WorldWideScience

Sample records for c2c12 cells up-take

  1. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  2. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death

    Science.gov (United States)

    Le Borgne, Françoise; Ravaut, Gaétan; Bernard, Arnaud; Demarquoy, Jean

    2017-01-01

    AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.

  3. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes.

    Science.gov (United States)

    Schöneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.

  4. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  5. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  6. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    Science.gov (United States)

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  7. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  8. Antioxidant effects of whey protein on muscle C2C12 cells.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Priftis, Alexandros; Aivazidis, Stefanos; Tsatsakis, Aristidis M; Hayes, A Wallace; Kouretas, Demetrios

    2014-07-15

    In the present study, the in vitro scavenging activity of sheep whey protein against free radicals, as well as its reducing power were determined and compared with that of beef protein, soy protein and cow whey protein. Moreover, the possible protective effects of sheep whey protein from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in muscle C2C12 cells were determined by assessing oxidative stress markers by flow cytometry and spectrophotometry. The results showed that sheep whey protein scavenged DPPH, ABTS(+) and OH radicals with IC50 values of 3.1, 4.1 and 1.8 mg of protein/ml. Moreover, the reducing power activity assessed with potassium ferricyanide of sheep whey protein was 1.3mg/ml. As regards to the antioxidant effects in muscle cell line, sheep whey protein at 0.78, 1.56, 3.12 and 6.24 mg of protein/ml increased GSH levels up to 138%, lowered TBARS levels up to 25% and decreased ROS levels up to 41.4%.

  9. Effect of dehydroepiandrosterone on insulin action and development of insulin-induced resistance in C2C12 muscle cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydroepiandrosterone (DHEA), a precursor of androgens and estrogens, has been demonstrated to have effect of preventing insulin resistance and development of diabetes mellitus. Administration of testosterone appears to induce a marked insulin resistance. How these two hormones affect insulin resistance through regulation of sensitivity of tissues to insulin deserves further studies. Here, the effects of DHEA and testosterone on response to insulin in C2C12 muscle cells are analyzed. After 24 h of DHEA (10-6 mol/L) treatment, C2C12 cells showed an increased insulin- stimulated glucose uptake and enhanced activities of glycogen synthase (GS), phosphofructokinase (PFK) and pyruvate dehydrogenase (PDH), whereas testosterone gave the opposite effects. Incubation of C2C12 cells with high-dose insulin (5×10-7 mol/L) for 24 hours decreased their sensitivity to insulin and led to a state of resistance as assessed on insulin-stimulated glucose uptake and activities of GS, PFK and PDH. Addition of DHEA to insulin-resistant C2C12 cells could reverse the response of these cells to high-dose insulin, but testosterone could further impair insulin sensitivity in insulin-resistant C2C12 cells. These results suggest that the two hormones may influence the development or inhibition of insulin-resistance in type 2 diabetes through regulating glucose uptake, glycogenesis and glycolysis to some extent.

  10. ZnO nanoparticles augment ALT, AST, ALP and LDH expressions in C2C12 cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-11-01

    The present study aimed to investigate the effect of ZnO nanoparticles on alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme expressions in C2C12 cells. ZnO nanoparticles are widely used in the several cosmetic lotions and other biomedical products. Several studies report on ZnO nanoparticle mediated cytotoxicity. However, there are no reports on the effect of ZnO nanoparticles on ALT, AST, ALP and LDH enzyme expressions in C2C12 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles (1-5 mg/ml) on C2C12 cell viability at 48 and 72 h. ZnO nanoparticles increased ALT, AST, ALP and LDH enzyme mRNA expression and their activities in C2C12 cells. In conclusion, the present study showed that ZnO nanoparticles increased these enzyme activities and its mRNA expression in C2C12 cells in a dose-dependent manner.

  11. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells.

    Directory of Open Access Journals (Sweden)

    Eva Heining

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an

  12. Effect of cortisol on calpains in the C2C12 and 3T3-L1 cells.

    Science.gov (United States)

    Muthuraman, Pandurangan; Ravikumar, Sambandam; Muthuviveganandavel, Veerappan; Kim, Jongpil

    2014-03-01

    The present study was carried out to understand the effect of cortisol on calpain system in the C2C12 and 3T3-L1 adipocyte cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4 μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates. Ten microgram per milliliter of cortisol was added to the medium. Following treatment for 3 days, the cells in the lower well were harvested for analysis. Calpains such as μ-calpain, m-calpain, and calpastatin were selected for the analysis. RT-PCR results indicated the significant increase in the mRNA expression of μ-calpain, m-calpain, and calpastatin. In addition, the confocal microscopical investigation indicated the cortisol treatment increases calpain expression in the C2C12 and 3T3-L1 cells. Taking all these together, cortisol treatment with co-culture system shows most reliable status of calpains expression in the cells, which is quite distinct from one-dimensional monocultured cells.

  13. Truncated Human LMP-1 Triggers Differentiation of C2C12 Cells to an Osteoblastic Phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    LIM mineralization protein-1 (LMP-1) is a novel intracellular osteoinductive protein that has been shown to induce bone formation both in vitro and in vivo. LMP-1 contains an N-terminal PDZ domain and three C-terminal LIM domains. In this study, we investigated whether a truncated form of human LMP-1 (hLMP-1 [t]), lacking the three C-terminal LIM domains, triggers the differentiation of pluripotent myoblastic C2C12 cells to the osteoblast lineage. C2C12 cells were transiently transduced with Ad5-hLMP-1(t)-green fluorescent protein or viral vector control. The expression of hLMP-1 (t) RNA and the truncated protein were examined. The results showed that hLMP-1(t) blocked myotube formation in C2C12 cultures and significantly enhanced the alkaline phosphatase (ALP) activity. In addition, the expressions of ALP,osteocalcin, and bone morphogenetic protein (BMP)-2 and BMP-7 genes were also increased. The induction of these key osteogenic markers suggests that hLMP-1(t) can trigger the pluripotent myoblastic C2C12 cells to differentiate into osteoblastic lineage, thus extending our previous observation that LMP-1 and LMP-1 (t)enhances the osteoblastic phenotype in cultures of cells already committed to the osteoblastic lineage.Therefore, C2C12 cells are an appropriate model system for the examination of LMP-1 induction of the osteoblastic phenotype and the study of mechanisms of LMP- 1 action.

  14. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Manami [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yang, Zeyu [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang (China); Nakagawa, Kentaro; Maruyama, Junichi [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Xu, Xiaoyin [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Sarkar, Aradhan; Ichimura, Ayana [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Nasu, Yusuke [Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Ozawa, Takeaki [Department of Chemistry, School of Science, The University of Tokyo, Tokyo (Japan); Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Ishigami-Yuasa, Mari [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Shigeru [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); Kagechika, Hiroyuki [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  15. Insulin sensitizing effects of oligomannuronate-chromium (III complexes in C2C12 skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Cui Hao

    Full Text Available BACKGROUND: It was known that the insulin resistance in skeletal muscle is a major pathogenic factor in diabetes mellitus. Therefore prevention of metabolic disorder caused by insulin resistance and improvement of insulin sensitivity are very important for the therapy of type 2 diabetes. In the present study, we investigated the ability of marine oligosaccharides oligomannuronate and its chromium (III complexes from brown alga to enhance insulin sensitivity in C2C12 skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that oligomannuronate, especially its chromium (III complexes, enhanced insulin-stimulated glucose uptake and increased the mRNA expression of glucose transporter 4 (GLUT4 and insulin receptor (IR after their internalization into C2C12 skeletal muscle cells. Additionally, oligosaccharides treatment also significantly enhanced the phosphorylation of proteins involved in both AMP activated protein kinase (AMPK/acetyl-CoA carboxylase (ACC and phosphoinositide 3-kinase (PI3K/protein kinase B (Akt signaling pathways in C2C12 cells, indicating that the oligosaccharides activated both the insulin signal pathway and AMPK pathways as their mode of action. Moreover, oligosaccharides distributed to the mitochondria after internalization into C2C12 cells and increased the expression of transcriptional regulator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, carnitine palmitoyl transferase-1 (CPT-1, and phosphorylated acetyl-CoA carboxylase (p-ACC, which suggested that the actions of these oligosaccharides might be associated with mitochondria through increasing energy expenditure. All of these effects of marine oligosaccharides were comparable to that of the established anti-diabetic drug, metformin. In addition, the treatment with oligosaccharides showed less toxicity than that of metformin. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that oligomannuonate and its chromium (III complexes improved

  16. Establishment and Identification of a Stable Human ASB12-Expressed C2C12 Cell Line%稳定表达人ASB12的C2C12细胞系的建立及鉴定

    Institute of Scientific and Technical Information of China (English)

    文斗斗; 周军媚; 赵明一; 胡维新; 吴秀山; 王跃群

    2012-01-01

    The human ASB12 (Homo sapiens ankyrin repeat and SOCS box containing 12) protein contains five ANK (ankyrin repeat sequence) domains and a SOCS (suppressor of cytokine signaling) box domain, belonging to the ASBs family. It was reported that ASB12 especially expressed in skeletal and cardiac muscles of adult tissues, which suggested that ASB12 closely associated with skeleton muscle development. To construct a stable ASB12-expressed C2C12 cell line, the fusion expression plasmid pCMV-tag2B-ASB12, which was identified by enzyme digestion and sequencing analysis, was transfected into C2C12 cell by cationic polymer. After screening culture by G418, the expression of ASB12 was detected by immunofluorescfence, RT-PCR and Western-blotting. The C2C12 cell line that expressing ASB12 stably was established successfully, which provide a cell model for studying the molecular function of ASB12 in skeleton muscle development.%ASB12 (homo sapiens ankyrin repeat and SOCS box containing 12)蛋白含有5个ANK (ankyrin repeat sequence)序列和一个保守的SOCS (suppressor of cytokine signaling)盒结构域,是ASBs (human ankyrin repeat and SOCS box containing protein family,ASB family)家族的成员.人类ASB12基因在成体心肌和骨骼肌组织中特异表达,是成肌分化的候选基因.利用阳离子聚合物转染技术将重组表达质粒pCMV-tag2B-ASB 12转染小鼠骨骼肌细胞系C2C12细胞,通过G418筛选、免疫荧光检测、RT-PCR分析、Western blotting检测建立了稳定表达ASB12的细胞系C2C12-ASB12,为研究ASB12在骨骼肌发育及其相关功能提供有用的细胞研究模型.

  17. Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway.

    Science.gov (United States)

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman; Germot, Agnès

    2015-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.

  18. Cytotoxic and apoptotic effects of scorpion Leiurus quinquestriatus venom on 293T and C2C12 eukaryotic cell lines

    Directory of Open Access Journals (Sweden)

    M. A. A. Omran

    2003-01-01

    Full Text Available Scorpion venom toxicity is of major concern due to its influence on human activities and public health. The cytotoxicity and apoptosis induced by scorpion L. quinquestriatus venom on two established eukaryotic cell lines (293T and C2C12 were analyzed. Both cultured cell lines were incubated with varying doses (10, 20, and 50 µg/ml of scorpion venom in serum free medium (SFM for 0.5, 1, 2, 4, and 8 hours at 37°C. The percentage of total lactate dehydrogenase (LDH released in the culture during venom incubation was used as an index of cell damage. Control culture was treated with an equal amount of SFM. Cell injury was recognized morphologically and apoptosis was researched by a Fluorescing Apoptosis Detection System using the principle of TUNEL (TdT-mediated dUTP Nick-End Labelling assay and confirmed by another assay concerning nuclear DNA staining with DAPI stain. Cytotoxicity was remarkable and cell survival highly reduced at the highest tested concentration (50 µg/ml. These effects were rapid and observed within 30 minutes. The apparent initial damage to the nucleus and lysis of the plasmalemma and/or organelle membranes, which was evident by a significant increase in cytosolic LDH release, suggested that this toxin acts at the membrane level. The morphological changes that occurred in apoptotic cells include condensation and compartmentalization of nuclear and cytoplasmic materials into structurally preserved membrane-bound fragments or blebs. The cytotoxic effects are dose and time dependent and cell death by apoptosis was more characteristic of 293T cells than C2C12 cells. The apoptotic effects were more prominent and clear in the early stages of toxicity, while other forms of cell damage such as swelling, rupture, and/or necrosis occurred at later stages.

  19. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2 result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.

  20. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    Science.gov (United States)

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  1. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2008-01-01

    reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have...... demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown...... of specific focal adhesion proteins previously identified as substrates for this enzyme. We show that stimulation also leads to an increase in calpain activity in these cells. These data support the pivotal role for m-calpain in the control of muscle precursor cell differentiation and thus strengthen the idea...

  2. Lignan compounds and 4,4'-dihydroxybiphenyl protect C2C12 cells against damage from oxidative stress.

    Science.gov (United States)

    Yoshikawa, Ayumu; Saito, Yumiko; Maruyama, Kei

    2006-05-26

    Lignan compounds are known to have various biological activities, especially antioxidative effects. We investigated whether lignan compounds show antioxidative activity in myoblast C2C12 cells. Among 14 lignan compounds investigated, two lignans containing two phenolic functional groups, namely Gomisin J and GR-12, prevented hydrogen peroxide (H(2)O(2))-induced cell death. A simple compound, 4,4'-dihydroxybiphenyl, which was found to be a common component of Gomisin J and GR-12, also largely prevented H(2)O(2)-induced cell death and almost completely prevented H(2)O(2)-induced increases in p38 MAPK phosphorylation. Our present results provide a useful in vitro system for clarifying the molecular mechanisms of lignan-mediated antioxidative effects and evaluating lead molecules toward the development of therapeutic drugs.

  3. Co-culture of C2C12 and 3T3-L1 preadipocyte cells alters the gene expression of calpains, caspases and heat shock proteins.

    Science.gov (United States)

    Pandurangan, Muthuraman; Jeong, Dawoon; Amna, Touseef; Van Ba, Hoa; Hwang, Inho

    2012-10-01

    The present study was carried out to understand the co-culture effect of C2C12 and 3T3-L1 preadipocyte cells on calpain, caspase, and heat shock protein (Hsp) systems. Calpains, caspases, and heat shock proteins play critical roles in the growth and development of mammalian cells. Cells were co-cultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 transferred to 3T3-L1 plates. Following co-culture for 24 and 48 h, the cells in the lower well were harvested for analysis. Calpains include μ-calpain, m-calpain, and their specific inhibitor calpastatin. The expression pattern of μ-calpain did not change in the co-cultured C2C12 and 3T3-L1 cells, whereas m-capain mRNA expression significantly reduced in the 48-h co-cultured 3T3-L1 cells. Calpastatin mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Caspase-7 mRNA expression did not change in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells. Caspase-3 mRNA expression significantly reduced in the 24- and 48-h co-cultured 3T3-L1 cells; caspase-9 mRNA had a significant reduction only at 48 h, whereas caspase-9 mRNA expression significantly increased in the 48-h co-cultured C2C12 cells. Hsp27 and Hsp90 mRNA expressions are significantly reduced in the 24- and 48-h co-cultured C2C12 and 3T3-L1 cells, whereas Hsp70 mRNA expression significantly increased in the 48-h co-cultured 3T3-L1 cells. The co-culture reflects three-dimensional views of C2C12 and 3T3-L1 cell types as in vivo, which is quite distinct from the one-dimensional monocultured C2C12 and 3T3-L1 cells.

  4. In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model

    Science.gov (United States)

    Ikeda, Kazushi; Ito, Akira; Imada, Ryusuke; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2017-01-01

    Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal muscle constructs prepared by three-dimensional cell cultures were not correlated with the levels of myotube differentiation in two-dimensional cell cultures. In contrast, sarcomere formation and contractile activity in two-dimensional cell cultures were highly correlated with contractile force generation of tissue-engineered skeletal muscle constructs. Among the epigenetic drugs tested, trichostatin A significantly improved contractile force generation of tissue-engineered skeletal muscle constructs. Follistatin expression was also enhanced by trichostatin A treatment, suggesting the importance of follistatin in sarcomere formation of muscular tissues. These observations indicate that contractility data are indispensable for in vitro drug screening. PMID:28300163

  5. Biocompatibility of Sylgard184 coated with different matrix materials and C2C12 cells%不同基质材料修饰的Sylgard184与C2C12细胞的相容性

    Institute of Scientific and Technical Information of China (English)

    王齐; 廖华; 秦建强; 余磊; 邱小忠; 于巧莲; 艾鹤英

    2009-01-01

    目的 筛选能提高硅酮橡胶弹性体(Sylgard184)与C2C12相容性的理想基质材料. 方法Sylgard184双组分以10:1的比例均匀混合,倒入6孔板的其中4孔,室温下静置固化,其余2孔做为空白对照培养组(A组);固化后的Sylgard184表面依次经过以下处理:I型胶原包被(B组)、层黏连蛋白包被(C组)、多聚赖氨酸包被(D组);未经包被(E组),每组共6个样本.在不同基质材料修饰的Sylgard 184表面培养C2C12细胞,利用倒置显微镜观察5组C2C12细胞的增殖、分化状态,流式细胞术(FCM)检测增殖培养48h后C2C12细胞的分裂增殖情况,RT-PCR检测增殖和分化培养48h后C2C12细胞内MyoD、myogenin mRNA的表达.结果 Sylgard184材料存在细胞毒性,E组接种的C2C12细胞在24h内全部漂浮死亡;D组的大多数细胞出现死亡,仅少数贴壁存活;而B、C两组材料包被后明显减少Syhgard 184的毒性,增强其表面与C2C12细胞的相容性,且C组细胞处于合成期的百分比以及增殖期的MyoD和分化期Myogenin基因mRNA的表达水平均显著高于A、B两组(P<0.05). 结论 经层黏连蛋白包被后的Sylgard184表面更有利于C2C12细胞的增殖及分化活性的表达.

  6. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: inhochoi@ynu.ac.kr [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  7. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.

    2016-01-01

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  8. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.

    Science.gov (United States)

    Pijet, Maja; Pijet, Barbara; Litwiniuk, Anna; Pajak, Beata; Gajkowska, Barbara; Orzechowski, Arkadiusz

    2013-02-01

    Reduced lean body mass in genetically obese (ob/ob) or anorectic/cachectic subjects prompted us to verify the hypothesis whether leptin, white adipose tissue cytokine, might be a negative organizer of myogenesis. Recombinant leptin (100 ng/mL) stimulated mitogenesis together with the raise in T(202/)Y(204)P-ERK1/2 protein expression. Concomitantly, it impaired cell viability and muscle fiber formation from C2C12 mouse myoblasts. Detailed acute and chronic studies with the use of metabolic inhibitors revealed that both JAK/STAT3 and MEK/MAPK but not PI3-K/AKT/GSK-3β signaling pathways were activated by leptin, and that STAT3 (Y(705)P-STAT3) and MEK (T(202/)Y(204)P-ERK1/2) mediate these effects. In contrary, insulin evoked PI3-K-dependent phosphorylation of AKT (S(473)) and GSK-3β (S(9)) and insulin surpassed leptin-dependent inhibition of myogenic differentiation in PI3-K-dependent manner. GSK-3β seems to play dual role in muscle development. Insulin-dependent effect on GSK-3β (S(9)P-GSK-3β) led to accelerated myotube construction. In contrary, leptin through MEK-dependent manner caused GSK-3β phosphorylation (Y(216)P-GSK-3β) with resultant drop in myoblast fusion. Summing up, partially opposite effects of insulin and leptin on skeletal muscle growth emphasize the importance of interplay between these cytokines. They determine how muscle mass is gained or lost.

  9. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  10. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  11. Construction of highly organized three-dimensional muscle tissue induced by C2C12 cells in vitro%C2C12细胞诱导构建三维骨骼肌组织

    Institute of Scientific and Technical Information of China (English)

    王齐; 廖华; 秦建强; 余磊; 艾鹤英; 汪海仪; 邱小忠

    2010-01-01

    目的 利用修饰并铸型后的Sylgard 184凹槽与C2C12细胞复合培养、诱导分化,获取三维极性骨骼肌组织. 方法 Sylgard 184双组分以10∶1的比例均匀混合并倒板,室温下静置固化并对其表面压槽铸型,Hank液冲洗凹槽,Matrigel和胶原的混合液均匀铺被凹槽底部,置生物安全柜待细胞基质自然干燥、紫外线照射消毒1h以上时接种C2C12细胞悬液,细胞增殖约80%汇合时改用分化培养基进行分化诱导,倒置显微镜下观察肌管的分化状态, RT-PCR方法检测肌管内myogenin和desmin基因mRNAs的表达,免疫荧光检测生肌转录因子myogenin和desmin蛋白的表达,扫描电镜观察肌管形态和肌管间的连接. 结果 C2C12细胞在Sylgard 184弹性体铸型压槽中培养分化7d后,倒置显微镜下可见肌管呈极性分化,且肌管之间融合紧密;21d后,扫描电镜检测可见肌管之间排列紧密且相互重叠,形成膜样结构,厚度可达0.15mm,具有三维性;RT-PCR、免疫荧光检测证实极性分化肌管内具有myogenin和desmin的阳性表达. 结论 修饰并铸型的Sylgard 184凹槽具有一定的方向引导效应,能促进C2C12细胞分化形成多核肌管,且肌管呈极性重叠排列,形成三维极性骨骼肌组织结构.

  12. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...... that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown of specific...

  13. Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects.

    Science.gov (United States)

    Liao, Jiunn-Wang; Kang, Jaw-Jou; Jeng, Chian-Ren; Chang, Shao-Kuang; Kuo, Ming-Jang; Wang, Shun-Cheng; Liu, Michael R S; Pang, Victor Fei

    2006-02-15

    Our previous study has demonstrated that instead of neuromuscular blockage cartap, an organonitrogen insecticide, could cause a marked irreversible Ca2+-dependent contracture in both isolated mouse and rabbit phrenic nerve-diaphragms. We further examined the potential of direct myocytotoxicity of cartap and the possible roles of calcium ion and oxidative stress on cartap-induced muscle cell injury using the mouse myoblast cell line, C2C12. Cartap exerted a dose- and time-dependent cytotoxic effect in C2C12 cells measured by MTT colorimetric assay and trypan blue dye exclusion. The extracellular activities of both creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated in the cartap-treated groups at or greater than 100 microM. The isoenzymatic profiles showed that the elevations were mainly due to CK-3, LDH-3, and LDH-4. Following the addition of 0.5-2.5mM EGTA, a Ca2+ chelator, or 30-100 microM verapamil, an L-type Ca2+ channel blocker, the cartap-induced reduction in MTT metabolic rate of C2C12 cells was significantly restored in a dose-dependent manner in both EGTA and verapamil-treated cells. Furthermore, EGTA could significantly reduce the cartap-induced elevation in the levels of total extracellular CK and LDH activities. Additionally, cartap significantly increased the level of endogenous reactive oxygen species (ROS) in C2C12 cells in a dose- and time-dependent manner. The cartap-induced ROS generation could be significantly inhibited by antioxidants, including Vitamins C and E, catalase, and superoxide dismutase, with catalase the most effective. EGTA could significantly inhibit cartap-induced ROS generation in a dose-dependent manner. The results suggested that cartap could induce ROS generation in C2C12 cells via a Ca2+-dependent mechanism resulting in subsequent cytotoxicity, at least partially, to C2C12 cells. It is speculated that both Ca2+ and Ca2+-induced ROS may also play the central role on the myogenic contracture and myofiber injury

  14. 1α,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells.

    Science.gov (United States)

    Buitrago, Claudia G; Arango, Nadia S; Boland, Ricardo L

    2012-04-01

    We previously reported that 1α,25-dihydroxy-vitamin D(3) [1α,25(OH)(2)D(3)] induces non-transcriptional rapid responses through activation of Src and MAPKs in the skeletal muscle cell line C2C12. In the present study we investigated the modulation of Akt by the secosteroid hormone in C2C12 cells at proliferative stage (myoblasts) and at early differentiation stage. In proliferating cells, 1α,25(OH)(2)D(3) activates Akt by phosphorylation in Ser473 in a time-dependent manner (5-60 min). When these cells were pretreated with methyl-beta-cyclodextrin to disrupt caveolae microdomains, hormone-induced activation of Akt was suppressed. Similar results were obtained by siRNA silencing of caveolin-1 expression, further indicating that hormone effects on cell membrane caveolae are required for downstream signaling. PI3K and p38 MAPK, but not ERK1/2, participate in 1α,25(OH)(2)D(3) activation of Akt in myoblasts. The involvement of p38 MAPK in Akt phosphorylation by the hormone probably occurs through MAPK-activated protein kinase 2 (MK2), which is activated by the steroid. In addition, the participation of Src in Akt phosphorylation by 1α,25(OH)(2)D(3) was demonstrated using the inhibitor PP2 and antisense oligodeoxynucleotides that suppress Src expression. We also observed that PI3K participates in hormone-induced proliferation. During the early phase of C2C12 cell differentiation 1α,25(OH)(2)D(3) also increases Akt phosphorylation and activates Src. Of relevance, Src and PI3K are involved in Akt activation and in MHC and myogenin increased expression by 1α,25(OH)(2)D(3). Altogether, these data suggest that 1α,25(OH)(2)D(3) upregulates Akt through Src, PI(3)K, and p38 MAPK to stimulate myogenesis in C2C12 cells.

  15. Effect of fibroblast growth factor 9 on Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    YU Li-yun; PEI Yu; XIA Wei-bo; XING Xiao-ping; MENG Xun-wu; ZHOU Xue-ying

    2007-01-01

    Background Fibroblast growth factor 9 (FGF9), expressed in brain, kidney and developing skeletal tissues, can physiologically inhibit endochondral ossification; but little is known about how FGF9 affects osteoblasts and its detailed regulatory mechanism. Here we examined the effect of FGF9 on the activity of the murine Runt-related transcription factor2 (Runx2) gene promoter in preosteoblast MC3T3-E1 and premyoblast C2C12 cells.Methods Plasmids containing the Runx2 promoter region were transfected into MC3T3-E1 and C2C12 cells and stably transfected cell lines were established. The method of luciferase reporter gene activation was used to examine the effects of FGF9 on the promoter activity.Results FGF9 (10 ng/ml) increased Runx2 promoter activity in MC3T3-E1 cells. When MC3T3-E1 cells were treated with FGF9 plus the various inhibitors or activator of the intracellular signaling transducation pathways, including 10μmol/L U0126 (the inhibitor of mitogen-activated protein kinase kinase), 10 μmol/L SB203580 (the inhibitor of p38/mitogen activated protein kinase), or 1 μmol/L C6 ceramide (an activator of mitogen activated protein kinase), the luciferase expression did not change significantly compared with that of the cells treated with FGF9 only. However, when C2C12 cells were treated with 10 ng/ml FGF9, Runx2 gene promoter activity first decreased and then increased over a period of 1 to 5 days. Among the above inhibitors, only U0126 (10 μmol/L) completely blocked the effects of FGF9 on Runx2 gene promoter activity.Conclusions Our data showed that FGF9 can affect Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells. The action of FGF9 appears to depend partly on the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathways in C2C12 cells.

  16. Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment.

    Science.gov (United States)

    Amna, Touseef; Van Ba, Hoa; Vaseem, M; Hassan, M Shamshi; Khil, Myung-Seob; Hahn, Y B; Lee, Hak-Kyo; Hwang, I H

    2013-06-01

    We report herein the synthesis and characterization of copper oxide quantum dots and their cytotoxic impact on mouse C2C12 cells. The utilized CuO quantum dots were prepared by the one-pot wet chemical method using copper acetate and hexamethylenetetramine as precursors. The physicochemical characterization of the synthesized CuO quantum dots was carried out using X-ray diffraction, energy-dispersive X-ray analysis, and transmission electron microscopy. To examine the in vitro cytotoxicity, C2C12 cell lines were treated with different concentrations of as-prepared quantum dots and the viability of cells was analyzed using Cell Counting Kit-8 assay at regular time intervals. The morphology of the treated C2C12 cells was observed under a phase-contrast microscope, whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. To gain insight into the mechanism of cell death, we examined the effect of CuO quantum dots on the candidate genes such as caspases 3 and 7, which are key mediators of apoptotic events. In vitro investigations of the biological effect of CuO quantum dots have shown that it binds genomic DNA, decreases significantly the viability of cells in culture in a concentration (10-20 μg/mL) dependent manner, and inhibits mitochondrial caspases 3 and 7. To sum up, the elucidation of the pathways is to help in understanding CuO quantum dot-induced effects and evaluating CuO quantum dot-related hazards to human health.

  17. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  18. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  19. Effects of Sunphenon and Polyphenon 60 on proteolytic pathways, inflammatory cytokines and myogenic markers in H22-treated C2C12 cells

    Indian Academy of Sciences (India)

    Allur Subramaniyan Sivakumar; Inho Hwang

    2015-03-01

    The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF- and NF-kB, as well as proteolytic enzymes, such as -calpain and m-calpain. The pre-treatment of Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of -calpain and m-calpain were significantly ( < 0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely -calpain and m-calpain. Furthermore, the mRNA expression of TNF- and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) significantly ( < 0.05) down-regulated it when compared to the untreated control group. Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 g/mL)/Polyphenon 60 (50 g/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, -calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of -calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.

  20. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    Science.gov (United States)

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  1. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    Abstract Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation. A. Grossi, M. A. Lawson; Department of Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark The process of muscle...... documented and has been shown to affect transcription of specific gene sequences, protein synthesis, the immune system and increase in Ca2+ influx. The past 10 years has seen a dramatic increase in the understanding of how proteolytic enzymes such as calpains can affect the growth of muscle. In vivo studies...... have shown that m-calpain is necessary for myoblast fusion leading to the formation of muscle fibers and that inhibition of this enzyme restricts myotube formation. Whether there is a link between stretchor load induced signaling and m-calpain expression and activation is not known. Using a magnetic...

  2. EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis.

    Science.gov (United States)

    Lamon, Séverine; Zacharewicz, Evelyn; Stephens, Andrew N; Russell, Aaron P

    2014-01-01

    Abstract The role and regulation of the pleiotropic cytokine erythropoietin (EPO) in skeletal muscle are controversial. EPO exerts its effects by binding its specific receptor (EPO-R), which activates intracellular signaling and gene transcription in response to internal and external stress signals. EPO is suggested to play a direct role in myogenesis via the EPO-R, but several studies have questioned the effect of EPO treatment in muscle in vitro and in vivo. The lack of certainty surrounding the use of nonspecific EPO-R antibodies contributes to the ambiguity of the field. Our study demonstrates that the EPO-R gene and protein are expressed at each stage of mouse C2C12 and human skeletal muscle cell proliferation and differentiation and validates a specific antibody for the detection of the EPO-R protein. However, in our experimental conditions, EPO treatment had no effect on mouse C2C12 and human muscle cell proliferation, differentiation, protein synthesis or EPO-R expression. While an increase in Akt and MAPK phosphorylation was observed, we demonstrate that this effect resulted from the stress caused by changing medium and not from EPO treatment. We therefore suggest that skeletal muscle EPO-R might be present in a nonfunctional form, or too lowly expressed to play a role in muscle cell function.

  3. Atractylenolide III Enhances Energy Metabolism by Increasing the SIRT-1 and PGC1α Expression with AMPK Phosphorylation in C2C12 Mouse Skeletal Muscle Cells.

    Science.gov (United States)

    Song, Mi Young; Jung, Hyo Won; Kang, Seok Yong; Park, Yong-Ki

    2017-01-01

    Targeting energy expenditure provides a potential alternative strategy for achieving energy balance to combat obesity and the development of type 2 diabetes mellitus (T2DM). In the present study, we investigated whether atractylenolide III (AIII) regulates energy metabolism in skeletal muscle cells. Differentiated C2C12 myotubes were treated with AIII (10, 20, or 50 µM) or metformin (2.5 mM) for indicated times. The levels of glucose uptake, the expressions of key mitochondrial biogenesis-related factors and their target genes were measured in C2C12 myotubes. AIII significantly increased the glucose uptake levels, and significantly increased the expressions of peroxisome proliferator-activated receptor coactivator-1α (PGC1α) and mitochondrial biogenesis-related markers, such as, nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM) and mitochondrial mass and total ATP contents. In addition, AIII significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of sirtuin1 (SIRT1). These results suggest that AIII may have beneficial effects on obesity and T2DM by improving energy metabolism in skeletal muscle.

  4. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2016-01-01

    Full Text Available Creatine (Cr is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function.

  5. TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway.

    Science.gov (United States)

    Zhao, Q; Yang, S T; Wang, J J; Zhou, J; Xing, S S; Shen, C C; Wang, X X; Yue, Y X; Song, J; Chen, M; Wei, Y Y; Zhou, Q P; Dai, T; Song, Y H

    2015-03-20

    Cachexia or muscle wasting is a common condition that occurs in many chronic diseases. The wasting conditions are characterized by increased levels of TNF-α which was also known as cachectin in the past. But how TNF-α exerts its cachetic effects remains controversial. To clarify this issue, we investigated the impact of TNF-α on C2C12 cell myogenic differentiation. Our results demonstrate that myotube formation was completely inhibited by TNF-α when added to differentiating C2C12 myoblasts. The inhibitory effect of TNF-α on differentiation was accompanied by activation of NF-κB and down regulation of myogenin and Akt. Importantly, TNF-α's effect on differentiation was abolished when IGF-1 was added to the culture. IGF-1 treatment also inhibited NF-κB reporter activity and restored Akt levels. Our data suggest that TNF-α inhibits myogenic differentiation through NF-κB activation and impairment of IGF-1 signaling pathway. The reversal of TNF-α induced inhibition of myogenesis by IGF-1 may have significant therapeutic potential.

  6. CLA reduces inflammatory mediators from A427 human lung cancer cells and A427 conditioned medium promotes differentiation of C2C12 murine muscle cells.

    Science.gov (United States)

    Oraldi, Manuela; Maggiora, Marina; Paiuzzi, Elena; Canuto, Rosa A; Muzio, Giuliana

    2013-01-01

    Conjugated linoleic acid (CLA) is thought to have anti-proliferative and anti-inflammatory properties, but its effect on cancer cachexia is unknown. Two effects were here investigated: that of CLA on inflammatory mediator production in human lung cancer cells, and that of reduced mediators on the myogenic differentiation of murine muscle C2C12 cells. The latter cells were grown in medium conditioned by human lung cancer A427 cells, with or without CLA, to mimic only the effect of molecules released from the tumor "in vivo", excluding the effect of host-produced cachectic factors. The results obtained show that CLA was found to reduce the production of tumor necrosis factor-α, interleukin (IL)-1β and prostaglandin E2 (PGE2), but had no effect on IL-6 production. The mechanisms underlying the effect of CLA on cytokine or PGE2 release in A427 cells are probably mediated by activation of peroxisome proliferator-activated receptor (PPAR)α, which increased at 24 h CLA treatment. In turn, the reduced content of inflammatory mediators in medium conditioned by A427 cells, in the presence of CLA, allowed muscle cells to proliferate, again by inducing PPAR. The involvement of PPARα was demonstrated by treatment with the antagonist MK-886. The findings demonstrate the anti-inflammatory and myogenic action of CLA and point to its possible application as a novel dietary supplement and therapeutic agent in inflammatory disease states, such as cachexia.

  7. Characterization of porcine SKIP gene in skeletal muscle development: polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells.

    Science.gov (United States)

    Xiong, Qi; Chai, Jin; Deng, Changyan; Jiang, Siwen; Liu, Yang; Huang, Tao; Suo, Xiaojun; Zhang, Nian; Li, Xiaofeng; Yang, Qianping; Chen, Mingxin; Zheng, Rong

    2012-12-01

    Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) to PI(3,4)P2 and negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, two new single nucleotide polymorphisms (SNPs) in porcine SKIP introns 1 and 6 were detected. The C1092T locus in intron 1 showed significant associations with some meat traits, whereas the A17G locus in intron 6 showed significant associations with some carcass traits. Expression analysis showed that porcine SKIP is upregulated at d 65 of gestation and Meishan fetuses have higher and prolonged expression of SKIP compared to Large White at d 100 of gestation. Ectopic expression of porcine SKIP decreased insulin-induced cell proliferation and promoted serum starvation-induced cell cycle arrest in G0/G1 phase in C2C12. Our results suggest that SKIP plays a negative regulatory role in skeletal muscle development partly by preventing cell proliferation.

  8. 转染脂联素cDNA对骨骼肌细胞株C2C12肌小管葡萄糖氧化和糖原合成的影响%Effects of transfection with adiponectin cDNA on glycogen synthesis and glucose oxidation in myotubes of skeletal muscle cell strain C2C12

    Institute of Scientific and Technical Information of China (English)

    张淼; 李芳萍; 杨川; 钱艳; 刘丹; 傅祖植

    2007-01-01

    在真核表达载体pcDNA3.0的酶切位点XhoⅠ和XbaⅠ之间.②质粒转染C2C12细胞及阳性克隆的筛选:转染后用含G418的培养基筛选第10天,C2C12细胞绝大多数已死亡,第2周出现阳性克隆,于转染筛选后第3周收集对G418产生抗性的C2C12细胞集落.③Western blot和免疫组化检测结果:两种检测方法均证实只有稳定转染了pcDNA3.0-mad组的细胞能表达脂联素蛋白.④稳定转染脂联素基因对肌细胞糖代谢的影响:肌细胞的糖原合成和葡萄糖氧化量随着胰岛素浓度增加而逐渐增高.线性回归分析结果为对照组、载体组和pcDNA3.0-mad组回归系数分别为23.34,23.23和26.06,即pcDNA3.0-mad组随着胰岛素浓度的增强,葡萄糖氧化量增加的速率比其他两组快;pcDNA3.0-mad组C2C12肌细胞基础状态下和胰岛素刺激下的葡萄糖氧化和糖原合成量与其他2组相近(P>0.05).结论:①成功建立了稳定转染脂联素基因并能表达脂联素蛋白的C2C12细胞株.②转染脂联素基因对C2C12肌细胞葡萄糖氧化和糖原合成无显著性影响.③肌细胞的糖原合成和葡萄糖氧化量随着胰岛素浓度增加而逐渐增高.④脂联素可能协同胰岛素促进肌细胞葡萄糖氧化而使肌细胞摄取葡萄糖增加.%BACKGROUND:Adiponectin possess functions of lowering blood glucose and blood lipids, and improve insulin sensitivity. But, controversy results about the effect of adiponectin on skeletal muscle have been reported.OBJECTIVE:To study the effects of eukaryon expressed adiponectin on the glycogen synthesis and glucose oxidation in skeletal muscle cell strain C2C12 myotubes by transfecting plasmids carrying mouse adiponectin.DESIGN: A controlled experiment.SETTING: The Second Affiliated Hospital of Sun Yat-sen University.MATERIALS: PcDNA3.0 plasmid with mouse adiponectin cDNA, pcDNA3.0-mad (generously presented from Dr. Gong,University of Maryland), C2C12 cell strain (purchased from ATCC, GRL-1722), DMEM high glucose

  9. MicroRNA-494, upregulated by tumor necrosis factor-α, desensitizes insulin effect in C2C12 muscle cells.

    Directory of Open Access Journals (Sweden)

    Hyunjoo Lee

    Full Text Available Chronic inflammation is fundamental for the induction of insulin resistance in the muscle tissue of vertebrates. Although several miRNAs are thought to be involved in the development of insulin resistance, the role of miRNAs in the association between inflammation and insulin resistance in muscle tissue is poorly understood. Herein, we investigated the aberrant expression of miRNAs by conducting miRNA microarray analysis of TNF-α-treated mouse C2C12 myotubes. We identified two miRNAs that were upregulated and six that were downregulated by a >1.5-fold change compared to normal cells. Among the findings, qRT-PCR analysis confirmed that miR-494 is consistently upregulated by TNF-α-induced inflammation. Overexpression of miR-494 in CHO(IR/IRS1 and C2C12 myoblasts suppressed insulin action by down-regulating phosphorylations of GSK-3α/β, AS160 and p70S6K, downstream of Akt. Moreover, overexpression of miR-494 did not regulate TNF-α-mediated inflammation . Among genes bearing the seed site for miR-494, RT-PCR analysis showed that the expression of Stxbp5, an inhibitor of glucose transport, was downregulated following miR-494 inhibition. In contrast, the expression of PTEN decreased in the cells analyzed, thus showing that both positive and negative regulators of insulin action may be simultaneously controlled by miR-494. To investigate the overall effect of miR-494 on insulin signaling, we performed a PCR array analysis containing 84 genes related to the insulin signaling pathway, and we observed that 25% of genes were downregulated (P<0.05 and 11% were upregulated (P<0.05. These results confirm that miR-494 might contribute to insulin sensitivity by positive and negative regulation of the expression of diverse genes. Of note, PCR array data showed downregulation of Slc2A4, a coding gene for Glut4. Altogether, the present study concludes that the upregulation of miR-494 expression by TNF-α-mediated inflammation exacerbates insulin resistance

  10. Analysis of adhesive binding forces between laminin-1 and C2C12 muscle cell membranes measured via high resolution force spectroscopy

    Science.gov (United States)

    Gluck, George; Gilbert, Richard; Ortiz, Christine

    2002-03-01

    Laminins are a family of glycoproteins that regulate cell differentiation, shape, and motility through interactions with various cell surface receptors. Here, we have directly measured the biomolecular adhesive binding forces between a cantilever / probe tip that was covalently attached with laminin-1 and membrane receptors on C2C12 muscle cells using the technique of high-resolution force spectroscopy (HRFS). On retraction of the probe tip away from the membrane surface, discrete, long-range adhesive unbinding events were always observed. Statistical analysis of the data revealed an initial broad distribution of heterogeneous unbinding events (occurring at separation distances, D=0-2µm from the point of maximum compression) of magnitude 92.23±37.87pN followed by a narrow distribution of homogeneous unbinding events (occurring at D > 2µm) of magnitude 38.16±9.10pN, which is suggestive of an individual biomolecular adhesive interaction. On-going studies include loading rate dependence and effect of dystroglycan mutation.

  11. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells.

    Science.gov (United States)

    Mishra, Amrita; Tripathy, Suraj Kumar; Wahab, Rizwan; Jeong, Song-Hoon; Hwang, Inho; Yang, You-Bing; Kim, Young-Soon; Shin, Hyung-Shik; Yun, Soon-Il

    2011-11-01

    Microorganisms, their cell filtrates, and live biomass have been utilized for synthesizing various gold nanoparticles. The shape, size, stability as well as the purity of the bio synthesized nanoparticles become very essential for application purpose. In the present study, gold nanoparticles have been synthesized from the supernatant, live cell filtrate, and biomass of the fungus Penicillium brevicompactum. The fungus has been grown in potato dextrose broth which is also found to synthesize gold nanoparticles. The size of the particles has been investigated by Bio-TEM before purification, following purification and after storing the particles for 3 months under refrigerated condition. Different characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, and UV-visible spectroscopy have been used for analysis of the particles. The effect of reaction parameters such as pH and concentration of gold salt have also been monitored to optimize the morphology and dispersity of the synthesized gold nanoparticles. A pH range of 5 to 8 has favored the synthesis process whereas increasing concentration of gold salt (beyond 2 mM) has resulted in the formation of bigger sized and aggregated nanoparticles. Additionally, the cytotoxic nature of prepared nanoparticles has been analyzed using mouse mayo blast cancer C(2)C(12) cells at different time intervals (24, 48, and 72 h) of incubation period. The cells are cultivated in Dulbecco's modified Eagle's medium supplemented with fetal bovine serum with antibiotics (streptopenicillin) at 37°C in a 5% humidified environment of CO(2). The medium has been replenished every other day, and the cells are subcultured after reaching the confluence. The viability of the cells is analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method.

  12. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion

    Directory of Open Access Journals (Sweden)

    Poussard S

    2015-02-01

    Full Text Available Sylvie Poussard,1,2 Marion Decossas,1,2 Olivier Le Bihan,1,2 Stéphane Mornet,3 Grégoire Naudin,1,2 Olivier Lambert1,2 1Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France; 2Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France; 3ICMCB, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS UPR9048, Université de Bordeaux, Pessac, France Abstract: The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion. Keywords: silica, nanoparticle, muscle, cell encapsulation, transmission electron microscopy, apoptosis

  13. Pannexin Channels Mediate the Acquisition of Myogenic Commitment in C2C12 Reserve Cells Promoted by P2 Receptor Activation

    Directory of Open Access Journals (Sweden)

    Manuel Antonio Riquelme

    2015-05-01

    Full Text Available The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i. Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs as well as connexin (Cx and/or pannexin (Panx hemichannels and channels (Cx HChs and Panx Chs, respectively, which are known to permeate Ca2+. Reserve cells (RCs are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs, did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs and Panx Chs.

  14. AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells.

    Science.gov (United States)

    Egawa, Tatsuro; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Yokoyama, Shingo; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Goto, Katsumasa

    2014-02-01

    5'-AMP-activated protein kinase (AMPK) plays an important role as a negative regulator of skeletal muscle mass. However, the precise mechanism of AMPK-mediated regulation of muscle mass is not fully clarified. Heat shock proteins (HSPs), stress-induced molecular chaperones, are related with skeletal muscle adaptation, but the association between AMPK and HSPs in skeletal muscle hypertrophy is unknown. Thus, we investigated whether AMPK regulates hypertrophy by mediating HSPs in C2C12 cells. The treatment with AICAR, a potent stimulator of AMPK, decreased 72-kDa HSP (HSP72) expression, whereas there were no changes in the expressions of 25-kDa HSP, 70-kDa heat shock cognate, and heat shock transcription factor 1 in myotubes. Protein content and diameter were less in the AICAR-treated myotubes in those without treatment. AICAR-induced suppression of myotube hypertrophy and HSP72 expression was attenuated in the siRNA-mediated AMPKα knockdown myotubes. AICAR increased microRNA (miR)-1, a modulator of HSP72, and the increase of miR-1 was not induced in AMPKα knockdown condition. Furthermore, siRNA-mediated HSP72 knockdown blocked AICAR-induced inhibition of myotube hypertrophy. AICAR upregulated the gene expression of muscle Ring-finger 1, and this alteration was suppressed in either AMPKα or HSP72 knockdown myotubes. The phosphorylation of p70 S6 kinase Thr(389) was downregulated by AICAR, whereas this was attenuated in AMPKα, but not in HSP72, knockdown myotubes. These results suggest that AMPK inhibits hypertrophy through, in part, an HSP72-associated mechanism via miR-1 and protein degradation pathways in skeletal muscle cells.

  15. 外源性分化抑制因子Id2在C2C12细胞中的表达%The expression of external Id2 protein gene containing green fluorescence in C2C12 cells

    Institute of Scientific and Technical Information of China (English)

    赖桂华; 余磊; 张黎声; 欧阳钧; 邱小忠

    2012-01-01

    目的:构建大鼠Id2基因真核荧光表达载体,并观察外源性Id2基因C2C12细胞中的表达.方法:RT-PCR扩增出Id2全长cDNA,T4 DNA连接酶将载体pGEM-T和Id2 cDNA进行连接,构建克隆载体,经限制性内切酶EcoR I酶切pGEM-Id2克隆载体和pEGFP-C2真核表达载体,构建出重组真核表达载体pEGFP-C2-Id2,经酶切分析、PCR鉴定及DNA测序证实cDNA片段大小和序列的正确性;通过电穿孔转染法将外源性Id2基因导入C2C12成肌细胞中.分别于转染4、8、12、24、36、72 h后通过荧光倒置显微镜下观察细胞整体情况,并计算转染效率.结果:经酶切分析和序列测定证实pEGFP-C2-Id2含大小正确的正向Id2 cDNA片段,获得高转染率和高表达外源性Id2基因的C2C12细胞,转染8h时,转染效率约为(10.5±2.8)%;转染12 h后,转染效率约为(20.9±3.1)%;转染24 h后,转染效率最高,约为(60.8±3.2)%.结论:成功构建了同时携带有G418筛选位点和Id2基因的真核表达载体;并获得高表达外源性Id2基因的C2C12细胞.%Objective:To construct the eukaryotic expression vector of rat Id2 and to observe the expression of 1(12 in CZC|2 cells for further study on skeletal muscle regeneration. Methods; RT-PCR method was used to amplify the entire Id2 cDNA. The pGEM-T and Id2 cDNA were ligated by T4 DNA ligase. The cloning vectors and the pEGFP-C2 (eukaryotic expression vector) were first cut by EcoR I and then ligated with Id2 by T4 DNA ligase again. The enzyme analysis and DNA sequencing were used to confirm the recombined vectors. The pEGFP-C2-Id2 vectors were transferred into C2C,2 cells by electric perforation. Fluorescence inverted microscopy was used to observe the global growth of the cells and to calculate the transfection efficiency 4,8,12,24,36 and 72 hours post-transfection. Results:The enzyme analysis and DNA sequencing analysis confirmed that the right Id2 gene was cloned. The Id2 transferred C2C12 cells with high expression and high

  16. 红色发光二极管照射对C2C12细胞增殖的光生物调节作用%Photobiomodulation of red light emitting diodes in C2C12 cell proliferation

    Institute of Scientific and Technical Information of China (English)

    刘江; 陈小莹; 刘承宜; 王双喜; 郭红; 徐晓阳; 邓小元; 刘颂豪

    2006-01-01

    目的:采用小鼠成肌细胞C2C12作为模型,观察光生物调节作用对他汀类药物引起的肌病的作用.方法:实验于2004-09/2005-01在华南师范大学激光运动医学实验室完成.C2C12细胞用浓度分别为2.0×10-5,2.0×10-6,2.0×10-7,2.0×10-8mol/L的辛伐他汀培养,然后用强度分别为0,0.229,0.506,0.848,1.401,1.670 mW/cm2的红色发光二极管[波长(640±15)nm]照射2 d,15 min/d.用甲基噻唑基四唑比色法评价细胞增殖.结果:浓度为2.0×10-6,2.0×10-7,2.0×10-8 mol/L的辛伐他汀对C2C12的增殖没有影响,无光生物调节作用;浓度为2.0×10-5 mol/L的辛伐他汀抑制C2C12的增殖,发光二极管强度为0,0.229,0.506,0.848,1.401,1.670 mW/cm2时C2C12细胞增殖吸光度百分率分别降为(37.2±8.4)%,(58.4±24.9)%,(37.0±8.6)%,(63.0±8.8)%,(59.2±12.6)%,(28.9±20.3)%.强度为0.848 mW/cm2的红色发光二极管照射2 d,15 min/d可促进被抑制的C2C12增殖效应.结论:红色发光二极管可以促进被辛伐他汀抑制的C2C12细胞的增殖作用,对服用他汀类药物引起的肌病可能有光生物调节作用.

  17. Combined Effects of Androgen and Growth Hormone on Osteoblast Marker Expression in Mouse C2C12 and MC3T3-E1 Cells Induced by Bone Morphogenetic Protein

    Science.gov (United States)

    Kimura, Kosuke; Terasaka, Tomohiro; Iwata, Nahoko; Katsuyama, Takayuki; Komatsubara, Motoshi; Nagao, Ryota; Inagaki, Kenichi; Otsuka, Fumio

    2017-01-01

    Osteoblasts undergo differentiation in response to various factors, including growth factors and steroids. Bone mass is diminished in androgen- and/or growth hormone (GH)-deficient patients. However the functional relationship between androgen and GH, and their combined effects on bone metabolism, remains unclear. Here we investigated the mutual effects of androgen and GH on osteoblastic marker expression using mouse myoblastic C2C12 and osteoblast-like MC3T3-E1 cells. Combined treatment with dihydrotestosterone (DHT) and GH enhanced BMP-2-induced expression of Runx2, ALP, and osteocalcin mRNA, compared with the individual treatments in C2C12 cells. Co-treatment with DHT and GH activated Smad1/5/8 phosphorylation, Id-1 transcription, and ALP activity induced by BMP-2 in C2C12 cells but not in MC3T3-E1 cells. The insulin-like growth factor (IGF-I) mRNA level was amplified by GH and BMP-2 treatment and was restored by co-treatment with DHT in C2C12 cells. The mRNA level of the IGF-I receptor was not significantly altered by GH or DHT, while it was increased by IGF-I. In addition, IGF-I treatment increased collagen-1 mRNA expression, whereas blockage of endogenous IGF-I activity using an anti-IGF-I antibody failed to suppress the effect of GH and DHT on BMP-2-induced Runx2 expression in C2C12 cells, suggesting that endogenous IGF-I was not substantially involved in the underlying GH actions. On the other hand, androgen receptor and GH receptor mRNA expression was suppressed by BMP-2 in both cell lines, implying the existence of a feedback action. Collectively the results showed that the combined effects of androgen and GH facilitated BMP-2-induced osteoblast differentiation at an early stage by upregulating BMP receptor signaling. PMID:28067796

  18. Inulin increases glucose transport in C2C12 myotubes and HepG2 cells via activation of AMP-activated protein kinase and phosphatidylinositol 3-kinase pathways.

    Science.gov (United States)

    Yun, Hee; Lee, Jong Hwa; Park, Chang Eun; Kim, Min-Jung; Min, Byung-Il; Bae, Hyunsu; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2009-10-01

    Inulin, a naturally occurring, functional food ingredient found in various edible plants, has been reported to exert potential health benefits, including decreased risk of colonic diseases, non-insulin-dependent diabetes, obesity, osteoporosis, and cancer. However, the mechanism of the antidiabetic activity of inulin has not yet been elucidated. In this study, we showed that inulin increased the uptake of glucose in C2C12 myotubes, which was associated with both AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways, but both of these pathways appeared to transmit their signals in an independent manner. Moreover, we found that inulin was able to increase the uptake of glucose in C2C12 myotubes in which insulin resistance was induced by exposing cells to high glucose concentrations. The identical effects of inulin were also observed in HepG2 hepatoma cells. Collectively, we report the antidiabetic activity of inulin and further demonstrate for the first time that such activity is associated with AMPK and PI3-K activation.

  19. Cytoprotective Effect of Hispidin against Palmitate-Induced Lipotoxicity in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Jun Myoung Park

    2015-03-01

    Full Text Available It is well known that Phellinus linteus, which produces hispidin and its derivatives, possesses antioxidant activities. In this study, we investigated whether hispidin has protective effects on palmitate-induced oxidative stress in C2C12 skeletal muscle cells. Our results showed that palmitate treatment in C2C12 myotubes increased ROS generation and cell death as compared with the control. However, pretreatment of hispidin for 8 h improved the survival of C2C12 myotubes against palmitate-induced oxidative stress via inhibition of intracellular ROS production. Hispidin also inhibited palmitate-induced apoptotic nuclear condensation in C2C12 myotubes. In addition, we found that hispidin can suppress cleavage of caspase-3, expression of Bax, and NF-κB translocation. Therefore, these results suggest that hispidin is capable of protecting C2C12 myotubes against palmitate-induced oxidative stress.

  20. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Yuanfei Zhou

    2016-10-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 integrates amino acid (AA availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2 activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser, arginine (Arg, threonine (Thr, alanine (Ala, methionine (Met, glutamine (Gln, and glycine (Gly, Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.

  1. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells

    Science.gov (United States)

    Zhou, Yuanfei; Ren, Jiao; Song, Tongxing; Peng, Jian; Wei, Hongkui

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal–regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism. PMID:27727170

  2. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells.

    Science.gov (United States)

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O; Kislinger, Thomas

    2009-10-01

    High-resolution peptide separation is pivotal for successful shotgun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3-10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides), while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88% of all peptides binned to a single fraction, as compared to 61% of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses.

  3. Graphene-Based Patterning and Differentiation of C2C12 Myoblasts

    DEFF Research Database (Denmark)

    Bajaj, Piyush; Rivera, Jose A; Marchwiany, Daniel

    2014-01-01

    This study aims at generating highly aligned functional myotubes using graphene as the underlying scaffold. Graphene not only supports the growth of C2C12 muscle cells but also enhances its differentiation and leads to spontaneous patterning of myotubes....

  4. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    Directory of Open Access Journals (Sweden)

    Michelle A Arya

    Full Text Available The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  5. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation

    Science.gov (United States)

    Zhong, Yuechun; Zou, Liyi; Wang, Zonggui; Pan, Yaqiong; Dai, Zhong; Liu, Xinguang; Cui, Liao; Zuo, Changqing

    2016-01-01

    Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling. PMID:27633041

  6. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  7. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  8. Rab8A regulates insulin-stimulated GLUT4 translocation in C2C12 myoblasts.

    Science.gov (United States)

    Li, Hanbing; Ou, Liting; Fan, Jiannan; Xiao, Mei; Kuang, Cuifang; Liu, Xu; Sun, Yonghong; Xu, Yingke

    2017-02-01

    Rab proteins are important regulators of GLUT4 trafficking in muscle and adipose cells. It is still unclear which Rabs are involved in insulin-stimulated GLUT4 translocation in C2C12 myoblasts. In this study, we detect the colocalization of Rab8A with GLUT4 and the presence of Rab8A at vesicle exocytic sites by TIRFM imaging. Overexpression of dominant-negative Rab8A (T22N) diminishes insulin-stimulated GLUT4 translocation, while constitutively active Rab8A (Q67L) augments it. In addition, knockdown of Rab8A inhibits insulin-stimulated GLUT4 translocation, which is rescued by replenishment of RNAi-resistant Rab8A. Together, these results indicate an indispensable role for Rab8A in insulin-regulated GLUT4 trafficking in C2C12 cells.

  9. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

    2014-06-01

    Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.

  10. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Chunzi Liang

    2014-01-01

    Full Text Available Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB, a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM, alanine (0.5 mM, valine (0.5 mM, EX527 (SIRT1 inhibitor, 25 μM, and Compound C (AMPK inhibitor, 25 μM alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.

  11. Induced differentiation of C2C12 to osteoblast via adenovirus-mediated Cbfa1 in vitro%体外诱导C2C12细胞向成骨细胞的分化

    Institute of Scientific and Technical Information of China (English)

    张勇; 杨彤涛; 胡运生; 廖博; 文艳华; 范清宇

    2013-01-01

    目的 成骨细胞特异性转录因子a1(core binding factor a1,Cbfa1)通过调节生长因子和骨特异性细胞外基质蛋白的基因表达而参与成骨细胞的分化和骨发育过程.文中构建成Cbfa1,以腺病毒载体转染成肌细胞C2C12,为种子细胞构建组织工程化骨.方法 体外培养小鼠成肌细胞C2C12,用重组腺病毒质粒pAd-IL-31介导Cbfa1/Osf2基因瞬时转染小鼠成肌C2C12细胞,Western blot检测Cbfa1蛋白表达.结果 Cbfa1蛋白表达、碱性磷酸酶(alkaline phosphatase,ALP)活性测定、骨钙素(osteocalcin,OCN)分泌量以及茜素红染色感染组明显高于对照组.结论 成肌细胞C2C12可以作为种子细胞构建组织工程化骨.%Objective Osteoblast core binding factor a 1 ( Cbfal) plays a role in osteoblast differentiation and development by regulating the gene of growth factor and extracellular matrix proteins . Recombinant adenovirus vector mediated Cbfa 1 was transferred to myoblast C2C12 to construct the tissue-engineered bone. Methods The myoblast C2C12 was cultured in vitro, and then transiently transfected with recombinant adenovirus vector pAd -IL-31 mediated-Cbfal/Osf2. Western blot was used to detect the expression of Cbfal. Results Compared with the control group , the expression of Cbfal, activity of alkaline phosphtase (ALP) , secretory volume of osteocalcin (OCN) and staining via alizarin bordeaux were higher in the transfection group . Conclusion Myoblast C2C12 acts as a seed cell for constructing tissue -engineered bone.

  12. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.

    Directory of Open Access Journals (Sweden)

    Masaki Horie

    Full Text Available Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2 transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

  13. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    2015-08-15

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.

  14. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate.

    Science.gov (United States)

    Ciriza, J; Saenz del Burgo, L; Virumbrales-Muñoz, M; Ochoa, I; Fernandez, L J; Orive, G; Hernandez, R M; Pedraz, J L

    2015-09-30

    Cell microencapsulation represents a great promise for long-term drug delivery, but still several challenges need to be overcome before its translation into the clinic, such as the long term cell survival inside the capsules. On this regard, graphene oxide has shown to promote proliferation of different cell types either in two or three dimensions. Therefore, we planned to combine graphene oxide with the cell microencapsulation technology. We first studied the effect of this material on the stability of the capsules and next we analyzed the biocompatibility of this chemical compound with erythropoietin secreting C2C12 myoblasts within the microcapsule matrix. We produced 160 μm-diameter alginate microcapsules with increasing concentrations of graphene oxide and did not find modifications on the physicochemical parameters of traditional alginate microcapsules. Moreover, we observed that the viability of encapsulated cells within alginate microcapsules containing specific graphene oxide concentrations was enhanced. These results provide a relevant step for the future clinical application of graphene oxide on cell microencapsulation.

  15. An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts.

    Science.gov (United States)

    Kurth, Felix; Franco-Obregón, Alfredo; Bärtschi, Christoph A; Dittrich, Petra S

    2015-01-01

    Here we present a stage perfusion incubation system that allows for the cultivation of mammalian cells within PDMS microfluidic devices for long-term microscopic examination and analysis. The custom-built stage perfusion incubator is adaptable to any x-y microscope stage and is enabled for temperature, gas and humidity control as well as equipped with chip and tubing holder. The applied double-layered microfluidic chip allows the predetermined positioning and concentration of cells while the gas permeable PDMS material facilitates pH control via CO2 levels throughout the chip. We demonstrate the functionality of this system by culturing C2C12 murine myoblasts in buffer free medium within its confines for up to 26 hours. We moreover demonstrated the system's compatibility with various chip configurations, other cells lines (HEK-293 cells) and for longer-term culturing. The cost-efficient system are applicable for any type of PDMS-based cell culture system. Detailed technical drawings and specification to reproduce this perfusion incubation system is provided in the ESI.

  16. The Roots of Atractylodes macrocephala Koidzumi Enhanced Glucose and Lipid Metabolism in C2C12 Myotubes via Mitochondrial Regulation

    Directory of Open Access Journals (Sweden)

    Mi Young Song

    2015-01-01

    Full Text Available The root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA is a Traditional Korean Medicine and has been commonly used for weight control. Mitochondrial dysfunction appears to be a key contributor to insulin resistance, and therefore mitochondrial targeting drugs represent an important potential strategy for the treatment of insulin resistance and obesity. In this study, the authors investigated the regulatory effects of ARA on mitochondrial function with respect to the stimulation of glucose and lipid metabolism in C2C12 myotubes. After differentiating C2C12 myotubes, cells were treated with or without different concentrations (0.2, 0.5, and 1.0 mg/mL of ARA extract. ARA extract significantly increased the expression of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC1α and the downregulations of its targets, nuclear respiratory factor-1 (NRF-1, transcription factor A (TFAM, and total ATP content in C2C12 myotubes. ARA extract also increased the expressions of PGC1α activator and of the metabolic sensors, AMP-activated protein kinase (AMPK, and acetyl-CoA carboxylase and sirtuin (SIRT 1. Furthermore, it significantly increased glucose uptake by enhancing glucose consumption and subsequently decreased FFA contents and increased carnitine palmitoyltransferase (CPT 1b expression. Our study indicates that ARA has a potential for stimulating mitochondrial function and energy metabolism in muscle.

  17. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Julie eMcLean

    2014-12-01

    Full Text Available Aims: Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM would impair the mitochondrial electron transport chain (ETC and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 minutes, 2hrs, 4hrs, 24hrs or 48hrs. We measured protein content by western blot; oxidant production by 2′,7′-dichlorofluorescin diacetate (DCF, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF, and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR of intact myotubes by Seahorse XF Analyzer. Results: LCM treatment for 2hrs or 24hrs decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS. In particular, mitochondrial superoxide (MitoSOX was elevated at 2hrs. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. Conclusion: These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.

  18. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2014-12-01

    Full Text Available This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz. Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE significantly attenuated hydrogen peroxide (H2O2-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1 and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.

  19. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    1995-01-01

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  20. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  1. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    Directory of Open Access Journals (Sweden)

    Dupuy Fabrice

    2009-10-01

    Full Text Available Abstract Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries, providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.

  2. Multiple AMPK activators inhibit L-Carnitine uptake in C2C12 skeletal muscle myotubes.

    Science.gov (United States)

    Shaw, Andy; Jeromson, Stewart; Watterson, Kenneth R; Pediani, John D; Gallagher, Iain; Whalley, Tim; Dreczkowski, Gillian; Brooks, Naomi; Galloway, Stuart; Hamilton, D Lee

    2017-03-15

    Mutations in the gene that encodes the principal L-Carnitine transporter, OCTN2, can lead to a reduced intracellular L-Carnitine pool and the disease Primary Carnitine Deficiency. L-Carnitine supplementation is used therapeutically to increase intracellular L-Carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake we hypothesised that AMPK activating compounds and insulin would increase L-Carnitine uptake in C2C12 myotubes. The cells express all three OCTN transporters at the mRNA level and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase L-Carnitine uptake at 100nM. However, L-Carnitine uptake was modestly increased at a dose of 150nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10mM, 5mM, 1mM, 0.5mM), A23187 (10μM)], inhibit mitochondrial function [Sodium Azide (75μM), Rotenone (1μM), Berberine (100μM), DNP (500μM)] or directly activate AMPK [AICAR (250μM)] were assessed for their ability to regulate L-Carnitine uptake. All compounds tested significantly inhibited L-Carnitine uptake. Inhibition by caffeine was not dantrolene (10μM) sensitive. Saturation curve analysis suggested that caffeine did not competitively inhibit L-Carnitine transport. However, the AMPK inhibitor Compound C (10μM) partially rescued the effect of caffeine suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits L-Carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role.

  3. miR-143-3p促进C2C12成肌细胞分化%miR-143-3p Is Implicated in C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    云青; 吴国芳; 魏欢; 庞卫军; 杨公社; 沈清武

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNA that play important roles in skeletal muscle development.To explore the function of miR-143-3p in the differentiation of C2C12 myoblasts,we detected miR-143-3p levels by real-time PCR in different mouse tissues,as well as C2C12 myoblasts during myogenesis.After the trasfection of miR-143-3p mimics and inhibitor in C2C12 myoblasts,the expression of myogenic regulatory factor MyoG and myogenic marker gene MyHC were detected by realtime PCR and Western blotting.The myotubule formation was detected by immunofluorescent staining.The results showed that miR-143-3p was ubiquitously expressed in various tissues and was upregulated during cell differentiation.The differentiation of C2C12 myoblasts was promoted with miR-143-3p overexpression as significant upregulation of MyoG and MyHC,and increased number of myotubules.The inhibitor of miR-143-3p significantly repressed cell differentiation.Interestingly,the transfection of miR-143-3p mimics had little effect on the expression of MyHCs.Our data suggested that miR-143-3p might be involved during the myogeneis of C2C12 myoblasts,but not directly impact MyHC expression.%MicroRNAs (miRNAs)是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用real-time PCR检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p的模拟物和特异性抑制剂分别处理细胞,采用real-time PCR和Western印迹分别检测成肌因子MyoG和成肌标志基因MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分

  4. Silencing myotubularin related protein 7 enhances proliferation and early differentiation of C2C12 myoblast.

    Science.gov (United States)

    Yuan, Zhuning; Chen, Yaosheng; Zhang, Xumeng; Zhou, Xingyu; Li, Mingsen; Chen, Hu; Wu, Ming; Zhang, Ying; Mo, Delin

    2017-03-11

    Myotubularin related protein 7 (MTMR7) is a key member of the highly conserved myotubularin related proteins (MTMRs) family, which has phosphatase activity. MTMR7 was increased during myoblast differentiation and exhibited high expression level at primary fibers formation stages in pigs. This suggests that MTMR7 may be involved in myogenesis. In our study, we investigated the roles of MTMR7 on proliferation and differentiation of C2C12 myoblasts. Knocking down MTMR7 not only enhanced myoblast early differentiation via altering the expression of Myf5, but also promoted myoblast proliferation through increasing cyclinA2 expression. The improved proliferation capacity was related to the increased phosphorylation of AKT. Taken together, our research demonstrates that MTMR7 plays an important role in proliferation and early differentiation of C2C12 myoblast.

  5. 人参皂苷Rg1对体外培养C2C12成肌细胞凋亡的影响%Effect of ginsenoside Rg1 during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    叶东明; 余磊; 王乐禹; 邱小忠; 欧阳钧

    2011-01-01

    Objective: To investigate the effect and possible mechanism of ginsenoside Rgl during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro. Methods: The effect of different concentrations of ginsenoside Rgl during the cell apoptosis was assessed by MTT assay, Hoechst 33258-PI double staining and RT-PCR analysis. Results: After 48 h treatment, various doses of ginsenoside Rgl increased cell viability in serum-deprived C2C12 myoblasts using MTT assay. Hoechst 33258-PI double staining showed that the rate of apoptosis cells significantly decreased after being treated by ginsenoside Rgl. RT-PCR showed that ginsenoside Rgl caused the downregulation of pro-apoptotic caspase-3, Bax and AIF genes, while caused the up-regulation of anti-apoptotic Bcl-2 gene. Conclusion: Ginsenoside Rgl can protect the serum-deprived apoptosis in C2C12 myoblasts.%目的:研究人参皂苷Rg1对体外无血清诱导培养的C2C12成肌细胞凋亡的影响及其可能机制.方法:采用MTT法、人参皂苷Rg1处理48 h后hoechst 33258-PI染色,以及RT-PCR方法观察不同浓度人参皂苷Rg1对C2C12成肌细胞凋亡的影响.结果:MTT法结果显示人参皂苷Rg1处理48 h后可抑制C2C12成肌细胞凋亡;Hoechst 33258-PI染色可见C2C12成肌细胞凋亡率人参皂苷处理前后差异有统计学意义,人参皂苷处理后C2C12成肌细胞凋亡率显著下降;RT-PCR法结果显示人参皂苷Rg1可抑制Caspase-3、Bax和AIF mRNA表达,并能诱导Bcl-2 mRNA表达.结论:人参皂苷Rg1对C2C12成肌细胞凋亡具有保护作用.

  6. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  7. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    Science.gov (United States)

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  8. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Jeffrey eKim

    2014-03-01

    Full Text Available Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25µM of arachidonate (AA or docosahexaenoate (DHA, 25µM of EC [anandamide (AEA, 2-arachidonoylglycerol (2-AG, docosahexaenoylethanolamide (DHEA], 1µM of CB1 antagonist NESS0327, and CB2 antagonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.Key Words: endocannabinoid system •C2C12 myoblasts cannabinoid receptors glucose uptake gene expression DHEA • polyunsaturated fatty acids

  9. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O; Duus, Jens Ø; Gregersen, Niels; Bross, Peter; Oksbjerg, Niels; Bertram, Hanne C

    2010-06-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified in the present study may be useful markers for identifying severity of stress in muscles.

  10. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    Science.gov (United States)

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  11. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation.

    Science.gov (United States)

    Ramazzotti, Giulia; Faenza, Irene; Gaboardi, Gian Carlo; Piazzi, Manuela; Bavelloni, Alberto; Fiume, Roberta; Manzoli, Lucia; Martelli, Alberto M; Cocco, Lucio

    2008-11-01

    Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.

  12. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  13. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects.

    Science.gov (United States)

    Håkelien, Anne-Mari; Delbarre, Erwan; Gaustad, Kristine G; Buendia, Brigitte; Collas, Philippe

    2008-05-01

    Autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) is characterized by muscle wasting and is caused by mutations in the LMNA gene encoding A-type lamins. Overexpression of the EDMD lamin A R453W mutation in C2C12 myoblasts impairs myogenic differentiation. We show here the influence of stable expression of the R453W and of the Dunnigan-type partial lipodystrophy R482W mutation of lamin A in C2C12 cells on transcription and epigenetic regulation of the myogenin (Myog) gene and on global chromatin organization. Expression of R453W-, but not R482W-lamin A, impairs activation of Myog and maintains a repressive chromatin state on the Myog promoter upon induction of differentiation, marked by H3 lysine (K) 9 dimethylation and failure to hypertrimethylate H3K4. Cells expressing WT-LaA also fail to hypertrimethylate H3K4. No defect occurs at the level of Myog promoter DNA methylation in any of the clones. Expression of R453W-lamin A and to a lesser extent R482W-lamin A in undifferentiated C2C12 cells redistributes H3K9me3 from pericentric heterochromatin. R453W-lamin A also elicits a redistribution of H3K27me3 from inactive X (Xi) and partial decondensation of Xi, but maintains Xist expression and coating of Xi, indicating that Xi remains inactivated. Our results argue that gene-specific and genome-wide chromatin rearrangements may constitute a molecular basis for laminopathies.

  14. Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes.

    Science.gov (United States)

    Estrada-Alcalde, Isabela; Tenorio-Guzman, Miriam R; Tovar, Armando R; Salinas-Rubio, Daniela; Torre-Villalvazo, Ivan; Torres, Nimbe; Noriega, Lilia G

    2017-04-01

    Branched-chain amino acid (BCAA) catabolism is regulated by the branched-chain aminotransferase (BCAT2) and the branched-chain α-keto acid dehydrogenase complex (BCKDH). BCAT2 and BCKDH expression and activity are modified during adipogenesis and altered in adipose tissues of mice with genetic or diet-induced obesity. However, little is known about how these modifications and alterations affect the intracellular metabolic fate of BCAAs during adipogenesis, in adipocytes from mice fed a control or high-fat diet or in C2C12 myotubes. Here, we demonstrate that BCAAs are mainly incorporated into proteins during the early stages of adipocyte differentiation. However, they are oxidized and incorporated into lipids during the late days of differentiation. Conversely, 92% and 97% of BCAA were oxidized, 1.6% and 6% were used for protein synthesis and 1.2% and 1.5% were incorporated into lipids in adipocytes from epididymal and subcutaneous adipose tissue, respectively. All three pathways were decreased in adipocytes from mice fed a high-fat diet. In C2C12 myotubes, leucine is mainly used for protein synthesis and palmitate is incorporated into lipids. Interestingly, leucine decreased both palmitate oxidation and its incorporation to lipids and proteins; and palmitate increased leucine oxidation and decreased its incorporation to lipids and proteins in a dose-dependent manner. These results demonstrate that BCAA metabolic fate differs between the early and late stages of adipocyte differentiation and in adipocytes from mice fed a control or high-fat diet; and that leucine affects the metabolic fate of palmitate and vice versa in C2C12 myotubes. J. Cell. Biochem. 118: 808-818, 2017. © 2016 Wiley Periodicals, Inc.

  15. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  16. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Tisdale Michael J

    2008-01-01

    Full Text Available Abstract Background Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. Methods In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF, which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. Results WF decreased the viability of C2C12 myotubes, especially at concentrations of 20–25 μg.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. Conclusion These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model.

  17. Infectious prions accumulate to high levels in non proliferative C2C12 myotubes.

    Directory of Open Access Journals (Sweden)

    Allen Herbst

    Full Text Available Prion diseases are driven by the strain-specific, template-dependent transconformation of the normal cellular prion protein (PrP(C into a disease specific isoform PrP(Sc. Cell culture models of prion infection generally use replicating cells resulting in lower levels of prion accumulation compared to animals. Using non-replicating cells allows the accumulation of higher levels of PrP(Sc and, thus, greater amounts of infectivity. Here, we infect non-proliferating muscle fiber myotube cultures prepared from differentiated myoblasts. We demonstrate that prion-infected myotubes generate substantial amounts of PrP(Sc and that the level of infectivity produced in these post-mitotic cells, 10(5.5 L.D.50/mg of total protein, approaches that observed in vivo. Exposure of the myotubes to different mouse-adapted agents demonstrates strain-specific replication of infectious agents. Mouse-derived myotubes could not be infected with hamster prions suggesting that the species barrier effect is intact. We suggest that non-proliferating myotubes will be a valuable model system for generating infectious prions and for screening compounds for anti-prion activity.

  18. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(

  19. Expression of Basic Fibroblast Growth Factor Results in the Decrease of Myostatin mRNA in Murine C2C12 Myoblasts

    Institute of Scientific and Technical Information of China (English)

    Hua-Zhong LIU; Qing LI; Xing-Yuan YANG; Lin LIU; Lei LIU; Xiao-Rong AN; Yong-Fu CHEN

    2006-01-01

    During the development and regeneration of skeletal muscle, many growth factors, such as basic fibroblast growth factor (bFGF, FGF-2) and myostatin, have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle, whereas myostatin plays a series of contrasting roles. In order to elucidate whether the expression of bFGF has any relationship with the expression of myostatin in skeletal muscle cells, we constructed a eukaryotic expression vector for the expression of exogenous bFGF in murine C2C12 myoblasts. Quantitative RT-PCR assays indicated that with the increase of the expression of exogenous bFGF gene, the expression of endogenous myostatin gene was suppressed at mRNA level and protein level.

  20. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, Takumi [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Sato, Koji [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Iwanaka, Nobumasa [The Graduate School of Science and Engineering, Ritsumeikan University, Shiga (Japan); Honda, Hiroki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Higashida, Kazuhiko [Faculty of Sport Science, Waseda University, Saitama (Japan); Iemitsu, Motoyuki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Hayashi, Tatsuya [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan)

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  1. Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Han, Der-Sheng; Huang, Hsiang-Po; Wang, Tyng-Guey; Hung, Meng-Yu; Ke, Jia-Yu; Chang, Kuei-Ting; Chang, Hsin-Yu; Ho, Yu-Ping; Hsieh, Wei-Yuan; Yang, Wei-Shiung

    2010-10-15

    Myostatin is a negative regulator of skeletal muscle mass. The pathways employed in modulating myostatin gene expression are scarcely known. We aimed to determine the signaling pathway of myostatin induction by a histone deacetylase (HDAC) inhibitor-trichostatin A (TSA) in differentiated C(2)C(12) myocytes. TSA increased myostatin mRNA expression up to 40-fold after treatment for 24 h, and induced myostatin promoter activity up to 3.8-fold. Pretreatment with actinomycin D reduced the TSA-induced myostatin mRNA by 93%, suggesting TSA-induced myostatin expression mainly at the transcriptional level. Pretreatment with p38 MAPK (SB203580) and JNK (SP600125) inhibitors, but not ERK (PD98059) inhibitor, blocked TSA-induced myostatin expression, respectively, by 72% and 43%. Knockdown of p38 MAPK by RNAi inhibited the TSA-induced myostatin expression by 77% in C(2)C(12) myoblasts. The protein levels of phosphorylated p38 MAPK, JNK, but not ERK, increased with TSA treatment in differentiated C(2)C(12) cells. Direct activation of p38 MAPK and JNK by anisomycin in the absence of TSA increased myostatin mRNA by fourfold. The phosphorylated form of the kinase MKK3/4/6 and ASK1, upstream cascades of p38 MAPK and JNK, also increased with TSA treatment. We concluded that the induction of myostatin by TSA treatment in differentiated C(2)C(12) cells is in part through ASK1-MKK3/6-p38 MAPK and ASK1-MKK4-JNK signaling pathways. Activation of p38 MAPK and JNK axis is necessary, but not sufficient for TSA-induced myostatin expression.

  2. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available We previously demonstrated that cinnamon extract (CE ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4 translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  3. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Long Jia

    2013-12-01

    Full Text Available MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs of messenger RNAs (mRNAs. Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.

  4. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Lomax Michael A

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA, relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.

  5. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    Science.gov (United States)

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  6. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Bauman, William A. [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Cardozo, Christopher, E-mail: chris.cardozo@va.gov [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  7. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  8. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.

  9. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H;

    2011-01-01

    to specific receptors on the cell surface. We showed that mechanical stimuli promote an increase of FAK phosphorylation. In order to further shed light in the process of myoblast induced differentiation by mechanical stimuli, we performed a proteomic analysis. Thirteen proteins were found to be affected...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  10. α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Felicia Carotenuto

    2016-11-01

    Full Text Available Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a positive impact on muscle diseases. We recently demonstrated that the dietary n3-fatty acid, alpha-linolenic acid (ALA, exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we investigate here on the expression level of the anti- and pro-apototic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of TNF. The results demonstrated that ALA protective effect on C2C12 myoblasts was associated to an increased Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescue Bcl-2 expression and decrease Bax expression both affected in an opposite way by TNF treatment. This effect was associated with a decrease in caspase-3 activity by ALA. TNF is a major pro-inflammatory cytokine that is expressed in damaged skeletal muscle, therefore, counteract inflammatory signals in the muscle microenvironment represents a critical strategy to ameliorate skeletal muscle pathologies

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city.

  12. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O;

    2010-01-01

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower...... to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite...... levels of several metabolites, mainly amino acids; however, higher levels of alanine were apparent in the (13)C spectra after incubation with [(13)C(1)]glucose. In the (13)C spectra [(13)C(3)]lactate tended to increase after exposure to increasing concentrations of H(2)O(2); conversely, a tendency...

  13. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy.

    Science.gov (United States)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O; Duus, Jens Ø; Gregersen, Niels; Bross, Peter; Oksbjerg, Niels; Theil, Peter K; Bertram, Hanne C

    2010-02-10

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower levels of several metabolites, mainly amino acids; however, higher levels of alanine were apparent in the (13)C spectra after incubation with [(13)C(1)]glucose. In the (13)C spectra [(13)C(3)]lactate tended to increase after exposure to increasing concentrations of H(2)O(2); conversely, a tendency to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite levels could possibly be useful as markers for meat quality traits.

  14. 组蛋白乙酰化/去乙酰化失衡对C2C12肌原细胞成肌分化的影响%The Effects of Imbalance Between Histone Acetylation and Deacetylation on C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    李一飞; 华益民; 方婕; 王川; 詹雅兰; 朱琦; 母得志; 周开宇

    2014-01-01

    Objective To explore the effects of histone acetylation and deacetylation on C2C12 myoblasts differentiation.Methods Based on the differentiation of C2C12 myoblasts into myotubes using high glucose dulbecco′s modified eagle medium (DMEM)containing 2% horse serum invitro,valproic acid (VPA)was given to C2C12 myoblasts during differentiation with different concentrations,which contained 1 mmol/L VPA,2 mmol/L VPA,4 mmol/L VPA and 8 mmol/L VPA in the final concentrations with 2%horse serum and high glucose DMEM.So that this experiment was scheduled into 6 groups as control group (contain 10% fetal bovine serum in growth medium),horse serum induced differentiation group,1 mmol/L VPA group,2 mmol/L VPA group,4 mmol/L VPA group and 8 mmol/L VPA group according to different growth medium.There were 6 samples in each group.The myotube differentiation rate were compared in different concentration VPA groups and horse serum induced differentiation group.Besides,mRNA and protein expression levels of muscle-related proteins (including Myosin, Troponin I-SS, myogenic differentiation 1)and histone deacetylases (HDAC,including HDAC1,2,3)were also evaluated with real time polymerase chain reaction (RT-PCR)and Western blotting.The mRNA and protein expression levels of them were compared and analyzed.Results ①The mRNA and protein expression levels of muscle-related proteins of horse serum induced differentiation group were significantly higher than those of control group, and the differences were statistically significant (P 0.05 ).② The myotube differentiation rate in every concentration VPA group compared with horse serum induced differentiation group were significantly lower,and the differences were statistically significant (P0.05)。②各浓度 VPA 组肌小管分化率分别较马血清诱导分化组显著下降,且差异有统计学意义(P<0.05)。③4 mmol/L VPA组及8 mmol/L VPA组肌相关蛋白及 HDAC mRNA和蛋白表达水平分别较马血清诱导分化组

  15. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2

    Directory of Open Access Journals (Sweden)

    Lan eYe

    2012-09-01

    Full Text Available Rapamycin, an inhibitor of mTOR complex 1 (mTORC1, improves insulin sensitivity in acute studies in vitro and in vivo by disrupting a negative feedback loop mediated by S6 kinase. We find that rapamycin has a clear biphasic effect on insulin sensitivity in C2C12 myotubes, with enhanced responsiveness during the first hour that declines to almost complete insulin resistance by 24-48 hours. We and others have recently observed that chronic rapamycin treatment induces insulin resistance in rodents, at least in part due to disruption of mTORC2, an mTOR-containing complex that is not acutely sensitive to the drug. Chronic rapamycin treatment may also impair insulin action via the inhibition of mTORC1-dependent mitochondrial biogenesis and activity, which could result in a buildup of lipid intermediates that are known to trigger insulin resistance. We confirmed that rapamycin inhibits expression of PGC-1α, a key mitochondrial transcription factor, and acutely reduces respiration rate in myotubes. However, rapamycin did not stimulate phosphorylation of PKCθ, a central mediator of lipid-induced insulin resistance. Instead, we found dramatic disruption of mTORC2, which coincided with the onset of insulin resistance. Selective inhibition of mTORC1 or mTORC2 by shRNA-mediated knockdown of specific components (Raptor and Rictor, respectively confirmed that mitochondrial effects of rapamycin are mTORC1-dependent, whereas insulin resistance was recapitulated only by knockdown of mTORC2. Thus, mTORC2 disruption, rather than inhibition of mitochondria, causes insulin resistance in rapamycin-treated myotubes, and this system may serve as a useful model to understand the effects of rapamycin on mTOR signaling in vivo.

  16. Induction of group VIA phospholipase A2 activity during in vitro ischemia in C2C12 myotubes is associated with changes in the level of its splice variants

    DEFF Research Database (Denmark)

    Poulsen, K A; Petersen, Stine Helene Falsig; Kolko, M;

    2007-01-01

    The involvement of group VI Ca(2+)-independent PLA(2)s (iPLA(2)-VI) in in vitro ischemia [oxygen and glucose deprivation (OGD)] in mouse C2C12 myotubes was investigated. OGD induced a time-dependent (0-6 h) increase in bromoenol lactone (BEL)-sensitive iPLA(2) activity, which was suppressed...

  17. Amygdalin isolated from Semen Persicae (Tao Ren) extracts induces the expression of follistatin in HepG2 and C2C12 cell lines

    OpenAIRE

    Yang, Chuanbin; Li, Xuechen; Rong, Jianhui

    2014-01-01

    Background The Chinese medicine formulation ISF-1 (also known as Bu-Yang-Huan-Wu-Tang) for post-stroke rehabilitation could increase the expression of growth-regulating protein follistatin by approximately 4-fold. This study aims to identify the active compounds of ISF-1 for the induction of follistatin expression. Methods Active compounds in ISF-1 responsible for induction of follistatin were identified by a bioactivity-guided fractionation procedure involving liquid-liquid extraction, HPLC ...

  18. Conjugated linoleic acid (CLA) stimulates mitochondrial biogenesis signaling by the upregulation of PPARγ coactivator 1α (PGC-1α) in C2C12 cells.

    Science.gov (United States)

    Kim, Yoo; Park, Yeonhwa

    2015-04-01

    Along with its effect on body fat reduction, dietary conjugated linoleic acid (CLA) has been reported to improve physical activity and endurance capacity in mice. It has been suggested these effects may in part be due to physiological changes in skeletal muscle, however, the mode of action is not completely understood. Thus, the purpose of this study was to determine the relevant mechanisms of CLA isomers for mitochondrial biogenesis, one of the most important adaptive responses in skeletal muscle. Both cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA isomers increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), however, only the t10,c12 isomer, but not c9,t11, increased phosphorylation of AMP-activated protein kinase (AMPK) compared to the control. Among downstream biomarkers of PGC-1α, the CLA mixed isomer enhanced the expression of peroxisome proliferator-activated receptor-δ (PPARδ). Both c9,t11 and t10,c12 CLA isomers increased expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam), while the c9,t11 increased expression of cytochrome c (Cyt C) and t10,c12 CLA increased expression of voltage-dependent anion channel (VDAC), respectively. Both CLA isomers significantly increased mitochondrial DNA copy number compared to that of control. These findings suggest that the individual CLA isomers potentiate mitochondrial biogenesis via PGC-1α-NRF-1-Tfam signaling cascade, although downstream regulation may be isomer dependent.

  19. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes.

    Science.gov (United States)

    Dumont, Nicolas A; Frenette, Jérôme

    2013-02-01

    Skeletal muscle injury and regeneration are closely associated with an inflammatory reaction that is usually characterized by sequential recruitment of neutrophils and monocytes or macrophages. Selective macrophage depletion models have shown that macrophages are essential for complete regeneration of muscle fibers after freeze injuries, toxin injuries, ischemia-reperfusion, and hindlimb unloading and reloading. Although there is growing evidence that macrophages possess major myogenic capacities, it is not known whether the positive effects of macrophages can be optimized to stimulate muscle regrowth. We used in vivo and in vitro mouse models of atrophy to investigate the effects of stimulating macrophages with macrophage colony-stimulating factor (M-CSF) on muscle regrowth. When atrophied soleus muscles were injected intramuscularly with M-CSF, we observed a 1.6-fold increase in macrophage density and a faster recovery in muscle force (20%), combined with an increase in muscle fiber diameter (10%), after 7 days of reloading, compared with PBS-injected soleus muscles. Furthermore, coculture of atrophied myotubes with or without bone marrow-derived macrophages (BMDM) and/or M-CSF revealed that the combination of BMDMs and M-CSF was required to promote myotube growth (15%). More specifically, M-CSF promoted the anti-inflammatory macrophage phenotype, which in turn decreased protein degradation and MuRF-1 expression by 25% in growing myotubes. These results indicate that specific macrophage subsets can be stimulated to promote muscle cell regrowth after atrophy.

  20. Histamine H3 receptor inhibited electrically evoked cytoplasmic calcium in differentiated skeletal C2C12 myoblasts%组胺 H3受体降低电激发收缩的小鼠成肌细胞胞浆中钙离子浓度

    Institute of Scientific and Technical Information of China (English)

    齐麟; 冯晓; 陈燕; 薛瑞; 张凤; 王素云; 孙素珂; 建国

    2015-01-01

    目的:探讨组胺H3受体(H3R)在小鼠成肌细胞C2C12成肌分化过程及分化后的横纹肌细胞中的表达和可能发挥的作用。方法:诱导C2C12细胞成肌分化,测量H3R和分化晚期标志物肌球蛋白重链mRNA和蛋白的表达;分化过程中加入H3R拮抗剂ciproxifan,测量分化早期标志物desmin、中期标志物myogenin和肌球蛋白重链mRNA的表达。 Fluo-4结合剂标记分化后的横纹肌胞内钙离子,测量双极交流电200 mA刺激下,H3R激动剂甲基组胺(RMeHA)对胞浆中钙离子浓度的影响。结果:H3R和肌球蛋白重链在成肌分化过程中表达量逐渐增加。 Ciproxifan在成肌分化过程中对3种分化标志物mRNA的表达与对照组相比无差异( P>0.05)。 RMeHA在浓度10 nmol/L~100μmol/L刺激细胞5~20 min,可呈钟形降低因交流电引起的肌浆钙离子浓度的升高( P<0.05),其中RMeHA 100 nmol/L在10 min和20 min对电刺激细胞中Ca2+的抑制百分率最高。相同浓度的RMeHA在20 min和10 min时对Ca2+的抑制率比其在5 min时高(P<0.05)。结论:H3R可能在成肌分化过程中的作用不大,而在分化成熟细胞中可以降低电刺激引起的胞浆钙离子浓度的升高。%AIM:To explore the expression and possible function of histamine H3 receptor (H3R) in striated myogenesis and the differentiated C2C12 cells.METHODS: H3R and myogenesis late marker myosin heavy chain (MHC) were detected at mRNA and protein levels during C2C12 myogenesis.H3R antagonist ciproxifan was added and the expression of the myogenesis early marker desmin, intermediate markers myogenin and MHC was detected.Differentia-ted myoblasts were loaded with Fluo-4 calcium indicator dye and the effect of R-( a)-methylhistamine ( RMeHA) on the cy-toplasmic calcium concentration was determined under the 200 mA electrical stimulation.RESULTS: The expression of H3R and MHC was increased during myogenesis

  1. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  2. Replication of prions in differentiated muscle cells.

    Science.gov (United States)

    Herbst, Allen; Aiken, Judd M; McKenzie, Debbie

    2014-01-01

    We have demonstrated that prions accumulate to high levels in non-proliferative C2C12 myotubes. C2C12 cells replicate as myoblasts but can be differentiated into myotubes. Earlier studies indicated that C2C12 myoblasts are not competent for prion replication. (1) We confirmed that observation and demonstrated, for the first time, that while replicative myoblasts do not accumulate PrP(Sc), differentiated post-mitotic myotube cultures replicate prions robustly. Here we extend our observations and describe the implication and utility of this system for replicating prions.

  3. Cure Behaviors and Water Up-take Evaluation of a New Waterborne Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    WAN Tao; ZANG Tianshun; ZHANG Rui; SUN Xianchang

    2012-01-01

    Cure behaviors and water up-take evaluation of a low cost,ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400,PEG600 and PEG1000,respectively,were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method,respectively.Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins,such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA),PEG molecular weight,curing temperature,were systematically investigated.The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction.

  4. Sequence-selective DNA recognition and enhanced cellular up-take by peptide-steroid conjugates.

    Science.gov (United States)

    Ruiz García, Yara; Iyer, Abhishek; Van Lysebetten, Dorien; Pabon, Y Vladimir; Louage, Benoit; Honcharenko, Malgorzata; De Geest, Bruno G; Smith, C I Edvard; Strömberg, Roger; Madder, Annemieke

    2015-12-25

    Several GCN4 bZIP TF models have previously been designed and synthesized. However, the synthetic routes towards these constructs are typically tedious and difficult. We here describe the substitution of the Leucine zipper domain of the protein by a deoxycholic acid derivative appending the two GCN4 binding region peptides through an optimized double azide-alkyne cycloaddition click reaction. In addition to achieving sequence specific dsDNA binding, we have investigated the potential of these compounds to enter cells. Confocal microscopy and flow cytometry show the beneficial influence of the steroid on cell uptake. This unique synthetic model of the bZIP TF thus combines sequence specific dsDNA binding properties with enhanced cell-uptake. Given the unique properties of deoxycholic acid and the convergent nature of the synthesis, we believe this work represents a key achievement in the field of TF mimicry.

  5. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.

    2006-01-01

    in mice. Using PCR-cloning we identified a PCR-fragment that had a 29 bp insertion between exon 9 and 10. This sequence has high homology to the first part of the 53 bp human exon 9a. The 29 bp insertion induces a frame-shift and the introduction of a stop codon in exon 10. The protein product...

  6. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    -energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift...... to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified...

  7. Nonionizing radiation as a noninvasive strategy in regenerative medicine: the effect of Ca(2+)-ICR on mouse skeletal muscle cell growth and differentiation.

    Science.gov (United States)

    De Carlo, Flavia; Ledda, Mario; Pozzi, Deleana; Pierimarchi, Pasquale; Zonfrillo, Manuela; Giuliani, Livio; D'Emilia, Enrico; Foletti, Alberto; Scorretti, Riccardo; Grimaldi, Settimio; Lisi, Antonella

    2012-11-01

    Controlling cell differentiation and proliferation with minimal manipulation is one of the most important goals for cell therapy in clinical applications. In this work, we evaluated the hypothesis that the exposure of myoblast cells (C2C12) to nonionizing radiation (tuned at an extremely low-frequency electromagnetic field at calcium-ion cyclotron frequency of 13.75 Hz) may drive their differentiation toward a myogenic phenotype. C2C12 cells exposed to calcium-ion cyclotron resonance (Ca(2+)-ICR) showed a decrease in cellular growth and an increase in the G(0)/G(1) phase. Severe modifications in the shape and morphology and a change in the actin distribution were revealed by the phalloidin fluorescence analysis. A significant upregulation at transcriptional and translational levels of muscle differentiation markers such as myogenin (MYOG), muscle creatine kinase (MCK), and alpha skeletal muscle actin (ASMA) was observed in exposed C2C12 cells. Moreover, the pretreatment with nifedipine (an L-type voltage-gated Ca(2+) channel blocker) led to a reduction of the Ca(2+)-ICR effect. Consequently, it induced a downregulation of the MYOG, MCK, and ASMA mRNA expression affecting adversely the differentiation process. Therefore, our data suggest that Ca(2+)-ICR exposure can upregulate C2C12 differentiation. Although further studies are needed, these results may have important implications in myodegenerative pathology therapies.

  8. Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I

    DEFF Research Database (Denmark)

    Torelli, Silvia; Brown, Susan C; Brockington, Martin

    2005-01-01

    in the muscle of MDC1C and LGMD2I patients suggests a role for FKRP in dystroglycan processing. Using a polyclonal antibody raised against FKRP we now show that endogenous FKRP locates to the Golgi apparatus of neuronal, oligodendroglial, and the cardiac muscle cell line H9c2. In differentiated C2C12 myotubes...

  9. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  10. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.

    Science.gov (United States)

    Fujita, Hideaki; Van Dau, Thanh; Shimizu, Kazunori; Hatsuda, Ranko; Sugiyama, Susumu; Nagamori, Eiji

    2011-02-01

    With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels. To position the collagen film on the MEMS device, a thermo-sensitive polymer was used as the sacrifice-layer which was selectively removed with O₂ plasma at the positions where the collagen film was glued. The C2C12 myoblasts were seeded on the collagen film, where they proliferated and formed myotubes after induction of differentiation. When C2C12 myotubes were stimulated with electric pulses, contraction of the collagen film-C2C12 myotube complex was observed. When the edge of the Si-MEMS device was observed, displacement of ~8 μm was observed, demonstrating the possibility of locomotive movement when the device is placed on a track of adequate width. Here, we propose that the C2C12-collagen film complex is a new generation actuator for MEMS devices that utilize glucose as fuel, which will be useful in environments in which glucose is abundant such as inside a blood vessel.

  11. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    Directory of Open Access Journals (Sweden)

    Pornthida Poosala

    2016-01-01

    Full Text Available Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12 cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6 was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.

  12. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    OpenAIRE

    Hirotaka Yamamoto; Katsutaro Morino; Lemecha Mengistu; Taishi Ishibashi; Kohei Kiriyama; Takao Ikami; Hiroshi Maegawa

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mi...

  13. Ecdysteroids Elicit a Rapid Ca2+ Flux Leading to Akt Activation and Increased Protein Synthesis in Skeletal Muscle Cells

    OpenAIRE

    Gorelick-Feldman, Jonathan; Cohick, Wendie; Raskin, Ilya

    2010-01-01

    Phytoecdysteroids, structurally similar to insect molting hormones, produce a range of effects in mammals, including increasing growth and physical performance. In skeletal muscle cells, phytoecdysteroids increase protein synthesis. In this study we show that in a mouse skeletal muscle cell line, C2C12, 20-hydroxyecdysone (20HE), a common phytoecdysteroid in both insects and plants, elicited a rapid elevation in intracellular calcium, followed by sustained Akt activation and increased protein...

  14. Expression and functional study of human recombinant chemokine-like factor I in Drosophila S2 cells%人重组趋化素样因子1在果蝇S2细胞中的表达和功能研究

    Institute of Scientific and Technical Information of China (English)

    张颖妹; 李婷; 娄雅欣; 韩文玲; 马大龙

    2008-01-01

    Objective To express human chemokine-like factor 1 (CKLF1) in Drosophila S2 cells and study its function. Methods The pMT/V5-His-CKLF1 expression plasmid was constructed and transfected into Drosophila S2 cells. The positive clones were selected through PCR and RT-PCR. The culture medium was analyzed by Western blot with anti-CKLF1 polyclonal antibody. Chemotaxis and MTT assays on human peripheral blood and C2C12 cells, respectively, were then carried out with the medium. Results CKLF1 was transcribed efficiently in S2 cells. The expressed CKLF1 protein could be detected in the culture supernatant by Western blot, which showed weak chemotactic activity on both human peripheral blood neutrophils and lymphocytes as well as enhancing effect on the proliferation of C2C12 cells. Conclusion CKLF1 was expressed successfully in Drosophila S2 cells and secreted into the culture medium. The recombinant CKLF1 expressed in Drosophila cells can chemoattract leucocytes and promote the proliferation of C2C12 cells.%目的 在果蝇S2细胞中表达人趋化素样因子1(chemokine-like factor 1,CKLF1),并对其分泌形式进行功能研究.方法 构建pMT/V5-His-CKLF1表达质粒,转染S2细胞,筛选并鉴定阳性细胞克隆,用兔抗人CKLF1多肽抗体对其培养上清进行Western blot检测,并分析其趋化活性和促C2C12细胞增殖活性.结果 RT-PCR证明CKLF1在S2细胞中高效转录;通过Western blot在细胞培养上清中可检测到表达的重组CKLF1蛋白;其对人外周血中性粒细胞和淋巴细胞有较弱的趋化活性,对C2C12细胞具有增殖促进作用.结论 在果蝇S2细胞中成功表达了人重组CKLF1,并证实其存在分泌形式且具有趋化活性和促C2C12细胞增殖活性.

  15. Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Tzimi, Aggeliki; Kouretas, Dimitrios

    2016-11-01

    The aim of the present study was to investigate the molecular mechanisms through which sheep/goat whey protein exerts its antioxidant activity. Thus, it was examined whey protein's effects on the expression of transcription factor, nuclear factor-like 2 (Nrf2) and on the expression and activity of a number of antioxidant and phase II enzymes, superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), synthase glutamyl cysteine (GCS) and glutathione-s-transferase (GST), in muscle C2C12 and EA.hy926 endothelial cells. C2C12 and EA.hy926 cells were treated with sheep/goat whey protein (0.78 and 3.12 mg/ml) and incubated for 3, 6, 12, 18 and 24 h. Whey protein increased significantly the expression of Nrf2 only in EA.hy926 cells. Also, the expression of SOD, HO-1, CAT and the activity of SOD, CAT and GST were increased significantly in both cells types. The expression of GCS was increased significantly only in C2C12 cells. Sheep/goat whey protein was shown for the first time to exert its antioxidant activity through Nrf2-dependent mechanism in endothelial cells and Nrf2-independent mechanism in muscle cells. Thus, Nrf2 could be a target for food supplements containing whey protein in order to prevent oxidative stress damages and diseases related to endothelium.

  16. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells.

    Science.gov (United States)

    Malinska, Dominika; Kudin, Alexei P; Bejtka, Malgorzata; Kunz, Wolfram S

    2012-01-01

    Myogenesis is accompanied by an intensive metabolic remodeling. We investigated the mitochondrial reactive oxygen species (ROS) generation at different levels of skeletal muscle differentiation: in C2C12 myoblasts, in C2C12 myotubes and in adult mouse skeletal muscle. Differentiation was accompanied by an increase in mitochondrial content and respiratory chain activity. The detected ROS production levels correlated with mitochondrial content, being the lowest in the myoblasts. Unlike the adult skeletal muscle, myoblast ROS production was significantly stimulated by the complex I inhibitor rotenone. Our results show that mitochondria are an important ROS source in skeletal muscle cells. The substantial changes in mitochondrial ROS synthesis during skeletal muscle differentiation can be explained by intensive bioenergetic remodeling.

  17. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  18. The immune system modulator a1-acid glycoprotein inhibits insulin and IGF1 induced protein synthesis in C2C12 myotubes

    Science.gov (United States)

    Alpha-1 acid glycoprotein (AGP) has previously been demonstrated by our laboratory to be negatively correlated with growth rate in newborn piglets. However, a mechanism of action for AGP in growth has not been identified. Previous research has demonstrated that AGP can modify adipose tissue metabo...

  19. Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.

    Directory of Open Access Journals (Sweden)

    Jerome E Lee

    Full Text Available BACKGROUND: Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS: We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE and AU-rich (ARE elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1

  20. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics.

    Science.gov (United States)

    Charoenviriyakul, Chonlada; Takahashi, Yuki; Morishita, Masaki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Exosomes are small membrane vesicles secreted from cells and are expected to be used as drug delivery systems. Important characteristics of exosomes, such as yield, physicochemical properties, and pharmacokinetics, may be different among different cell types. However, there is limited information about the effect of cell type on these characteristics. In the present study, we evaluated these characteristics of exosomes derived from five different types of mouse cell lines: B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3 murine fibroblasts cells, MAEC murine aortic endothelial cells, and RAW264.7 murine macrophage-like cells. Exosomes were collected using a differential ultracentrifugation method. The exosomes collected from all the cell types were negatively charged globular vesicles with a diameter of approximately 100nm. C2C12 and RAW264.7 cells produced more exosomes than the other types of cells. The exosomes were labeled with a fusion protein of Gaussia luciferase and lactadherin to evaluate their pharmacokinetics. After intravenous injection into mice, all the exosomes rapidly disappeared from the systemic circulation and mainly distributed to the liver. In conclusion, the exosome yield was significantly different among the cell types, and all the exosomes evaluated in this study showed comparable physicochemical and pharmacokinetic properties.

  1. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  2. Pericyte NF-κB activation enhances endothelial cell proliferation and proangiogenic cytokine secretion in vitro

    Science.gov (United States)

    LaBarbera, Katherine E; Hyldahl, Robert D; O'Fallon, Kevin S; Clarkson, Priscilla M; Witkowski, Sarah

    2015-01-01

    Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell–cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold, P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease. PMID:25911453

  3. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Mesenchymal stromal cells (MSCs are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies.

  4. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  5. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Annexin A1 (ANXA1, lipocortin-1 is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex to cellular membranes in a Ca(2+-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+ perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+. These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with

  6. Unveiling the Metabolic Changes on Muscle Cell Metabolism Underlying p-Phenylenediamine Toxicity

    Science.gov (United States)

    Marín de Mas, Igor; Marín, Silvia; Pachón, Gisela; Rodríguez-Prados, Juan C.; Vizán, Pedro; Centelles, Josep J.; Tauler, Romà; Azqueta, Amaya; Selivanov, Vitaly; López de Ceraín, Adela; Cascante, Marta

    2017-01-01

    Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of p-phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound in vivo with Wistar rats and in vitro with C2C12 muscle cells. To this aim we have combined multi-omic experimental measurements with computational approaches using model-driven methods. The integrative study presented here has unveiled the metabolic disorders associated to PPD exposure that may underlay the aberrant metabolism observed in rhabdomyolys disease. Animals treated with lower doses of PPD (10 and 20 mg/kg) showed depressed activity and myoglobinuria after 10 h of treatment. We measured the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) in rats after 24, 48, and 72 h of PPD exposure. At all times, treatment with PPD at higher doses (40 and 60 mg/kg) showed an increase of AST and ALT, and also an increase of lactate dehydrogenase (LDH) and CK after 24 h. Blood packed cell volume and hemoglobin levels, as well as organs weight at 48 and 72 h, were also measured. No significant differences were observed in these parameters under any condition. PPD induce cell cycle arrest in S phase and apoptosis (40% or early apoptotic cells) on mus musculus mouse C2C12 cells after 24 h of treatment. Incubation of mus musculus mouse C2C12 cells with [1,2-13C2]-glucose during 24 h, subsequent quantification of 13C isotopologues distribution in key metabolites of glucose metabolic network and a computational fluxomic analysis using in-house developed software (Isodyn) showed that PPD is inhibiting glycolysis, non-oxidative pentose

  7. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    Science.gov (United States)

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment.

  8. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight.

    Directory of Open Access Journals (Sweden)

    Rana Mahfouz

    Full Text Available Ceramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt, a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC isoforms, and the second dependent on protein phosphatase-2A (PP2A. The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies.

  9. Electrolytic valving isolation of cell co-culture microenvironment with controlled cell pairing ratios.

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2014-12-21

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.

  10. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation.

    Science.gov (United States)

    Iovino, S; Oriente, F; Botta, G; Cabaro, S; Iovane, V; Paciello, O; Viggiano, D; Perruolo, G; Formisano, P; Beguinot, F

    2012-07-01

    TGF-beta1 has been shown to induce autophagy in certain cells but whether and how this action is exerted in muscle and whether this activity relates to TGF-beta1 control of muscle cell differentiation remains unknown. Here, we show that expression of the autophagy-promoting protein phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) progressively declines during L6 and C2C12 skeletal muscle cell differentiation. PED/PEA-15 underwent rapid induction upon TGF-beta1 exposure of L6 and C2C12 myoblasts, accompanied by impaired differentiation into mature myotubes. TGF-beta1 also induced autophagy in the L6 and C2C12 cells through a PP2A/FoxO1-mediated mechanism. Both the TGF-beta1 effect on differentiation and that on autophagy were blocked by specific PED/PEA-15 ShRNAs. Myoblasts stably overexpressing PED/PEA-15 did not differentiate and showed markedly enhanced autophagy. In these same cells, the autophagy inhibitor 3-methyladenine rescued TGF-beta1 effect on both autophagy and myogenesis, indicating that PED/PEA-15 mediates TGF-beta1 effects in muscle. Muscles from transgenic mice overexpressing PED/PEA-15 featured a significant number of atrophic fibers, accompanied by increased light chain 3 (LC3)II to LC3I ratio and reduced PP2A/FoxO1 phosphorylation. Interestingly, these mice showed significantly impaired locomotor activity compared with their non-transgenic littermates. TGF-beta1 causes transcriptional upregulation of the autophagy-promoting gene PED/PEA-15, which in turn is capable to induce atrophic responses in skeletal muscle in vivo.

  11. An Innovative Strategy for the Fabrication of Functional Cell Sheets Using an Electroactive Conducting Polymer.

    Science.gov (United States)

    Lee, HyungJae; Cho, Youngnam

    2015-01-01

    Here, we report the development of an electric field-assisted methodology for constructing 3D C2C12 cell sheets with the potential for cell surface modification. In this method, a conducting polymer, polypyrrole (Ppy), is electrodeposited via biotin doping, and then chemical conjugation of biotinylated bone morphogenetic protein 2 (BMP2) is achieved using a biotin-streptavidin cross-linker. Subsequently, C2C12 cells are cultured on BMP2-immobilized Ppy surfaces to induce interactions between cell surface receptors and bound BMP2 ligands. Following these procedures, layers of BMP2-immobilized cells can be easily detached from the Ppy surface by applying an electrical potential. This novel method results in high affinity, ligand-bound cell sheets, which exhibit homogeneous coverage with membrane-bound proteins and signal activation that occurs via maximal receptor accessibility. Using this strategy to engineer the cell surface with desirable ligands results in structures that mimic in vivo tissues; thus, the method reported here has potential applications in regenerative medicine and tissue engineering.

  12. Orientation of Cells Cultured in Vortex Flow with Swinging Plate in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2011-06-01

    Full Text Available An effect of flow on cell culture has been studied in vitro. A silicone disk was placed in the center of culture dish of 52 mm internal diameter to make a doughnut-shaped canal. The dish was placed on a tilted plate, which rotates to make a vortex flow around the silicone disk with a swing motion. Variations were made on the diameter (20 mm, 30 mm, and 40 mm of the silicone disk and the rotational speed (2.1 rad/sec, 5.2 rad/sec of the swinging plate, which tilts with 0.1 rad from the horizontal plane. Five kinds of cells were cultured in the vortex flow of Dulbecco’s Modified Eagle’s Medium for seven days: C2C12 (mouse myoblast, L6 (rat skeletal muscle cell, A7r5 (rat aortic smooth muscle cell, CS-2P2-C75 (primary normal porcine aortic endothelial cell, and L929 (mouse fibroblast. The experiments show the following results. The orientation of cells depends on flow and on kinds of cells. A7r5 and CS-2P2-C75 line along the streamline of the flow. C2C12 and L6 adhere along the direction of the flow in the first stage, and tilt to the perpendicular direction to the flow differentiating to myotubes with fusion in the second stage.

  13. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  14. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  15. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Science.gov (United States)

    Ker, Dai Fei Elmer; Weiss, Lee E; Junkers, Silvina N; Chen, Mei; Yin, Zhaozheng; Sandbothe, Michael F; Huh, Seung-il; Eom, Sungeun; Bise, Ryoma; Osuna-Highley, Elvira; Kanade, Takeo; Campbell, Phil G

    2011-01-01

    Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell

  16. Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels.

    Science.gov (United States)

    Kim, Dong Wan; Jun, Indong; Lee, Tae-Jin; Lee, Ji Hye; Lee, Young Jun; Jang, Hyeon-Ki; Kang, Seokyung; Park, Ki Dong; Cho, Seung-Woo; Kim, Byung-Soo; Shin, Heungsoo

    2013-11-01

    Peripheral arterial disease (PAD) is characterized by the altered structure and function of arteries caused by accumulated plaque. There have been many studies on treating this disease by the direct injection of various types of therapeutic cells, however, the low cell engraftment efficiency and diffusion of the transplanted cells have been major problems. In this study, we developed an approach (transfer printing) to deliver monolayer of cells to the hindlimb ischemic tissue using thermosensitive hydrogels, and investigated its efficacy in long term retention upon transplantation and therapeutic angiogenesis. We first investigated the in vitro maintenance of robust cell-cell contacts and stable expression of the ECM proteins in myoblast layer following transfer printing process. In order to confirm the therapeutic effect of the myoblasts in vivo, we cultured a monolayer of C2C12 myoblasts on thermosensitive hydrogels, which was then transferred to the hindlimb ischemia tissue of athymic mice directly from the hydrogel by conformal contact. The transferred myoblast layer was retained for a longer period of time than an intramuscularly injected cell suspension. In addition, the morphology of the mice and laser Doppler perfusion (28 days after treatment) supported that the myoblast layer enhanced the therapeutic effects on the ischemic tissue. In summary, the transplantation of the C2C12 myoblast layer using a tissue transfer printing method could represent a new approach for the treatment of PAD by therapeutic angiogenesis.

  17. Experiment list: SRX956813 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 45079115,96.0,22.7,572 GSM1633918: IgG parental C2C12, T24; Mus musculus; ChIP-Seq s...ource_name=C2C12 cells || cell line=parental C2C12 || antibody=normal rabbit IgG http://dbarchive.bioscience

  18. Experiment list: SRX956812 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 49892791,96.2,19.4,629 GSM1633917: anti-Flag parental C2C12, T24; Mus musculus; ChIP...-Seq source_name=C2C12 cells || cell line=parental C2C12 || antibody=anti-Flag http://dbarchive.biosciencedb

  19. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  20. Expression of Lecithin: Cholesterol Acyltransferaseand/or apoA-I Mediated by Recombinant Adeno-as-sociated Virus in Myogenic Cell

    Institute of Scientific and Technical Information of China (English)

    王立峰; 范乐明; 陈丙莺; 刘宝瑞; 王若宁; 魏恩会

    2002-01-01

    Objective Lecithia: cholesterol acyltrmsfer ase (LCAT) is the major enzyme producing most plasma cholesterol esters( CE )and a key partiipant in the process of reverse cholesterol traansfer ( RCT). The aim of the study was to co-express LCAT and its nature activator apoA- I medi ated by recombinant adeno-associated virus vectors in the skeletal muscle cells, and open a new avenue of gene therapy touard the primary or secondary LCAT deficiency. Methods 293T cells were cotrans fected with pDG and rAAVAIL/rAAVL plasmid to produce infectious rAAV, and non-iouic iodixanol gradients centri f ngation followed by heparin affinity chromatography was per formed f or separation . pu rification and concentration of rAAV. The particle numbers of rAAV were assayed by dot-blot, then these vectors transduced C2C12 myoblasts. ELISA and Western Blot asasayed for human apoA- I and 3H-cholesterol labeled radiochemical methods for LCAT activity. Genomic DNA was extracted from transduced C2C12 and analyzed fo the presence of vector sequence by PCR amplifiations. Results The particle mumbers of rAAV were 7× 1014/L (rAAAIL) and 1 × 1014/L (rAAVL). The expres sion of human apoA- I cDNA and/or human LCAT cDNA in transduced C2C12 cells lasted for 3 0 d, even after myoblasts were differentiated into myotubes. PCR products for transgene indiated the long-term persistence of transduced vector sequences. Conclusion The result indicated that the meth ods used for production and purification of rAAV is an effiient and rAAV vector mediate the expres sion and secretion of LCAT and apoA- I gene in C2C12 myoblasts successfully. It suggested that the use of rAAV vectors mediating the high efficiency, long-term expression of human LCAT cDNA and/ or apoA- I cDNA in skeletal muscle in vivo might be a safe and fessible strategy to the gene therapy of LCAT deficiency.

  1. Gene expression profiles and phosphorylation patterns of AMP-activated protein kinase subunits in various mesenchymal cell types

    Institute of Scientific and Technical Information of China (English)

    Wang Yugang; Fan Qiming; Ma Rui; Lin Wentao; Tang Tingting

    2014-01-01

    Background Recent studies on bone have shown an endocrine role of the skeleton,which could be impaired in various human diseases,including osteoporosis,obesity,and diabetes-associated bone diseases.As a sensor and regulator of energy metabolism,AMP-activated protein kinase (AMPK) may also play an important role in the regulation of bone metabolism.The current study aimed to establish the expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types.Methods Reverse transcription-polymerase chain reaction (PCR) for relative quantification,real-time PCR for absolute quantification,and Western blotting were used to investigate the gene expression profiles and phosphorylation patterns of AMPK subunits in several mesenchymal cell types,including primary human mesenchymal stem cells (hMSCs) and hFOB,Saos-2,C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells.Results AMPKα1 and AMPKβ1 mRNAs were abundantly expressed in all cell types.AMPKY1 mRNA was abundantly expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 but not detected in human-derived cell types.AMPKY2 mRNA was mildly expressed in all cell types.AMPKα1 protein was highly expressed in all cell types and AMPKα2 protein was highly expressed only in hFOB and Saos-2 cells.AMPKβ1 protein was abundantly expressed in all cell types except for Saos-2,in which AMPKβ2 protein overwhelmed AMPKβ1 expression.AMPKy1 and AMPKY2 proteins were expressed in C3H/10T1/2,MC3T3-E1,3T3-L1,and C2C12 cells and only AMPKY2 protein was expressed in hMSCs,hFOB and Saos2 cells.AMPKα was phosphorylated at Thr172 and Ser485 and AMPKβ1 was phosphorylated at Ser108 and Ser182 in all cell types with a specific pattern in each cell type.Conclusion The combination of AMPK α,β,and Y subunits and phosphorylation of AMPKα (Thr172 and Ser485) and AMPKβ1 (Ser108 and Ser182) showed a specific pattern in each cell type.

  2. Effect of Micro Ridges on Orientation of Cultured Cell

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2014-06-01

    Full Text Available The effect of micro ridges on orientation of cultured cells has been studied in vitro. Several patterns of micro ridges have been fabricated on a transparent polydimethylsiloxane disk with the photo lithography technique. The ridges consist of several lines of rectangular column: the width of 0.003 mm, the interval of 0.007 mm. Variation has been made on the height of the ridge between 0.0003 mm and 0.0035 mm. C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse was cultured on the disk with the micro ridges for one week and was observed with an inverted phase contrast microscope. The experimental results show that cells adhere on the top of the ridge and align to the longitudinal direction of the micro ridges with the height between 0.0015 mm and 0.0025 mm.

  3. Efeito do laser de baixa potência sobre células musculares C2C12 submetidas à lesão por veneno da serpente Bothrops jararacussu.

    OpenAIRE

    Silva, Camila Aparecida Alves da

    2012-01-01

    O veneno das serpentes do gênero Bothrops, induz uma intensa reação inflamatória local podendo evoluir para necrose tecidual. A soroterapia apresenta eficácia em neutralizar os efeitos sistêmicos, porém sua ação não se estende as manifestações locais. O laser de baixa potência (LBP) é usado em situações de lesão muscular, pois apresenta efeitos biológicos, tais como analgésicos, antiinflamatórios e cicatrizantes. O objetivo deste trabalho foi analisar o efeito do LBP em células musculares C2C...

  4. Efeito do laser de baixa potência sobre células musculares c2c12 submetidas à lesão por veneno da serpente Bothrops jararacussu.

    OpenAIRE

    Silva, Camila Aparecida Alves da

    2012-01-01

    O veneno das serpentes do gênero Bothrops, induz uma intensa reação inflamatória local podendo evoluir para necrose tecidual. A soroterapia apresenta eficácia em neutralizar os efeitos sistêmicos, porém sua ação não se estende as manifestações locais. O laser de baixa potência (LBP) é usado em situações de lesão muscular, pois apresenta efeitos biológicos, tais como analgésicos, antiinflamatórios e cicatrizantes. O objetivo deste trabalho foi analisar o efeito do LBP em células musculares C2C...

  5. efeito do laser de baixa potência sobre células musculares c2c12 submetidas à lesão por miotoxinas BTHTX - I e BTHTX - II isoladas do veneno da serpente bothrops jararacussu

    OpenAIRE

    Santos, Adriano Silvio dos

    2015-01-01

    O veneno das serpentes do gênero Bothrops induz uma reação inflamatória local intensa, caracterizada por dor, formação de edema, migração leucocitária, podendo ser acompanhada por necrose tecidual. A utilização do soro antibotrópico desempenha a função de neutralizar a maior quantidade possível do veneno circulante, minimizando assim seus efeitos sistêmicos, porém sua ação não se estende às manifestações locais, sendo assim necessário o uso de outro recurso terapêutico para o controle dessa m...

  6. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia

    Directory of Open Access Journals (Sweden)

    Julie eMcLean

    2015-04-01

    Full Text Available AIMS: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM. Results: One-hundred and fifty-eight proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass.

  7. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway.

  8. Cell entry of lymphocytic choriomeningitis virus is restricted in myotubes.

    Science.gov (United States)

    Iwasaki, Masaharu; Urata, Shuzo; Cho, Yoshitake; Ngo, Nhi; de la Torre, Juan C

    2014-06-01

    In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube's resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication.

  9. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Science.gov (United States)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  10. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yingang; Guo Xiong; Liu Zheng; Wang Shijie

    2007-01-01

    Objective To develop retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells. Methods Mesenchymal stem cells from New Zealand white rabbits were transduced with retroviral pLEGFP-BMP2 vector by the optimized retroviral transduction protocol. Fluorescent microscopy's examination was to evaluate the results of the transduction, flow cytometer's analysis was to evaluate the transduction efficiency and the Fluorescence-activated cell sorting method was to sort the transduced cells. Bioactivity test from C2C12K4 cells was to show the expression and bio-activity of the fusion gene. Results Fluorescent microscopy showed the success of the transduction. By flow cytometer's analysis, the mean efficiency of the transduction with EGFP was (42.8±6.1)% SD. Transduced cells were sorted efficiently by the fluorescence-activated cell sorting method and after sorting, almost of those showed the expression of BMP2. Fluorescently and strongly bioactivity test for C2C12K4 cells demonstrated that fluorescent materials were located the surface of cells and the activity of luciferase increased compared with the control. Analysis of long-term expression showed there was no difference between 2 week-time point and 3 month-time point of culture post-sorting. Conclusion Mesenchymal stem cells can be transduced efficiently by retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2, the highly pure transduced cells are obtained by the fluorescence-activated cell sorting technique, the expressed chimeric protein embraced the double bioactivity of EGFP and BMP2, and moreover, the expression had not attenuated over time.

  11. Robust fabrication of electrospun-like polymer mats to direct cell behaviour.

    Science.gov (United States)

    Ballester-Beltrán, José; Lebourg, Myriam; Capella, Hector; Diaz Lantada, Andres; Salmerón-Sánchez, Manuel

    2014-09-01

    Currently, cell culture systems that include nanoscale topography are widely used in order to provide cells additional cues closer to the in vivo environment, seeking to mimic the natural extracellular matrix. Electrospinning is one of the most common techniques to produce nanofiber mats. However, since many sensitive parameters play an important role in the process, a lack of reproducibility is a major drawback. Here we present a simple and robust methodology to prepare reproducible electrospun-like samples. It consists of a polydimethylsiloxane mold reproducing the fiber pattern to solvent-cast a polymer solution and obtain the final sample. To validate this methodology, poly(L-lactic) acid (PLLA) samples were obtained and, after characterisation, bioactivity and ability to direct cell response were assessed. C2C12 myoblasts developed focal adhesions on the electrospun-like fibers and, when cultured under myogenic differentiation conditions, similar differentiation levels to electrospun PLLA fibers were obtained.

  12. Fungicidal activity of AKWATON and in vitro assessment of its toxic effects on animal cells.

    Science.gov (United States)

    Oulé, Mathias Kégnon; Staines, Kenton; Lightly, Tasia; Roberts, Loren; Traoré, Yannick Léandre; Dickman, Michael; Bernier, Anne-Marie; Diop, Lamine

    2015-01-01

    Acquired superficial fungal infections are among the most common infections. It is necessary to create new effective and non-toxic disinfectants. AKWATON is a new disinfectant of the polymeric guanidine family. Its fungicidal activity against Trichophyton mentagrophytes and its in vitro toxicity assessment were determined in this study. The MIC, minimum fungicidal concentration (MFC) and time required for its fungicidal activity at the MFC were evaluated using the official methods of analysis of the Association of Official Analytical Chemists, with modifications as recommended by the Canadian General Standards Board. The toxic effects of AKWATON and of four commercial disinfectants were evaluated on rat pancreatic (C2C12) and muscle (RnM5F) cells, using the trypan blue and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] methods. The MIC, MFC and time required for the fungicidal activity of AKWATON at the MFC were 0.025 % (w/v), 0.045 % (w/v) and 2.5 min, respectively. Cell cultures and the different tests carried out showed that the AKWATON-based disinfectant killed fewer cells than the commercial disinfectants, sparing 80 % of C2C12 cells and 65 % of RnM5F cells, whilst some of the well-known disinfectants currently on the market killed 85-100 % of cells. This study demonstrates that AKWATON has great potential as an odourless, colourless, non-corrosive and safe disinfectant for use in hospitals, the agriculture industry, farming and household facilities.

  13. Id2从核迁移到细胞质后通过调节凋亡诱导因子表达促进骨骼肌细胞分化%Id2 translocation from nucleus to cytoplasm accelerating differentiation of skeletal muscle cells by regulating the expression of apoptosis inducing factor

    Institute of Scientific and Technical Information of China (English)

    胡晓芳; 赖桂华; 王乐禹; 欧阳钧; 余磊; 邱小忠

    2011-01-01

    目的 探讨Id2在骨骼肌再生中的作用机制.方法 用绿色荧光蛋白(GFP)-Id2-C2表达载体转染C2C12成肌细胞,对转染组和非转染组进行H2O2处理和2%马血清处理,用RT-PCR法观察两组细胞Id2基因表达的差异;Western blotting观察两组细胞的成肌分化相关蛋白的表达情况;免疫荧光显微镜观察正常组、纤维损伤组以及去神经支配组大鼠的骨骼肌中Id2和凋亡诱导因子(AIF)蛋白的表达情况.结果 与非转染组相比,Id2转染组细胞成肌分化明显增强.免疫荧光染色法显示,50μmol/L H2O2能增加核Id2蛋白的表达.在氧化应激条件下,Id2能抑制成肌调节因子(MyoD)而活化肌浆蛋白(myogenin).2%马血清能引起大多数Id2从细胞核迁移到细胞质,从而抑制活性氧(ROS)诱导的线粒体AIF表达.免疫荧光分析显示,去神经支配组大鼠的骨骼肌中细胞内的Id2和AIF蛋白表达增多.结论 Id2从细胞核迁移到细胞质后能促进骨骼肌细胞分化,其作用与AIF表达水平相关.%Objective To explore the functional role of Id2 in skeletal muscle regeneration. Methods Id2 expression vectors were transferred into C2C12 cells. The transferred and un-transferred C2C12 skeletal muscle cells were exposed to 50μmol/L H2O2 and 2% horse serum for 12 hours without fetal bovine serum( FBS ). Expression of Id2 gene in transferred and untransferred C2C12 cells was observed by RT-PCR. Expression of various myogenesis related proteins in the transferred and untransferred C2C12 cells were observed by Western blotting. Expression of Id2 and AIF proteins in the normal, fiber-damaged and denervated skeletal muscles were observed by immunofluorescence. Results Compared with un-transferred cells, the Id2 transferred cells exhibited higher differentiation. Immunofluorescence staining revealed that 50μmol/L H2O2 treatment increased the expression of nucleic Id2. Under the oxidative stress, Id2 repressed both MyoD repressors and myogenin

  14. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation.

    Science.gov (United States)

    Vishnoi, Tanushree; Kumar, Ashok

    2013-02-01

    The aim of the study was to demonstrate the potential of the cryogelation technique for the synthesis of the conducting cryogel scaffolds which would encompass the advantages of the cryogel matrix, like the mechanical strength and interconnected porous network as well as the conductive properties of the incorporated conducting polymeric material, polypyrrole. The cryogels were synthesized using different combinations of oxidizing agents and surfactants like, sodium dodecyl sulfate (SDS)/ammonium persulfate (APS), SDS/iron chloride (FeCl(3)), cetyl trimethyl ammonium bromide (CTAB)/APS, and CTAB/FeCl(3). The synthesized gels were characterized by scanning electron microscopic analysis for morphology, Fourier transform infrared spectroscopy for analyzing the presence of the polypyrrole (0.5-4 %) as nano-fillers in the gel. It was observed that the presence of these nano-fillers increased the swelling ratio by approximately 50 %. The synthesized conducting cryogels displayed high stress bearing capacity without being deformed as analysed by rheological measurements. The degradation studies showed 12-15 % degradation in 4 weeks time. In vitro studies with conducting and non-conducting cryogel scaffold were carried out to optimize the stimulation conditions for the two cell lines, neuro2a and cardiac muscle C2C12. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed approximately 25 and 15 % increase in the cell proliferation rate for neuro2a and C2C12 cell line, respectively. This was observed at a specific voltage of 100 mV and 2 V, for a specified duration of 2 h and 1 min, respectively for the conducting scaffold as compared to the control. This can play an important role in tissue engineering applications for cell lines where acquiring a high cell number and functionality is desired.

  15. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

    Science.gov (United States)

    Streppa, L.; Berguiga, L.; Boyer Provera, E.; Ratti, F.; Goillot, E.; Martinez Torres, C.; Schaeffer, L.; Elezgaray, Juan; Arneodo, A.; Argoul, F.

    2016-03-01

    We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

  16. Behavior of Cell on Vibrating Micro Ridges

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2015-06-01

    Full Text Available The effect of micro ridges on cells cultured at a vibrating scaffold has been studied in vitro. Several parallel lines of micro ridges have been made on a disk of transparent polydimethylsiloxane for a scaffold. To apply the vibration on the cultured cells, a piezoelectric element was attached on the outside surface of the bottom of the scaffold. The piezoelectric element was vibrated by the sinusoidal alternating voltage (Vp-p < 16 V at 1.0 MHz generated by a function generator. Four kinds of cells were used in the test: L929 (fibroblast connective tissue of C3H mouse, Hepa1-6 (mouse hepatoma, C2C12 (mouse myoblast, 3T3-L1 (mouse fat precursor cells. The cells were seeded on the micro pattern at the density of 2000 cells/cm2 in the medium containing 10% FBS (fetal bovine serum and 1% penicillin/ streptomycin. After the adhesion of cells in several hours, the cells are exposed to the ultrasonic vibration for several hours. The cells were observed with a phase contrast microscope. The experimental results show that the cells adhere, deform and migrate on the scaffold with micro patterns regardless of the ultrasonic vibration. The effects of the vibration and the micro pattern depend on the kind of cells.

  17. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Directory of Open Access Journals (Sweden)

    Dai Fei Elmer Ker

    Full Text Available Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and

  18. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  19. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  20. Micro Groove for Trapping of Flowing Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2015-06-01

    Full Text Available Micro grooves have been designed to trap a biological cell, which flows through a micro channel in vitro. Each micro groove of a rectangular shape (0.002 mm depth, 0.025 mm width and 0.2 mm length has been fabricated on the surface of the polydimethylsiloxane (PDMS disk with the photolithography technique. Variation has been made on the angle between the longitudinal direction of the groove and the flow direction: zero, 0.79, or 1.57 rad. A rectangular flow channel (0.1 mm depth x 5 mm width x 30 mm length has been constructed with a silicone film of 0.1 mm thick, which has been sandwiched by two transparent PDMS disks. Two types of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, or 3T3-L1 (mouse fat precursor cells. A constant flow (2.8 x 10-11 m3/s of a suspension of cells was introduced with a syringe pump. The behavior of cells moving over the micro grooves was observed with an inverted phase contrast microscope. The results show that the cell is trapped with the micro grooves under the wall shear rate of 3 s-1 for a few seconds and that the trapped interval depends on the kind of cells.

  1. A Versatile Method of Patterning Proteins and Cells.

    Science.gov (United States)

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen

    2017-02-26

    Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

  2. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    James E Krolopp

    2016-12-01

    Full Text Available Myokines are specialized cytokines that are secreted from skeletal muscle (SKM in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15 is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5 were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.

  3. Large dynamic range digital nanodot gradients of biomolecules made by low-cost nanocontact printing for cell haptotaxis.

    Science.gov (United States)

    Ricoult, Sébastien G; Pla-Roca, Mateu; Safavieh, Roozbeh; Lopez-Ayon, G Monserratt; Grütter, Peter; Kennedy, Timothy E; Juncker, David

    2013-10-11

    A novel method is introduced for ultrahigh throughput and ultralow cost patterning of biomolecules with nanometer resolution and novel 2D digital nanodot gradients (DNGs) with mathematically defined slopes are created. The technique is based on lift-off nanocontact printing while using high-resolution photopolymer stamps that are rapidly produced at a low cost through double replication from Si originals. Printed patterns with 100 nm features are shown. DNGs with varying spacing between the dots and a record dynamic range of 4400 are produced; 64 unique DNGs, each with hundreds of thousands of dots, are inked and printed in 5.5 min. The adhesive response and haptotaxis of C2C12 myoblast cells on DNGs demonstrated their biofunctionality. The great flexibility in pattern design, the massive parallel ability, the ultra low cost, and the extreme ease of polymer lift-off nanocontact printing will facilitate its use for various biological and medical applications.

  4. Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult

    Directory of Open Access Journals (Sweden)

    Ansarullah

    2011-12-01

    Full Text Available Abstract Background Insulin deficiency is the prime basis of all diabetic manifestations and agents that can bring about insulin secretion would be of pivotal significance for cure of diabetes. To test this hypothesis, we carried out bioactivity guided fractionation of Oreocnide integrifolia (Urticaceae; a folklore plant consumed for ameliorating diabetic symptoms using experimental models. Methods We carried out bioassay guided fractionation using RINmF and C2C12 cell line for glucose stimulated insulin secretion (GSIS and glucose uptake potential of fractions. Further, the bioactive fraction was challenged for its GSIS in cultured mouse islets with basal (4.5 mM and stimulated (16.7 mM levels of glucose concentrations. The Flavonoid rich fraction (FRF was exposed to 2 mM streptozotocin stress and the anti-ROS/RNS potential was evaluated. Additionally, the bioactive fraction was assessed for its antidiabetic and anti-apoptotic property in-vivo using multidose streptozotocin induced diabetes in BALB/c mice. Results The results suggested FRF to be the most active fraction as assessed by GSIS in RINm5F cells and its ability for glucose uptake in C2C12 cells. FRF displayed significant potential in terms of increasing intracellular calcium and cAMP levels even in presence of a phosphodiesterase inhibitor, IBMX in cultured pancreatic islets. FRF depicted a dose-dependent reversal of all the cytotoxic manifestations except peroxynitrite and NO formation when subjected in-vitro along with STZ. Further scrutinization of FRF for its in-vivo antidiabetic property demonstrated improved glycemic indices and decreased pancreatic β-cell apoptosis. Conclusions Overall, the flavonoid mixture has shown to have significant insulin secretogogue, insulinomimetic and cytoprotective effects and can be evaluated for clinical trials as a therapeutant in the management of diabetic manifestations.

  5. Alpha B-crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism.

    Science.gov (United States)

    Fittipaldi, Simona; Mercatelli, Neri; Dimauro, Ivan; Jackson, Malcolm J; Paronetto, Maria Paola; Caporossi, Daniela

    2015-09-01

    The small heat shock protein α-B-crystallin (CRYAB) is critically involved in stress-related cellular processes such as differentiation, apoptosis, and redox homeostasis. The up-regulation of CRYAB plays a key role in the cytoprotective and antioxidant response, but the molecular pathway driving its expression in muscle cells during oxidative stress still remains unknown. Here we show that noncytotoxic exposure to sodium meta-arsenite (NaAsO2) inducing redox imbalance is able to increase the CRYAB content of C2C12 myoblasts in a transcription-dependent manner. Our in silico analysis revealed a genomic region upstream of the Cryab promoter containing two putative antioxidant-responsive elements motifs and one AP-1-like binding site. The redox-sensitive transcription factors Nrf2 and the AP-1 component c-Jun were found to be up-regulated in NaAsO2-treated cells, and we demonstrated a specific NaAsO2-mediated increase of c-Jun and Nrf2 binding activity to the genomic region identified, supporting their putative involvement in CRYAB regulation following a shift in redox balance. These changes also correlated with a specific phosphorylation of JNK and p38 MAPK kinases, the well-known molecular mediators of signaling pathways leading to the activation of these transcription factors. Pretreatment of C2C12 cells with the JNK inhibitor SP600125 induced a decrease in c-Jun and Nrf2 content and was able to counteract the NaAsO2-mediated increase in CRYAB expression. Thus these data show a direct role of JNK in CRYAB regulation under redox imbalance and also point to a previously unrecognized link between c-Jun and Nrf2 transcription factors and redox-induced CRYAB expression in muscle cells.

  6. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kolmus

    Full Text Available The proinflammatory cytokine Tumour Necrosis Factor (TNF-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1 and β2-adrenoreceptors (β2-ARs. TNF-α activated the canonical Nuclear Factor-κB (NF-κB pathway and Mitogen-Activated Protein Kinases (MAPKs, culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6 and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB, CREB-binding protein (CBP and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

  7. NOV/CCN3 impairs muscle cell commitment and differentiation.

    Science.gov (United States)

    Calhabeu, Frederico; Lafont, Jérome; Le Dreau, Gwenvael; Laurent, Maryvonne; Kazazian, Chantal; Schaeffer, Laurent; Martinerie, Cécile; Dubois, Catherine

    2006-06-10

    NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.

  8. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    Science.gov (United States)

    Bhuyan, Mohammod Kabir; Rodriguez-Devora, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25,000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected.

  9. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment.

    Science.gov (United States)

    Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W

    2014-09-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.

  10. Experiment list: SRX062123 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 86008497,80.9,21.1,1101 GSM721307: Sonicated input MT source_name=C2C12 myotubes dif...ferentiated for 96h || cell line=C2C12 || cell type=myotubes || chromatin preparation method=sonication || c

  11. Experiment list: SRX062122 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available le|Tissue Diagnosis=NOS 102757855,83.0,18.6,1196 GSM721306: Sonicated input MB source_name=Growing C2C12 myo...blasts || cell line=C2C12 || cell type=myoblasts || chromatin preparation method=sonication || chip antibody

  12. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-02-08

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  13. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics.

    Science.gov (United States)

    Slomka, Noa; Gefen, Amit

    2010-06-18

    This study introduces a new confocal microscopy-based three-dimensional cell-specific finite element (FE) modeling methodology for simulating cellular mechanics experiments involving large cell deformations. Three-dimensional FE models of undifferentiated skeletal muscle cells were developed by scanning C2C12 myoblasts using a confocal microscope, and then building FE model geometries from the z-stack images. Strain magnitudes and distributions in two cells were studied when the cells were subjected to compression and stretching, which are used in pressure ulcer and deep tissue injury research to induce large cell deformations. Localized plasma membrane and nuclear surface area (NSA) stretches were observed for both the cell compression and stretching simulation configurations. It was found that in order to induce large tensile strains (>5%) in the plasma membrane and NSA, one needs to apply more than approximately 15% of global cell deformation in cell compression tests, or more than approximately 3% of tensile strains in the elastic plate substrate in cell stretching experiments. Utilization of our modeling can substantially enrich experimental cellular mechanics studies in classic cell loading designs that typically involve large cell deformations, such as static and cyclic stretching, cell compression, micropipette aspiration, shear flow and hydrostatic pressure, by providing magnitudes and distributions of the localized cellular strains specific to each setup and cell type, which could then be associated with the applied stimuli.

  14. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers.

    Directory of Open Access Journals (Sweden)

    Scott M Robinson

    2014-04-01

    Full Text Available Coxsackievirus B3 (CVB3, a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, "fluorescent timer" protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3 following transfection in HeLa cells. "Fluorescent timer" protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs, and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of "fluorescent timer" protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. "Fluorescent timer" protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs containing matured "fluorescent timer" protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic

  15. Real-time, noninvasive optical coherence tomography of cross-sectional living cell-sheets in vitro and in vivo.

    Science.gov (United States)

    Kobayashi, Mari; Haraguchi, Yuji; Shimizu, Tatsuya; Mizuuchi, Kiminori; Iseki, Hiroshi

    2015-08-01

    Cell sheet technology has a history of application in regenerating various tissues, having successfully completed several clinical trials using autologous cell sheets. Tomographic analysis of living cell sheets is an important tool in the field of cell sheet-based regenerative medicine and tissue engineering to analyze the inner structure of layered living cells. Optical coherence tomography (OCT) is commonly used in ophthalmology to noninvasively analyze cross-sections of target tissues at high resolution. This study used OCT to conduct real-time, noninvasive analysis of living cell sheet cross sections. OCT showed the internal structure of cell sheets in tomographic images synthesized with backscatter signals from inside the living cell sheet without invasion or damage. OCT observations were used to analyze the static and dynamic behaviors of living cell sheets in vitro and in vivo including (1) the harvesting process of a C2C12 mouse skeletal myoblast sheet from a temperature-responsive culture surface; (2) cell-sheet adhesion onto various surfaces including a culture surface, a synthetic rubber glove, and the dorsal subcutaneous tissue of rats; and (3) the real-time propagation of beating rat cardiac cells within cardiac cell sheets. This study showed that OCT technology is a powerful tool in the field of cell sheet-based regenerative medicine and tissue engineering.

  16. Clones of ectopic stem cells in the regeneration of muscle defects in vivo.

    Directory of Open Access Journals (Sweden)

    Rujing Yang

    Full Text Available Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells. Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ∼9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ∼3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.

  17. Fabrication of cell container arrays with overlaid surface topographies.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  18. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.

    Science.gov (United States)

    Ito, Akira; Yamamoto, Masahiro; Ikeda, Kazushi; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2015-05-01

    Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.

  19. Atrogin-1基因沉默对肌细胞营养不良保护作用的实验研究%Experimental study on protective effect of small interfering RNA-induced Atrogin-1 gene silencing on muscle cell malnutrition

    Institute of Scientific and Technical Information of China (English)

    袁磊; 吴国豪; 张波

    2009-01-01

    目的 采用肿瘤坏死因子α(TNF-α)诱导的肌细胞营养不良模型和核糖核酸干扰技术,研究Atrogin-1基因沉默对肌细胞营养不良的保护作用.方法 设计5对Atrogin-1-siRNA靶序列及对照序列,逐步克隆到慢病毒核心载体FG12中,重组FG12与三种包装质粒(pRSVREV、pMDLg/pRRE、pHCMV-G)共同转染293T细胞以包装病毒,感染C2C12细胞,并将其分化成肌管,用TNF-α进行刺激,实时荧光定量PCR法、Western blot法检测肌管中Atragin-1表达,观察比较各组肌管的形态学变化.结果 重组载体中含大小、序列正确的片段,能成功感染C2C12细胞,TNF-α能引起对照组肌管Atrogin-1表达上调、肌管萎缩,但RNA干扰组肌管无此现象.结论 沉默Atrogin-1基因可避免产生TNF-α诱导的肌细胞营养不良,Atrogin-1基因可作为肿瘤恶液质的理想治疗靶点.%Objective To investigate the protective effect of Atrogin-1 gene silencing via RNA interference technique on a model of muscle cell malnutrition. Methods Sequences of five target Atrogin-1 siRNA and the control were selected and synthesized and cloned to vector pBS-hU6-I and then to vector FG12. The length and rightness of the sequences were confirmed. The recombinant FG12 vectors were cotransfected along with pRSVREV, pMDLg/pRRE and pHCMV-G into 293T cells to package lentivirus particles, with which C2C12 cells were infected. The infected C2C12 cells were cultured and differentiated to form myotubes before TNF-ot was added to induce malnutrition. Expressed products of Atrogin-1 of myotubes were identified by real time PCR and Western blot methods. Myotubes were observed and photographed directly in culture plate without fixation. Results The length and sequences of inserted DNA were right. Compared with the RNA interferencing group, significant atrophy and upregulated expression of Atrogin-1 of myotubes treated by TNF-α was found in the control group. Conclusion Atrogin-1 gene silencing could be

  20. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    Science.gov (United States)

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases.

  1. Hypergravity Stimulation Enhances PC12 Neuron-Like Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Giada Graziana Genchi

    2015-01-01

    Full Text Available Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g. Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes.

  2. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    Science.gov (United States)

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  3. Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Victoria C. Foletta

    2016-10-01

    Full Text Available Deuterated water (2H2O, a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules, thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation, protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines. Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

  4. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  5. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan); Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Tsusu, K.; Minami, K. [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Nakanishi, Y. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan)

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  6. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    Directory of Open Access Journals (Sweden)

    Christopher L Dearth

    Full Text Available We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1 is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12 did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/- mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05 overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05 the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  7. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    Science.gov (United States)

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  8. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Directory of Open Access Journals (Sweden)

    Rachelle N Palchesko

    Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  9. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Science.gov (United States)

    Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  10. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Charlotte A Collins

    Full Text Available Pax3 and Pax7 are paired-box transcription factors with roles in developmental and adult regenerative myogenesis. Pax3 and Pax7 are expressed by postnatal satellite cells or their progeny but are down regulated during myogenic differentiation. We now show that constitutive expression of Pax3 or Pax7 in either satellite cells or C2C12 myoblasts results in an increased proliferative rate and decreased cell size. Conversely, expression of dominant-negative constructs leads to slowing of cell division, a dramatic increase in cell size and altered morphology. Similarly to the effects of Pax7, retroviral expression of Pax3 increases levels of Myf5 mRNA and MyoD protein, but does not result in sustained inhibition of myogenic differentiation. However, expression of Pax3 or Pax7 dominant-negative constructs inhibits expression of Myf5, MyoD and myogenin, and prevents differentiation from proceeding. In fibroblasts, expression of Pax3 or Pax7, or dominant-negative inhibition of these factors, reproduce the effects on cell size, morphology and proliferation seen in myoblasts. Our results show that in muscle progenitor cells, Pax3 and Pax7 function to maintain expression of myogenic regulatory factors, and promote population expansion, but are also required for myogenic differentiation to proceed.

  11. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  12. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  13. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  14. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Science.gov (United States)

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  15. PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation.

    Science.gov (United States)

    Trujillo, Sara; Lizundia, Erlantz; Vilas, José Luis; Salmeron-Sanchez, Manuel

    2016-08-01

    This work investigates the effect of the sequential availability of ZnO nanoparticles, (nanorods of ∼40nm) loaded within a degradable poly(lactic acid) (PLLA) matrix, in cell differentiation. The system constitutes a dynamic surface, in which nanoparticles are exposed as the polymer matrix degrades. ZnO nanoparticles were loaded into PLLA and the system was measured at different time points to characterise the time evolution of the physicochemical properties, including wettability and thermal properties. The micro and nanostructure were also investigated using AFM, SEM and TEM images. Cellular experiments with C2C12 myoblasts show that cell differentiation was significantly enhanced on ZnO nanoparticles-loaded PLLA, as the polymer degrades and the availability of nanoparticles become more apparent, whereas the release of zinc within the culture medium was negligible. Our results suggest PLLA/ZnO nanocomposites can be used as a dynamic system where nanoparticles are exposed during degradation, activating the material surface and driving cell differentiation.

  16. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia L; Sandoz, Patrick A; Huss, Anja; Jensen, Nickels A; Jakobs, Stefan; Enderlein, Jörg; Gisou van der Goot, F; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2014-12-18

    Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 × 65 × 3.5 μm(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang.

  17. FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation.

    Science.gov (United States)

    Kwiatkowski, Boguslaw A; Kirillova, Irina; Richard, Robert E; Israeli, David; Yablonka-Reuveni, Zipora

    2008-06-01

    The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.

  18. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells

    Science.gov (United States)

    Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir; Taylor, Jackson Richard; Delbono, Osvaldo; Goya, Rodolfo Gustavo; Plank, Christian; Hereñu, Claudia Beatriz

    2016-01-01

    The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. PMID:27274908

  19. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms.

    Science.gov (United States)

    Kang, Changkeun; Lee, Hyunkyoung; Jung, Eun-Sun; Seyedian, Ramin; Jo, MiNa; Kim, Jehein; Kim, Jong-Shu; Kim, Euikyung

    2012-12-15

    Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.

  20. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  1. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression.

    Science.gov (United States)

    Robb, Ellen L; Stuart, Jeffrey A

    2014-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. As data on phytoestrogens continues to accumulate, it is clear that there is significant overlap in the cellular effects elicited by these various compounds. Here, we show that one mechanism by which a number of phytoestrogens achieve their growth inhibitory and cytoprotective effects is via induction of the mitochondrial manganese superoxide dismutase (MnSOD). Eight phytoestrogens, including resveratrol, coumestrol, kaempferol, genistein, daidzein, apigenin, isoliquirtigenin and glycitin, were tested for their ability to induce MnSOD expression in mouse C2C12 and primary myoblasts. Five of these, resveratrol, coumestrol, kaempferol, genistein and daidzein, significantly increased MnSOD expression, slowed proliferative growth and enhanced stress resistance (hydrogen peroxide LD50) . When siRNA was used to prevent the MnSOD induction by genistein, coumestrol or daidzein, none of these compounds exerted any effect on proliferative growth, and only the effect of coumestrol on stress resistance persisted. The estrogen antagonist ICI182780 prevented the increased MnSOD expression and also the changes in cell growth and stress resistance, indicating that these effects are mediated by estrogen receptors (ER). The absence of effects of resveratrol or coumestrol, but not genistein, in ERβ-null cells further indicated that this ER in particular is important in mediating these effects. Thus, an ER-mediated induction of MnSOD expression appears to underlie the growth inhibitory and cytoprotective activities of multiple phytoestrogens.

  2. Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells.

    Science.gov (United States)

    Banan Sadeghian, Ramin; Han, Jiuhui; Ostrovidov, Serge; Salehi, Sahar; Bahraminejad, Behzad; Ahadian, Samad; Chen, Mingwei; Khademhosseini, Ali

    2017-02-15

    Real-time monitoring of metabolically relevant biochemicals released in minuscule amounts is of utmost diagnostic importance. Superoxide anion as a primary member of reactive oxygen species, has physiological and pathological effects that depend on its concentration and release rate. Here we present fabrication and successfully testing of a highly sensitive electrochemical biosensor featuring a three-dimensional macroporous mesh of nanoporous gold tailored to measure the dynamics of extracellular superoxide concentration. Wide and accessible surface of the mesh combined with high porosity of the thin nanoporous gold coating enables capturing the analyte in pico- to nano-molar ranges. The mesh is functionalized with cytochrome-c (cyt-c) and incorporated as a working electrode to measure the release rate of drug-induced superoxides from C2C12 cells through a porous membrane. The device displays a considerably improved superoxide sensitivity of 7.29nAnM(-)(1)cm(-)(2) and a low level of detection of 70pM. Such sensitivity is orders of magnitude higher than any similar enzyme-based electrochemical superoxide sensor and is attributed to the facile diffusion of the analyte through the well-spread nanofeatured gold skin. Superoxide generation rates captured from monolayer myoblast cultures containing about 4×10(4) cells, varied from 1.0 to 9.0nMmin(-)(1) in a quasi-linear fashion as a function of drug concentration. This work provides a platform for the development of highly sensitive molecular electrochemical biosensors.

  3. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    Full Text Available BACKGROUND: Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control. METHODOLOGY/PRINCIPAL FINDINGS: Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. CONCLUSIONS/SIGNIFICANCE: We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  4. [Expression of target gene in eukaryotic cells driven by prokaryotic T7 promoter and its RNA polymerase].

    Science.gov (United States)

    Yuan, Zhi-Gang; Zhang, Jin-Ping; Chu, Yi-Wei; Wang, Ying; Xu, Wei; Xiong, Si-Dong

    2005-03-01

    To enhance the efficiency of the expression of target gene in eukaryotic cells, one of the strongest prokaryotic expression systems, the T7 RNA polymerase and T7 promoter, was introduced into eukaryotic cells. A duel-plasmid gene expression system of T7 bacteriophage components was developed; one containing the T7 phage RNA polymerase gene under the control of eukaryotic promoter CMV (pCMV-T7pol) and the other (pT7IRES) containing the T7 promoter and T7 terminator as well as EMCV IRES. To test the feasibility of this plasmid system for eukaryotic expression, hepatitis B virus envelop HBV preS2/S was used to construct pT7IRES-HBs. The target genes were expressed efficiently by the eukaryonized prokaryotic expression system in a variety of the cells indicating C2C12, SP2/0, NIH3T3 and BALB/c 3T3, suggesting the potential applications of the expression system in gene therapy and gene immunization.

  5. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    Science.gov (United States)

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.

  6. Evidence for a second messenger function of dUTP during Bax mediated apoptosis of yeast and mammalian cells.

    Science.gov (United States)

    Williams, Drew; Norman, Grant; Khoury, Chamel; Metcalfe, Naomi; Briard, Jennie; Laporte, Aimee; Sheibani, Sara; Portt, Liam; Mandato, Craig A; Greenwood, Michael T

    2011-02-01

    The identification of novel anti-apoptotic sequences has lead to new insights into the mechanisms involved in regulating different forms of programmed cell death. For example, the anti-apoptotic function of free radical scavenging proteins supports the pro-apoptotic function of Reactive Oxygen Species (ROS). Using yeast as a model of eukaryotic mitochondrial apoptosis, we show that a cDNA corresponding to the mitochondrial variant of the human DUT gene (DUT-M) encoding the deoxyuridine triphosphatase (dUTPase) enzyme can prevent apoptosis in yeast in response to internal (Bax expression) and to exogenous (H(2)O(2) and cadmium) stresses. Of interest, cell death was not prevented under culture conditions modeling chronological aging, suggesting that DUT-M only protects dividing cells. The anti-apoptotic function of DUT-M was confirmed by demonstrating that an increase in dUTPase protein levels is sufficient to confer increased resistance to H(2)O(2) in cultured C2C12 mouse skeletal myoblasts. Given that the function of dUTPase is to decrease the levels of dUTP, our results strongly support an emerging role for dUTP as a pro-apoptotic second messenger in the same vein as ROS and ceramide.

  7. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6.

    Directory of Open Access Journals (Sweden)

    Ankur Sharma

    Full Text Available Brown adipose tissue (BAT plays a pivotal role in promoting energy expenditure by the virtue of uncoupling protein-1 (UCP-1 that differentiates BAT from its energy storing white adipose tissue (WAT counterpart. The clinical implication of "classical" BAT (originates from Myf5 positive myoblastic lineage or the "beige" fat (originates through trans-differentiation of WAT activation in improving metabolic parameters is now becoming apparent. However, the inducers and endogenous molecular determinants that govern the lineage commitment and differentiation of classical BAT remain obscure. We report here that in the absence of any forced gene expression, stimulation with bone morphogenetic protein 6 (BMP6 induces brown fat differentiation from skeletal muscle precursor cells of murine and human origins. Through a comprehensive transcriptional profiling approach, we have discovered that two days of BMP6 stimulation in C2C12 myoblast cells is sufficient to induce genes characteristic of brown preadipocytes. This developmental switch is modulated in part by newly identified regulators, Optineurin (Optn and Cyclooxygenase-2 (Cox2. Furthermore, pathway analyses using the Causal Reasoning Engine (CRE identified additional potential causal drivers of this BMP6 induced commitment switch. Subsequent analyses to decipher key pathway that facilitates terminal differentiation of these BMP6 primed cells identified a key role for Insulin Like Growth Factor-1 Receptor (IGF-1R. Collectively these data highlight a therapeutically innovative role for BMP6 by providing a means to enhance the amount of myogenic lineage derived brown fat.

  8. Optically transparent polymer devices for in situ assessment of cell electroporation.

    Science.gov (United States)

    Majhi, Amit Kumar; Thrivikraman, Greeshma; Basu, Bikramjit; Venkataraman, V

    2015-02-01

    In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10-100 μl was quantified in situ as a function of applied voltage from 10 to 90 V in a series of ~2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be 45.6 ± 0.5 kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10% glycerol).

  9. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    Directory of Open Access Journals (Sweden)

    Baek NH

    2016-07-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* Jaehwa Lee,1 John Hulme,2 Seong Soo A An2 1Department of Research and Development, NanoEntek Inc., Seoul, 2Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea *These authors contributed equally to this work Abstract: Three-dimensional (3D cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II or CDDP, on adenosine triphosphate (ATP generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145, testis (F9, embryonic fibroblast (NIH-3T3, muscle (C2C12, embryonic kidney (293T, neuroblastoma (SH-SY5Y, adenocarcinomic alveolar basal epithelial cell (A549, cervical cancer (HeLa, HeLa contaminant (HEp2, pituitary epithelial-like cell (GH3, embryonic cell (PA317, and osteosarcoma (U-2OS cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 µM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be

  10. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  11. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells.

    Directory of Open Access Journals (Sweden)

    Verόnica Contreras-Shannon

    Full Text Available BACKGROUND: Metabolic syndrome (MetS is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined. METHODOLOGY/PRINCIPAL FINDINGS: Cultured mouse myoblasts (C2C12, adipocytes (3T3-L1, hepatocytes (FL-83B, and monocytes (RAW 264.7 were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line. CONCLUSIONS/SIGNIFICANCE: Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated

  12. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  13. IL-15 Mediates Mitochondrial Activity through a PPARδ-Dependent-PPARα-Independent Mechanism in Skeletal Muscle Cells

    Science.gov (United States)

    2016-01-01

    Molecular mediators of metabolic processes, to increase energy expenditure, have become a focus for therapies of obesity. The discovery of cytokines secreted from the skeletal muscle (SKM), termed “myokines,” has garnered attention due to their positive effects on metabolic processes. Interleukin-15 (IL-15) is a myokine that has numerous positive metabolic effects and is linked to the PPAR family of mitochondrial regulators. Here, we aimed to determine the importance of PPARα and/or PPARδ as targets of IL-15 signaling. C2C12 SKM cells were differentiated for 6 days and treated every other day with IL-15 (100 ng/mL), a PPARα inhibitor (GW-6471), a PPARδ inhibitor (GSK-3787), or both IL-15 and the inhibitors. IL-15 increased mitochondrial activity and induced PPARα, PPARδ, PGC1α, PGC1β, UCP2, and Nrf1 expression. There was no effect of inhibiting PPARα, in combination with IL-15, on the aforementioned mRNA levels except for PGC1β and Nrf1. However, with PPARδ inhibition, IL-15 failed to induce the expression levels of PGC1α, PGC1β, UCP2, and Nrf1. Further, inhibition of PPARδ abolished IL-15 induced increases in citrate synthase activity, ATP production, and overall mitochondrial activity. IL-15 had no effects on mitochondrial biogenesis. Our data indicates that PPARδ activity is required for the beneficial metabolic effects of IL-15 signaling in SKM.

  14. Antihyperglycemic Activity of Eucalyptus tereticornis in Insulin-Resistant Cells and a Nutritional Model of Diabetic Mice

    Science.gov (United States)

    Guillén, Alis; Granados, Sergio; Rivas, Kevin Eduardo; Estrada, Omar; Echeverri, Luis Fernando; Balcázar, Norman

    2015-01-01

    Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine. PMID:26366171

  15. Antihyperglycemic Activity of Eucalyptus tereticornis in Insulin-Resistant Cells and a Nutritional Model of Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Alis Guillén

    2015-01-01

    Full Text Available Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine.

  16. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    Science.gov (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy.

  17. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Zoleikha Golipoor

    2016-02-01

    Full Text Available Objective: Bone marrow (BM is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. Materials and Methods: In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS system and sca1 and stage specific embryonic antigen (SSEA-1 antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI and transplanted into the rat spinal cord injury (SCI model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. Results: We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expression level of Oct4 and SSEA-1 positive cells at the injury site. Conclusion: VSELs have the capability to migrate and localize in an injured spinal cord after transplantation.

  18. Fast incorporation of primary amine group into polylactide surface for improving C₂C₁₂ cell proliferation using nitrogen-based atmospheric-pressure plasma jets.

    Science.gov (United States)

    Yang, Yi-Wei; Wu, Jane-Yii; Liu, Chih-Tung; Liao, Guo-Chun; Huang, Hsuan-Yu; Hsu, Ray-Quen; Chiang, Ming-Hung; Wu, Jong-Shinn

    2014-01-01

    In this article, we report the development of the fast incorporation of primary amine functional groups into a polylactide (PLA) surface using the post-discharge jet region of an atmospheric-pressure nitrogen-based dielectric barrier discharge (DBD). Plasma treatments were carried out in two sequential steps: (1) nitrogen with 0.1% oxygen addition, and (2) nitrogen with 5% ammonia addition. The analyses show that the concentration of N/C ratio, surface energy, contact angle, and surface roughness of the treated PLA surface can reach 19.1%, 70.5 mJ/m(2), 38° and 73.22 nm, respectively. In addition, the proposed two-step plasma treatment procedure can produce a PLA surface exhibiting almost the same C2C12 cell attachment and proliferation performance as that of the conventional gelatin coating method. Most importantly, the processing/preparation time is reduced from 13-15 h (gelatin coating method) to 5-15 min (two-step plasma treatment), which is very useful in practical applications.

  19. Use of the methylcellulose gum for fat up-take absorption in coated products

    Directory of Open Access Journals (Sweden)

    Daniele Domingues Dill

    2008-08-01

    Full Text Available Even though coated meats have added value to products and gained consumers confidence, by improving these product’s appearance and taste, they go through a pre-frying stage during processing which releases the water and allows fat to enter the product, thus increasing fat content. The purpose of this work was to develop a coating system that absorbs less fat during the pre-frying stage of a chicken coated product. To do that, methylcellulose gum was added (MC in different concentrations in the covering systems, batter (coating liquid and breading (covering expresses. Five experiments were carried out, a standard experiment, without ingredient addition with technological function, formulations with addition of MC in the batter (0,5% and 2,0%, with addition of MC in the batter and in the breading (1% in each and with addition of MC in the breading (2,0%. Results showed that fat uptake reduction in formulations with 0,5 and 2,0% of MC in the batter were of 5,81% and 8,40%, respectively, and in experiments with 1% of MC in the batter and 1% of MC in the breading was of 7,66%. In experiments that received 2% of MC in the breading , fat uptake reduction was of 10,51%. Formulations with 2% of MC added to the breading (10,51% and 2% of MC added to the batter (8,40% presented the largest reductions in fat uptake during the pre-fried stage. Analysis of sensorial acceptance showed that all formulations had a superior acceptance index of 70%, with no significant difference among the other tested formulations acceptance results (p <0,05. These findings show the efficiency of MC as a fat uptake barrier during the pre-fried stage, increasing humidity content, and becoming an advantageous technological alternative for the food industry.

  20. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    Science.gov (United States)

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil.

  1. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy.

    Science.gov (United States)

    Oishi, Yoshimi; Tsukamoto, Hayato; Yokokawa, Takumi; Hirotsu, Keisuke; Shimazu, Mariko; Uchida, Kenji; Tomi, Hironori; Higashida, Kazuhiko; Iwanaka, Nobumasa; Hashimoto, Takeshi

    2015-03-15

    We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals.

  2. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    Science.gov (United States)

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  3. Melatonin inhibits tunicamycin-induced endoplasmic reticulum stress and insulin resistance in skeletal muscle cells.

    Science.gov (United States)

    Quan, Xiaojuan; Wang, Juyan; Liang, Chunlian; Zheng, Huadong; Zhang, Lin

    2015-08-07

    The prevalence of type 2 diabetes mellitus (T2D) is increasing worldwide. Melatonin possesses various beneficial metabolic actions, decreased levels of which may accelerate T2D. Endoplasmic reticulum stress (ERS) has been linked to insulin resistance in multiple tissues, but the role of melatonin on ERS and insulin resistance in skeletal muscle has not yet been investigated. In this study, the results showed that tunicamycin decreased insulin-stimulated Akt phosphorylation, but promoted the phosphorylation of protein kinase R-like ER protein kinase (PERK) time-dependently in C2C12 cells. Consistently, ERS gene markers, including binding immunoglobulin protein (BIP)/glucose regulated protein 78 (GRP78) expression and the splicing of X box binding protein 1 (XBP-1), were activated by tunicamycin time-dependently. Interestingly, melatonin pretreatment reversed the elevated PERK phosphorylation, as well as the activation of Bip expression and XBP-1 splicing, and prevented the inhibitory effect of tunicamycin on Akt phosphorylation. In addition, the insulin-provoked glucose transport was reduced by tunicamycin, and then promoted by melatonin pretreatment. A strong phosphorylation of inositol-requiring enzyme 1 (IRE-1), c-JUN NH2-terminal kinase (JNK), and insulin receptor substrate 1 (IRS-1) serine, and simultaneously, a dramatic decrease of IRS-1 tyrosine phosphorylation were observed in the presence of tunicamycin, leading to a blockade of insulin signaling, which was reversed by melatonin pretreatment. Furthermore, luzindole pretreatment acted inversely with melatonin action on glucose uptake and insulin signaling. Therefore, these results demonstrated that melatonin pretreatment inhibited the activated role of tunicamycin on ERS and insulin resistance through melatonin receptor-mediated IRE-1/JNK/IRS-1 insulin signaling in skeletal muscle cells.

  4. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    Science.gov (United States)

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  5. Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells.

    Science.gov (United States)

    Fornaro, Mara; Hinken, Aaron C; Needle, Saul; Hu, Erding; Trendelenburg, Anne-Ulrike; Mayer, Angelika; Rosenstiel, Antonia; Chang, Calvin; Meier, Viktor; Billin, Andrew N; Becherer, J David; Brace, Arthur D; Evans, William J; Glass, David J; Russell, Alan J

    2014-01-15

    A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.

  6. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    Science.gov (United States)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds.

  7. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.

  8. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  9. A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus

    Science.gov (United States)

    Barateau, Alice; Vadrot, Nathalie; Vicart, Patrick; Ferreiro, Ana; Mayer, Michèle; Héron, Delphine; Vigouroux, Corinne

    2017-01-01

    A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient’s skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient’s mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype. PMID:28125586

  10. Expression of sarcomeric tropomyosin in striated muscles in axolotl treated with shz-1, a small cardiogenic molecule.

    Science.gov (United States)

    Nan, Changlong; Dube, Syamalima; Matoq, Amr; Mikesell, Lauren; Abbott, Lynn; Alshiekh-Nasany, Ruham; Chionuma, Henry; Huang, Xupei; Poiesz, Bernard J; Dube, Dipak K

    2015-01-01

    We evaluated the effect of shz-1, a cardiogenic molecule, on the expression of various tropomyosin (TM) isoforms in the Mexican axolotl (Ambystoma mexicanum) hearts. qRT-PCR data show a ~1.5-fold increase in cardiac transcripts of the Nkx2.5 gene, which plays a crucial role in cardiogenesis in vertebrates. Shz-1 augments the expression of transcripts of the total sarcomeric TPM1 (both TPM1α & TPM1κ) and sarcomeric TPM4α. In order to understand the mechanism by which shz-1 augments the expression of sarcomeric TPM transcription in axolotl hearts, we transfected C2C12 cells with pGL3.axolotl. We transfected C2C12 cells with pGL3-axolotl TPM4 promoter constructs containing the firefly luciferase reporter gene. The transfected C2C12 cells were grown in the absence or presence of shz-1 (5 μM). Subsequently, we determined the firefly luciferase activity in the extracts of transfected cells. The results suggest that shz-1 activates the axolotl TPM4 promoter-driven ectopic expression in C2C12 cells. Also, we transfected C2C12 cells with a pGL3.1 vector containing the promoter of the mouse skeletal muscle troponin-I and observed a similar increase in the luciferase activity in shz-1-treated cells. We conclude that shz-1 activates the promoters of a variety of genes including axolotl TPM4. We have quantified the expression of the total sarcomeric TPM1 and observed a 1.5-fold increase in treated cells. Western blot analyses with CH1 monoclonal antibody specific for sarcomeric isoforms show that shz-1 does not increase the expression of TM protein in axolotl hearts, whereas it does in C2C12 cells. These findings support our hypothesis that cardiac TM expression in axolotl undergoes translational control.

  11. Experiment list: SRX142521 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of C3H mice after crush injury || cell sex=F || antibody=Input || antibody description=Control signal which ...ncing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle

  12. Experiment list: SRX143620 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of C3H mice after crush injury || cell sex=F || antibody=Input || antibody description=Control signal which ...ncing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle

  13. Experiment list: SRX143622 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of C3H mice after crush injury || cell sex=F || antibody=Input || antibody description=Control signal which ...ncing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle

  14. Experiment list: SRX142511 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of C3H mice after crush injury || cell sex=F || antibody=Input || antibody description=Control signal which ...ncing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle

  15. Experiment list: SRX143623 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available f C3H mice after crush injury || cell sex=F || antibody=H3ac_(06-599) || antibody antibodydescription=rabbit...cing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle o

  16. Experiment list: SRX142523 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of C3H mice after crush injury || cell sex=F || antibody=Input || antibody description=Control signal which ...ncing || cell=C2C12 || cell organism=mouse || cell description=Myoblast cell line derived from thigh muscle

  17. Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE.

    Science.gov (United States)

    Hage Hassan, Rima; Pacheco de Sousa, Ana Catarina; Mahfouz, Rana; Hainault, Isabelle; Blachnio-Zabielska, Agnieszka; Bourron, Olivier; Koskas, Fabien; Górski, Jan; Ferré, Pascal; Foufelle, Fabienne; Hajduch, Eric

    2016-02-01

    In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells.

  18. Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation.

    Science.gov (United States)

    Wei, Yingying; Tao, Xuelian; Xu, Huaming; Chen, Yan; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Jiang, Yanzhi; Li, Xuewei

    2016-10-30

    Accumulating evidence has indicated that microRNAs (miRNAs) and endoplasmic reticulum (ER) stress play critical roles in myoblast differentiation. However, the regulation roles of miRNAs and ER stress in myogenic differentiation have not been fully revealed and need to be further studied. Here, we discovered that the expression levels of miR-181a-5p were strongly upregulated during C2C12 cell differentiation. miR-181a-5p overexpression promoted ER stress and differentiation of C2C12 cells, which was accompanied by increasing expression levels of marker genes related to ER stress-mediated apoptosis and myogenic differentiation. Opposite results were observed after inhibition of the miR-181a-5p expression. The gain- and loss-of-function experiments on C2C12 cells showed that miR-181a-5p affected the development of muscle fiber type, but had no significant influence on C2C12 cell proliferation. In the ER-stressed C2C12 cells induced by thapsigargin (Tg), the expression levels of both miR-181a-5p and marker genes related to ER stress and myogenesis were upregulated. In the ER-stressed C2C12 cells and porcine muscle fibroblast (PMF) cells pretreated with Tg, we found that miR-181a-5p targeted glucose-regulated protein, 78kDa/binding immunoglobulin protein (GRP78/BIP), and influenced cell apoptosis. In conclusion, these results indicate that miR-181a-5p and ER stress have positive synergistic effects on myogenic differentiation by increasing the expression levels of myogenic differentiation key genes and activating the ER stress-mediated apoptosis signaling pathway.

  19. A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells.

    Directory of Open Access Journals (Sweden)

    Andrew L Mammen

    Full Text Available Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish, UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.

  20. Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Hui Jin

    2012-11-01

    Full Text Available As cancer stem cells (CSCs are postulated to play critical roles in cancer development, including metastasis and recurrence, CSC imaging would provide valuable information for cancer treatment and lead to CSC-targeted therapy. To assess the possibility of in vivo CSC targeting, we conducted basic studies on radioimmunotargeting of cancer cells positive for CD133, a CSC marker recognized in various cancers. Antibodies against CD133 were labeled with 125I, and their in vitro cell binding properties were tested. Using the same isotype IgG as a control, in vivo biodistribution of the labeled antibody retaining immunoreactivity was examined in mice bearing an HCT116 xenograft in which a population of the cancer cells expressed CD133. Intratumoral distribution of the labeled antibody was examined and compared to the CD133 expression pattern. The 125I-labeled anti-CD133 antibody showed a modest but significantly higher accumulation in the HCT116 xenograft compared to the control IgG. The intratumoral distribution of the labeled antibody mostly overlapped with the CD133 expression, whereas the control IgG was found in the area close to the necrotic tumor center. Our results indicate that noninvasive in vivo targeting of CSCs could be possible with radiolabeled antibodies against cell membrane markers.

  1. Phenotypic nutrient up-take differences in an alley cropping system in semi-arid Machakos, Kenya

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Alley cropping of Cassia siamea and maize was studied insemi-arid Kenya for soil fertility improvement. Katumani composite maize was planted except in the short rains of 1988 (SR88) when a hybrid variety was sown. Therefore the grain yield per row increased differently in the alley cropped maize (CM). Sole maize (SM) and CM yields were higher in SR88 than in the long rains of 1988 (LR88) by 62% and 38%, while yields from the same treatments in LR89 were only 21% and 45% of those in SR88. These differences in relative maize yields are attributed to differences between the two maize varieties in competition under nutrient stress conditions.

  2. Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Up take of Mineral Nutrition in Ipomoea Aquatica.

    Directory of Open Access Journals (Sweden)

    Milton Halder

    2015-04-01

    Full Text Available A green house experiment was conducted to investigate the effect of arbuscular mycorrhiza inoculation on plant growth and uptake of mineral nutrition in Ipomoea aquatica considering the objective of using environmental friendly biofertilizer instead of chemical fertilizer. A common leafy vegetable plant Ipomoea aquatica was grown with mycorrhiza and without mycorrhiza for 42 days. After harvest the plants were analyzed for mineral nutrition concentration. Plant fresh weight, dry weight, macronutrient (P, K, Mg, Na, micronutrient (Fe, Mn, Zn concentration was higher in arbuscular mycorrhiza inoculated plant than non-mycorrhiza inoculated plant. For sustainable agriculture, introducing biofertilizer by using arbuscular mycorrhiza inoculation would be one of the most efficient techniques for replacing chemical fertilizer to meet the nutrient deficiency in nutrient deficient soils of Bangladesh.

  3. Experiment list: SRX344977 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available gged ING1 || cell type=Growing C1C12 myoblasts || chromatin preparation method=So...ource_name=Input_ING1_flag_myoblasts || cell line=C2C12 || genotype/variation=ectopically expressing Flag-ta

  4. Experiment list: SRX344978 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available urce_name=Input_ING1_flag_myoblasts || cell line=C2C12 || genotype/variation=ectopically expressing Flag-tagged ING1 || cell type=Gro...wing C1C12 myoblasts || chromatin preparation method=Son

  5. Experiment list: SRX142512 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available source_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold - Calif...60 h with 2.0% Equine Serum and Insulin (Wold) || age=immortalized || age description=Immortal cells || cont

  6. Experiment list: SRX142538 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ource_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold - Califon...0% Equine Serum and Insulin (Wold) || age=immortalized || age description=Immortal cells || control=Control_

  7. Experiment list: SRX143615 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ource_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold - Califon...h with 2.0% Equine Serum and Insulin (Wold) || age=immortalized || age description=Immortal cells || control

  8. Experiment list: SRX143613 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available pct 60hr source_name=C2C12 || biomaterial_provider=Barbara Wold lab || lab=Caltech-m || lab description=Wold...=60 h with 2.0% Equine Serum and Insulin (Wold) || age=immortalized || age description=Immortal cells || con

  9. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Science.gov (United States)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  10. Experiment list: DRX009299 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ied from pT2AL200R150G (provided by Dr. Kawakami). The pT2A-TRETIBI/EGFP-H3.1 transfection was performed using Lipofectamine 2000 rea...gent (Life Technologies, Carlsbad, CA). C2C12 cells at 2

  11. Experiment list: DRX009308 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ed from pT2AL200R150G (provided by Dr. Kawakami). The pT2A-TRETIBI/EGFP-H3.3 transfection was performed using Lipofectamine 2000 reag...ent (Life Technologies, Carlsbad, CA). C2C12 cells at 20

  12. Experiment list: DRX009301 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ed from pT2AL200R150G (provided by Dr. Kawakami). The pT2A-TRETIBI/EGFP-H3.1 transfection was performed using Lipofectamine 2000 reag...ent (Life Technologies, Carlsbad, CA). C2C12 cells at 20

  13. Experiment list: DRX009307 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ed from pT2AL200R150G (provided by Dr. Kawakami). The pT2A-TRETIBI/EGFP-H3.3 transfection was performed using Lipofectamine 2000 reag...ent (Life Technologies, Carlsbad, CA). C2C12 cells at 20

  14. Experiment list: DRX009300 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available d from pT2AL200R150G (provided by Dr. Kawakami). The pT2A-TRETIBI/EGFP-H3.1 transfection was performed using Lipofectamine 2000 reage...nt (Life Technologies, Carlsbad, CA). C2C12 cells at 20%

  15. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Koh, Ho-Jin; Toyoda, Taro; Fujii, Nobuharu;

    2010-01-01

    . Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction...

  16. Regulation of expression of osteoblast transcription factor SATB2 by BMP2 in osteoblastic differentiation of MSCs%MSCs成骨分化中BMP2对成骨转录因子SATB2表达的调控作用

    Institute of Scientific and Technical Information of China (English)

    左炽健; 剌婷; 张宁; 戴尅戎; 张晓玲

    2011-01-01

    目的 探索间充质干细胞(MSCs)成骨分化中骨形态发生蛋白2(BMP2)对成骨转录因子SATB2表达的调控作用.方法 体外培养小鼠间充质细胞系C2C12,腺病毒介导的BMP2 (Adv-BMP2)诱导其向成骨细胞分化,建立并验证C2C12细胞成骨分化细胞模型.Real-Time PCR和Western blotting分别检测C2C12细胞成骨分化过程中经不同浓度Adv-BMP2处理不同时间时SATB2 mRNA和SATB2蛋白表达;以经相应浓度Adv-β-Gal处理细胞作对照.结果 经150 pfu/cell Adv-BMP2处理C2C12细胞5d后,成骨细胞标志基因Ⅰ型胶原,骨唾液酸蛋白和骨钙素表达以及碱性磷酸酶活性均显著增加,MSCs成骨分化模型构建成功.150 pfu/cell Adv-BMP2诱导C2C12细胞成骨分化过程中,SATB2 mRNA和SATB蛋白表达随分化进程而增加;Adv-BMP2浓度为0~225 pfu/cell时,SATB2表达随Adv-BMP2浓度升高而增加.结论BMP2可调控SATB2的表达,从而影响MSCs成骨分化.%Objective To investigate the role of bone morphogenetic protein 2 (BMP2) in the regulation of expression of osteoblast transcription factor SATB2 in osteoblastic differentiation of mesenchymal stem cells ( MSCs). Methods Mesenchymal cell line C2C12 was stimulated by adenovirus-derived BMP2 (Adv-BMP2) for osteoblastic differentiation, and model of osteoblastic differentiation of C2C12 cells was established and verified. Real-Time PCR and Western blotting were employed to detect the expression of SATB2 mRNA and SATB2 protein respectively in osteoblastic differentiation treated by Adv-BMP2 for different time and by Adv-BMP2 of different concentrations. C2CI2 cells treated with Adv-β-Gal were served as controls. Results After treatment by ISO pfu/cell Adv-BMP2 for 5 d, the expression of collagen type I , bone sialoprotein and osteocalcin and the activity of alkaline phosphatase in C2C12 cells significantly increased, and the model of osteoblastic differentiation of C2C12 cells was established. The expression of SATB2 mRNA and

  17. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan); Yamaguchi, Takahiro, E-mail: ty1010@bios.tohoku.ac.jp [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan)

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  18. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation.

    Science.gov (United States)

    Sharples, Adam P; Polydorou, Ioanna; Hughes, David C; Owens, Daniel J; Hughes, Thomas M; Stewart, Claire E

    2016-06-01

    Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that

  19. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  20. Insulin Resistance Is Correlated with Palmitic Acid Uptake in Skeletal Muscle Cells%棕榈酸的组织吸收分布及对骨骼肌胰岛素抵抗的影响

    Institute of Scientific and Technical Information of China (English)

    彭恭; 刘延波; 李凌海; 刘平生

    2012-01-01

    Retinoids (vitamin A and its derivatives) play important roles in the maintenance of various tissues in the adult vertebrate and are essential for diverse embryological processes. As a member of retinoids (vitamin A and its derivatives), retinoic acid (RA) has been extensively investigated in embryopathology. However, the mechanisms by which RA influences these processes are not completely understood. In the present study, we found that embryonic RA exposure via maternal treatment with gavage-fed 3 successive doses of RA on day 8 of gestation led to a high incidence (96.77%, 30/31) of rachischisis with myeloschisis, I.e., spina bifida aperta, among the surviving day 18 fetuses. Using microarray technology, we identified 134 genes in the spinal cords of mice that exhibit at least a 1.5-fold change between mice with spina bifida and control samples. Several downstream genes of RA signaling involved in lipid metabolism were regulated at the transcriptional level after maternal RA exposure. Furthermore, a gene set enrichment analysis (GSEA) implicate many altered expression of genes, involved in pro- or anti-apoptosis, cell proliferation, migration, cytoskeleton components, and cell or focal adhesion, which are associated which the spina bifida induced by the maternal RA exposure. This indicates that defective functions of these cell components and biological processes preceded the abnormal development of neural tube. Our study provides a global analysis of gene expression patterns in spina bifida and will help the understanding of the etiology and pathology of neural tube defects.%脂肪酸代谢紊乱是Ⅱ型糖尿病的主要致病因素之一.棕榈酸是血液中含量最高的游离脂肪酸.我们建立了大鼠颈静脉置管输注棕榈酸的模型,发现血液中的大部分棕榈酸被骨骼肌组织所吸收.以棕榈酸处理的C2C12骨骼肌细胞为实验模型发现,棕榈酸进入骨骼肌细胞后的中间代谢产物(磷脂和甘油二酯)的累

  1. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial

    DEFF Research Database (Denmark)

    Raina, D B; Gupta, A; Petersen, M M;

    2016-01-01

    OBJECTIVES: We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth...... factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. MATERIALS AND METHODS: We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra...... microscopy. RESULTS: C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (sd) 0.8) and BMP-7 (50.6 ng/mg, sd 2.2). In vitro...

  2. The interplay between physical and chemical properties of protein films affects their bioactivity.

    Science.gov (United States)

    Grover, Chloe N; Farndale, Richard W; Best, Serena M; Cameron, Ruth E

    2012-09-01

    Although mechanical properties, roughness, and receptor molecule expression have all been shown to influence the cellular reactivity of collagen-based biomaterials, their relative contribution, in a given system remains unclear. Here, we study films containing combinations of collagen, gelatin, and soluble and insoluble elastin, crosslinking of which results in altered film stiffness and roughness. Collagen and gelatin have similar amino acid sequences but altered cell-binding sites. We studied cell response with both C2C12 myoblast cells (which possess RGD-recognizing integrins α(V)β(3) and α(5)β(1)) and C2C12-α2+ cells (which, in addition, express the collagen-binding integrin α(2)β(1)) to establish the effect of altering the available binding sites on cell adhesion and spreading on films. Systematically altering the composition, crosslinking and cell type, allows us to deconvolute the effects of physical parameters and available binding sites on the cell reactivity of films in this system. Collagen-based films were rougher and stiffer and supported lower cell surface coverage than gelatin-based films. Additionally, C2C12-α2+ cells showed preferential attachment to collagen-based films compared with C2C12 cells, but no significant difference was seen using gelatin-based films. The cell count and surface coverage were found to decrease significantly on all films after crosslinking (Coll XL coverage = 2-6%, Gel XL coverage = 20-32%), but cell area and aspect ratio on collagen films were affected to a greater extent than on gelatin films. The results show that, in this system, the composition, and more significantly, crosslinking, of films affects the cell reactivity to a greater extent than their stiffness or roughness.

  3. Peanut cultivar selection for BLSS in terms of the biomass productivity, nutritional quality, photosynthetic character and mineral ions up-take by PTNDS cultivation

    Science.gov (United States)

    Liu, Hui; Wang, Minjuan; Fu, Yuming; Liu, Hong

    2016-11-01

    Peanut (Arachis hypogaea L.) has been selected as one of the crop candidates for BLSS, because its seeds have high nutritional value, being rich in vegetable oil and protein. Porous-Tube Nutrient Delivery System (PTNDS) has been successfully used for crop cultivation in controllable environments. In this paper, four peanut cultivars ('HY25', 'HY28', 'HY31' and 'BS1016') were evaluated in terms of yield, photosynthetic efficiency, insoluble fiber and ions uptake efficiency. Besides protein, total oil content and fatty acid composition were monitored in the seeds. 'HY25' plants showed much higher yield and harvest index, in addition to the lower lignin content of inedible biomass. Data showed that 'HY25' had the higher photosynthetic capacity of peanut leaves with regard to highest photosynthetic rate, qP and ΦPSII, lowest energy dissipation (qN) values, whereas instantaneous carboxylation efficiency and water use efficiency carotenoids content were no difference with the other cultivars. 'BS1016‧ showed the lowest photosynthetic capacity contrarily. These suggested that 'HY25‧ could be the most suitable for the cultivation in a closed controlled environment with PTNDS. While, both cations and anions except NH4+ and H2PO4-, were accumulated excessively compared to controls, especially with anions in PTNDS. Hence, further studies are needed in order to improve the nutritional quality of seeds and modify the fertilization strategy of this cultivar in the growth environment feasible during a closed environment and space mission.

  4. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    Science.gov (United States)

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction.

  5. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components.

    Science.gov (United States)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-06-15

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  6. OM2, a Novel Oligomannuronate-Chromium(III) Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway

    OpenAIRE

    Jiejie Hao; Cui Hao; Lijuan Zhang; Xin Liu; Xiaolin Zhou; Yunlou Dun; Haihua Li; Guangsheng Li; Xiaoliang Zhao; Yuanyuan An; Jiankang Liu; Guangli Yu

    2015-01-01

    Background In our previous studies, we prepared novel oligomannuronate-chromium(III) complexes (OM2, OM4) from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM), chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes. Methodology/Principal Findings We firstly used the p...

  7. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    OpenAIRE

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  8. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  9. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter....... Besides, we observed that DLK1/FA1 induced strong NFκB activity evidenced by NFκB responsive luciferase reporter assay and real-time RT-PCR analysis of NFκB target genes. The inhibitory effect of NFκB signaling on BMP signaling was confirmed by luciferase assay in C2C12 BMP luciferase reporter cells...

  10. Shh Signaling is Involved in Regulating BMP9-induced Osteogenic Differentiation of Mesenchymal Stem Cells%Shh信号参与调控BMP9诱导的间充质干细胞成骨分化

    Institute of Scientific and Technical Information of China (English)

    李丽; 蒙秋蓉; 郭琦; 王岚; 商蕾; 欧欣颖; 罗进勇

    2014-01-01

    目的:观察sonic hedgehog (Shh)信号通路在骨形态发生蛋白9(BMP9)诱导的小鼠间充质干细胞(MSCs) C3H10T1/2和C2C12成骨分化中的作用,并初步探讨其作用机制.方法:Shh信号通路抑制剂Cyclopamine和激活剂Purmorphamine以及过表达Shh腺病毒分别作用于BMP9处理的C3H10T1/2和C2C12细胞,碱性磷酸酶(ALP)检测早期成骨指标ALP,茜素红S染色检测晚期成骨指标钙盐沉积,RT-PCR检测Shh信号相关基因以及成骨关键转录因子的表达,Westernblot检测Shh的表达,荧光素酶报告基因检测Smad1/5/8的转录调控活性.结果:BMP9促进Shh信号相关基因的表达,激活Shh信号可增强BMP9诱导的C3H10T1/2和C2C12细胞早晚期成骨分化并促进了BMP9诱导的Smad荧光素酶活性,抑制Shh信号后作用相反.结论:激活Shh信号通路可促进BMP9诱导的小鼠MSCs成骨分化,抑制其活性后作用相反.

  11. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  12. Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes.

    Science.gov (United States)

    Chen, Yan; Paavola, Jere; Stegajev, Vasili; Stark, Holger; Chazot, Paul L; Wen, Jian Guo; Konttinen, Yrjö T

    2015-05-05

    Histamine is a neurotransmitter and chemical mediator in multiple physiological processes. Histamine H3 receptor is expressed in the nervous system, heart, and gastrointestinal tract; however, little is known about H3 receptor in skeletal muscle. The aim of this study was to investigate the role of H3 receptor in skeletal myotubes. The expression of H3 receptor and myosin heavy chain (MHC), a late myogenesis marker, was assessed by real-time PCR and immunostaining in C2C12 skeletal myogenesis and adult mid-urethral skeletal muscle tissues. H3 receptor mRNA showed a significant increase upon differentiation of C2C12 into myotubes: 1-, 26-, 91-, and 182-fold at days 0, 2, 4, and 6, respectively. H3 receptor immunostaining in differentiated C2C12 cells and adult skeletal muscles was positive and correlated with that of MHC. The functional role of H3receptor in differentiated myotubes was assessed using an H3 receptor agonist, (R)-a-methylhistamine ((R)-α-MeHA). Ca(2+) imaging, stimulated by electric pacing, was decreased by 55% after the treatment of mature C2C12 myotubes with 1μM (R)-α-MeHA for 10min and 20min, while treatment with 100nm (R)-α-MeHA for 5min caused 45% inhibition. These results suggested that H3 receptor may participate in the maintenance of the relaxed state and prevention of over-contraction in mature differentiated myotubes. The elucidation of the role of H3R in skeletal myogenesis and adult skeletal muscle may open a new direction in the treatment of skeletal muscle disorders, such as muscle weakness, atrophy, and myotonia in motion systems or peri-urethral skeletal muscle tissues.

  13. Roles of extracellular signal-regulated kinase 1/2 on the suppression of myostatin gene expression induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Huazhoag Liu; Xiaorong An; Yongfu Chen; Jieping Zhong

    2008-01-01

    Basic fibmblast growth factor (bFGF, FG F-2 ) has an inhibitory effect on the expression of the myostatin gene in murine C2C12 myoblasts, as shown in our recent investigation. To further verify the regulatory effects of bFGF on the myostalin gene and to better understand its mechanism in skeletal muscle, and to promote clinical applications of bFGF to treat skeletal muscle diseases correlated to muscular dystrophy or AIDS and so on, recombinant human bFGF (rh-bFGF) was added into media and stimulated murine C2C12 myoblasts to investigate the dose-dependent effect ofbFGF on suppression of myostatin gene expression and the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulatory mechanism. Simultaneously, complete coding sequence of ovine 18 kDa-bFGF gene was inserted into eukaryotic vector pCMV-neo (originated from pEGFP-N1 vector, from which the EGFP gene has been removed), the recombinant plasmid pCMV-neo-bFGF was harvested and injected into the mouse skeletal muscle of posterior limb. Expression levels of bFGF,myostatin, and ERKI/2 genes in murine C2C12 myoblasts and the skeletal muscle were analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting analysis, respectively. The results showed that bFGFimpaired the expression ofmyostatin gene in a dose-dependent manner in C2C12 cells, with increasing concentration of rh-bFGF,myostatin mRNA declined gradually. In addition, results in skeletal muscle indicated that bFGF also suppressed the expression of the myostatin gene in vivo. Furthermore, we found ERKI/2 participated in the regulatory mechanism of bFGF on the expression of the myostatin gene.

  14. The omega-3 fatty acid, eicosapentaenoic acid (EPA, prevents the damaging effects of tumour necrosis factor (TNF-alpha during murine skeletal muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Pearson Stephen

    2008-07-01

    Full Text Available Abstract Background Eicosapentaenoic acid (EPA is a ώ-3 polyunsaturated fatty acid with anti-inflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p p p p p p Conclusion In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury.

  15. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  16. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Mulijani, S.

    2016-11-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  17. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  18. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  19. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  20. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2′-O-methyl phosphorothioate RNA (2′-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was f...

  1. Dynamics of the skeletal muscle secretome during myoblast differentiation

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2010-01-01

    of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique...... proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics...

  2. Biocompatibility of fluorescent nanoparticles NaYF4:Yb,Er as imaging media%荧光纳米颗粒NaYF4:Yb,Er作为显像介质的生物相容性

    Institute of Scientific and Technical Information of China (English)

    虞永江; 马晓荣; 于国鹏; 高同斌; 齐隽; 陈方

    2011-01-01

    Objective To investigate the biocompatibility of upconversion fluorescent nanoparticles in vivo and in vitro, and verify its safety as imaging media.Methods Mouse bone mesenchymal stem cells (BMSC), mouse embryonic fibroblasts (NIH/3T3) and primary myoblasts (C2C12) were incubated with different concentrations of NaYF4: Yb, Er (0, 10, 50, 100 and 200 μg/mL).Cell proliferation was determined by MTT assay, and the formation of myotube cells from C2C12 myoblasts was detected.DMEM with NaYF4: Yb, Er nanoparticles were injected into C57BL/6 mice, and liver function and renal function were examined.HE staining was performed for main body organs, and toxicity was detected.Results MTT assay revealed that the cytotoxicity of NaYF4: Yb, Er on NIH/3T3 and C2C12 was positively correlated with incubation dose and time ( NIH/3T3: r =0.974, P <0.05; C2C12: r =0.996, P <0.05), while the same result was not found for BMSC ( r = - 0.218, P > 0.05).The formation of myotube cells from C2C12 myoblasts was not significantly affected by incubation with NaYF4: Yb, Er for 48 h.No obvious damage of liver and renal function and main body organs was observed after injection of DMEM with NaYF4: Yb, Er nanoparticles in mice.Conclusion As biological luminescent labels with strong intensity, NaYF4: Yb, Er has less toxicity both in vivo and in vitro to the requirement of imaging, and is an ideal biological imaging media.%目的 检测上转频荧光纳米颗粒的生物学体内、外相容性,证实其作为显像介质的生物安全性.方法 将培育后的小鼠骨髓间充质干细胞(BMSC)、胚胎成纤维细胞(NIH/3T3)及成肌细胞(C2C12)分别与不同浓度(0、10、50、100、200μg/mL)的NaYF4:Yb,Er共孵育,采用MTT法检测细胞的增殖活性,并测定C2C12成肌细胞形成肌管细胞的功能.将NaYF4:Yb,Er纳米颗粒DMEM混悬液注射入C57BL/6小鼠,行小鼠肝肾功能测定;并对重要脏器行HE组织学染色,检测小鼠的体内毒性.结果 MTT法细

  3. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  4. Wdr68 requires nuclear access for craniofacial development.

    Directory of Open Access Journals (Sweden)

    Bingyan Wang

    Full Text Available Wdr68 is a highly conserved scaffolding protein required for craniofacial development and left-right asymmetry. A Ras-Map3k-Wdr68-Dyrk1 signaling relay may mediate these and other diverse signaling events important in development and disease. While the sub-cellular localization of Wdr68 has been shown to be dependent on that of its interaction partners, it is not clear where Wdr68 activity is required during development. Here we show that while a GFP-Wdr68 fusion functionally substituted for craniofacial development in the zebrafish, that a Nuclear Export Signal (NES fusion protein (GFPNESWdr68 failed to support craniofacial development. As control for NES activity, we show that while GFP-Wdr68 exhibited a pan-cellular distribution in C2C12 cells, the GFPNESWdr68 fusion predominantly localized to the cell cytoplasm, as expected. Interestingly, while GFP-Wdr68 and RFP-Dyrk1a co-localized to the cell nucleus as expected based on the known sub-cellular localization for Dyrk1a, we found that the GFPNESWdr68 fusion redistributed RFP-Dyrk1a to the cell cytoplasm potentially disconnecting the Ras/Dyrk1 signal relay from further downstream targets. Consistent with a nuclear role in gene regulation, we also found that while a transcriptional activation domain fusion, CebpFlagWdr68, functionally substituted for endogenous Wdr68 for craniofacial development, that a transcriptional repression domain fusion, MadFlagWdr68, failed to support craniofacial development. Dyrk1b is required for myogenin (myog expression in differentiating mouse C2C12 cells and here we report that wdr68 is also important for myog expression in differentiating C2C12 cells. Using a C2C12 cell myog promoter-reporter system, we found that Wdr68 overexpression increased reporter activity while moderate expression levels of MadFlagWdr68 interfered with reporter activity. Taken together, these findings support a nuclear role for Wdr68-containing complexes.

  5. Growth factor array fabrication using a color ink jet printer.

    Science.gov (United States)

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation.

  6. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism.

    Science.gov (United States)

    Vaes, Bart L T; Lute, Carolien; van der Woning, Sebastian P; Piek, Ester; Vermeer, Jenny; Blom, Henk J; Mathers, John C; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2010-02-01

    S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.

  7. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.

    Science.gov (United States)

    Yuan, Lei; Han, Jun; Meng, Qingyang; Xi, Qiulei; Zhuang, Qiulin; Jiang, Yi; Han, Yusong; Zhang, Bo; Fang, Jing; Wu, Guohao

    2015-05-01

    Muscle atrophy F-Box (MAFbx)/atrogin-1 and muscle ring-finger-1 (MuRF-1) have been identified as two muscle-specific E3 ubiquitin ligases that are highly expressed in skeletal muscle during muscle atrophy. However, the role of muscle-specific E3 ubiquitin ligases during the process of muscle atrophy of cancer cachexia remains largely unknown. In the present study, we analyzed the expression of atrogin-1 and MuRF-1 in the skeletal muscle of patients with malignant and benign disease. The possible mechanisms were studied both in a colon 26-induced cancer cachexia mouse model and in tumor necrosis factor-α (TNF-α) induced atrophy C2C12 cells. Our results demonstrated that atrogin-1 and MuRF-1 tended to be increased in the skeletal muscle of patients with malignant disease even before weight loss. Non-tumor body weights and gastrocnemius weights were significantly decreased while expression levels of ubiquitin proteasome pathway associated genes (atrogin-1, MuRF-1, ubiquitin and E2-14K) were upregulated in cancer cachexia mice. Significant myotube atrophy with atrogin-1 overexpression was observed in the C2C12 cells treated with TNF-α. Meanwhile, knockdown of atrogin-1 by small interfering RNA (siRNA) protected C2C12 cells from the adverse effect of TNF-α. In conclusion, muscle-specific E3 ubiquitin ligases were upregulated during cancer cachexia, and atrogin-1 may be a potential molecular target for treating muscle atrophy induced by cancer cachexia.

  8. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  9. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2016-12-21

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation.

  10. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    Science.gov (United States)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  11. Circulating micrornas as potential biomarkers of muscle atrophy

    Science.gov (United States)

    Wang, Fei

    2016-07-01

    Noninvasive biomarkers with diagnostic value and prognostic applications have long been desired to replace muscle biopsy for muscle atrophy patients. Growing evidence indicates that circulating microRNAs are biomarkers to assess pathophysiological status. Here, we show that the medium levels of six muscle-specific miRNAs (miR-1/23a/206/133/499/208b, also known as myomiRs) were all elevated in the medium of starved C2C12 cell (P atrophy patients, indicating that they might represent the degree of muscle atrophy. Collectively, our data indicated that circulating myomiRs could serve as promising biomarkers for muscle atrophy.

  12. Rapid turnover of mitochondrial uncoupling protein 3

    OpenAIRE

    2010-01-01

    UCP3 (uncoupling protein 3) and its homologues UCP2 and UCP1 are regulators of mitochondrial function. UCP2 is known to have a short half-life of approx. 1 h, owing to its rapid degradation by the cytosolic 26S proteasome, whereas UCP1 is turned over much more slowly by mitochondrial autophagy. In the present study we investigate whether UCP3 also has a short half-life, and whether the proteasome is involved inUCP3 degradation. UCP3 half-life was examined in the mouse C2C12 myoblast cell line...

  13. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  14. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  15. Higher prevalence of sexual transmitted diseases and correlates of genital warts among heterosexual males attending sexually transmitted infection clinics (MSCs in Jiangmen, China: implication for the up-taking of STD related service.

    Directory of Open Access Journals (Sweden)

    Shujie Huang

    Full Text Available Increasing burden of STDs is one of China's major public health concerns. However, only a limited number of studies have ever investigated the prevalence of these STDs, particular for genital warts and its correlates among heterosexual males attending STD clinics in China. In order to fill this gap, we conducted a cross-sectional study among MSCs in Jiangmen, China, between the years of 2009 and 2010.The eligible participants were recruited from several STD-clinics in public hospitals. We collected demographic information and behaviors of the participants. After HIV and syphilis testing, we further checked whether the participants had genital warts and genital herpes. In addition, urine samples were collected from part of the participants for CT and NG testing.Of the 533 eligible participants, over three-fifths were aged 35 or below, nearly three quarters had no college degree, over three-fifths were residence of Jiangmen. The prevalence of HIV, syphilis, genital warts, genital herpes, CT and NG were 0.19%, 7.50%, 7.32%, 5.25%, 9.73% and 6.19%, respectively. Living with family members (versus living alone, no STD-related service in past year, experiencing STDs related symptoms in past year, and sex with FSWs in last three months were positively associated with genital warts, with adjusted ORs of 5.54 (95% CI 1.94-15.81, 2.26 (95% CI 1.08-4.74, 1.99 (95% CI 1.00-3.99 and 2.01 (95% CI 1.00-4.04, respectively.Our study indicates that the prevalence of STDs among MSCs in Jiangmen was high, which may further spread HIV among MSCs. Targeted interventions that focused on STDs related services uptake should be implemented urgently.

  16. Higher Prevalence of Sexual Transmitted Diseases and Correlates of Genital Warts among Heterosexual Males Attending Sexually Transmitted Infection Clinics (MSCs) in Jiangmen, China: Implication for the Up-Taking of STD Related Service

    Science.gov (United States)

    Zhu, Zhengjun; Lu, Hekun; Tan, Xueling; Zhang, Baoyuan; Best, John; Yang, Ligang; Zheng, Heping; Jiang, Ning; Yin, Yueping; Yang, Bin; Chen, Xiangsheng

    2015-01-01

    Background Increasing burden of STDs is one of China’s major public health concerns. However, only a limited number of studies have ever investigated the prevalence of these STDs, particular for genital warts and its correlates among heterosexual males attending STD clinics in China. In order to fill this gap, we conducted a cross-sectional study among MSCs in Jiangmen, China, between the years of 2009 and 2010. Method The eligible participants were recruited from several STD-clinics in public hospitals. We collected demographic information and behaviors of the participants. After HIV and syphilis testing, we further checked whether the participants had genital warts and genital herpes. In addition, urine samples were collected from part of the participants for CT and NG testing. Results Of the 533 eligible participants, over three-fifths were aged 35 or below, nearly three quarters had no college degree, over three-fifths were residence of Jiangmen. The prevalence of HIV, syphilis, genital warts, genital herpes, CT and NG were 0.19%, 7.50%, 7.32%, 5.25%, 9.73% and 6.19%, respectively. Living with family members (versus living alone), no STD-related service in past year, experiencing STDs related symptoms in past year, and sex with FSWs in last three months were positively associated with genital warts, with adjusted ORs of 5.54 (95% CI 1.94–15.81), 2.26 (95% CI 1.08–4.74), 1.99 (95% CI 1.00–3.99) and 2.01 (95% CI 1.00–4.04), respectively. Conclusion Our study indicates that the prevalence of STDs among MSCs in Jiangmen was high, which may further spread HIV among MSCs. Targeted interventions that focused on STDs related services uptake should be implemented urgently. PMID:25811185

  17. Stem cells in cell transplantation.

    Science.gov (United States)

    Sanmartin, Agneta; English, Denis; Sanberg, Paul R

    2006-12-01

    This commentary documents the increased number of stem cell-related research reports recently published in the cell transplantation field in the journal Cell Transplantation. The journal covers a wide range of issues in cell-based therapy and regenerative medicine and is attracting clinical and preclinical articles from around the world. It thereby complements and extends the basic coverage of stem cell physiology reported in Stem Cells and Development. Sections in Cell Transplantation cover neuroscience, diabetes, hepatocytes, bone, muscle, cartilage, skin, vessels, and other tissues, as well as tissue engineering that employs novel methods with stem cells. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and these two journals are well positioned to provide comprehensive coverage of these developments.

  18. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  19. Glucose-induced Ca2 + signals in rat pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using microfluorometry to assay intracellular Ca2+ , the influences of varied factors on glucose induced Ca22+ signals, such as glucose-induced initial decline phase (GIDP), Ca2+ oscillation, and Ca2+ release from internal stores, were investigated in single rat pancreatic β cells. Glucose was able to evoke GIDP even at non-stimulus concentration (5 mol/L), which is insufficient to induce Ca2+ spikes. GIDP was dependent on neither membrane depo larization nor extraeellular Ca2+ . However, GIDP was inhibited by thapsigargin, indicating a dependence on Ca2+ up take by Ca22+ stores. The glucose-induced calcium oscillation was inhibited when external Ca2+ was removed. However, thapsigargin could not block the Ca2+ oscillation. These results suggest that maintenance of Ca22+ oscillation requires ex tracellular Ca2+ but not Ca2+ stores. Glucose was able to evoke Ca2+ signals even in the absence of external Ca2+ . The glucose-induced Ca2+ release from intracellular Ca2+ stores was blocked by TTX. However, TTX had no effect on high K--induced Ca2+ store release, suggesting that membrane depolarization can directly release Ca2+ from some internal Ca2+ stores in β cells.

  20. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  1. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  2. The pan-DAC inhibitor LBH589 is a multi-functional agent in breast cancer cells: cytotoxic drug and inducer of sodium-iodide symporter (NIS).

    Science.gov (United States)

    Fortunati, N; Catalano, M G; Marano, F; Mugoni, V; Pugliese, M; Bosco, O; Mainini, F; Boccuzzi, G

    2010-12-01

    New drugs with anti-tumor activity, also able to modify the expression of selected molecules, are under evaluation in breast cancer which is becoming resistant to conventional treatment, or in metastatic disease. The sodium-iodide symporter (NIS), which mediates iodide uptake into thyroid cells, and is the molecular basis of radioiodine imaging and therapy in thyroid cancer, is also expressed in a large portion of breast tumors. Since NIS expression in breast cancer is not sufficient for a significant iodide uptake, drugs able to induce its expression and correct function are under evaluation. In the present study, we report for the first time that the pan-deacetylase (DAC) inhibitor LBH589 (panobinostat) significantly induced NIS, both as mRNA and as protein, through the increase of NIS promoter activity, with the final consequence of obtaining a significant up-take of iodide in MCF7, T47D, and MDA-MB231 breast cancer cells. Moreover, we observed that LBH589 causes a significant reduction in cell viability of estrogen-sensitive and -insensitive breast cancer cells within nanomolar range. The anti-tumor effect of LBH589 is sustained by apoptosis induction and cell cycle arrest in G(2)/M. In conclusion, our data suggest that LBH589 might be a powerful tool in the management of breast cancer due to its multiple effects and support a potential application of LBH589 in the diagnosis and treatment of this disease.

  3. 促黑素促进骨骼肌细胞脂肪酸氧化中cAMP的作用%Effect of cAMP on fatty acid oxidation in skeletal muscle cells by α-MSH

    Institute of Scientific and Technical Information of China (English)

    金勇君; 杨美子; 张凌云; 王秀云; 邢绍芝

    2010-01-01

    目的 探讨骨胳肌细胞中环磷酸腺苷(cAMP)对脂肪酸氧化的影响,阐明促黑素(α-MSH)对脂肪酸氧化影响的作用机制.方法 采用α-MSH、cAMP类似物Bt2cAMP、8-BrcAMP和cAMP拮抗剂分别处理体外培养的原代骨骼肌细胞(PMC)和C2C12成肌细胞,分为α-MSH组、cAMP类似物组、cAMP拮抗剂加α-MSH组,同时设正常对照组,利用(9,10-3H)棕榈酸生成3H2O的方法测定脂肪酸氧化.RT-PCR法测定PMC和C2C12成肌细胞黑皮质素受体(MCR)的表达.结果 α-MSH组和cAMP类似物组与对照组比较脂肪酸氧化显著增加(P0.05),与α-MSH组比较差异有显著性(P<0.05).结论 α-MSH和cAMP类似物显著增加了脂肪酸氧化,α-MSH可能与MCR结合通过cAMP信号传导通路促进骨骼肌细胞的脂肪酸氧化.

  4. Engineering Cell-Cell Signaling

    OpenAIRE

    Blagovic, Katarina; Gong, Emily S.; Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R

    2013-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cel...

  5. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  6. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  7. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.

    Science.gov (United States)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation.

  8. Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2

    Science.gov (United States)

    Cenni, Vittoria; Bavelloni, Alberto; Beretti, Francesca; Tagliavini, Francesca; Manzoli, Lucia; Lattanzi, Giovanna; Maraldi, Nadir M.; Cocco, Lucio; Marmiroli, Sandra

    2011-01-01

    Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C2C12 murine muscle cells exploiting protein characterization databases in combination with an anti–phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H2O2 triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C2C12 myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions. PMID:21737686

  9. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  10. Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Hristina Obradović

    2016-01-01

    Full Text Available Interleukin 17 (IL-17 is a cytokine with pleiotropic effects associated with several inflammatory diseases. Although elevated levels of IL-17 have been described in inflammatory myopathies, its role in muscle remodeling and regeneration is still unknown. Excessive extracellular matrix degradation in skeletal muscle is an important pathological consequence of many diseases involving muscle wasting. In this study, the role of IL-17 on the expression of matrix metalloproteinase- (MMP- 9 in myoblast cells was investigated. The expression of MMP-9 after IL-17 treatment was analyzed in mouse myoblasts C2C12 cell line. The increase in MMP-9 production by IL-17 was concomitant with its capacity to inhibit myogenic differentiation of C2C12 cells. Doxycycline (Doxy treatment protected the myogenic capacity of myoblasts from IL-17 inhibition and, moreover, increased myotubes hypertrophy. Doxy blocked the capacity of IL-17 to stimulate MMP-9 production by regulating IL-17-induced ERK1/2 MAPK activation. Our results imply that MMP-9 mediates IL-17’s capacity to inhibit myoblast differentiation during inflammatory diseases and indicate that Doxy can modulate myoblast response to inflammatory induction by IL-17.

  11. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  12. Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress.

    Science.gov (United States)

    Zeng, Xiaobin; Tian, Jun; Cai, Kangyong; Wu, Xin; Wang, Yang; Zheng, Yayuan; Su, Yanjie; Cui, Liao

    2014-02-15

    Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly. Previous studies indicated that green tea exerted osteoprotective effect in vivo. This study aims to investigate the constituents in Huangshan Maofeng tea and systemically evaluate their antioxidative and osteogenic effects in vitro. Five flavanes, isolated from Huangshan Maofeng tea, showed effects on proliferation of osteoblastic cells and ameliorated H2O2-induced C2C12 mouse myoblast cell apoptosis at 3.125-50 μg/ml. (-)-Epicatechin observably increased alkaline phosphatase (ALP) activity and hydroxyproline content. (-)-Epiafzelechin at 25 μg/ml significantly increased the area of mineralized bone nodules. The activities of flavanes in promoting osteblastic proliferation and differentiation are positively correlated with activities in protecting against apoptosis in C2C12 cells. It indicates that anti-osteoporosis effect of these flavanes may be linked to their antioxidative activity. The observed effects of these flavanes suggest that these flavanes may have beneficial effects on bone health.

  13. Comparative anti-inflammatory effects of anti-arthritic herbal medicines and ibuprofen.

    Science.gov (United States)

    Kang, Joshua J; Samad, Mohammed A; Kim, Kye S; Bae, Soochan

    2014-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDS), such as ibuprofen, are widely used over-the-counter drugs to treat arthritis, but they are often associated with side effects. Herbal medicines have been used to treat various diseases such as arthritis, but the scientific profiles are not well understood. In this study, we examined, in comparison with ibuprofen, the inhibitory effects on various inflammatory markers of the most commonly used herbal medicines to treat arthritis, boswellia (Boswellia sapindales), licorice (Glycyrrhiza glabra), guggul (Commiphora wightii), and neem (Azadirachta indica). To elicit inflammatory response, we exposed mouse myoblast C2C12 cells to lipopolysaccharide (LPS). Tumor necrosis factor-alpha (TNF-α) and monocyte chemotactic protein-1 (MCP-1), which are cytokines activated during an inflammatory response, were determined. The optimal non-toxic concentration was determined by exposing different concentrations of drugs (from 0.01 to 10 mg/mL). Cell death measurement revealed that the drug concentrations lower than 0.05 mg/mL were non-toxic concentrations for each drug, and these doses were used for the main experiments. We found that neem and licorice showed robust anti-inflammatory responses compared with ibuprofen. However, boswellia and guggul did not demonstrate significant anti-inflammatory responses. We concluded that neem and licorice are more effective than ibuprofen in suppressing LPS-induced inflammation in C2C12 cells.

  14. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  15. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  16. Stem cells.

    Science.gov (United States)

    Redi, Carlo Alberto; Monti, Manuela; Merico, Valeria; Neri, Tui; Zanoni, Mario; Zuccotti, Maurizio; Garagna, Silvia

    2007-01-01

    The application of stem cells to regenerative medicine is one of the actual hot topics in biomedicine. This research could help the cure of a number of diseases that are affecting a large share of the population. Some good results in cell replacement have already been obtained (infarcted heart, diabetes, Parkinson disease), apart from those of more traditional applications like severe burns and blood tumors. We are now facing crucial questions in stem cell biology. One of the key questions is how a cell begins to proliferate or differentiate. Genome reprogramming, both following nuclear transfer and cytoplast action, will likely highlight some of the molecular mechanisms of cell differentiation and dedifferentiation. In turn, these clues should be useful to the production of populations of reprogrammed cells that could develop into tissues or, in the future, into proper organs. We will overview what stem cells are, what roles they play in normal developmental processes and how stem cells could have the potential to treat diseases.

  17. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  18. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  19. Lamin A/C mutants disturb sumo1 localization and sumoylation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Émilie Boudreau

    Full Text Available A-type lamins A and C are nuclear intermediate filament proteins in which mutations have been implicated in multiple disease phenotypes commonly known as laminopathies. A few studies have implicated sumoylation in the regulation of A-type lamins. Sumoylation is a post-translational protein modification that regulates a wide range of cellular processes through the attachment of small ubiquitin-related modifier (sumo to various substrates. Here we showed that laminopathy mutants result in the mislocalization of sumo1 both in vitro (C2C12 cells overexpressing mutant lamins A and C and in vivo (primary myoblasts and myopathic muscle tissue from the Lmna(H222P/H222P mouse model. In C2C12 cells, we showed that the trapping of sumo1 in p.Asp192Gly, p.Gln353Lys, and p.Arg386Lys aggregates of lamin A/C correlated with an increased steady-state level of sumoylation. However, lamin A and C did not appear to be modified by sumo1. Our results suggest that mutant lamin A/C alters the dynamics of sumo1 and thus misregulation of sumoylation may be contributing to disease progression in laminopathies.

  20. Virulence diversity among bacteremic Aeromonas isolates: ex vivo, animal, and clinical evidences.

    Directory of Open Access Journals (Sweden)

    Po-Lin Chen

    Full Text Available BACKGROUND: The objective of this study was to compare virulence among different Aeromonas species causing bloodstream infections. METHODOLOGY/PRINCIPAL FINDINGS: Nine of four species of Aeromonas blood isolates, including A. dhakensis, A. hydrophila, A. veronii and A. caviae were randomly selected for analysis. The species was identified by the DNA sequence matching of rpoD. Clinically, the patients with A. dhakensis bacteremia had a higher sepsis-related mortality rate than those with other species (37.5% vs. 0%, P = 0.028. Virulence of different Aeromonas species were tested in C. elegans, mouse fibroblast C2C12 cell line and BALB/c mice models. C. elegans fed with A. dhakensis and A. caviae had the lowest and highest survival rates compared with other species, respectively (all P values <0.0001. A. dhakensis isolates also exhibited more cytotoxicity in C2C12 cell line (all P values <0.0001. Fourteen-day survival rate of mice intramuscularly inoculated with A. dhakensis was lower than that of other species (all P values <0.0001. Hemolytic activity and several virulence factor genes were rarely detected in the A. caviae isolates. CONCLUSIONS/SIGNIFICANCE: Clinical data, ex vivo experiments, and animal studies suggest there is virulence variation among clinically important Aeromonas species.

  1. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Directory of Open Access Journals (Sweden)

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  2. Nrf2 Protects Against TWEAK-mediated Skeletal Muscle Wasting

    Science.gov (United States)

    Al-Sawaf, Othman; Fragoulis, Athanassios; Rosen, Christian; Kan, Yuet Wai; Sönmez, Tolga Taha; Pufe, Thomas; Wruck, Christoph Jan

    2014-01-01

    Skeletal muscle (SM) regeneration after injury is impaired by excessive inflammation. Particularly, the inflammatory cytokine tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a potent inducer of skeletal muscle wasting and fibrosis. In this study we investigated the role of Nrf2, a major regulator of oxidative stress defence, in SM ischemia/reperfusion (I/R) injury and TWEAK induced atrophy. We explored the time-dependent expression of TWEAK after I/R in SM of Nrf2-wildtype (WT) and knockout (KO) mice. Nrf2-KO mice expressed significant higher levels of TWEAK as compared to WT mice. Consequently, Nrf2-KO mice present an insufficient regeneration as compared to Nrf2-WT mice. Moreover, TWEAK stimulation activates Nrf2 in the mouse myoblast cell line C2C12. This Nrf2 activation inhibits TWEAK induced atrophy in C2C12 differentiated myotubes. In summary, we show that Nrf2 protects SM from TWEAK-induced cell death in vitro and that Nrf2-deficient mice therefore have poorer muscle regeneration.

  3. Myogenic factors that regulate expression of muscle-specific microRNAs.

    Science.gov (United States)

    Rao, Prakash K; Kumar, Roshan M; Farkhondeh, Mina; Baskerville, Scott; Lodish, Harvey F

    2006-06-01

    Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.

  4. Sickle cell anemia

    Science.gov (United States)

    ... Anemia - sickle cell; Hemoglobin SS disease (Hb SS); Sickle cell disease Images Red blood cells, sickle cell Red blood cells, normal Red blood ... multiple sickle cells Red blood cells, sickle cells Red blood cells, sickle and ... Heeney MM, Ware RE. Sickle cell disease. In: Orkin SH, Fisher DE, Ginsburg D, Look ...

  5. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  6. Cell, cell, cell: fuel cell applications moving ahead

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2001-11-01

    Developments in fuel cell technology within the last decade, such as the targeting by major automakers of non-polluting fuel cells as an alternative to the internal combustion engine, are reviewed. For example, Ballard Power Systems of Vancouver is the exclusive supplier to both DaimlerCrysler and the Ford Motor Company of the fuel cell stacks that produce the power in fuel cell systems. Ballard plans the commercial launch of transit bus engines in 2002 and automotive products between 2003 and 2005. The company also sees huge opportunities for fuel cells in stationary and portable power applications. At the same time, the Calgary-based fuel cell division of Energy Ventures Inc. is developing a direct methanol fuel cell that eliminates the intermediate step of 'reforming' methanol into hydrogen that is required in the Ballard process. Energy Ventures targets small niche markets such as small utility vehicles for its direct methanol fuel cell. A completely self-contained fuel cell of this type is expected to be ready in 2002. Solid oxide fuel cells for off-grid remote power units as well as for home heat and power is yet another field of development that will be particularly attractive to operations in remote areas where reliable grid electricity is expensive and hard to obtain. A prototype 2.3 kW residential power system using natural gas was made available by Global Thermoelectric Inc in June 2001; field testing is planned for 2002, with commercial production in late 2003 or 2004. The Calgary-based Snow Leopard Resources Inc plans to use pure hydrogen sulphide obtained from sour natural gas as a hydrogen source. The prime focus of Snow Leopard is on gas plants looking for ways to increase their efficiency, obtain carbon dioxide credits and generate electricity on site. This type of fuel cell also could be of interest to companies with shut-in sour gas since these companies could use the stationary fuel cell system to generate electricity.

  7. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  8. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  9. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Cambier, Linda [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France); Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France)

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  10. A Novel Synaptobrevin/VAMP Homologous Protein (VAMP5) Is Increased during In Vitro Myogenesis and Present in the Plasma Membrane

    Science.gov (United States)

    Zeng, Qi; Subramaniam, V. Nathan; Wong, Siew Heng; Tang, Bor Luen; Parton, Robert G.; Rea, Shane; James, David E.; Hong, Wanjin

    1998-01-01

    cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102–amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the mRNA for VAMP5 is preferentially expressed in the skeletal muscle and heart, whereas significantly lower levels are detected in several other tissues but not in the brain. During in vitro differentiation (myogenesis) of C2C12 myoblasts into myotubes, the mRNA level for VAMP5 is increased ∼8- to 10-fold. Immunoblot analysis using antibodies specific for VAMP5 shows that the protein levels are also elevated ∼6-fold during in vitro myogenesis of C2C12 cells. Indirect immunofluorescence microscopy and immunoelectron microscopy reveal that VAMP5 is associated with the plasma membrane as well as intracellular perinuclear and peripheral vesicular structures of myotubes. Epitope-tagged versions of VAMP5 are similarly targeted to the plasma membrane. PMID:9725904

  11. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  12. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sung Hee Kim

    2013-01-01

    Full Text Available The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu was examined. Ethanol extract of yuja peel (YPEE significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]-2-deoxy-D-glucose (2-NBDG uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE and water extract of yuja peel (YPWE or pulp (YpWE did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ and AMP-activated protein kinase (AMPK activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD. Compared with control mice on a normal diet (ND, these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG, and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG, total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD. Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models.

  13. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Sung Hee; Hur, Haeng Jeon; Yang, Hye Jeong; Kim, Hyun Jin; Kim, Min Jung; Park, Jae Ho; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young; Hwang, Jin-Taek

    2013-01-01

    The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ) and AMP-activated protein kinase (AMPK) activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD). Compared with control mice on a normal diet (ND), these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG), and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG), total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD). Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models.

  14. Electrochemical cell

    Science.gov (United States)

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  15. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    DEFF Research Database (Denmark)

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C;

    2013-01-01

    , Myogenin, NCAM, CD34, and M-Cadherin, all known to be implicated in satellite cell activation/proliferation following muscle damage. This up regulation was detected in more cell types. Ectopic expression of SPARC in the muscle progenitor cell line C2C12 was performed to mimic the high levels of SPARC seen......Skeletal muscle repair is mediated primarily by the muscle stem cell, the satellite cell. Several factors, including extracellular matrix, are known to regulate satellite cell function and regeneration. One factor, the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) is highly up......-regulated during skeletal muscle disease, but its function remains elusive. In the present study, we demonstrate a prominent yet transient increase in SPARC mRNA and protein content during skeletal muscle regeneration that correlates with the expression profile of specific muscle factors like MyoD, Myf5, Myf6...

  16. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...

  17. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  18. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. II. Study of low RH cycling test with air RH at 62%/0%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of low relative humidity (RH) cycling (RH{sub C} 62%/0%) on the degradation mechanisms of a single proton exchange membrane fuel cell (5 x 5 cm{sup 2}) was investigated and compared to a cell operated at constant humidification (RH{sub C} = 62%). The overall cell performance loss was near 33 {mu}V h{sup -1}, which is greater than the voltage decay under constant RH condition near 3 {mu}V h{sup -1}. The electroactive surface was reduced but to an acceptable level. Impedance spectroscopy revealed that the ohmic and charge transfer resistances were reduced by the likely improved hydration of the ionomeric layer at the catalyst due to hydrogen crossover. This was so important that H{sub 2} starvation was finally responsible for the collapse of the cell after 650 h. Transmission electron microscopy showed occurrence of various phenomena, e.g., bubbles and pinholes formation in the membrane due to local overheat from hydrogen combustion at the cathode, and thickness reduction of catalytic layers. The water up take obtained by {sup 1}H NMR within the membrane electrode assembly (MEA) after low RH cycling reduced by 24% compared to a fresh MEA. Observations are also compared to those obtained at high RH cycling (RH{sub C} 62%/100%) presented in Part I of this study [1]. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells ... red blood cells. This leads to anemia. The sickle cells also get stuck in blood vessels, blocking blood ...

  20. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease?Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... disease, hemoglobin SS disease, hemoglobin synthesis, hemoglobinopathies, ... cell anemia, sickle cell crisis, vaso-occlusive crisis Family Health, ...

  1. Stem Cell Information: Glossary

    Science.gov (United States)

    ... bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue. Cell-based therapies —Treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or ...

  2. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  3. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  4. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  5. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  6. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  7. The Adhesion Modulating Properties of Tenascin-W

    Directory of Open Access Journals (Sweden)

    Florence Brellier, Enrico Martina, Matthias Chiquet, Jacqueline Ferralli, Michael van der Heyden, Gertraud Orend, Johannes C. Schittny, Ruth Chiquet-Ehrismann, Richard P. Tucker

    2012-01-01

    Full Text Available Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.

  8. Preparation of a recombinant adeno-associated viral vector with a mutation of human factor IX in large scale and its expression in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of adeno-associated viral vectors conraining a mutation of human factor IX (hFIXR338A) with different regulation elements were constructed and used to transduce cell lines. The plasmids and the stable transduction cell clones with high expression level of hFIXR338Awere obtained by selecting and optimizing, and then, the recombinant adeno-associated viral vector with hFIXR338Awas prepared via novel rHSV/AAV hybrid virus packaging system on a large scale, which contained the capsid protein genes. A method for producing rAAV-hFIXR338A viral stocks on a large scale and higher fiter was established,which can be used for industrial purpose. The titer of rAAV-hFIXR338A was more than 1.25x1012 particle/mL, and then, a mammalian cell line, C2C12 and the factor IXknock-out mice were transfected with the rAAV-hFIXR338Ain vitro and in vivo. The results show that the high-level expression of rAAV-hFIXR338A was achieved in cell line and hemophilia B mice. It reached at (2551.32±92.14) ng@ (106cells)-1 @ (24 h)-1 in C2C12 cell in vitro and had a peak concentration of 463.28 ng/mL in mice treated with rAAV-hFIX R338A, which was as high as the expression of rAAV-hFIX -wt (2565.76±64.36) ng@ (106 cells)-1@ (24 h)-1 in C2C12 and 453.92 ng/mL in the mice treated with rAAV-hFIX-wt) in vitro and in vivo, there is no any difference between two groups, but the clotting activity of hFIXR338A is about 2.46times higher than that of hFIX-wt. It was first reported that a mutation of human factor IX was used into gene therapy research for hemophilia B, meanwhile, a novel packaging system, rAAV/HSV was used for preparation of rAAV-hFIX R338A on a large scale, which laid the foundation of industrial production for applying rAAV viral stocks to gene therapy clinical trial for hemophilia B mediated with rAAV-hFIX.``

  9. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  10. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  11. Purified high molecular weight synthetic Aβ(1-42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.

    Science.gov (United States)

    Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry

    2011-06-15

    Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction.

  12. Milk-derived ribonuclease 5 preparations induce myogenic differentiation in vitro and muscle growth in vivo.

    Science.gov (United States)

    Knight, Matthew I; Tester, Angus M; McDonagh, Matthew B; Brown, Andrew; Cottrell, Jeremy; Wang, Jianghui; Hobman, Peter; Cocks, Benjamin G

    2014-12-01

    Ribonuclease 5, also known as angiogenin, is a stable and abundant ribonuclease in milk whey protein, which is able to regulate several cellular functions, including capillary formation, neuron survival, and epithelial cell growth. Ribonuclease 5 is important for protein synthesis directly stimulating rRNA synthesis in the nucleolus. Here, we show that biologically active RNase5 can be purified from bovine milk. Furthermore, we show that milk-derived RNase5 directly stimulates muscle cell differentiation in vitro, inducing C2C12 cell differentiation and myogenesis. When supplemented into the diet of healthy adult mice, milk-derived RNase5 preparations promoted muscle weight gain and grip strength. Collectively, these data indicate that milk-derived RNase5 preparations exhibit a novel role in skeletal muscle cell function.

  13. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  14. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  15. Red blood cells, multiple sickle cells (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  16. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  17. CellFinder: a cell data repository

    OpenAIRE

    Stachelscheid, H.; Seltmann, S.; Lekschas, F.; Fontaine, J.F.; Mah, N.; Neves, M.; Andrade-Navarro, M.A.; Leser, U; Kurtz, A.

    2014-01-01

    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue t...

  18. Molluscan cells in culture: primary cell cultures and cell lines

    OpenAIRE

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as bi...

  19. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  20. Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

    Directory of Open Access Journals (Sweden)

    Amna T

    2012-03-01

    Full Text Available Touseef Amna1, M Shamshi Hassan2, Ki-Taek Nam2, Yang You Bing3, Nasser AM Barakat2, Myung-Seob Khil2, Hak Yong Kim1,21Center for Healthcare Technology Development, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Korea; 3Animal Science and Technology College, Henan University of Science and Technology, Luoyang, ChinaAbstract: The aim of this study was to fabricate camptothecin/iron(III oxide (CPT/Fe2O3-loaded poly(D,L-lactide-co-glycolide (PLGA composite mats to modulate the CPT release and to improve the structural integrity and antitumor activity of the released drug. The CPT/ Fe2O3-loaded PLGA ultrafine fibers were prepared for the first time by electrospinning a composite solution of CPT/Fe2O3 and neat PLGA (4 weight percent. The physicochemical characterization of the electrospun composite mat was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction pattern. The medicated composite fibers were evaluated for their cytotoxicity on C2C12 cells using Cell Counting Kit-8 assay (Sigma-Aldrich Corporation, St Louis, MO. The in vitro studies indicated a slow and prolonged release over a period of 96 hours with mild initial burst. Scanning electron microscopy, thermogravimetry, and X-ray diffraction studies confirmed the interaction of CPT/Fe2O3 with the PLGA matrix and showed that the crystallinity of CPT decreased after loading. Incorporation of CPT in the polymer media affected both the morphology and the size of the CPT/Fe2O3-loaded PLGA composite fibers. Electron probe microanalysis and energy dispersive X-ray spectroscopy results confirmed well-oriented composite ultrafine fibers with good incorporation of CPT/Fe2O3. The cytotoxicity results illustrate that the pristine PLGA did not exhibit noteworthy cytotoxicity; conversely, the CPT

  1. Protein kinase D2 is an essential regulator of murine myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Alexander Kleger

    Full Text Available Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC family. The protein kinase D (PKD isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12 as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration.

  2. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  3. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  4. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  5. Antiparietal cell antibody test

    Science.gov (United States)

    APCA; Anti-gastric parietal cell antibody; Atrophic gastritis - anti-gastric parietal cell antibody; Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; ...

  6. Non-invasive monitoring of osteogenic differentiation on microtissue arrays under physiological conditions using scanning electrochemical microscopy

    NARCIS (Netherlands)

    Sridhar, Adithya; Berg, van den Albert; Le Gac, Séverine

    2014-01-01

    In this paper, we present a non-invasive assay using scanning electrochemical microscopy (SECM) for detecting osteogenic differentiation at physiological conditions (pH 7.5) on arrays of C2C12 microtissues. Upon exposure to bone morphogenic protein 2 (BMP-2), C2C12 microtissues differentiate and exp

  7. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  8. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  9. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...... spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins...... expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compare to tissue. This revealed unexpectedly...

  10. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  11. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  12. Photoelectrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, R. David (Newton, MA); Boudreau, Robert A. (Norton, MA)

    1983-06-14

    A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.

  13. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  14. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Wang, Y; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  15. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach

    Science.gov (United States)

    Scott, John B.; Ward, Catherine L.; Corona, Benjamin T.; Deschenes, Michael R.; Harrison, Benjamin S.; Saul, Justin M.; Christ, George J.

    2017-01-01

    Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries. PMID:28123368

  16. Poly(glycerol sebacate)/poly(butylene succinate-butylene dilinoleate) fibrous scaffolds for cardiac tissue engineering.

    Science.gov (United States)

    Tallawi, Marwa; Zebrowski, David C; Rai, Ranjana; Roether, Judith A; Schubert, Dirk W; El Fray, Miroslawa; Engel, Felix B; Aifantis, Katerina E; Boccaccini, Aldo R

    2015-06-01

    The present article investigates the use of a novel electrospun fibrous blend of poly(glycerol sebacate) (PGS) and poly(butylene succinate-butylene dilinoleate) (PBS-DLA) as a candidate for cardiac tissue engineering. Random electrospun fibers with various PGS/PBS-DLA compositions (70/30, 60/40, 50/50, and 0/100) were fabricated. To examine the suitability of these fiber blends for heart patches, their morphology, as well as their physical, chemical, and mechanical properties were measured before examining their biocompatibility through cell adhesion. The fabricated fibers were bead-free and exhibited a relatively narrow diameter distribution. The addition of PBS-DLA to PGS resulted in an increase of the average fiber diameter, whereas increasing the amount of PBS-DLA decreased the hydrophilicity and the water uptake of the nanofibrous scaffolds to values that approached those of neat PBS-DLA nanofibers. Moreover, the addition of PBS-DLA significantly increased the elastic modulus. Initial toxicity studies with C2C12 myoblast cells up to 72 h confirmed nontoxic behavior of the blends. Immunofluorescence analyses and scanning electron microscopy analyses confirmed that C2C12 cells showed better cell attachment and proliferation on electrospun mats with higher PBS-DLA content. However, immunofluorescence analyses of the 3-day-old rat cardiomyocytes cultured for 2 and 5 days demonstrated better attachment on the 70/30 fibers containing well-aligned sarcomeres and expressing high amounts of connexin 43 in cellular junctions indicating efficient cell-to-cell communication. It can be concluded, therefore, that fibrous PGS/PBS-DLA scaffolds exhibit promising characteristics as a biomaterial for cardiac patch applications.

  17. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.

    Science.gov (United States)

    Yeong, W Y; Sudarmadji, N; Yu, H Y; Chua, C K; Leong, K F; Venkatraman, S S; Boey, Y C F; Tan, L P

    2010-06-01

    An advanced manufacturing technique, selective laser sintering (SLS), was utilized to fabricate a porous polycaprolactone (PCL) scaffold designed with an automated algorithm in a parametric library system named the "computer-aided system for tissue scaffolds" (CASTS). Tensile stiffness of the sintered PCL strut was in the range of 0.43+/-0.15MPa when a laser power of 3W and scanning speed of 150 in s(-1) was used. A series of compressive mechanical characterizations was performed on the parametric scaffold design and an empirical formula was presented to predict the compressive stiffness of the scaffold as a function of total porosity. In this work, the porosity of the scaffold was selected to be 85%, with micropores (40-100mum) throughout the scaffold. The compressive stiffness of the scaffold was 345kPa. The feasibility of using the scaffold for cardiac tissue engineering was investigated by culturing C2C12 myoblast cells in vitro for 21days. Fluorescence images showed cells were located throughout the scaffold. High density of cells at 1.2x10(6)cellsml(-1) was recorded after 4days of culture. Fusion and differentiation of C2C12 were observed as early as 6days in vitro and was confirmed with myosin heavy chain immunostaining after 11days of cell culture. A steady population of cells was then maintained throughout 21days of culturing. This work demonstrated the feasibility of tailoring the mechanical property of the scaffold for soft tissue engineering using CASTS and SLS. The macroarchitecture of the scaffold can be modified efficiently to fabricate scaffolds with different macropore sizes or changing the elemental cell design in CASTS. Further process and design optimization could be carried out in the future to fabricate scaffolds that match the tensile strength of native myocardium, which is of the order of tens of kPa.

  18. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    Science.gov (United States)

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  19. Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Archana [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Bhat, Sumrita [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India); Nayak, Vijayashree, E-mail: vijayashree@goa.bits-pilani.ac.in [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Kumar, Ashok, E-mail: ashokkum@iitk.ac.in [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India)

    2015-02-01

    Three dimensional scaffolds synthesized using natural or synthetic polymers act as an artificial niche for cell adherence and proliferation. In this study, we have fabricated cryogels employing blend of poly (ethylene glycol) (PEG) and gelatin using two different crosslinkers like, glutaraldehyde and EDC-NHS by cryogelation technique. Synthesized matrices possessed interconnected porous structure in the range of 60–100 μm diameter and regained their original length after 90% compression without deformation. Visco-elastic behavior was studied by rheology and unconfined compression analysis, elastic modulus of these cryogels was observed to be > 10{sup 5} Pa which showed their elasticity and mechanical strength. TGA and DSC also showed the stability of these cryogels at different temperatures. In vitro degradation capacity was analyzed for 4 weeks at 37 °C. IMR-32, C2C12 and Cos-7 cells proliferation and ECM secretion on PEG–gelatin cryogels were observed by SEM and fluorescent analysis. In vitro biocompatibility was analyzed by MTT assay for the period of 15 days. Furthermore, cell proliferation efficiency, metabolic activity and functionality of IMR-32 cells were analyzed by neurotransmitter assay and DNA quantification. The cell–matrix interaction, elasticity, mechanical strength, stability at different temperatures, biocompatible, degradable nature showed the potentiality of these cryogels towards soft tissue engineering such as neural, cardiac and skin. - Highlights: • PEG–gelatin cryogel matrices were produced by cryogelation technology. • Matrices showed suitable properties for tissue engineering applications. • Polymeric cryogels supported growth of IMR-32, C2C12 and Cos-7 cells in vitro.

  20. Cell culture purity issues and DFAT cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shengjuan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Bergen, Werner G. [Program in Cellular and Molecular Biosciences/Department of Animal Sciences, Auburn University, Auburn, AL 36849 (United States); Hausman, Gary J. [Animal Science Department, University of Georgia, Athens, GA 30602-2771 (United States); Zan, Linsen, E-mail: zanls@yahoo.com.cn [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Dodson, Michael V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  1. Theophylline is able to partially revert cachexia in tumour-bearing rats

    Directory of Open Access Journals (Sweden)

    Olivan Mireia

    2012-08-01

    Full Text Available Abstract Background and aims The aim of the present investigation was to examine the anti-wasting effects of theophylline (a methylxantine present in tea leaves on a rat model of cancer cachexia. Methods The in vitro effects of the nutraceuticals on proteolysis were examined on muscle cell cultures submitted to hyperthermia. Individual muscle weights, muscle gene expression, body composition and cardiac function were measured in rats bearing the Yoshida AH-130 ascites hepatoma, following theophylline treatment. Results Theophylline treatment inhibited proteolysis in C2C12 cell line and resulted in an anti-proteolytic effect on muscle tissue (soleus and heart, which was associated with a decrease in circulating TNF-alpha levels and with a decreased proteolytic systems gene expression. Treatment with the nutraceutical also resulted in an improvement in body composition and cardiac function. Conclusion Theophylline - alone or in combination with drugs - may be a candidate molecule for the treatment of cancer cachexia.

  2. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering.

    Science.gov (United States)

    Boonen, Kristel J M; Langelaan, Marloes L P; Polak, Roderick B; van der Schaft, Daisy W J; Baaijens, Frank P T; Post, Mark J

    2010-05-28

    Skeletal muscle is an appealing topic for tissue engineering because of its variety in applications for regenerative medicine, in vitro physiological model systems, and in vitro meat production. Besides conventional biochemical cues to promote muscle tissue maturation in vitro, biophysical stimuli are necessary to reach the desired functionality and texture of the engineered tissue. Stretch, caused by active movements of the body, is an important factor present in the niche of muscle progenitor cells in vivo. We therefore investigated the effects of uniaxial ramp stretch (2%) followed by uniaxial intermittent dynamic stretch (4%) on C2C12 and murine muscle progenitor cells in a 2D and 3D environment and found that stretch negatively influenced maturation in all cases, demonstrated by decreased expression of MRFs and sarcomere proteins at the RNA level and a delay in the formation of cross striations. We therefore conclude that the current protocol is not recommended for skeletal muscle tissue engineering purposes.

  3. Metallic glass thin films for potential biomedical applications.

    Science.gov (United States)

    Kaushik, Neelam; Sharma, Parmanand; Ahadian, Samad; Khademhosseini, Ali; Takahashi, Masaharu; Makino, Akihiro; Tanaka, Shuji; Esashi, Masayoshi

    2014-10-01

    We introduce metallic glass thin films (TiCuNi) as biocompatible materials for biomedical applications. TiCuNi metallic glass thin films were deposited on the Si substrate and their structural, surface, and mechanical properties were investigated. The fabricated films showed good biocompatibility upon exposure to muscle cells. Also, they exhibited an average roughness of films was shown to be free from Ni and mainly composed of a thin titanium oxide layer, which resulted in the high surface biocompatibility. In particular, there was no cytotoxicity effect of metallic glass films on the C2C12 myoblasts and the cells were able to proliferate well on these substrates. Low cost, viscoelastic behavior, patternability, high electrical conductivity, and the capability to coat various materials (e.g., nonbiocompatible materials) make TiCuNi as an attractive material for biomedical applications.

  4. High-Density Spot Seeding for Tissue Model Formation

    Science.gov (United States)

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2016-01-01

    A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.

  5. Electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Heuts, J.J.F.G.; Willems, J.J.G.S.A.

    1987-10-13

    An electrochemical cell is described comprising a negative electrode. The electrochemically active material of which consists of an intermetallic compound forming a hydride with hydrogen, which compound has the CaCu/sub 5/-structure and the compositional formula AB/sub m/C/sub n/, where m+n is between 4.8 and 5.4, where n is between 0.05 and 0.6, in which A consists of Misch-metal or of one or more elements selected from the group consisting of Y, Ti, Hf, Zr, Ca, Th, La and the remaining rare earth metals, in which the total atomic quantities of the elements Y, Ti, Hf and Zr may not be more than 40% of A. B consists of two or more elements selected from the group formed by Ni, Co, Cu, Fe and Mn, where the maximum atomic quantity per gram atom of A is for Ni: 3.5, for Co:3.5, for Cu:3.5, for Fe:2.0 and for Mn:1.0, and C consists of one or more elements selected from the group formed by Al, Cr and Si in the indicated atomic quantities: Al:0.05-0.6, Cr:0.05-0.5 and Si:0.05-0.5, characterized in that the electrochemically active material additionally comprises one or more metals selected from the group formed by Pd, Pt, Ir and Rh, the atomic quantity per gram atom of A being from 0.001 to 0.5.

  6. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  7. Cell culture purity issues and DFAT cells.

    Science.gov (United States)

    Wei, Shengjuan; Bergen, Werner G; Hausman, Gary J; Zan, Linsen; Dodson, Michael V

    2013-04-12

    Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  8. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  9. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.

  10. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  11. Cell sheet engineering

    Directory of Open Access Journals (Sweden)

    Masayuki Yamato

    2004-05-01

    Full Text Available We have developed ‘cell sheet engineering’ in order to avoid the limitations of tissue reconstruction using biodegradable scaffolds or single cell suspension injection. Our concept is tissue reconstruction, not from single cells, but from cell sheets. Cell sheets are prepared using temperature-responsive culture dishes. Temperature-responsive polymers are covalently grafted onto the dishes, allowing various types of cells to adhere and proliferate at 37°C. The cells spontaneously detach when the temperature is reduced below 32°C without the need for proteolytic enzymes. The confluent cells are noninvasively harvested as single, contiguous cell sheets with intact cell-cell junctions and deposited extracellular matrix (ECM. We have used these harvested cell sheets for various tissue reconstructions, including ocular surfaces, periodontal ligaments, cardiac patches, and bladder augmentation.

  12. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  13. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  14. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  15. CellFinder: a cell data repository.

    Science.gov (United States)

    Stachelscheid, Harald; Seltmann, Stefanie; Lekschas, Fritz; Fontaine, Jean-Fred; Mah, Nancy; Neves, Mariana; Andrade-Navarro, Miguel A; Leser, Ulf; Kurtz, Andreas

    2014-01-01

    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians.

  16. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  17. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  18. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  19. Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Hori, Yusuke S; Kuno, Atsushi; Hosoda, Ryusuke; Tanno, Masaya; Miura, Tetsuji; Shimamoto, Kazuaki; Horio, Yoshiyuki

    2011-09-01

    Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. We previously showed that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and activator of the NAD(+)-dependent protein deacetylase SIRT1, delays the progression of heart failure and prolongs the lifespan of δ-sarcoglycan-deficient hamsters. Because a defect of dystroglycan complex causes muscular dystrophies, and δ-sarcoglycan is a component of this complex, we hypothesized that resveratrol might be a new therapeutic tool for muscular dystrophies. Here, we examined resveratrol's effect in mdx mice, an animal model of Duchenne muscular dystrophy. mdx mice that received resveratrol in the diet for 32 weeks (4 g/kg diet) showed significantly less muscle mass loss and nonmuscle interstitial tissue in the biceps femoris compared with mdx mice fed a control diet. In the muscles of these mice, resveratrol significantly decreased oxidative damage shown by the immunostaining of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine and suppressed the up-regulation of NADPH oxidase subunits Nox4, Duox1, and p47(phox). Resveratrol also reduced the number of α-smooth muscle actin (α-SMA)(+) myofibroblast cells and endomysial fibrosis in the biceps femoris, although the infiltration of CD45(+) inflammatory cells and increase in transforming growth factor-β1 (TGF-β1) were still observed. In C2C12 myoblast cells, resveratrol pretreatment suppressed the TGF-β1-induced increase in reactive oxygen species, fibronectin production, and expression of α-SMA, and SIRT1 knockdown blocked these inhibitory effects. SIRT1 small interfering RNA also increased the expression of Nox4, p47(phox), and α-SMA in C2C12 cells. Taken together, these findings indicate that SIRT1 activation may be a useful strategy for treating muscular dystrophies.

  20. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Haruka Amitani

    Full Text Available Hydrogen (H(2 acts as a therapeutic antioxidant. However, there are few reports on H(2 function in other capacities in diabetes mellitus (DM. Therefore, in this study, we investigated the role of H(2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2 promoted 2-[(14C]-deoxy-d-glucose (2-DG uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K, protein kinase C (PKC, and AMP-activated protein kinase (AMPK, although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p. and oral (p.o. administration. However, long-term p.o. administration of H(2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  1. A 3D bioprinted complex structure for engineering the muscle-tendon unit.

    Science.gov (United States)

    Merceron, Tyler K; Burt, Morgan; Seol, Young-Joon; Kang, Hyun-Wook; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-06-17

    Three-dimensional integrated organ printing (IOP) technology seeks to fabricate tissue constructs that can mimic the structural and functional properties of native tissues. This technology is particularly useful for complex tissues such as those in the musculoskeletal system, which possess regional differences in cell types and mechanical properties. Here, we present the use of our IOP system for the processing and deposition of four different components for the fabrication of a single integrated muscle-tendon unit (MTU) construct. Thermoplastic polyurethane (PU) was co-printed with C2C12 cell-laden hydrogel-based bioink for elasticity and muscle development on one side, while poly(ϵ-caprolactone) (PCL) was co-printed with NIH/3T3 cell-laden hydrogel-based bioink for stiffness and tendon development on the other. The final construct was elastic on the PU-C2C12 muscle side (E = 0.39 ± 0.05 MPa), stiff on the PCL-NIH/3T3 tendon side (E = 46.67 ± 2.67 MPa) and intermediate in the interface region (E = 1.03 ± 0.14 MPa). These constructs exhibited >80% cell viability at 1 and 7 d after printing, as well as initial tissue development and differentiation. This study demonstrates the versatility of the IOP system to create integrated tissue constructs with region-specific biological and mechanical characteristics for MTU engineering.

  2. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  3. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  4. Cell mechanics: a dialogue

    Science.gov (United States)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  5. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Xingxing Kong

    Full Text Available BACKGROUND: Sirtuin 3 (SIRT3 is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS-detoxifying enzymes, but the molecular mechanism underlying this is not well understood. RESULTS: Here we show that PGC-1alpha strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1alpha led to decreased Sirt3 gene expression. PGC-1alpha activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR binding element (ERRE (-407/-399 mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRalpha bound to the identified ERRE and PGC-1alpha co-localized with ERRalpha in the mSirt3 promoter. Knockdown of ERRalpha reduced the induction of Sirt3 by PGC-1alpha in C(2C(12 myotubes. Furthermore, Sirt3 was essential for PGC-1alpha-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1alpha in C(2C(12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1alpha on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1alpha on mitochondrial biogenesis in C(2C(12 myotubes. CONCLUSION: Our results indicate that Sirt3 functions as a downstream target gene of PGC-1alpha and mediates the PGC-1alpha effects on cellular ROS production and mitochondrial biogenesis. Thus

  6. 脂蛋白脂酶缺失症基因治疗载体的构建及功能验证%Construction and Verification of Gene Therapy Vector for Lipoprotein Lipase Deficiency Disease

    Institute of Scientific and Technical Information of China (English)

    王恺龙; 郑李彬; 张帆; 沈良才; Libby Andrew; 李旭丽; 张瑾

    2013-01-01

    脂蛋白脂酶(lipoprotein lipase,LPL)是甘油三酯分解的限速酶,LPL基因缺失会引起高血脂症,虽然发病率低,但到目前为止,尚无有效治疗手段.该文构建了用于纠正LPL缺失基因型的逆转录病毒载体MSCV-hLPL,结果表明,MSCV-hLPL可以高效侵染体外培养的细胞系C2C12、HEK293和3T3-L1,并且都可以产生具有活性的脂蛋白脂酶.利用MSCV-hLPL侵染后的C2C12、HEK293和3T3-L1,分别注射到裸鼠皮下组织,发现C2C12和3T3-L1可以分泌脂蛋白脂酶到临近的肌肉组织中,显著提高LPL活性.以上工作证明,基因治疗载体可以纠正脂蛋白脂酶缺失的基因型,而脂肪细胞和肌肉细胞移植入裸鼠体内后,均可以作为生物反应器产生具有活性的LPL.这是该领域中的一次开拓性尝试,为脂蛋白脂酶缺失症治疗方法的开发打下了坚实的基础.%Lipoprotein lipase (LPL) is the rate limiting enzyme for triglycerides hydrolysis,which catalyses the hydrolysis of the triacylglycerol component of chylomicrons and very low density lipoproteins,thereby providing fatty acids and monoacylglycerol for tissue utilization.LPL gene mutation or deletion may affect the activity of LPL,and result in lipid metabolism disorder.Although the LPL deficiency disease is rare,no cure method is developed till now.In this study,the gene therapy construct MSCV-hLPL was made,which could infect muscle cell line (C2C12),kidney cell line (HEK293T) and pre-adipocyte cell line (3T3-L1) with over 80% efficiency.Nevertheless,active LPL could be detected at the surface of all these three kinds of cells.Then,three types of cells were injected into nude mice,LPL activity increased significantly in the muscle tissues under the injection sites of the 3T3-L1 line.Our results show that MSCV-hLPL could correct the LPL-/-genotype and the adipose tissue may be the best tissue for transplantation in the future.This is a ground-breaking test in LPL deficiency treatment field

  7. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Mariacristina, E-mail: mariacristina.gagliardi@iit.it

    2012-12-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%-85% and 10%-22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: Black-Right-Pointing-Pointer Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers Black-Right-Pointing-Pointer Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. Black-Right-Pointing-Pointer Protein adsorption depended on the macromolecular composition and surface properties. Black-Right-Pointing-Pointer Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  8. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.

  9. Vav3, a GEF for RhoA, Plays a Critical Role under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Jie Sha

    2014-09-01

    Full Text Available BackgroundThe role of small GTPase molecules is poorly understood under high glucose conditions.MethodsWe analyzed the expression pattern of Vav3 in skeletal muscle C2C12 cells under high glucose culture condition with reverse transcription-polymerase chain reaction and Western blot analysis. We also measured glucose uptake using isotope-labelled glucose.ResultsWe showed that expression of Vav3 (a guanine nucleotide exchange factor for RhoA increased. mRNA and protein levels in skeletal muscle C2C12 cells under high glucose conditions. The AMP-activated protein kinase (AMPK activator AMPK agonist 5-aminoimidazole-4-carboxy-amide-1-d-ribofuranoside (AICAR suppressed high glucose-induced Vav3 induction. In addition, exposure of cells to high glucose concentration increased the phosphorylation of PAK-1, a molecule downstream of RhoA. The phosphorylation of paxillin, a downstream molecule of PAK-1, was also increased by exposure to high glucose. Phosphorylation of these molecules was not observed in the presence of AICAR, indicating that AMPK is involved in the RhoA signal pathway under high glucose conditions. Knock down of Vav3 enhances metformin-mediated glucose uptake. Inhibition of AMPK blocked the increases of Vav3 knock down-induced glucose uptake. Metformin-mediated Glut4 translocation was also increased by Vav3 knock-down, suggesting that Vav3 is involved in metformin-mediated glucose uptake.ConclusionThese results demonstrate that Vav3 is involved in the process of metformin-mediated glucose regulation.

  10. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  11. T-Cell Lymphoma

    Science.gov (United States)

    Getting the Facts T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). T-cell lymphomas account for ...

  12. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  13. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  14. Chromium Picolinate did not Effect on the Proliferation and Differentiation of Myoblasts

    Directory of Open Access Journals (Sweden)

    M. C. Tsa

    2007-01-01

    Full Text Available This experiment is conducted in vitro to investigate trivalent chromium picolinate affects the proliferation and differentiation of myoblasts. A myoblasts cell line (C2C12 from rats was used in the experiment. These were randomly divided into the control group, the Pic group (50ppb picolinate and the CrPic group (50ppb chromium picolinate. The differentiation of myoblasts reveals that the number of differentiated myotubes, creatine kinase (CK activity and the aldolase (ALB activity do not differ among the three groups (P > 0.05. The activity of hexokinase in the CrPic and Pic groups clearly exceeds that in the control group (P 0.05. Myoblast proliferation was the same across the three groups (P > 0.05, and the quantity of DNA in the control group exceeded that in the Pic group (P < 0.05. The experiment indicated that 200ppb chromium picolinate did not influence the proliferation and differentiation of myoblasts.

  15. Ganglion cell like cells, diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Anand Shankar Ammanagi

    2013-01-01

    Full Text Available We report a case of cutaneous swelling found on the left anterior axillary fold of a 41-year-old man. Gross examination of specimen excised from the dermis showed a well-circumscribed nodule histologically composed of spindle cells with interspersed ganglion cell like cells. On hematoxylin and eosine (H and E staining it was diagnosed as ganglioneuroma. Ganglioneuromas are rare, benign, fully differentiated tumors that contain mature schwann cells, ganglion cells, fibrous tissue, and nerve fibers. They are commonly found along the paravertebral sympathetic ganglia and sometimes in the adrenal medulla. However primary cutaneous ganglioneuroma is an extremely rare tumor. Immunohistochemical workup revealed a fibroblastic origin and hence the case was diagnosed as fibromatosis with ganglion cell like fibroblasts. This case report suggests that the features considered diagnostic of ganglioneuromas can occur in other cutaneous lesions and, therefore, this diagnosis cannot be offered only on the basis of H and E.

  16. Generation of iPS Cells from Granulosa Cells.

    Science.gov (United States)

    Mao, Jian; Liu, Lin

    2016-01-01

    Various types of somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells. Somatic stem cells may generate iPS cells more efficiently than do differentiated cells. We show that granulosa cells exhibit characteristic of somatic stem cells and can be reprogrammed to iPS cells more efficiently or with few factors. Here, we describe generation of mouse and pig iPS cells from granulosa cells with high efficiency.

  17. B cell helper assays.

    Science.gov (United States)

    Abrignani, Sergio; Tonti, Elena; Casorati, Giulia; Dellabona, Paolo

    2009-01-01

    Activation, proliferation and differentiation of naïve B lymphocytes into memory B cells and plasma cells requires engagement of the B cell receptor (BCR) coupled to T-cell help (1, 2). T cells deliver help in cognate fashion when they are activated upon recognition of specific MHC-peptide complexes presented by B cells. T cells can also deliver help in a non-cognate or bystander fashion, when they do not find specific MHC-peptide complexes on B cells and are activated by alternative mechanisms. T-cell dependent activation of B cells can be studied in vitro by experimental models called "B cell helper assays" that are based on the co-culture of B cells with activated T cells. These assays allow to decipher the molecular bases for productive T-dependent B cell responses. We show here examples of B cell helper assays in vitro, which can be reproduced with any subset of T lymphocytes that displays the appropriate helper signals.

  18. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  19. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  20. 诱导型一氧化氮合酶对骨骼肌损伤再生的影响%Role of iNOS during wound healing of skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    赖桂华; 余磊; 张翔

    2015-01-01

    目的:观察骨骼肌损伤再生中的细胞形态学变化和损伤后诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)的表达水平;观察巨噬细胞上清液对iNOS表达水平和骨骼肌再生的影响。方法制备SD大鼠骨骼肌损伤模型,损伤3 d后获取骨骼肌,进行HE染色、iNOS免疫组化分析;利用原代培养的巨噬细胞上清液处理小鼠C2C12成肌细胞株,RT-PCR技术探讨巨噬细胞和成肌细胞相互作用的分子机制。结果 HE染色可见,骨骼肌损伤处有新的血管产生并进入损伤的骨骼肌内;损伤部位iNOS表达强阳性,生发区iNOS表达呈阳性,正常与损伤细胞表达差异明显;巨噬细胞上清液处理小鼠C2C12成肌细胞株能够促进iNOS和成肌细胞因子MyoD的表达。结论骨骼肌损伤过程中,iNOS的表达增加能够促进骨骼肌的再生,加快骨骼肌的损伤修复。%Objective To observe the morphological changes and iNOS expression at cellular damaged zone during the wound healing of denervated muscle;To determine the affection of the expression of iNOS induced by supernatant of macrophages. Methods The damaged denervated muscle, three days after the damaged muscle model of rat was established, was harvested for H.E and immunohistochemical staining of iNOS. The cultured C2C12 cells were treated with supernatant of macrophages. The treated C2C12 cells were analyzed using RT-PCR method. Results New capillaries near the damaged muscle and high expression of iNOS could be observed. The expression of iNOS was different between the damaged and undamaged zones in muscle cells. The supernatant of macrophages could induce the expression of iNOS and MyoD genes. Conclusion The high expression of iNOS can accelerate the regeneration of denervated muscle during wound healing.

  1. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  2. Heterogeneous nuclear ribonucleoprotein M associates with mTORC2 and regulates mus