was analyzed by MTT assay for the period of 15 days. Furthermore, cell proliferation efficiency, metabolic activity and functionality of IMR-32 cells were analyzed by neurotransmitter assay and DNA quantification. The cell–matrix interaction, elasticity, mechanical strength, stability at different temperatures, biocompatible, degradable nature showed the potentiality of these cryogels towards soft tissue engineering such as neural, cardiac and skin. - Highlights: • PEG–gelatin cryogel matrices were produced by cryogelation technology. • Matrices showed suitable properties for tissue engineering applications. • Polymeric cryogels supported growth of IMR-32, C2C12 and Cos-7 cells in vitro.

  19. Identification of intracellular signaling pathways that induce myotonic dystrophy protein kinase expression during myogenesis.

    Science.gov (United States)

    Carrasco, Marta; Canicio, Judith; Palacín, Manuel; Zorzano, Antonio; Kaliman, Perla

    2002-08-01

    Myotonic dystrophy (DM) is the most common inherited adult neuromuscular disorder. DM is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Decreased DMPK protein levels may contribute to the pathology of DM, as revealed by gene target studies. However, the postnatal regulation of DMPK expression and its pathophysiological role remain undefined. We studied the regulation of DMPK protein and mRNA expression during myogenesis in rat L6E9 myoblasts, mouse C2C12 myoblasts, and 10T1/2 fibroblasts stably expressing the myogenic transcription factor MyoD (10T1/2-MyoD). We detected DMPK as an 80-kDa protein mainly localized to the cytosolic fraction of skeletal muscle cells. DMPK expression and protein kinase activity were enhanced in IGF-II-differentiated cells. In L6E9 and C2C12 cells, DMPK expression was regulated through the same signaling pathways (i.e. phosphatidylinositol 3-kinase, nuclear factor-kappaB, nitric oxide synthase, and p38 mitogen-activated protein kinase) that had been described as being crucial for the myogenesis induced by either low serum or IGF-II. However, in 10T1/2-MyoD cells, p38 MAPK inhibition blocked cell fusion and caveolin-3 expression without affecting DMPK up-regulation. These results suggest that although DMPK is induced during myogenesis, its expression cannot be totally associated with the development of a fully differentiated phenotype. PMID:12130568

  20. 脂蛋白脂酶缺失症基因治疗载体的构建及功能验证%Construction and Verification of Gene Therapy Vector for Lipoprotein Lipase Deficiency Disease

    Institute of Scientific and Technical Information of China (English)

    王恺龙; 郑李彬; 张帆; 沈良才; Libby Andrew; 李旭丽; 张瑾

    2013-01-01

    脂蛋白脂酶(lipoprotein lipase,LPL)是甘油三酯分解的限速酶,LPL基因缺失会引起高血脂症,虽然发病率低,但到目前为止,尚无有效治疗手段.该文构建了用于纠正LPL缺失基因型的逆转录病毒载体MSCV-hLPL,结果表明,MSCV-hLPL可以高效侵染体外培养的细胞系C2C12、HEK293和3T3-L1,并且都可以产生具有活性的脂蛋白脂酶.利用MSCV-hLPL侵染后的C2C12、HEK293和3T3-L1,分别注射到裸鼠皮下组织,发现C2C12和3T3-L1可以分泌脂蛋白脂酶到临近的肌肉组织中,显著提高LPL活性.以上工作证明,基因治疗载体可以纠正脂蛋白脂酶缺失的基因型,而脂肪细胞和肌肉细胞移植入裸鼠体内后,均可以作为生物反应器产生具有活性的LPL.这是该领域中的一次开拓性尝试,为脂蛋白脂酶缺失症治疗方法的开发打下了坚实的基础.%Lipoprotein lipase (LPL) is the rate limiting enzyme for triglycerides hydrolysis,which catalyses the hydrolysis of the triacylglycerol component of chylomicrons and very low density lipoproteins,thereby providing fatty acids and monoacylglycerol for tissue utilization.LPL gene mutation or deletion may affect the activity of LPL,and result in lipid metabolism disorder.Although the LPL deficiency disease is rare,no cure method is developed till now.In this study,the gene therapy construct MSCV-hLPL was made,which could infect muscle cell line (C2C12),kidney cell line (HEK293T) and pre-adipocyte cell line (3T3-L1) with over 80% efficiency.Nevertheless,active LPL could be detected at the surface of all these three kinds of cells.Then,three types of cells were injected into nude mice,LPL activity increased significantly in the muscle tissues under the injection sites of the 3T3-L1 line.Our results show that MSCV-hLPL could correct the LPL-/-genotype and the adipose tissue may be the best tissue for transplantation in the future.This is a ground-breaking test in LPL deficiency treatment field

  1. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    Science.gov (United States)

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  2. Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells.

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    Full Text Available Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4. Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs. Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs using GeneMANIA, cadherin-associated protein (CTNNA2 was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM genes (type I collagen α1 and type I collagen α2 along with myostatin (MSTN, was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new

  3. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    Science.gov (United States)

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle.

  4. Experiment list: SRX143608 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Califonia Institute of Technology || datatype=ChipSeq || datatype description=Ch...t 60hr source_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold -

  5. Experiment list: SRX142531 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available r source_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold - Califonia Institute of Techno...logy || datatype=ChipSeq || datatype description=Chromat

  6. Experiment list: SRX142522 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Califonia Institute of Technology || datatype=ChipSeq || datatype description=Ch...t 60hr source_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold -

  7. Syncytin-1 in differentiating human myoblasts

    DEFF Research Database (Denmark)

    Bjerregard, Bolette; Ziomkiewicz, Iwona; Schulz, Alexander;

    2014-01-01

    Myoblasts fuse to form myotubes, which mature into skeletal muscle fibres. Recent studies indicate that an endogenous retroviral fusion gene, syncytin-1, is important for myoblast fusions in man. We have now expanded these data by examining the immunolocalization of syncytin in human myoblasts in...

  8. Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells.

    Science.gov (United States)

    Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Yorifuji, Hiroshi

    2015-01-01

    Vesicular transport plays an important role in the regulation of cellular function and differentiation of the cell, and intracellular vesicles play a role in the delivery of membrane components and in sorting membrane proteins to appropriate domains in organelles and the plasma membrane. Research on vesicular transport in differentiating cells has mostly focused on neurons and epithelial cells, and few such studies have been carried out on skeletal muscle cells. Skeletal muscle cells have specialized organelles and plasma membrane domains, including T-tubules, sarcoplasmic reticulum, neuromuscular junctions, and myotendinous junctions. The differentiation of skeletal muscle cells is achieved by multiple steps, i.e., proliferation of myoblasts, formation of myotubes by cell-cell fusion, and maturation of myotubes into myofibers. Systematic vesicular transport is expected to play a role in the maintenance and development of skeletal muscle cells. Here, we review a map of the vesicular transport system during the differentiation of skeletal muscle cells. The characteristics of organelle arrangement in myotubes are described according to morphological studies. Vesicular transport in myotubes is explained by the expression profiles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins.

  9. Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells

    Directory of Open Access Journals (Sweden)

    Gyorgy Szabadkai

    2013-06-01

    Full Text Available The pathogenesis of Myotonic Dystrophy type 1 (DM1 is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.

  10. Fenofibrate Reverses Palmitate Induced Impairment in Glucose Uptake in Skeletal Muscle Cells by Preventing Cytosolic Ceramide Accumulation

    Directory of Open Access Journals (Sweden)

    Sudarshan Bhattacharjee

    2015-10-01

    Full Text Available Backgrounds/Aims: The lipid induced insulin resistance is a major pathophysiologic mechanism underlying glucose intolerance of varying severity. PPARα-agonists are proven as effective hypolipidemic agents. The aim of this study was to see if impaired glucose uptake in palmitate treated myotubes is reversed by fenofibrate. Methods: Palmitate-treated myotubes were used as a model for insulin resistance, impaired glucose uptake, fatty acid oxidation and ceramide synthesis. mRNA levels of CPT1 and CPT2 were determined by PCR array and Q-PCR. Results: The incubation of myotubes with 750 uM palmitate not only reduced glucose uptake but also impaired fatty acid oxidation and cytosolic ceramide accumulation. Palmitate upregulated CPT1b expression in L6 myotubes, while CPT2 expression level remained unchanged. The altered stoichiometric ratio between the two CPT isoforms led to reduced fatty acid oxidation (FAO, ceramide accumulation and impaired glucose uptake, whereas administration of 200 µM fenofibrate signifcantly reversed the above abnormalities by increasing CPT2 mRNA levels and restoring CPT1b to CPT2 ratio. Conclusion: Palmitate-induced alteration in the stoichiometric ratio of mitochondrial CPT isoforms leads to incomplete FAO and enhanced cytosolic ceramide accumulation that lead to insulin resistance. Fenofibrate ameliorated insulin resistance by restoring the altered stoichiometry by upregulating CPT2 and preventing, cytoplasmic ceramide accumulation.

  11. Effect of weak static magnetic fields on the development of cultured skeletal muscle cells.

    Science.gov (United States)

    Surma, Sergei V; Belostotskaya, Galina B; Shchegolev, Boris F; Stefanov, Vasily E

    2014-12-01

    We studied the effect produced on the development and functional activity of skeletal muscle cells from newborn Wistar rats in primary culture by weak static magnetic fields (WSMF; 60-400 µT) with a high capacity of penetrating the biological media. To reduce the impact of external magnetic fields, cells were cultured at 37 °C in a multilayered shielding chamber with the attenuation coefficient equal to 160. WSMF inside the chamber was created by a circular permanent magnet. We found that the application of WSMF with the magnetic field strength only a few times that of the geomagnetic field can accelerate the development of skeletal muscle cells, resulting in the formation of multinuclear hypertrophied myotubes. WSMF was shown to induce 1.5- to 3.5-fold rise in the concentration of intracellular calcium [Ca(2+)]i due to the release of Ca(2+) from the sarcoplasmic reticulum (SR) through ryanodine receptors (RyR), which increases in the maturation of myotubes. We also found that fully differentiated myotubes at late stages of development were less sensitive to WSMF, manifesting a gradual decrease in the frequency of contractions. However, myotubes at the stage when electromechanical coupling was forming dramatically reduced the frequency of contractions during the first minutes of their exposure to WSMF.

  12. Early events in myofibrillogenesis and innervation of skeletal, sound-generating muscle in a teleost fish.

    Science.gov (United States)

    Lindholm, M M; Bass, A H

    1993-05-01

    The plainfin midshipman, Porichthys notatus, generates acoustic communication signals through the rapid contraction of a pair of vocal (sonic) muscles attached to the walls of the swimbladder. Light and electron microscopic methods were used to study two aspects of sonic muscle ontogeny: 1) the development and transformation of