WorldWideScience

Sample records for c-terminal sequence switching

  1. Automation of C-terminal sequence analysis of 2D-PAGE separated proteins

    Directory of Open Access Journals (Sweden)

    P.P. Moerman

    2014-06-01

    Full Text Available Experimental assignment of the protein termini remains essential to define the functional protein structure. Here, we report on the improvement of a proteomic C-terminal sequence analysis method. The approach aims to discriminate the C-terminal peptide in a CNBr-digest where Met-Xxx peptide bonds are cleaved in internal peptides ending at a homoserine lactone (hsl-derivative. pH-dependent partial opening of the lactone ring results in the formation of doublets for all internal peptides. C-terminal peptides are distinguished as singlet peaks by MALDI-TOF MS and MS/MS is then used for their identification. We present a fully automated protocol established on a robotic liquid-handling station.

  2. Detection of reverse transcriptase termination sites using cDNA ligation and massive parallel sequencing

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz J; Boyd, Mette; Sandelin, Albin

    2013-01-01

    Detection of reverse transcriptase termination sites is important in many different applications, such as structural probing of RNAs, rapid amplification of cDNA 5' ends (5' RACE), cap analysis of gene expression, and detection of RNA modifications and protein-RNA cross-links. The throughput...... of these methods can be increased by applying massive parallel sequencing technologies.Here, we describe a versatile method for detection of reverse transcriptase termination sites based on ligation of an adapter to the 3' end of cDNA with bacteriophage TS2126 RNA ligase (CircLigase™). In the following PCR...

  3. CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing.

    Science.gov (United States)

    Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie

    2017-05-15

    B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  5. Three-terminal resistive switching memory in a transparent vertical-configuration device

    International Nuclear Information System (INIS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies

  6. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Science.gov (United States)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  7. Nucleotide sequence of a cDNA coding for the amino-terminal region of human prepro. alpha. 1(III) collagen

    Energy Technology Data Exchange (ETDEWEB)

    Toman, P D; Ricca, G A [Rorer Biotechnology, Inc., Springfield, VA (USA); de Crombrugghe, B [National Institutes of Health, Bethesda, MD (USA)

    1988-07-25

    Type III Collagen is synthesized in a variety of tissues as a precursor macromolecule containing a leader sequence, a N-propeptide, a N-telopeptide, the triple helical region, a C-telopeptide, and C-propeptide. To further characterize the human type III collagen precursor, a human placental cDNA library was constructed in gt11 using an oligonucleotide derived from a partial cDNA sequence corresponding to the carboxy-terminal part of the 1(III) collagen. A cDNA was identified which contains the leader sequence, the N-propeptide and N-telopeptide regions. The DNA sequence of these regions are presented here. The triple helical, C-telopeptide and C-propeptide amino acid sequence for human type III collagen has been determined previously. A comparison of the human amino acid sequence with mouse, chicken, and calf sequence shows 81%, 81%, and 92% similarity, respectively. At the DNA level, the sequence similarity between human and mouse or chicken type III collagen sequences in this area is 82% and 77%, respectively.

  8. Efficient farnesylation of an extended C-terminal C(x)3X sequence motif expands the scope of the prenylated proteome.

    Science.gov (United States)

    Blanden, Melanie J; Suazo, Kiall F; Hildebrandt, Emily R; Hardgrove, Daniel S; Patel, Meet; Saunders, William P; Distefano, Mark D; Schmidt, Walter K; Hougland, James L

    2018-02-23

    Protein prenylation is a post-translational modification that has been most commonly associated with enabling protein trafficking to and interaction with cellular membranes. In this process, an isoprenoid group is attached to a cysteine near the C terminus of a substrate protein by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I or II (GGTase-I and GGTase-II). FTase and GGTase-I have long been proposed to specifically recognize a four-amino acid C AAX C-terminal sequence within their substrates. Surprisingly, genetic screening reveals that yeast FTase can modify sequences longer than the canonical C AAX sequence, specifically C( x ) 3 X sequences with four amino acids downstream of the cysteine. Biochemical and cell-based studies using both peptide and protein substrates reveal that mammalian FTase orthologs can also prenylate C( x ) 3 X sequences. As the search to identify physiologically relevant C( x ) 3 X proteins begins, this new prenylation motif nearly doubles the number of proteins within the yeast and human proteomes that can be explored as potential FTase substrates. This work expands our understanding of prenylation's impact within the proteome, establishes the biologically relevant reactivity possible with this new motif, and opens new frontiers in determining the impact of non-canonically prenylated proteins on cell function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences.

    OpenAIRE

    Milla, M. E.; Brown, B. M.; Sauer, R. T.

    1993-01-01

    Many mutant variants of the P22 Arc repressor are subject to intracellular proteolysis in Escherichia coli, which precludes their expression at levels sufficient for purification and subsequent biochemical characterization. Here we examine the effects of several different C-terminal extension sequences on the expression and activity of a set of Arc mutants. We show that two tail sequences, KNQHE (st5) and H6KNQHE (st11), increase the expression levels of most mutants from 10- to 20-fold and, ...

  10. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  11. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    Science.gov (United States)

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-05-25

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.

  12. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  13. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  14. Application of nanomaterials in two-terminal resistive-switching memory devices

    Directory of Open Access Journals (Sweden)

    Jianyong Ouyang

    2010-05-01

    Full Text Available Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs, nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. Dr. Jianyong Ouyang received his bachelor degree from the Tsinghua University in Beijing, China, and MSc from the Institute of Chemistry, Chinese Academy of Science. He received his PhD from the Institute for Molecular

  15. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.

  16. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten

    1985-01-01

    DNA clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence......, subcloned into M13 mp8, and sequenced at random by the dideoxy technique, thereby generating a contiguous sequence of 1703 base pairs. This clone contained coding sequence for the C-terminal 262 amino acid residues of the beta-chain, the entire C5a fragment, and the N-terminal 98 residues of the alpha......'-chain. The 3' end of the clone had a polyadenylated tail preceded by a polyadenylation recognition site, a 3'-untranslated region, and base pairs homologous to the human Alu concensus sequence. Comparison of the derived partial human C5 protein sequence with that previously determined for murine C3 and human...

  17. Cell type-specific termination of transcription by transposable element sequences.

    Science.gov (United States)

    Conley, Andrew B; Jordan, I King

    2012-09-30

    Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription

  18. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  19. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  20. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  1. Cell type-specific termination of transcription by transposable element sequences

    Directory of Open Access Journals (Sweden)

    Conley Andrew B

    2012-09-01

    Full Text Available Abstract Background Transposable elements (TEs encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Results Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3′ UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. Conclusions TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are

  2. N-Terminal Domains in Two-Domain Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal Counterparts

    Directory of Open Access Journals (Sweden)

    Etai Jacob

    2013-04-01

    Full Text Available Computational analysis of proteomes in all kingdoms of life reveals a strong tendency for N-terminal domains in two-domain proteins to have shorter sequences than their neighboring C-terminal domains. Given that folding rates are affected by chain length, we asked whether the tendency for N-terminal domains to be shorter than their neighboring C-terminal domains reflects selection for faster-folding N-terminal domains. Calculations of absolute contact order, another predictor of folding rate, provide additional evidence that N-terminal domains tend to fold faster than their neighboring C-terminal domains. A possible explanation for this bias, which is more pronounced in prokaryotes than in eukaryotes, is that faster folding of N-terminal domains reduces the risk for protein aggregation during folding by preventing formation of nonnative interdomain interactions. This explanation is supported by our finding that two-domain proteins with a shorter N-terminal domain are much more abundant than those with a shorter C-terminal domain.

  3. The C-terminal sequence of several human serine proteases encodes host defense functions.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  4. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    Science.gov (United States)

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  5. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  6. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    Science.gov (United States)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  7. The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1

    International Nuclear Information System (INIS)

    Sun Jian; Yu Jisheng; Yu Zhiwu; Zha Xiao; Wu Yuqing

    2012-01-01

    Graphial abstract: The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1. Highlights: ► Several driving forces contribute to the interaction between heparin and peptides. ► C-terminal of HPV L1 is a potential candidate for the attachment to host cells. ► The C-terminal peptides of HPV-16 and -18 L1 have different heparin-binding. ► The different heparin-binding provides an explanation for the distinct prevalences. - Abstract: The high-risk types of human papillomaviruses (HPV) HPV-16 and -18 are the predominant types associated with cervical cancer. HPV-16 and -18 account for about 50% and 20%, respectively, of cervical cancers worldwide. While the reason and molecular mechanism of the distinct prevalence and distributions between them remain poorly understood, the binding affinity of cell surface receptor with capsid proteins, especially L1, may be involved. We examined heparin binding with two synthetic peptides corresponding to the 14 amino acid C-terminal peptides of HPV-16 and -18 L1 with the goal of comparing the equivalent residues in different HPV types. Using isothermal titration calorimetry (ITC) and static right-angle light scattering (SLS), we determined the binding constant K, reaction enthalpy ΔH, and other thermodynamic parameters in the interaction. Especially, we assessed the role of specific residues in binding with heparin by comparing the NMR spectra of free and heparin-bound peptides.

  8. Human pro. cap alpha. 1(III) collagen: cDNA sequence for the 3' end

    Energy Technology Data Exchange (ETDEWEB)

    Mankoo, B S; Dalgleish, R

    1988-03-25

    The authors have previously isolated two overlapping cDNA clones, pIII-21 and pIII-33, which encode the C-terminal end of human type III procollagen. They now present the sequence of 2520 bases encoded in these cDNAs which overlaps other previously published sequences for the same gene. The sequence presented differs from previously published sequences at five positions.

  9. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  10. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  11. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  12. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  13. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues.

    Science.gov (United States)

    Bown, David P; Gatehouse, John A

    2004-05-01

    Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.

  14. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  15. Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2003-05-01

    Full Text Available Abstract Background Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102, only the bidirectional (Synechocystis PCC 6803 or both NiFe-hydrogenases (Anabaena PCC 7120 prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. Results We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41% to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia coli, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. Conclusion Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known

  16. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  17. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  18. cDNA encoding a polypeptide including a hev ein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  19. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  20. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...

  1. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  2. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    Science.gov (United States)

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  3. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    International Nuclear Information System (INIS)

    Hollier, Mark J.; Dimmock, Nigel J.

    2005-01-01

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell

  4. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    Science.gov (United States)

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  5. Characterization of the C-terminal ER membrane anchor of PTP1B

    International Nuclear Information System (INIS)

    Anderie, Ines; Schulz, Irene; Schmid, Andreas

    2007-01-01

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure

  6. Shark IgW C region diversification through RNA processing and isotype switching.

    Science.gov (United States)

    Zhang, Cecilia; Du Pasquier, Louis; Hsu, Ellen

    2013-09-15

    Sharks and skates represent the earliest vertebrates with an adaptive immune system based on lymphocyte Ag receptors generated by V(D)J recombination. Shark B cells express two classical Igs, IgM and IgW, encoded by an early, alternative gene organization consisting of numerous autonomous miniloci, where the individual gene cluster carries a few rearranging gene segments and one C region, μ or ω. We have characterized eight distinct Ig miniloci encoding the nurse shark ω H chain. Each cluster consists of VH, D, and JH segments and six to eight C domain exons. Two interspersed secretory exons, in addition to the 3'-most C exon with tailpiece, provide the gene cluster with the ability to generate at least six secreted isoforms that differ as to polypeptide length and C domain combination. All clusters appear to be functional, as judged by the capability for rearrangement and absence of defects in the deduced amino acid sequence. We previously showed that IgW VDJ can perform isotype switching to μ C regions; in this study, we found that switching also occurs between ω clusters. Thus, C region diversification for any IgW VDJ can take place at the DNA level by switching to other ω or μ C regions, as well as by RNA processing to generate different C isoforms. The wide array of pathogens recognized by Abs requires different disposal pathways, and our findings demonstrate complex and unique pathways for C effector function diversity that evolved independently in cartilaginous fishes.

  7. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal.

    Science.gov (United States)

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, Δ espF ), N-terminal sequence (219 bp, Δ espF N ), and C-terminal sequence (528 bp, Δ espF C ) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, Δ espF/pespF , Δ espF N /pespF N , and Δ espF C /pespF C by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), Δ espF , Δ espF/pespF , Δ espF C , Δ espF C /pespF C , Δ espF N , and Δ espF N /pespF N groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, Δ espF/pespF , and Δ espF C were significantly higher than that of Δ espF , Δ espF N , Δ espF C /pespF C , and Δ espF N /pespF N group ( p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  8. Molecular cloning and sequence analysis of hamster CENP-A cDNA

    Directory of Open Access Journals (Sweden)

    Valdivia Manuel M

    2002-05-01

    Full Text Available Abstract Background The centromere is a specialized locus that mediates chromosome movement during mitosis and meiosis. This chromosomal domain comprises a uniquely packaged form of heterochromatin that acts as a nucleus for the assembly of the kinetochore a trilaminar proteinaceous structure on the surface of each chromatid at the primary constriction. Kinetochores mediate interactions with the spindle fibers of the mitotic apparatus. Centromere protein A (CENP-A is a histone H3-like protein specifically located to the inner plate of kinetochore at active centromeres. CENP-A works as a component of specialized nucleosomes at centromeres bound to arrays of repeat satellite DNA. Results We have cloned the hamster homologue of human and mouse CENP-A. The cDNA isolated was found to contain an open reading frame encoding a polypeptide consisting of 129 amino acid residues with a C-terminal histone fold domain highly homologous to those of CENP-A and H3 sequences previously released. However, significant sequence divergence was found at the N-terminal region of hamster CENP-A that is five and eleven residues shorter than those of mouse and human respectively. Further, a human serine 7 residue, a target site for Aurora B kinase phosphorylation involved in the mechanism of cytokinesis, was not found in the hamster protein. A human autoepitope at the N-terminal region of CENP-A described in autoinmune diseases is not conserved in the hamster protein. Conclusions We have cloned the hamster cDNA for the centromeric protein CENP-A. Significant differences on protein sequence were found at the N-terminal tail of hamster CENP-A in comparison with that of human and mouse. Our results show a high degree of evolutionary divergence of kinetochore CENP-A proteins in mammals. This is related to the high diverse nucleotide repeat sequences found at the centromere DNA among species and support a current centromere model for kinetochore function and structural

  9. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    Science.gov (United States)

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  10. Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation.

    Directory of Open Access Journals (Sweden)

    Lianghua Bin

    Full Text Available The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq profiling approach, we found that forkhead box c 1 (FOXC1 was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.

  11. cDNA sequences of two apolipoproteins from lamprey

    International Nuclear Information System (INIS)

    Pontes, M.; Xu, X.; Graham, D.; Riley, M.; Doolittle, R.F.

    1987-01-01

    The messages for two small but abundant apolipoproteins found in lamprey blood plasma were cloned with the aid of oligonucleotide probes based on amino-terminal sequences. In both cases, numerous clones were identified in a lamprey liver cDNA library, consistent with the great abundance of these proteins in lamprey blood. One of the cDNAs (LAL1) has a coding region of 105 amino acids that corresponds to a 21-residue signal peptide, a putative 8-residue propeptide, and the 76-residue mature protein found in blood. The other cDNA (LAL2) codes for a total of 191 residues, the first 23 of which constitute a signal peptide. The two proteins, which occur in the high-density lipoprotein fraction of ultracentrifuged plasma, have amino acid compositions similar to those of apolipoproteins found in mammalian blood; computer analysis indicates that the sequences are largely helix-permissive. When the sequences were searched against an amino acid sequence data base, rat apolipoprotein IV was the best matching candidate in both cases. Although a reasonable alignment can be made with that sequence and LAL1, definitive assignment of the two lamprey proteins to typical mammalian classes cannot be made at this point

  12. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  13. The cDNA sequence of a neutral horseradish peroxidase.

    Science.gov (United States)

    Bartonek-Roxå, E; Eriksson, H; Mattiasson, B

    1991-02-16

    A cDNA clone encoding a horseradish (Armoracia rusticana) peroxidase has been isolated and characterized. The cDNA contains 1378 nucleotides excluding the poly(A) tail and the deduced protein contains 327 amino acids which includes a 28 amino acid leader sequence. The predicted amino acid sequence is nine amino acids shorter than the major isoenzyme belonging to the horseradish peroxidase C group (HRP-C) and the sequence shows 53.7% identity with this isoenzyme. The described clone encodes nine cysteines of which eight correspond well with the cysteines found in HRP-C. Five potential N-glycosylation sites with the general sequence Asn-X-Thr/Ser are present in the deduced sequence. Compared to the earlier described HRP-C this is three glycosylation sites less. The shorter sequence and fewer N-glycosylation sites give the native isoenzyme a molecular weight of several thousands less than the horseradish peroxidase C isoenzymes. Comparison with the net charge value of HRP-C indicates that the described cDNA clone encodes a peroxidase which has either the same or a slightly less basic pI value, depending on whether the encoded protein is N-terminally blocked or not. This excludes the possibility that HRP-n could belong to either the HRP-A, -D or -E groups. The low sequence identity (53.7%) with HRP-C indicates that the described clone does not belong to the HRP-C isoenzyme group and comparison of the total amino acid composition with the HRP-B group does not place the described clone within this isoenzyme group. Our conclusion is that the described cDNA clone encodes a neutral horseradish peroxidase which belongs to a new, not earlier described, horseradish peroxidase group.

  14. Epimerization-free C-terminal peptide activation, elongation and cyclization

    NARCIS (Netherlands)

    Popović, S.

    2015-01-01

    C-terminal peptide activation and cyclization reactions are generally accompanied with epimerization (partial loss of C‐terminal stereointegrity). Therefore, the focus of this thesis was to develop epimerization-free methods for C-terminal peptide activation to enable C-terminal peptide elongation

  15. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2013-09-21

    Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.

  16. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription.

    Science.gov (United States)

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-01-01

    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal

  17. Gas tube-switched high voltage DC power converter

    Science.gov (United States)

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  18. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane.

    Science.gov (United States)

    Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter

    2018-04-12

    Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.

  19. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  20. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C

    2001-01-01

    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...

  1. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism.

    Directory of Open Access Journals (Sweden)

    Annie Nguyen

    Full Text Available Cystatin C (Cys C is a small, potent, cysteine protease inhibitor. An Ala25Thr (A25T polymorphism in Cys C has been associated with both macular degeneration and late-onset Alzheimer's disease. Previously, studies have suggested that this polymorphism may compromise the secretion of Cys C. Interestingly, we found that untagged A25T, A25T tagged C-terminally with FLAG, or A25T FLAG followed by green fluorescent protein (GFP, were all secreted as efficiently from immortalized human cells as their wild-type (WT counterparts (e.g., 112%, 100%, and 88% of WT levels from HEK-293T cells, respectively. Supporting these observations, WT and A25T Cys C variants also showed similar intracellular steady state levels. Furthermore, A25T Cys C did not activate the unfolded protein response and followed the same canonical endoplasmic reticulum (ER-Golgi trafficking pathway as WT Cys C. WT Cys C has been shown to undergo signal sequence cleavage between residues Gly26 and Ser27. While the A25T polymorphism did not affect Cys C secretion, we hypothesized that it may alter where the Cys C signal sequence is preferentially cleaved. Under normal conditions, WT and A25T Cys C have the same signal sequence cleavage site after Gly26 (referred to as 'site 2' cleavage. However, in particular circumstances when the residues around site 2 are modified (such as by the presence of an N-terminal FLAG tag immediately after Gly26, or by a Gly26Lys (G26K mutation, A25T has a significantly higher likelihood than WT Cys C of alternative signal sequence cleavage after Ala20 ('site 1' or even earlier in the Cys C sequence. Overall, our results indicate that the A25T polymorphism does not cause a significant reduction in Cys C secretion, but instead predisposes the protein to be cleaved at an alternative signal sequence cleavage site if site 2 is hindered. Additional N-terminal amino acids resulting from alternative signal sequence cleavage may, in turn, affect the protease

  2. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Directory of Open Access Journals (Sweden)

    Alison A Williams

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X, a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80 and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  3. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal

    Directory of Open Access Journals (Sweden)

    Xiangyu Wang

    2017-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, ΔespF, N-terminal sequence (219 bp, ΔespFN, and C-terminal sequence (528 bp, ΔespFC separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, ΔespF/pespF, ΔespFN/pespFN, and ΔespFC/pespFC by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER, and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT, ΔespF, ΔespF/pespF, ΔespFC, ΔespFC/pespFC, ΔespFN, and ΔespFN/pespFN groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, ΔespF/pespF, and ΔespFC were significantly higher than that of ΔespF, ΔespFN, ΔespFC/pespFC, and ΔespFN/pespFN group (p < 0.05. The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  4. Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein–Barr virus ZEBRA protein

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Patrice [European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble CEDEX 9 (France); Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble (France); Budayova-Spano, Monika [European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble CEDEX 9 (France); Perrissin, Monique [Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble (France); Müller, Christoph W., E-mail: mueller@embl-grenoble.fr; Petosa, Carlo [European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble CEDEX 9 (France)

    2006-03-01

    A C-terminal fragment of the Epstein–Barr virus lytic switch protein ZEBRA has been crystallized in complex with DNA. A C-terminal fragment of the Epstein–Barr virus immediate-early transcription factor ZEBRA has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. The fragment behaves as a dimer in solution, consistent with the presence of a basic region leucine-zipper (bZIP) domain. Crystals of the fragment in complex with a DNA duplex were grown by the hanging-drop vapour-diffusion technique using polyethylene glycol 4000 and magnesium acetate as crystallization agents. Crystals diffract to better than 2.5 Å resolution using synchrotron radiation (λ = 0.976 Å). Crystals belong to space group C2, with unit-cell parameters a = 94.2, b = 26.5, c = 98.1 Å, β = 103.9°.

  5. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    International Nuclear Information System (INIS)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90% of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5' part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acid residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56% similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved

  6. Characterization of C-terminally engineered laccases.

    Science.gov (United States)

    Liu, Yingli; Cusano, Angela Maria; Wallace, Erin C; Mekmouche, Yasmina; Ullah, Sana; Robert, Viviane; Tron, Thierry

    2014-08-01

    Extremities of proteins are potent sites for functionalization. Carboxy terminus variants of the Trametes sp. strain C30 LAC3 laccase were generated and produced in Saccharomyces cerevisiae. A variant deleted of the last 13 residues (CΔ) and its 6 His tagged counterpart (CΔ6H) were found active enzymes. The production of CΔ6H resulted in the synthesis of a unusually high proportion of highly glycosylated forms of the enzyme therefore allowing the additional purification of a hyper-glycosylated form of CΔ6H noted CΔ6Hh. Properties of CΔ, CΔ6H and CΔ6Hh were compared. Globally, LAC3 catalytic efficiency was moderately affected by terminal modifications except in CΔ for which the kcat/KM ratio decreased 4 fold (with syringaldazine as substrate) and 10 fold (with ABTS as substrate) respectively. The catalytic parameters kcat and KM of CΔ6H and CΔ6Hh were found to be strictly comparable revealing that over glycosylation does not affect the enzyme catalytic efficiency. To the contrary, in vitro deglycosylation of laccase drastically reduced its activity. So, despite a complex glycosylated pattern observed for some of the variant enzymes, terminal sequences of laccases appear to be appropriate sites for the functionalization/immobilization of laccase. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. New acute transforming feline retovirus with fms homology specifies a C-terminally truncated version of the c-fms protein that is different from SM-feline sarcoma virus v-fms protein

    International Nuclear Information System (INIS)

    Besmer, P.; Lader, E.; George, P.C.; Bergold, P.J.; Qui, F.; Zuckerman, E.E.; Hardy, W.D.

    1986-01-01

    The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' Δgag-fms-Δpol-Δenv 3'. The HZ5- and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. In the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV

  8. New acute transforming feline retovirus with fms homology specifies a C-terminally truncated version of the c-fms protein that is different from SM-feline sarcoma virus v-fms protein

    Energy Technology Data Exchange (ETDEWEB)

    Besmer, P.; Lader, E.; George, P.C.; Bergold, P.J.; Qui, F.; Zuckerman, E.E.; Hardy, W.D.

    1986-10-01

    The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' ..delta..gag-fms-..delta..pol-..delta..env 3'. The HZ5- and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. In the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV.

  9. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  10. Morpholino spin-labeling for base-pair sequencing of a 3'-terminal RNA stem by proton homonuclear Overhauser enhancements: yeast ribosomal 5S RNA

    International Nuclear Information System (INIS)

    Lee, K.M.; Marshall, A.G.

    1987-01-01

    Base-pair sequences for 5S and 5.8S RNAs are not readily extracted from proton homonuclear nuclear Overhauser enhancement (NOE) connectivity experiments alone, due to extensive peak overlap in the downfield (11-15 ppm) proton NMR spectrum. In this paper, we introduce a new method for base-pair proton peak assignment for ribosomal RNAs, based upon the distance-dependent broadening of the resonances of base-pair protons spatially proximal to a paramagnetic group. Introduction of a nitroxide spin-label covalently attached to the 3'-terminal ribose provides an unequivocal starting point for base-pair hydrogen-bond proton NMR assignment. Subsequent NOE connectivities then establish the base-pair sequence for the terminal stem of a 5S RNA. Periodate oxidation of yeast 5S RNA, followed by reaction with 4-amino-2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO-NH2) and sodium borohydride reduction, produces yeast 5S RNA specifically labeled with a paramagnetic nitroxide group at the 3'-terminal ribose. Comparison of the 500-MHz 1H NMR spectra of native and 3'-terminal spin-labeled yeast 5S RNA serves to identify the terminal base pair (G1 . C120) and its adjacent base pair (G2 . U119) on the basis of their proximity to the 3'-terminal spin-label. From that starting point, we have then identified (G . C, A . U, or G . U) and sequenced eight of the nine base pairs in the terminal helix via primary and secondary NOE's

  11. 3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing

    Science.gov (United States)

    2013-01-01

    Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768

  12. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    Science.gov (United States)

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.

  13. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Science.gov (United States)

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.

  14. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Serre

    Full Text Available Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i repositioning of the catalytic Tyr in the active site in cis and (ii dimer stabilisation via αN contacts in trans between monomers.

  15. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  16. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  17. Switching Investigations on a SiC MOSFET in a TO-247 Package

    DEFF Research Database (Denmark)

    Anthon, Alexander; Hernandez Botella, Juan Carlos; Zhang, Zhe

    2014-01-01

    This paper deals with the switching behavior of a SiC MOSFET in a TO-247 package. Based on simulations, critical parasitic inductances in the circuit layout are analyzed and their effect on the switching losses highlighted. Especially the common source inductance, a critical parameter in a TO-247...... package, has a major influence on the switching energy. Crucial design guidelines for an improved double pulse test circuit are introduced which are used for practical investigations on the switching behavior. Switching energies of a SiC MOSFET in a TO-247 package is measured depending on varying gate...... resistance and loop inductances. With total switching energy of 340.24 μJ, the SiC MOSFET has more than six times lower switching losses than a regular Si IGBT. Implementing the SiC switches in a 3 kW T-Type inverter topology, efficiency improvements of 0.8 % are achieved and maximum efficiency of 97...

  18. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal α-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition.

    Directory of Open Access Journals (Sweden)

    Rhodri M L Morgan

    Full Text Available Mutations of the aryl hydrocarbon receptor interacting protein (AIP have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h mutations, R304* (nonsense mutation, R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE of TOMM20.

  19. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Directory of Open Access Journals (Sweden)

    Cutler Sean R

    2007-06-01

    Full Text Available Abstract Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*, the ER-retention signal (K/HDEL*, the ER-retrieval signal for membrane bound proteins (KKxx*, the prenylation signal (CC* and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists

  20. C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Kasetty, Gopinath; Mörgelin, Matthias; Rydengård, Victoria; Albiger, Barbara; Lundqvist, Katarina; Malmsten, Martin; Schmidtchen, Artur

    2010-09-03

    Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the "classic" human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.

  1. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement

    International Nuclear Information System (INIS)

    Medof, M.E.; Lublin, D.M.; Holers, V.M.; Ayers, D.J.; Getty, R.R.; Leykam, J.F.; Atkinson, J.P.; Tykocinski, M.L.

    1987-01-01

    cDNAs encoding the complement decay-accelerating factor (DAF) were isolated from HeLa and differentiated HL-60 λgt cDNA libraries by screening with a codon preference oligonucleotide corresponding to DAF NH 2 -terminal amino acids 3-14. The composite cDNA sequence showed a 347-amino acid protein preceded by an NH 2 -terminal leader peptide sequence. The translated sequence beginning at the DAF NH 2 terminus encodes four contiguous ≅ 61-amino acid long repetitive units of internal homology. The repetitive regions contain four conserved cysteines, one proline, one glycine, one glycine/alanine, four leucines/isoleucines/valines, one serine, three tyrosines/phenylalanines, and on tryptophan and show striking homology to similar regions previously identified in factor B, C2, C4 binding protein, factor H, C1r, factor XIII, interleukin 2 receptor, and serum β 2 -glycoprotein I. The consensus repeats are attached to a 70-amino acid long segment rich in serine and threonine (potential O-glycosylation sites), which is in turn followed by a stretch of hydrophobic amino acids. RNA blot analysis of HeLa and HL-60 RNA revealed three DAF mRNA species of 3.1, 2.7, and 2.0 kilobases. The results indicate that portions of the DAF gene may have evolved from a DNA element common to the above proteins, that DAF cDNA predicts a COOH-terminal anchoring polypeptide, and that distinct species of DAF message are elaborated in cells

  2. Structure discrimination for the C-terminal domain of Escherichia coli trigger factor in solution

    International Nuclear Information System (INIS)

    Yao Yong; Bhabha, Gira; Kroon, Gerard; Landes, Mindy; Dyson, H. Jane

    2008-01-01

    NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113-149 and 247-432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590-596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436-13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T 1 , T 2 and heteronuclear NOE parameters show that the protein is

  3. The history and advances of reversible terminators used in new generations of sequencing technology.

    Science.gov (United States)

    Chen, Fei; Dong, Mengxing; Ge, Meng; Zhu, Lingxiang; Ren, Lufeng; Liu, Guocheng; Mu, Rong

    2013-02-01

    DNA sequencing using reversible terminators, as one sequencing by synthesis strategy, has garnered a great deal of interest due to its popular application in the second-generation high-throughput DNA sequencing technology. In this review, we provided its history of development, classification, and working mechanism of this technology. We also outlined the screening strategies for DNA polymerases to accommodate the reversible terminators as substrates during polymerization; particularly, we introduced the "REAP" method developed by us. At the end of this review, we discussed current limitations of this approach and provided potential solutions to extend its application. Copyright © 2013. Production and hosting by Elsevier Ltd.

  4. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus

    2005-01-01

    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is ins......Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP...... or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy....... These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been...

  5. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  6. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.

    1987-01-01

    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  7. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  8. Properties of catalase-peroxidase lacking its C-terminal domain

    International Nuclear Information System (INIS)

    Baker, Ruletha D.; Cook, Carma O.; Goodwin, Douglas C.

    2004-01-01

    Catalase-peroxidases have a two-domain structure. The N-terminal domain contains the bifunctional active site, but the function of the C-terminal domain is unknown. We produced catalase-peroxidase containing only its N-terminal domain (KatG Nterm ). Removal of the C-terminal domain did not result in unexpected changes in secondary structure as evaluated by CD, but KatG Nterm had neither catalase nor peroxidase activity. Partial recovery of both activities was achieved by incubating KatG Nterm with the separately expressed and isolated KatG C-terminal domain. Spectroscopic measurements revealed a shift in heme environment from a mixture of high-spin species (wtKatG) to exclusively hexacoordinate, low-spin (KatG Nterm ). Moreover, a >1000-fold lower k on for CN - binding was observed for KatG Nterm . EPR spectra for KatG Nterm and the results of site-specific substitution of active site histidines suggested that the distal histidine was the sixth ligand. Thus, one important role for the C-terminal domain may be to support the architecture of the active site, preventing heme ligation by this catalytically essential residue

  9. Functional interaction between the N- and C-terminal domains of murine leukemia virus surface envelope protein

    International Nuclear Information System (INIS)

    Lu, C.-W.; Roth, Monica J.

    2003-01-01

    A series of murine leukemia viruses (MuLVs) with chimeric envelope proteins (Env) was generated to map functional interactions between the N- and the C-terminal domains of surface proteins (SU). All these chimeras have the 4070A amphotropic receptor-binding region flanked by various lengths of Moloney ecotropic N- and C-terminal Env. A charged residue, E49 (E16 on the mature protein), was identified at the N-terminals of Moloney MuLV SU that is important for the interaction with the C-terminal domain of the SU. The region that interacts with E49 was localized between junction 4 (R265 of M-MuLV Env) and junction 6 (L374 of M-MuLV Env) of SU. Sequencing the viable chimeric Env virus populations identified residues within the SU protein that improved the replication kinetics of the input chimeric Env viruses. Mutations in the C-domain of SU (G387E/R, L435I, L442P) were found to improve chimera IV4, which displayed a delayed onset of replication. The replication of AE6, containing a chimeric junction in the SU C-terminus, was improved by mutations in the N-domain (N40H, E80K), the proline-rich region (Q252R), or the transmembrane protein (L538N). Altogether, these observations provide insights into the structural elements required for Env function

  10. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    Science.gov (United States)

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed. © 2016 The Society for Applied Microbiology.

  11. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.

    Science.gov (United States)

    Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis

    2016-08-24

    To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.

  12. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions

    DEFF Research Database (Denmark)

    Cain, Stuart A; Baldwin, Andrew K; Mahalingam, Yashithra

    2008-01-01

    Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized w......-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions....

  13. Untangling spider silk evolution with spidroin terminal domains

    Directory of Open Access Journals (Sweden)

    Garb Jessica E

    2010-08-01

    Full Text Available Abstract Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C-terminal domains, though they offer limited character data. The few known spidroin amino (N-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk

  14. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    Science.gov (United States)

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  15. Structure and inhibition analysis of the mouse SAD-B C-terminal fragment.

    Science.gov (United States)

    Ma, Hui; Wu, Jing-Xiang; Wang, Jue; Wang, Zhi-Xin; Wu, Jia-Wei

    2016-10-01

    The SAD (synapses of amphids defective) kinases, including SAD-A and SAD-B, play important roles in the regulation of neuronal development, cell cycle, and energy metabolism. Our recent study of mouse SAD-A identified a unique autoinhibitory sequence (AIS), which binds at the junction of the kinase domain (KD) and the ubiquitin-associated (UBA) domain and exerts autoregulation in cooperation with UBA. Here, we report the crystal structure of the mouse SAD-B C-terminal fragment including the AIS and the kinase-associated domain 1 (KA1) at 2.8 Å resolution. The KA1 domain is structurally conserved, while the isolated AIS sequence is highly flexible and solvent-accessible. Our biochemical studies indicated that the SAD-B AIS exerts the same autoinhibitory role as that in SAD-A. We believe that the flexible isolated AIS sequence is readily available for interaction with KD-UBA and thus inhibits SAD-B activity.

  16. Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive Neisseria meningitidis Serogroup W Sequence Type (ST)-11 Strains.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2016-07-03

    Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Roles of the C-terminal domains of human dihydrodiol dehydrogenase isoforms in the binding of substrates and modulators: probing with chimaeric enzymes.

    Science.gov (United States)

    Matsuura, K; Hara, A; Deyashiki, Y; Iwasa, H; Kume, T; Ishikura, S; Shiraishi, H; Katagiri, Y

    1998-01-01

    Human liver dihydrodiol dehydrogenase (DD; EC 1.3.1.20) exists in isoforms (DD1, DD2 and DD4) composed of 323 amino acids. DD1 and DD2 share 98% amino acid sequence identity, but show lower identities (approx. 83%) with DD4, in which a marked difference is seen in the C-terminal ten amino acids. DD4 exhibits unique catalytic properties, such as the ability to oxidize both (R)- and (S)-alicyclic alcohols equally, high dehydrogenase activity for bile acids, potent inhibition by steroidal anti-inflammatory drugs and activation by sulphobromophthalein and clofibric acid derivatives. In this study, we have prepared chimaeric enzymes, in which we exchanged the C-terminal 39 residues between the two enzymes. Compared with DD1, CDD1-4 (DD1 with the C-terminal sequence of DD4) had increased kcat/Km values for 3alpha-hydroxy-5beta-androstanes and bile acids of 3-9-fold and decreased values for the other substrates by 5-100-fold. It also became highly sensitive to DD4 inhibitors such as phenolphthalein and hexoestrol. Another chimaeric enzyme, CDD4-1 (DD4 with the C-terminal sequence of DD1), showed the same (S)-stereospecificity for the alicyclic alcohols as DD1, had decreased kcat/Km values for bile acids with 7beta- or 12alpha-hydroxy groups by more than 120-fold and was resistant to inhibition by betamethasone. In addition, the activation effects of sulphobromophthalein and bezafibrate decreased or disappeared for CDD4-1. The recombinant DD4 with the His314-->Pro (the corresponding residue of DD1) mutation showed intermediate changes in the properties between those of wild-type DD4 and CDD4-1. The results indicate that the binding of substrates, inhibitors and activators to the enzymes is controlled by residues in their C-terminal domains; multiple residues co-ordinately act as determinants for substrate specificity and inhibitor sensitivity. PMID:9820821

  18. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    Science.gov (United States)

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  19. Nanoelectromechanical switch operating by tunneling of an entire C-60 molecule

    DEFF Research Database (Denmark)

    Danilov, Andrey V.; Hedegård, Per; Golubev, Dimitrii S.

    2008-01-01

    (i) the relative contribution of tunneling, current induced heating and thermal fluctuations to the switching mechanism, (ii) the voltage dependent energy barrier (similar to 100-200 meV) separating the two states of the switch and (iii) the switching attempt frequency, omega(0) corresponding to a 2......We present a solid state single molecule electronic device where switching between two states with different conductance happens predominantly by tunneling of an entire C-60 molecule. This conclusion is based on a novel statistical analysis of similar to 10(5) switching events. The analysis yields...

  20. Designing a Long Acting Erythropoietin by Fusing Three Carboxyl-Terminal Peptides of Human Chorionic Gonadotropin β Subunit to the N-Terminal and C-Terminal Coding Sequence

    Directory of Open Access Journals (Sweden)

    Fuad Fares

    2011-01-01

    Full Text Available A new analog of EPO was designed by fusing one and two CTPs to the N-terminal and C-terminal ends of EPO (EPO-(CTP3, respectively. This analog was expressed and secreted efficiently in CHO cells. The in vitro test shows that the activity of EPO-(CTP3 in TFI-1 cell proliferation assay is similar to that of EPO-WT and commercial rHEPO. However, in vivo studies indicated that treatment once a week with EPO-(CTP3 (15 μg/kg dramatically increased (~8 folds haematocrit as it was compared to rHuEPO. Moreover, it was found that EPO-(CTP3 is more effective than rHuEPO and Aranesp in increasing reticulocyte number in mice blood. The detected circulatory half-lives of rHuEPO, Aranesp, and EPO-(CTP3 following IV injection of 20 IU were 4.4, 10.8, and 13.1 h, respectively. These data established the rational for using this chimera as a long-acting EPO analog in clinics. The therapeutic efficacy of EPO-CTP analog needs to be established in higher animals and in human clinical trials.

  1. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation

    Directory of Open Access Journals (Sweden)

    Yool Andrea J

    2003-10-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C- terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases. Results Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP; 3–14 mM activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP. Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243. Conclusions These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation.

  2. An Adaptive Method for Switching between Pedestrian/Car Indoor Positioning Algorithms based on Multilayer Time Sequences

    Directory of Open Access Journals (Sweden)

    Zhining Gu

    2018-02-01

    Full Text Available Pedestrian dead reckoning (PDR positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs. MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process.

  3. An Adaptive Method for Switching between Pedestrian/Car Indoor Positioning Algorithms based on Multilayer Time Sequences.

    Science.gov (United States)

    Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao

    2018-02-27

    Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target's location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5-8.5 s for the transition between states and by approximately 24 s for the entire process.

  4. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    Science.gov (United States)

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  5. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    Science.gov (United States)

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C-terminal

  6. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    Science.gov (United States)

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  7. The Biotechnological Applications of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the EPEA Sequence (C Tag

    Directory of Open Access Journals (Sweden)

    Selma Djender

    2014-04-01

    Full Text Available We designed a vector for the bacterial expression of recombinant antibodies fused to a double tag composed of 6xHis and the EPEA amino acid sequence. EPEA sequence (C tag is tightly bound by a commercial antibody when expressed at the C-term end of a polypeptide. The antigen is released in the presence of 2 M MgCl2. Consequently, constructs fused to the 6xHis-C tags can be purified by two successive and orthogonal affinity steps. Single-domain antibodies were produced either in the periplasmic or in the cytoplasmic space of E. coli. Surprisingly, the first affinity purification step performed using the EPEA-binding resin already yielded homogeneous proteins. The presence of the C tag did not interfere with the binding activity of the antibodies, as assessed by FACS and SPR analyses, and the C tag was extremely effective for immunoprecipitating HER2 receptor. Finally, the Alexa488-coupled anti-C tag allowed for simplification of FACS and IF analyses. These results show that a tag of minimal dimensions can be effectively used to improve the applicability of recombinant antibodies as reagents. In our hands, C tag was superior to His-tag in affinity purification and pull-down experiments, and practical in any other standard immune technique.

  8. Novel HBV recombinants between genotypes B and C in 3'-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients.

    Science.gov (United States)

    Liu, Baoming; Yang, Jing-Xian; Yan, Ling; Zhuang, Hui; Li, Tong

    2018-01-01

    As one of the major global public health concerns, hepatitis B virus (HBV) can be divided into at least eight genotypes, which may be related to disease severity and treatment response. We previously demonstrated that genotypes B and C HBV, with distinct geographical distribution in China, had divergent genotype-dependent amino acid polymorphisms and variations in reverse transcriptase (RT) gene region, a target of antiviral therapy using nucleos(t)ide analogues. Recently recombination between HBV genotypes B and C was reported to occur in the RT region. However, their frequency and clinical significance is poorly understood. Here full-length HBV RT sequences from 201 Chinese chronic hepatitis B (CHB) patients were amplified and sequenced, among which 31.34% (63/201) were genotype B whereas 68.66% (138/201) genotype C. Although no intergenotypic recombination was detected among C-genotype HBV, 38.10% (24/63) of B-genotype HBV had recombination with genotype C in the 3'-terminal RT sequences. The patients with B/C intergenotypic recombinants had significantly (Pdistribution feature in China. Our findings provide novel insight into the virological, clinical and epidemiological features of new HBV B/C intergenotypic recombinants at the 3' end of RT sequences among Chinese CHB patients. The highly complex genetic background of the novel recombinant HBV carrying new mutations affecting RT protein may contribute to an enhanced heterogeneity in treatment response or prognosis among CHB patients. Published by Elsevier B.V.

  9. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    International Nuclear Information System (INIS)

    He, Yuan; Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J.

    2013-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain

  10. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    Energy Technology Data Exchange (ETDEWEB)

    He, Yuan [Northwest University, Xi’an 710069 (China); The University of York, York YO10 5DD (United Kingdom); Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J., E-mail: gideon.davies@york.ac.uk [The University of York, York YO10 5DD (United Kingdom); Northwest University, Xi’an 710069 (China)

    2014-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.

  11. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  12. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  13. Role of the teneurins, teneurin C-terminal associated peptides (TCAP) in reproduction: clinical perspectives.

    Science.gov (United States)

    Lovejoy, David A; Pavlović, Téa

    2015-11-01

    In humans, the teneurin gene family consists of four highly conserved paralogous genes that are the result of early vertebrate gene duplications arising from a gene introduced into multicellular organisms from a bacterial ancestor. In vertebrates and humans, the teneurins have become integrated into a number of critical physiological systems including several aspects of reproductive physiology. Structurally complex, these genes possess a sequence in their terminal exon that encodes for a bioactive peptide sequence termed the 'teneurin C-terminal associated peptide' (TCAP). The teneurin/TCAP protein forms an intercellular adhesive unit with its receptor, latrophilin, an Adhesion family G-protein coupled receptor. It is present in numerous cell types and has been implicated in gamete migration and gonadal morphology. Moreover, TCAP is highly effective at reducing the corticotropin-releasing factor (CRF) stress response. As a result, TCAP may also play a role in regulating the stress-associated inhibition of reproduction. In addition, the teneurins and TCAP have been implicated in tumorigenesis associated with reproductive tissues. Therefore, the teneurin/TCAP system may offer clinicians a novel biomarker system upon which to diagnose some reproductive pathologies.

  14. Code-Switching to Know a TL Equivalent of an L1 Word: Request-Provision-Acknowledgement (RPA) Sequence

    Science.gov (United States)

    Lucero, Edgar

    2011-01-01

    This article focuses on the learner's use of Code-switching to learn the TL (Target Language) equivalent of an L1 word. The interactional pattern that this situation creates defines the Request-Provision-Acknowledgement (RPA) sequence. The article explains each of the turns of the sequence under the combination of the Ethnomethodological…

  15. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins.

    Science.gov (United States)

    Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.

  16. Cloning, expression, purification, crystallization and preliminary X-ray studies of the C-terminal domain of Rv3262 (FbiB) from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Rehan, Aisyah M.; Bashiri, Ghader; Paterson, Neil G.; Baker, Edward N.; Squire, Christopher J.

    2011-01-01

    The C-terminal domain of FbiB, a bifunctional protein that is essential for the biosynthesis of cofactor F 420 in M. tuberculosis, has been expressed, purified and crystallized. The crystals diffracted to 2.0 Å resolution and were suitable for structure determination. During cofactor F 420 biosynthesis, the enzyme F 420 -γ-glutamyl ligase (FbiB) catalyzes the addition of γ-linked l-glutamate residues to form polyglutamylated F 420 derivatives. In Mycobacterium tuberculosis, Rv3262 (FbiB) consists of two domains: an N-terminal domain from the F 420 ligase superfamily and a C-terminal domain with sequence similarity to nitro-FMN reductase superfamily proteins. To characterize the role of the C-terminal domain of FbiB in polyglutamyl ligation, it has been purified and crystallized in an apo form. The crystals diffracted to 2.0 Å resolution using a synchrotron source and belonged to the tetragonal space group P4 1 2 1 2 (or P4 3 2 1 2), with unit-cell parameters a = b = 136.6, c = 101.7 Å, α = β = γ = 90°

  17. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  18. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2.

    Science.gov (United States)

    Li, Qun; Laumonnier, Yves; Syrovets, Tatiana; Simmet, Thomas

    2011-11-01

    To identify proteins that interact with the C-terminal fragment of annexin A2 (A2IC), generated by plasmin cleavage of the plasmin receptor, a heterotetramer (AA2t) containing annexin A2. The gene that encodes the A2IC fragment was obtained from PCR-amplified cDNA isolated from human monocytes, and was ligated into the pBTM116 vector using a DNA ligation kit. The resultant plasmid (pBTM116-A2IC) was sequenced with an ABI PRISM 310 Genetic Analyzer. The expression of an A2IC bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis. The identification of proteins that interact with A2IC and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening. The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit. Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov). Confirmation of the interaction between the protein LexA-A2IC and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay. The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach. After screening 1×10(7) clones, 23 independent β-Gal-positive clones were identified. Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17, ProCathepsin S, RPS2, ZBTB4, OGDH, CCDC32, PAPD4, and actin which was already known to interact with annexin A2). A2IC A2IC interacts with various proteins to form protein complexes, which may contribute to the molecular mechanism of monocyte activation induced by plasmin. The yeast two-hybrid system is an efficient approach for investigating protein interactions.

  19. Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jyun-Liang Lin

    Full Text Available In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases, Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER and Atf1 is known to localize to lipid droplets (LDs. The mechanism and function of these localizations are unknown. Here, we investigate potential mechanisms of Atf1 and Atf2 membrane association. Segments of the N- and C-terminal domains of Atf1 (residues 24-41 and 508-525, respectively are predicted to be amphipathic helices. Truncations of these helices revealed that the terminal domains are essential for ER and LD association. Moreover, mutations of the basic or hydrophobic residues in the N-terminal helix and hydrophobic residues in the C-terminal helix disrupted ER association and subsequent sorting from the ER to LDs. Similar amphipathic helices are found at both ends of Atf2, enabling ER and LD association. As was the case with Atf1, mutations to the N- and C-terminal helices of Atf2 prevented membrane association. Sequence comparison of the AATases from Saccharomyces, non-Saccharomyces yeast (K. lactis and P. anomala and fruits species (C. melo and S. lycopersicum showed that only AATases from Saccharomyces evolved terminal amphipathic helices. Heterologous expression of these orthologs in S. cerevisiae revealed that the absence of terminal amphipathic helices eliminates LD association. Combined, the results of this study suggest a common mechanism of membrane association for AATases via dual N- and C-terminal amphipathic helices.

  20. Structure of the C-terminal domain of lettuce necrotic yellows virus phosphoprotein.

    Science.gov (United States)

    Martinez, Nicolas; Ribeiro, Euripedes A; Leyrat, Cédric; Tarbouriech, Nicolas; Ruigrok, Rob W H; Jamin, Marc

    2013-09-01

    Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules.

  1. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    Science.gov (United States)

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  2. Efficient switching of 3-terminal magnetic tunnel junctions by the giant spin Hall effect of Pt85Hf15 alloy

    Science.gov (United States)

    Nguyen, Minh-Hai; Shi, Shengjie; Rowlands, Graham E.; Aradhya, Sriharsha V.; Jermain, Colin L.; Ralph, D. C.; Buhrman, R. A.

    2018-02-01

    Recent research has indicated that introducing impurities that increase the resistivity of Pt can enhance the efficiency of the spin Hall torque it generates. Here, we directly demonstrate the usefulness of this strategy by fabricating prototype 3-terminal in-plane-magnetized magnetic tunnel junctions that utilize the spin Hall torque from a Pt85Hf15 alloy and measuring the critical currents for switching. We find that Pt85Hf15 reduces the switching current densities compared to pure Pt by approximately a factor of 2 for both quasi-static ramped current biases and nanosecond-scale current pulses, thereby proving the feasibility of this approach in assisting the development of efficient embedded magnetic memory technologies.

  3. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Caitlin L Rowe

    Full Text Available Rabies virus P-protein is expressed as five isoforms (P1-P5 which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP-recognised nuclear localization sequence in the N-terminal region (N-NLS, the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES. However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2, and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P

  4. C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation.

    Science.gov (United States)

    Marneth, A E; Prange, K H M; Al Hinai, A S A; Bergevoet, S M; Tesi, N; Janssen-Megens, E M; Kim, B; Sharifi, N; Yaspo, M L; Kuster, J; Sanders, M A; Stoetman, E C G; Knijnenburg, J; Arentsen-Peters, T C J M; Zwaan, C M; Stunnenberg, H G; van den Heuvel-Eibrink, M M; Haferlach, T; Fornerod, M; Jansen, J H; Valk, P J M; van der Reijden, B A; Martens, J H A

    2018-03-01

    Overexpression of the BRE (brain and reproductive organ-expressed) gene defines a distinct pediatric and adult acute myeloid leukemia (AML) subgroup. Here we identify a promoter enriched for active chromatin marks in BRE intron 4 causing strong biallelic expression of a previously unknown C-terminal BRE transcript. This transcript starts with BRE intron 4 sequences spliced to exon 5 and downstream sequences, and if translated might code for an N terminally truncated BRE protein. Remarkably, the new BRE transcript was highly expressed in over 50% of 11q23/KMT2A (lysine methyl transferase 2A)-rearranged and t(8;16)/KAT6A-CREBBP cases, while it was virtually absent from other AML subsets and normal tissues. In gene reporter assays, the leukemia-specific fusion protein KMT2A-MLLT3 transactivated the intragenic BRE promoter. Further epigenome analyses revealed 97 additional intragenic promoter marks frequently bound by KMT2A in AML with C-terminal BRE expression. The corresponding genes may be part of a context-dependent KMT2A-MLLT3-driven oncogenic program, because they were higher expressed in this AML subtype compared with other groups. C-terminal BRE might be an important contributor to this program because in a case with relapsed AML, we observed an ins(11;2) fusing CHORDC1 to BRE at the region where intragenic transcription starts in KMT2A-rearranged and KAT6A-CREBBP AML.

  5. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon

    2009-10-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold, the optimal switching threshold is a function of both the average channel SNR and the number of diversity branches, where computing the optimal switching threshold is not a simple task when the number of diversity branches is high. The newly proposed multi-branch switched diversity system is based on a sequence of switching thresholds, instead of a single switching threshold, where a different diversity branch uses a different switching threshold for signal comparison. Thanks to the fact that each switching threshold in the sequence can be optimized only based on the number of the remaining diversity branches, the proposed system makes it easy to find these switching thresholds. Furthermore, some selected numerical and simulation results show that the proposed switched diversity system with the sequence of optimal switching thresholds outperforms the conventional system with the single optimal switching threshold. © 2009 IEEE.

  6. SiC MOSFET Switching Power Amplifier Project Summary

    Science.gov (United States)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex

    2017-10-01

    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  7. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  8. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  9. Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange.

    Science.gov (United States)

    Sharadamma, N; Khan, Krishnendu; Kumar, Sandeep; Patil, K Neelakanteshwar; Hasnain, Seyed E; Muniyappa, K

    2011-09-01

    The occurrence of DNA architectural proteins containing two functional domains derived from two different architectural proteins is an interesting emerging research theme in the field of nucleoid structure and function. Mycobacterium tuberculosis HupB, unlike Escherichia coli HU, is a two-domain protein that, in the N-terminal region, shows broad sequence homology with bacterial HU. The long C-terminal extension, on the other hand, contains seven PAKK/KAAK motifs, which are characteristic of the histone H1/H5 family of proteins. In this article, we describe several aspects of HupB function, in comparison with its truncated derivatives lacking either the C-terminus or N-terminus. We found that HupB binds a variety of DNA repair and replication intermediates with K(d) values in the nanomolar range. By contrast, the N-terminal fragment of M. tuberculosis HupB (HupB(MtbN)) showed diminished DNA-binding activity, with K(d) values in the micromolar range, and the C-terminal domain was completely devoid of DNA-binding activity. Unlike HupB(MtbN) , HupB was able to constrain DNA in negative supercoils and introduce negative superhelical turns into relaxed DNA. Similarly, HupB exerted a robust inhibitory effect on DNA strand exchange promoted by cognate and noncognate RecA proteins, whereas HupB(MtbN), even at a 50-fold molar excess, had no inhibitory effect. Considered together, these results suggest that synergy between the N-terminal and C-terminal domains of HupB is essential for its DNA-binding ability, and to modulate the topological features of DNA, which has implications for processes such as DNA compaction, gene regulation, homologous recombination, and DNA repair. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. The impact of the human DNA topoisomerase II C-terminal domain on activity.

    Directory of Open Access Journals (Sweden)

    Emma L Meczes

    2008-03-01

    Full Text Available Type II DNA topoisomerases (topos are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity.We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIalpha and beta and topoIIalpha+beta-tail and topoIIbeta+alpha-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIalpha-CTD increasing activity, and the topoIIbeta-CTD decreasing activity.In vivo complementation data show that the topoIIalpha C-terminal domain is needed for growth, but the topoIIbeta isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIbeta has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIalpha or beta C-terminal domain can affect strand passage activity. Data indicates that the topoIIbeta-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs.

  11. cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Budding yeast cDNA sequencing project cDNA sequence quality data Data detail Data name cDNA sequence quality... data DOI 10.18908/lsdba.nbdc00838-003 Description of data contents Phred's quality score. P...tion Download License Update History of This Database Site Policy | Contact Us cDNA sequence quality

  12. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    International Nuclear Information System (INIS)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L.

    1988-01-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity

  13. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    Science.gov (United States)

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  14. The C-Terminal RpoN Domain of sigma54 Forms an unpredictedHelix-Turn-Helix Motif Similar to domains of sigma70

    Energy Technology Data Exchange (ETDEWEB)

    Doucleff, Michaeleen; Malak, Lawrence T.; Pelton, Jeffrey G.; Wemmer, David E.

    2005-11-01

    The ''{delta}'' subunit of prokaryotic RNA-polymerase allows gene-specific transcription initiation. Two {sigma} families have been identified, {sigma}{sup 70} and {sigma}{sup 54}, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the {sigma}{sup 70}-type factors have been well characterized structurally by x-ray crystallography, no high-resolution structural information is available for the {sigma}{sup 54}-type factors. Here we present the NMR derived structure of the C-terminal domain of {sigma}{sup 54} from Aquifex aeolicus. This domain (Thr323 to Gly389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the {sigma}{sup 70}-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. This structure's homology with other DNA binding proteins, combined with previous biochemical data, suggest how the C-terminal domain of {sigma}{sup 54} binds to DNA.

  15. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sakai, Yasuyoshi

    2016-05-01

    The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.

  16. Structure of the C-Terminal Domain of Lettuce Necrotic Yellows Virus Phosphoprotein

    Science.gov (United States)

    Martinez, Nicolas; Ribeiro, Euripedes A.; Leyrat, Cédric; Tarbouriech, Nicolas; Ruigrok, Rob W. H.

    2013-01-01

    Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules. PMID:23785215

  17. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  18. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  19. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  20. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.

    Science.gov (United States)

    Kray, Jutta

    2006-08-11

    Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.

  1. Replacement of the C-terminal tetrapeptide ( 314 PAPV 317 to 314 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 35; Issue 4. Replacement of the C-terminal tetrapeptide (314PAPV317 to 314SSSM317) in interferon regulatory factor-2 alters its N-terminal DNA-binding activity. Krishna Prakash Pramod C Rath. Articles Volume 35 Issue 4 December 2010 pp 547-556 ...

  2. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  3. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  4. Keratin 8 phosphorylation in vitro by cAMP-dependent protein kinase occurs within the amino- and carboxyl-terminal end domains.

    Science.gov (United States)

    Ando, S; Tokui, T; Yano, T; Inagaki, M

    1996-04-05

    We reported earlier that phosphorylation in vitro of keratin filaments reconstituted from rat type I keratin 18 and type II keratin 8 by cAPM-dependent protein kinase induces disassembly of the keratin filament structure. Keratin 8 rather than keratin 18 was the major target of the kinase. We have now identified the sites on rat keratin 8 for cAMP-dependent protein kinase. Sequential analysis of the purified phosphoropeptides, together with the known primary sequence, revealed that four major sites, Ser-12, Ser-23, Ser-36, and Ser-50, and three minor sites, Ser-8, Ser-33, Ser-42, are located in the amino-terminal head domain, while three minor sites, Ser-416, Ser-423 and Ser-425 locate in the carboxyl-terminal tail domain.

  5. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    Science.gov (United States)

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  6. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa, E-mail: yoshim@nr.titech.ac.jp

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  7. Updating the profile of C-terminal MECP2 deletions in Rett syndrome

    Science.gov (United States)

    Bebbington, A; Percy, A; Christodoulou, J; Ravine, D; Ho, G; Jacoby, P; Anderson, A; Pineda, M; Ben Zeev, B; Bahi-Buisson, N; Smeets, E; Leonard, H

    2014-01-01

    Objectives This study aimed to compare the phenotype of Rett syndrome cases with C-terminal deletions to that of cases with different MECP2 mutations and to examine the phenotypic variation within C-terminal deletions. Methods Cases were selected from InterRett, an international database and from the population-based Australian Rett Syndrome Database. Cases (n=832) were included if they had a pathogenic MECP2 mutation in which the nature of the amino acid change was known. Three severity scale systems were used, and individual aspects of the phenotype were also compared. Results Lower severity was associated with C-terminal deletions (n=79) compared to all other MECP2 mutations (e.g. Pineda scale C-terminals mean 15.0 (95% CI 14.0–16.0) vs 16.2 (15.9–16.5). Cases with C-terminal deletions were more likely to have a normal head circumference (odds ratio 3.22, 95% CI 1.53 – 6.79) and weight (odds ratio 2.97, 95% CI 1.25–5.76). Onset of stereotypies tended to be later (median age 2.5 years vs 2 years, pmiddle of the range. In terms of individual aspects of phenotype growth and ability to ambulate appear to be particular strengths. By pooling data internationally this study has achieved the case numbers to provide a phenotypic profile of C-terminal deletions in Rett syndrome. PMID:19914908

  8. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  9. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2

    International Nuclear Information System (INIS)

    Ozorowski, Gabriel; Milton, Saskia; Luecke, Hartmut

    2013-01-01

    Structure of a 20-amino-acid peptide of AHNAK bound asymmetrically to the AnxA2–S100A10A heterotetramer (1:2:2 symmetry) provides insights into the atomic level interactions that govern this membrane-repair scaffolding complex. AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2–S100A10 heterotetramer [(p11) 2 (AnxA2) 2 )] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11) 2 (AnxA2) 2 is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca 2+ -dependent manner. The binding of AHNAK to (p11) 2 (AnxA2) 2 has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654–5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2–S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11) 2 (AnxA2) 2 . Binding of AHNAK to the surface of (p11) 2 (AnxA2) 2 is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11) 2 (AnxA2) 2 most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various stretches of the AHNAK C-terminal domain, comparison

  10. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    International Nuclear Information System (INIS)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-01-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolic sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented

  11. 47 CFR 25.134 - Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions of Very Small Aperture Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  12. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  13. Developmental changes in using verbal self-cueing in task-switching situations: the impact of task practice and task-sequencing demands

    Science.gov (United States)

    Kray, Jutta; Gaspard, Hanna; Karbach, Julia; Blaye, Agnès

    2013-01-01

    In this study we examined whether developmental changes in using verbal self-cueing for task-goal maintenance are dependent on the amount of task practice and task-sequencing demands. To measure task-goal maintenance we applied a switching paradigm in which children either performed only task A or B in single-task blocks or switched between them on every second trial in mixed-task blocks. Task-goal maintenance was determined by comparing the performance between both blocks (mixing costs). The influence of verbal self-cueing was measured by instructing children to either name the next task aloud or not to verbalize during task preparation. Task-sequencing demands were varied between groups whereas one group received spatial task cues to support keeping track of the task sequence, while the other group did not. We also varied by the amount of prior practice in task switching while one group of participants practiced task switching first, before performing the task naming in addition, and the other group did it vice versa. Results of our study investigating younger (8–10 years) and older children (11–13 years) revealed no age differences in beneficial effects of verbal self-cueing. In line with previous findings, children showed reduced mixing costs under task-naming instructions and under conditions of low task-sequence demands (with the presence of spatial task cues). Our results also indicated that these benefits were only obtained for those groups of children that first received practice in task switching alone with no additional verbalization instruction. These findings suggest that internal task-cueing strategies can be efficiently used in children but only if they received prior practice in the underlying task so that demands on keeping and coordinating various instructions are reduced. Moreover, children benefitted from spatial task cues for better task-goal maintenance only if no verbal task-cueing strategy was introduced first. PMID:24381566

  14. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  15. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  16. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure.

    Science.gov (United States)

    Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki

    2011-02-01

    Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.

  17. The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni.

    Science.gov (United States)

    Tan, Fu-Qing; Ma, Xiao-Xin; Zhu, Jun-Quan; Yang, Wan-Xi

    2013-12-10

    In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structures, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, the testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the

  18. Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies.

    Science.gov (United States)

    DeMaere, Matthew Z; Darling, Aaron E

    2018-02-01

    Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype. We describe a computational simulator that, given simple parameters and reference genome sequences, will simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D structure of randomly generated topologically associating domains is provided. The simulator considers several sources of error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events and sequencing error. We have introduced the first comprehensive simulator for 3C and Hi-C sequencing protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.

  19. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    Science.gov (United States)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  20. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    Science.gov (United States)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  1. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  2. N-terminally truncated POM121C inhibits HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  3. 5'-Terminal AUGs in Escherichia coli mRNAs with Shine-Dalgarno Sequences: Identification and Analysis of Their Roles in Non-Canonical Translation Initiation.

    Directory of Open Access Journals (Sweden)

    Heather J Beck

    Full Text Available Analysis of the Escherichia coli transcriptome identified a unique subset of messenger RNAs (mRNAs that contain a conventional untranslated leader and Shine-Dalgarno (SD sequence upstream of the gene's start codon while also containing an AUG triplet at the mRNA's 5'- terminus (5'-uAUG. Fusion of the coding sequence specified by the 5'-terminal putative AUG start codon to a lacZ reporter gene, as well as primer extension inhibition assays, reveal that the majority of the 5'-terminal upstream open reading frames (5'-uORFs tested support some level of lacZ translation, indicating that these mRNAs can function both as leaderless and canonical SD-leadered mRNAs. Although some of the uORFs were expressed at low levels, others were expressed at levels close to that of the respective downstream genes and as high as the naturally leaderless cI mRNA of bacteriophage λ. These 5'-terminal uORFs potentially encode peptides of varying lengths, but their functions, if any, are unknown. In an effort to determine whether expression from the 5'-terminal uORFs impact expression of the immediately downstream cistron, we examined expression from the downstream coding sequence after mutations were introduced that inhibit efficient 5'-uORF translation. These mutations were found to affect expression from the downstream cistrons to varying degrees, suggesting that some 5'-uORFs may play roles in downstream regulation. Since the 5'-uAUGs found on these conventionally leadered mRNAs can function to bind ribosomes and initiate translation, this indicates that canonical mRNAs containing 5'-uAUGs should be examined for their potential to function also as leaderless mRNAs.

  4. GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease.

    Directory of Open Access Journals (Sweden)

    Daniel H Haft

    Full Text Available The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies.

  5. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide

    Science.gov (United States)

    Sangwan, Vinod K.; Lee, Hong-Sub; Bergeron, Hadallia; Balla, Itamar; Beck, Megan E.; Chen, Kan-Sheng; Hersam, Mark C.

    2018-02-01

    Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS2 memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS2 defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could

  6. Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition.

    Science.gov (United States)

    Liu, Zhonghua; Wang, Chuanping; Rathkey, Joseph K; Yang, Jie; Dubyak, George R; Abbott, Derek W; Xiao, Tsan Sam

    2018-05-01

    Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain. The molecular mechanisms of autoinhibition for GSDMD are poorly characterized. Here we report the crystal structures of the human and murine GSDMD C-terminal domains, which differ from those of the full-length murine GSDMA3 and the human GSDMB C-terminal domain. Mutations of GSDMD C-domain residues predicted to locate at its interface with the N-domain enhanced pyroptosis. Our results suggest that GSDMDs may employ a distinct mode of intramolecular domain interaction and autoinhibition, which may be relevant to its unique role in pyroptosis downstream of inflammasome activation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Operation and Modulation of H7 Current Source Inverter with Hybrid SiC and Si Semiconductor Switches

    DEFF Research Database (Denmark)

    Wang, Weiqi; Gao, Feng; Yang, Yongheng

    2018-01-01

    This paper proposes an H7 current source inverter (CSI) consisting of a single parallel-connected silicon carbide (SiC) switch and a traditional silicon (Si) H6 CSI. The proposed H7 CSI takes the advantages of the SiC switch to maintain high efficiency, while significantly increasing the switching...... as an all-SiC-switch converter in terms of high performance and high efficiency with reduced DC inductance. It provides a cost-effective solution to addressing the efficiency issue of conventional CSI systems. Simulations and experiments are performed to validate the effectiveness of the proposed H7 CSI...

  8. RNA Binding of T-cell Intracellular Antigen-1 (TIA-1) C-terminal RNA Recognition Motif Is Modified by pH Conditions*

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene

    2013-01-01

    T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765

  9. The Lectin Domain of the Polypeptide GalNAc Transferase Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation

    DEFF Research Database (Denmark)

    Gerken, Thomas A; Revoredo, Leslie; Thome, Joseph J C

    2013-01-01

    and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities...... relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides...

  10. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2

    Energy Technology Data Exchange (ETDEWEB)

    Ozorowski, Gabriel [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); Milton, Saskia [University of California, Irvine, Irvine, CA 92697-3900 (United States); Luecke, Hartmut, E-mail: hudel@uci.edu [University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697-3900 (United States); University of California, Irvine, Irvine, CA 92697 (United States); University of California, Irvine, Irvine, CA 92697 (United States)

    2013-01-01

    Structure of a 20-amino-acid peptide of AHNAK bound asymmetrically to the AnxA2–S100A10A heterotetramer (1:2:2 symmetry) provides insights into the atomic level interactions that govern this membrane-repair scaffolding complex. AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2–S100A10 heterotetramer [(p11){sub 2}(AnxA2){sub 2})] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11){sub 2}(AnxA2){sub 2} is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca{sup 2+}-dependent manner. The binding of AHNAK to (p11){sub 2}(AnxA2){sub 2} has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654–5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2–S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11){sub 2}(AnxA2){sub 2}. Binding of AHNAK to the surface of (p11){sub 2}(AnxA2){sub 2} is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11){sub 2}(AnxA2){sub 2} most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various

  11. Dicty_cDB: Contig-U06794-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available opus laevis N-acetyltransferase... 179 7e-44 ( P41227 ) RecName: Full=N-terminal acetyltransferase compl...P2... 178 1e-43 (Q9QY36) RecName: Full=N-terminal acetyltransferase complex ARD1... 178 1e-43 AK009697_1( AK...3 (Q9UTI3) RecName: Full=N-terminal acetyltransferase A complex ca... 174 2e-42 D...( AL672002 |pid:none) Mouse DNA sequence from clone RP2... 152 6e-36 ( P07347 ) RecName: Full=N-terminal acetyltransferase A compl...867 |pid:none) Methanococcus maripaludis C6, c... 55 2e-06 ( Q03503 ) RecName: Full=N-terminal acetyltransferase C compl

  12. Sequence of human protamine 2 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Domenjoud, L; Fronia, C; Uhde, F; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors report the cloning and sequencing of a cDNA clone for human protamine 2 (hp2), isolated from a human testis cDNA library cloned in the vector {lambda}-gt11. A 66mer oligonucleotide, that corresponds to an amino acid sequence which is highly conserved between hp2 and mouse protamine 2 (mp2) served as hybridization probe. The homology between the amino acid sequence deduced from our cDNA and the published amino acid sequence for hp2 is 100%.

  13. Switching Service Providers: Reasons, Service Types, and Sequences

    African Journals Online (AJOL)

    In Keaveney.s (1995) landmark study on the reasons for switching service providers, data were gathered using critical incident technique (CIT); here the original findings are tested using survey method. Keaveney.s typology of reasons for switching is supported across a range of categories but, in this new study, the reasons ...

  14. Solution structure and dynamics of C-terminal regulatory domain of Vibrio vulnificus extracellular metalloprotease

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye; Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jung Eun [Department of Biotechnology, College of Natural Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Jung Sup, E-mail: jsplee@mail.chosun.ac.kr [Department of Biotechnology, College of Natural Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We have determined solution structures of vEP C-terminal regulatory domain. Black-Right-Pointing-Pointer vEP C-ter100 has a compact {beta}-barrel structure with eight anti-parallel {beta}-strands. Black-Right-Pointing-Pointer Solution structure of vEP C-ter100 shares its molecular topology with that of the collagen-binding domain of collagenase. Black-Right-Pointing-Pointer Residues in the {beta}3 region of vEP C-ter100 might be important in putative ligand/receptor binding. Black-Right-Pointing-Pointer vEP C-ter100 interacts strongly with iron ion. -- Abstract: An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clotting that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel {beta}-strands with a unique fold that has a compact {beta}-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe{sup 3+}). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates

  15. Use of Ni63 Overvoltage Gap Switches in the Flight Termination Systems on Boosters Launched from U.S. Army Kwajalein Atoll (USAKA)

    Science.gov (United States)

    1990-05-01

    COMMAND AGENCY: United States Army Strategic Defense Command. ACTION: Use of Ni63 Overvoltage Gap Switches in the Flight Termination Systems on Boosters...SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. I TITLE (Include Security Claification) Use of Ni63 ...U) 1 PERSONAL AUTHOR(S) Ni63 Environmental Assessment Team, Mr. Randy Gallien (Chairman) 1𔄁. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT

  16. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading......-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment...

  17. The effect of episodic retrieval on inhibition in task switching.

    Science.gov (United States)

    Grange, James A; Kowalczyk, Agnieszka W; O'Loughlin, Rory

    2017-08-01

    Inhibition in task switching is inferred from n-2 repetition costs: the observation that ABA task switching sequences are responded to slower than CBA sequences. This is thought to reflect the persisting inhibition of Task A, which slows reactivation attempts. Mayr (2002) reported an experiment testing a critical noninhibitory account of this effect, namely episodic retrieval: If the trial parameters for Task A match across an ABA sequence, responses should be facilitated because of priming from episodic retrieval; a cost would occur if trial parameters mismatch. In a rule-switching paradigm, Mayr reported no significant difference in n-2 repetition cost when the trial parameters repeated or switched across an ABA sequence, in clear contrast to the episodic retrieval account. What remains unclear is whether successful episodic retrieval modulates the n-2 repetition cost. Across 3 experiments-including a close replication of Mayr-we find clear evidence of reduced n-2 task repetition costs when episodic retrieval is controlled. We find that the effect of episodic retrieval on the n-2 task repetition cost is increased when the cue-task relationship is made more abstract, suggesting the effect is because of interference in establishing the relevant attentional set. We also demonstrate that the episodic retrieval effect is not influenced by retrieval of low-level, perceptual, elements. Together, the data suggest the n-2 task repetition cost-typically attributable to an inhibitory mechanism-also reflects episodic retrieval effects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Design and implementation of microcontroller-based automatic sequence counting and switching system

    Directory of Open Access Journals (Sweden)

    Joshua ABOLARINWA

    2015-05-01

    Full Text Available Technological advancement and its influence on human being have been on the increase in recent time. Major areas of such influence, include monitoring and control activities. In order to keep track of human movement in and out of a particular building, there is the need for an automatic counting system. Therefore, in this paper, we present the design and implementation of a microcontroller-based automatic sequence counting and switching system. This system was designed and developed to save cost, time, energy, and to achieve seamless control in the event of switching on or off of electrical appliances within a building. Top-down modular design approach was used in conjunction with the versatility of microcontroller. The system is able to monitor, sequentially count the number of entry and exit of people through an entrance, afterwards, automatically control any electrical device connected to it. From various tests and measurements obtained, there are comparative benefits derived from the deployment of this system in terms of simplicity and accuracy over similar system that is not microcontroller-based. Therefore, this system can be deployed at commercial quantity with wide range of applications in homes, offices and other public places.

  19. Molecular cloning of a human glycophorin B cDNA: nucleotide sequence and genomic relationship to glycophorin A

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1987-01-01

    The authors describe the isolation and nucleotide sequence of a human glycophorin B cDNA. The cDNA was identified by differential hybridization of synthetic oligonucleotide probes to a human erythroleukemic cell line (K562) cDNA library constructed in phage vector λgt10. The nucleotide sequence of the glycophorin B cDNA was compared with that of a previously cloned glycophorin A cDNA. The nucleotide sequences encoding the NH 2 -terminal leader peptide and first 26 amino acids of the two proteins are nearly identical. This homologous region is followed by areas specific to either glycophorin A or B and a number of small regions of homology, which in turn are followed by a very homologous region encoding the presumed membrane-spanning portion of the proteins. They used RNA blot hybridization with both cDNA and synthetic oligonucleotide probes to prove our previous hypothesis that glycophorin B is encoded by a single 0.5- to 0.6-kb mRNA and to show that glycophorins A and B are negatively and coordinately regulated by a tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. They established the intron/exon structure of the glycophorin A and B genes by oligonucleotide mapping; the results suggest a complex evolution of the glycophorin genes

  20. The C'-terminal interaction domain of the thyroid hormone receptor confers the ability of the DNA site to dictate positive or negative transcriptional activity

    International Nuclear Information System (INIS)

    Holloway, J.M.; Glass, C.K.; Adler, S.; Nelson, C.A.; Rosenfeld, M.G.

    1990-01-01

    To investigate mechanisms responsible for positive and negative transcriptional control, the authors have utilized two types of promoters that are diffferentially regulated by thyroid hormone (T 3 ) receptors. Promoters containing the palindromic T 3 response element TCAGGTCA TGACCTGA are positively regulated by the T 3 receptor after the administration of T 3 , whereas otherwise identical promoters containing the estrogen response element TCAGGTCA CTG TGACCTGA can be regulated negatively; converse effects are observed with the estrogen receptor. They describe evidence that the transcriptional inhibitory effects of the T 3 or estrogen receptors on the estrogen or T 3 response elements, respectively, are imposed by amino acid sequences in the C'-terminal region that colocalize with dimerization and hormone-binding domains and that these sequences can transfer inhibitory functions to other classes of transcription factors. Removal of the C'-terminal dimerization and hormone-binding domains of either the αT 3 or estrogen receptors permits each receptor to act constitutively to enhance transcription on both T 3 and estrogen response elements. It is, therefore, suggested that protein-protein interactions between receptor C' termini limit the subset of DNA binding sites on which transcriptional activation occurs

  1. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.

    Science.gov (United States)

    Jacewicz, Agata; Shuman, Stewart

    2015-08-01

    Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3'-OH end and at least one or two ribonucleotides on the 5'-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single-ribonucleotide surveillance. RnhC

  3. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    Science.gov (United States)

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  4. Analysis of Ti valence states in resistive switching regions of a rutile TiO2‑ x four-terminal memristive device

    Science.gov (United States)

    Yamaguchi, Kengo; Takeuchi, Shotaro; Tohei, Tetsuya; Ikarashi, Nobuyuki; Sakai, Akira

    2018-06-01

    We have performed Ti valence state analysis of our four-terminal rutile TiO2‑ x single-crystal memristors using scanning transmission electron microscopy–electron energy loss spectroscopy (STEM–EELS). Analysis of Ti-L2,3 edge EELS spectra revealed that the electrocolored region formed by the application of voltage includes a valence state reflecting highly reduced TiO2‑ x due to the accumulation of oxygen vacancies. Such a valence state mainly exists within ∼50 nm from the crystal surface and extends along specific crystal directions. These electrically reduced surface layers are considered to directly contribute to the resistive switching (RS) in the four-terminal device. The present results add new insights into the microscopic mechanisms of the RS phenomena and should contribute to further development and improvements of TiO2‑ x based memristive devices.

  5. Comparison of Ion Beam opening switch and plasma opening switch performance

    International Nuclear Information System (INIS)

    Greenly, J.R.; Rondeau, G.D.; Sheldon, H.T.; Dreike, P.L.

    1986-01-01

    The Ion Beam opening switch (IBOS) experiment has shown that an intense charge-neutralized ion beam can carry current across a vacuum magnetically-insulated transmission line and then transfer that current to a downstream load quickly. In the IBOS experiment, a 10 cm wide parallel plate transmission line was fed up to 100 kA peak current by a 4Ω, 100 ns pulser. An ion beam of up to 100 A/cm/sup 2/, 100-300 keV protons or carbon was injected through the anode of the line in a 10 cm x 10 cm region. The line terminated in either a 15 nH short circuit or an electron diode with variable gap. The ion beam switch was able to carry up to 70 kA of line current before load current began to flow. This model is also quantitatively consistent with the observation that switch conduction current is not linear with either injected ion beam current or switch area

  6. Crystallization and preliminary X-ray analysis of a C-terminal fragment of FlgJ, a putative flagellar rod cap protein from Salmonella

    International Nuclear Information System (INIS)

    Kikuchi, Yuki; Matsunami, Hideyuki; Yamane, Midori; Imada, Katsumi; Namba, Keiichi

    2008-01-01

    A C-terminal fragment of Salmonella FlgJ, FlgJ 120–316 , which has peptidoglycan-hydrolysing activity, has been overproduced, purified and crystallized and the crystals have been characterized by X-ray diffraction. The formation of the bacterial flagellar axial structure, including the filament, the hook and the rod, requires the attachment of a cap complex to the distal end of the growing structure. Because the rod penetrates the peptidoglycan (PG) layer, the rod cap complex is thought to have PG-hydrolyzing activity. FlgJ is a putative rod cap protein whose C-terminal region shows sequence similarity to known muramidases. In this study, FlgJ 120–316 , a C-terminal fragment of FlgJ which contains the muramidase region, was overproduced, purified and crystallized. Crystals were obtained by the sitting-drop vapour-diffusion technique using PEG 3350 as a crystallizing agent and belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 38.8, b = 43.9, c = 108.5 Å. Anomalous difference Patterson maps calculated from the diffraction data set of a selenomethionine-labelled crystal showed significant peaks in the Harker sections, indicating that the data were suitable for structure determination

  7. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    Directory of Open Access Journals (Sweden)

    Noonan James P

    2001-07-01

    Full Text Available Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10 or PML (promyelocytic leukemia nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. Results This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. Conclusion The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies.

  8. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    Science.gov (United States)

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV. Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.

  10. Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J

    2004-09-03

    Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.

  11. Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interaction: Two Computational Models Compared

    Directory of Open Access Journals (Sweden)

    Paul Chun

    2003-01-01

    Full Text Available We have shown in our published work the existence of a thermodynamic switch in biological systems wherein a change of sign in ΔCp°(Treaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence, a maximum in the related Keq. We have examined 35 pair-wise, sequence-specific hydrophobic interactions over the temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. A closer look at a single example, the pair-wise hydrophobic interaction of leucine-isoleucine, will demonstrate the significant differences when the data are analyzed using the Nemethy-Scheraga model or treated by the Planck-Benzinger methodology which we have developed. The change in inherent chemical bond energy at 0 K, ΔH°(T0 is 7.53 kcal mol-1 compared with 2.4 kcal mol-1, while ‹ts› is 365 K as compared with 355 K, for the Nemethy-Scheraga and Planck-Benzinger model, respectively. At ‹tm›, the thermal agitation energy is about five times greater than ΔH°(T0 in the Planck-Benzinger model, that is 465 K compared to 497 K in the Nemethy-Scheraga model. The results imply that the negative Gibbs free energy minimum at a well-defined ‹ts›, where TΔS° = 0 at about 355 K, has its origin in the sequence-specific hydrophobic interactions, which are highly dependent on details of molecular structure. The Nemethy-Scheraga model shows no evidence of the thermodynamic molecular switch that we have found to be a universal feature of biological interactions. The Planck-Benzinger method is the best known for evaluating the innate temperature-invariant enthalpy, ΔH°(T0, and provides for better understanding of the heat of reaction for biological molecules.

  12. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    Science.gov (United States)

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  14. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  15. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  16. The proapoptotic activity of C-terminal domain of apoptosis-inducing factor (AIF is separated from its N-terminal

    Directory of Open Access Journals (Sweden)

    YONG ZHANG

    2009-01-01

    Full Text Available Apoptosis-inducing factor (AIF is a mitochondrial flavoprotein that mediates both NADH-oxidizing and caspase-independent apoptosis. Further, the proapoptotic activity of AIF is located in the C-terminus of AIF, although the precise minimum sequence responsible for apoptosis induction remains to be investigated. In the present study, we generated two truncated AIFs, AIFΔ1-480-FLAG, which is a FLAG-tagged C-terminal peptide comprising amino acids from 481 to 613, and AIF360-480 containing amino acids from 360 to 480 of AIF. We used confocal microscopy to demonstrate that both the truncated proteins are expressed and located in the cytoplasm of transfected cells. AIFΔ1-480 but not AIF360-480 induces apoptosis in transfected cells. We also found that the expression of AIFΔ1-480 could initiate the release of cytochrome c from the mitochondria. The suppression of caspase-9 via siRNA blocked the proapoptotic activity of AIFΔ1-480. Therefore, AIFΔ 1-480 is sufficient for inducing caspase-9-dependent apoptotic signaling, probably by promoting the release of cytochrome c. At last, we generated a chimeric immuno-AIFΔ 1-480 protein, which comprised an HER2 antibody, a Pseudomonas exotoxin A translocation domain and AIFΔ 1-480. Human Jurkat cells transfected with the immuno-AIFΔl-480 gene could express and secrete the chimeric protein, which selectively recognize and kill HER2-overexpressing tumor cells. Our study demonstrates the feasibility of the immuno-AIFΔl-480 gene as a novel approach to treating HER2-overexpressing cancers.

  17. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Knudsen, Lotte Bjerre; Garibay, Patrick W.

    2013-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C......-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys174, Cys226, Cys296 and Cys403 are important for the GLP-1-mediated response, whereas Cys236, Cys329, Cys341, Cys347, Cys438...... that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function....

  19. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs.

    Directory of Open Access Journals (Sweden)

    Frans J Walther

    2010-01-01

    Full Text Available Surfactant protein B (SP-B; 79 residues belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78, confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7 attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR, predictive aggregation algorithms, and molecular dynamics (MD and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.

  20. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  1. The proviral genome of radiation leukemia virus: Molecular cloning, nucleotide sequence of its long terminal repeat and integration in lymphoma cell DNA

    International Nuclear Information System (INIS)

    Janowski, M.; Merregaert, J.; Boniver, J.; Maisin, J.R.

    1985-01-01

    The proviral genome of a thymotropic and leukemogenic C57BL/Ka mouse retrovirus, RadLV/VL/sub 3/(T+L+), was cloned as a biologically active PstI insert in the bacterial plasmid pBR322. Its restriction map was compared to those, already known, of two nonthymotropic and nonleukemogenic viruses of the same mouse strain, the ecotropic BL/Ka(B) and the xenotropic constituent of the radiation leukemia virus complex (RadLV). Differences were observed in the pol gene and in the env gene. Moreover, the nucleotide sequence of the RadLV/VL/sub 3/(T+L+) long terminal repeat revealed the existence of two copies of a 42 bp long sequence, separated by 11 nucleotides and of which BL/Ka(B) possesses only one copy

  2. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    Science.gov (United States)

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  3. Sequence analysis of the 5′ third of glycoprotein C gene of South American bovine herpesviruses 1 and 5

    Energy Technology Data Exchange (ETDEWEB)

    Traesel, C.K.; Bernardes, L.M. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Spilki, F.R. [Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS (Brazil); Weiblen, R.; Flores, E.F. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2015-03-06

    Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic similarities, but exhibit marked differences in tissue tropism and neurovirulence. The amino-terminal region of glycoprotein C (gC), which is markedly different in each of the viruses, is involved in virus binding to cellular receptors and in interactions with the immune system. This study investigated the genetic and antigenic differences of the 5′ region of the gC (5′ gC) gene (amino-terminal) of South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374 nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3% between gC1 and gC5. Differences included the absence of 40 amino acid residues (27 encompassing predicted linear epitopes) scattered throughout 5′ gC1 compared to 5′ gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each isolate revealed a high degree of cross-neutralization between the viruses, yet some isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5 isolates reacted weakly with either sera. The virus neutralization differences observed within the same viral species, and more pronounced between BoHV-1 and BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results demonstrate that the 5′ gC region is well conserved within each viral species but is divergent between BoHV-1 and BoHV-5, likely contributing to their biological and antigenic differences.

  4. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  5. cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera

    International Nuclear Information System (INIS)

    Aris, J.P.; Blobel, G.

    1991-01-01

    The authors have isolated a 1.1-kilobase cDNA clone that encodes human fibrillarin by screening a hepatoma library in parallel with DNA probes derived from the fibrillarin genes of Saccharomyces cerevisiae (NOP1) and Xenopus laevis. RNA blot analysis indicates that the corresponding mRNA is ∼1,300 nucleotides in length. Human fibrillarin expressed in vitro migrates on SDS gels as a 36-kDa protein that is specifically immunoprecipitated by antisera from humans with scleroderma autoimmune disease. Human fibrillarin contains an amino-terminal repetitive domain ∼75-80 amino acids in length that is rich in glycine and arginine residues and is similar to amino-terminal domains in the yeast and Xenopus fibrillarins. The occurrence of a putative RNA-binding domain and an RNP consensus sequence within the protein is consistent with the association of fibrillarin with small nucleolar RNAs. Protein sequence alignments show that 67% of amino acids from human fibrillarin are identical to those in yeast fibrillarin and that 81% are identical to those in Xenopus fibrillarin. This identity suggests the evolutionary conservation of an important function early in the pathway for ribosome biosynthesis

  6. Accessibility of the Shine-Dalgarno sequence dictates N-terminal codon bias in E. coli

    OpenAIRE

    Shakhnovich, Eugene; Zhang, Wenli; Yan, Jin; Adkar, Bharat; Jacobs, William; Bhattacharyya, Sanchari; Adkar, Bharat

    2018-01-01

    Despite considerable efforts, no physical mechanism has been shown to explain N-terminal codon bias in prokaryotic genomes. Using a systematic study of synonymous substitutions in two endogenous E. coli genes, we show that interactions between the coding region and the upstream Shine-Dalgarno (SD) sequence modulate the efficiency of translation initiation, affecting both intracellular mRNA and protein levels due to the inherent coupling of transcription and translation in E. coli. We further ...

  7. Laser processing for bevel termination of high voltage pn junction in SiC

    International Nuclear Information System (INIS)

    Kubiak, A; Ruta, Ł; Rosowski, A; French, P

    2016-01-01

    Proper edge termination of the p-n junction in silicon carbide is a key requirement in the fabrication of discrete devices able to withstand high voltages in reverse polarization. Due to the hardness of SiC the creation of the bevel termination remains difficult using mechanical machining. The use of laser beam sources with medium wavelength (532 nm) gives new possibilities in the machining of the silicon carbide. The paper presents the fabrication of the bevel termination structure in SiC using a green DPSS laser equipped with scanner and dedicated rotating sample holder. Characterization of the resulting structures proves the high potential of the proposed approach. (paper)

  8. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    International Nuclear Information System (INIS)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W.

    2001-01-01

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel β-sheet and two short α-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate

  9. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division, D46Y, AP10/LL (United States)

    2001-06-15

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel {beta}-sheet and two short {alpha}-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate.

  10. Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain.

    Science.gov (United States)

    Terracciano, Stefania; Russo, Alessandra; Chini, Maria G; Vaccaro, Maria C; Potenza, Marianna; Vassallo, Antonio; Riccio, Raffaele; Bifulco, Giuseppe; Bruno, Ines

    2018-01-26

    Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone deeply involved in the complex network of cellular signaling governing some key functions, such as cell proliferation and survival, invasion and angiogenesis. Over the past years the N-terminal protein domain has been fully investigated as attractive strategy against cancer, but despite the many efforts lavished in the field, none of the N-terminal binders (termed "classical inhibitors"), currently in clinical trials, have yet successfully reached the market, because of the detrimental heat shock response (HSR) that showed to induce; thus, recently, the selective inhibition of Hsp90 C-terminal domain has powerfully emerged as a more promising alternative strategy for anti-cancer therapy, not eliciting this cell rescue cascade. However, the structural complexity of the target protein and, mostly, the lack of a co-crystal structure of C-terminal domain-ligand, essential to drive the identification of new hits, represent the largest hurdles in the development of new selective C-terminal inhibitors. Continuing our investigations on the identification of new anticancer drug candidates, by using an orthogonal screening approach, here we describe two new potent C-terminal inhibitors able to induce cancer cell death and a considerable down-regulation of Hsp90 client oncoproteins, without triggering the undesired heat shock response.

  11. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    Science.gov (United States)

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  12. Niemann-Pick C1 (NPC1/NPC1-like1 Chimeras Define Sequences Critical for NPC1’s Function as a Filovirus Entry Receptor

    Directory of Open Access Journals (Sweden)

    Esther Ndungo

    2012-10-01

    Full Text Available We recently demonstrated that Niemann-Pick C1 (NPC1, a ubiquitous 13-pass cellular membrane protein involved in lysosomal cholesterol transport, is a critical entry receptor for filoviruses. Here we show that Niemann-Pick C1-like1 (NPC1L1, an NPC1 paralog and hepatitis C virus entry factor, lacks filovirus receptor activity. We exploited the structural similarity between NPC1 and NPC1L1 to construct and analyze a panel of chimeras in which NPC1L1 sequences were replaced with cognate sequences from NPC1. Only one chimera, NPC1L1 containing the second luminal domain (C of NPC1 in place of its own, bound to the viral glycoprotein, GP. This engineered protein mediated authentic filovirus infection nearly as well as wild-type NPC1, and more efficiently than did a minimal NPC1 domain C-based receptor recently described by us. A reciprocal chimera, NPC1 containing NPC1L1’s domain C, was completely inactive. Remarkably, an intra-domain NPC1L1-NPC1 chimera bearing only a ~130-amino acid N–terminal region of NPC1 domain C could confer substantial viral receptor activity on NPC1L1. Taken together, these findings account for the failure of NPC1L1 to serve as a filovirus receptor, highlight the central role of the luminal domain C of NPC1 in filovirus entry, and reveal the direct involvement of N–terminal domain C sequences in NPC1’s function as a filovirus receptor.

  13. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    International Nuclear Information System (INIS)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-01-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with [ 3 H]-NaBH 4 , and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active site peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P

  14. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    Science.gov (United States)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  15. Roles of N- and C-terminal domains in the ligand-binding properties of cytoglobin.

    Science.gov (United States)

    Hanai, Shumpei; Tsujino, Hirofumi; Yamashita, Taku; Torii, Ryo; Sawai, Hitomi; Shiro, Yoshitsugu; Oohora, Koji; Hayashi, Takashi; Uno, Tadayuki

    2018-02-01

    Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans

    Directory of Open Access Journals (Sweden)

    Pupko Tal

    2008-10-01

    Full Text Available Abstract Transposable elements may acquire unrelated gene fragments into their sequences in a process called transduplication. Transduplication of protein-coding genes is common in plants, but is unknown of in animals. Here, we report that the Turmoil-1 transposable element in C. elegans has incorporated two protein-coding sequences into its inverted terminal repeat (ITR sequences. The ITRs of Turmoil-1 contain a conserved RNA recognition motif (RRM that originated from the rsp-2 gene and a fragment from the protein-coding region of the cpg-3 gene. We further report that an open reading frame specific to C. elegans may have been created as a result of a Turmoil-1 insertion. Mutations at the 5' splice site of this open reading frame may have reactivated the transduplicated RRM motif. Reviewers This article was reviewed by Dan Graur and William Martin. For the full reviews, please go to the Reviewers' Reports section.

  17. Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli

    NARCIS (Netherlands)

    Singh, S.; Folkers, G.E.; Bonvin, A.M.J.J.; Boelens, R.; Wechselberger, R.W.; Niztayev, A.; Kaptein, R.

    2002-01-01

    The C-terminal domain of the UvrC protein (UvrC CTD) is essential for 5' incision in the prokaryotic nucleotide excision repair process. We have determined the three-dimensional structure of the UvrC CTD using heteronuclear NMR techniques. The structure shows two helix±hairpin±helix (HhH) motifs

  18. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import

    Directory of Open Access Journals (Sweden)

    Fowke Keith R

    2005-10-01

    Full Text Available Abstract Background In addition to mediating the integration process, HIV-1 integrase (IN has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s and/or motif(s within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection. Results Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV and sequence Q (211KELQKQITK in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C-terminal

  19. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    Directory of Open Access Journals (Sweden)

    Yusuke Hayashi

    2016-01-01

    Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.

  20. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    Science.gov (United States)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  1. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    Science.gov (United States)

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  2. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  3. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  4. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, Trine Veje; Holm, Arne; Birkelund, Svend

    2009-01-01

    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42......) with high specificity. By this is meant that the paratope of the antibody must enclose the C-terminal end of A beta(42) including the carboxy-group of amino acid 42, and not just recognize a linear epitope in the C-terminal part of A beta. This has been accomplished by using a unique antigen construct made...... by the Ligand Presenting Assembly technology (LPA technology). This strategy results in dimeric presentation of the free C-terminal end of A beta(42). The generated Mab A beta1.1 is indeed specific for the C-terminal end of A beta(42) to which it binds with high affinity. Mab A beta1.1 recognizes the epitope...

  5. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  6. Sequence diversity of the C-terminal region of Plasmodium falciparum merozoite surface protein 1 in southern Iran.

    Science.gov (United States)

    Zamani, Zahra; Razavi, Mohammad Reza; Sadeghi, Sedigheh; Naddaf, Saeed; Pourfallah, Fatemeh; Mirkhani, Fatemeh; Arjmand, Mohammad; Feizhaddad, Hossein; Rad, Mina Ebrahimi; Ebrahimi Rad, Mina; Tameemi, Marzieh; Assmar, Mehdi

    2009-01-01

    The C-terminal region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum is a strong vaccine candidate as it is associated with immunity to the parasite. This corresponds approximately to the conserved 17th block of the gene and is composed of two EGF- like domains. These domains exhibit only four single amino acid substitutions which show several potential variants in this region of the gene. As the variations might be important for a regional vaccine design, a study was carried out to determine the variations present in P. falciparum isolates from southern Iran. Besides the usual E-T-S-R-L and the Q-K-N-G-F types, we found Q-T-S-R-L, E-K-N-G-F, E-T-S-G-L, Z-T-S-G-L and Z-T-S-R-L types, where Z was E or Q signifying the presence of mixed clones in single isolates.

  7. Stereoselective chlorothiolation of artemisinin-derived C-10 oxa terminal alkynes.

    Science.gov (United States)

    Surineni, Naresh; Buragohain, Pori; Barua, Nabin C

    2015-11-01

    A mild and efficient strategy is explored on the highly sensitive artemisinin-derived C-10 oxa terminal alkynes. Several novel artemisinin-derived (E)-2-chloroalkenyl sulfides (20) have been synthesized by using this protocol to study their anticancer activities.

  8. Crosstalk XVI, basic data communication and RS-232C

    International Nuclear Information System (INIS)

    Hwang, Hui Yung

    1988-10-01

    This book is divided into three parts, which deals with compatible software of data communication with IBM PC XT/AT. The first part consists of an introduction to crosstalk XVI, getting start for user, crosstalk practice, call with crosstalk, terminal feature, switch of communication parameter, terminal emulation, capturing data, transmission of text file answer mode, file transfer, command file and script file, command summary and examples. The second part deals with basic personal computer communication, RS-232C and explanation of communication control : RS-232C interface, transmission device and interrupt controller 8259.

  9. An inhibitory switch derepressed by pbx, hox, and Meis/Prep1 partners regulates DNA-binding by pbx1 and E2a-pbx1 and is dispensable for myeloid immortalization by E2a-pbx1.

    Science.gov (United States)

    Calvo, K R; Knoepfler, P; McGrath, S; Kamps, M P

    1999-12-23

    The Pbx/Exd family of homeodomain (HD) proteins contribute to the transcriptional and developmental roles of other Hox and Meis/Prep1/Hth HD proteins through heterodimer formation. E2a-Pbx1 is an oncogenic derrivative of Pbx1 produced by the t(1;19) translocation in pediatric pre-B cell acute lymphoblastic leukemia. E2a-Pbx1 heterodimerizes with Hox but not with Meis/Prep1 proteins, produces acute myeloid leukemia in mice, and blocks differentiation of cultured murine myeloid progenitors. Here, we characterize negative and positive regulatory sequences that flank the Pbx1 HD and determine their importance for myeloid immortalization by E2a-Pbx1. A 25 residue predicted alpha helix preceding the Pbx1 HD bound the HD and prevented both its binding to DNA and its ability to heterodimerize with Hox proteins. Addition of 39 residues N-terminal to this inhibitory helix exposed a Pbx dimerization interface that orchestrated cooperative DNA-binding of E2a-Pbx1 and all Pbx proteins as homodimers and heterdimers. Sequences inhibiting DNA-binding and mediating Pbx dimerization coincided with those reported to have nuclear export function. An additional 103 residues N-terminal to the Pbx dimerization interface restored heterodimerization with Hox and Meis1/Prep1 proteins. This negative switch domain - comprised of the inhibitory helix and N-terminal regions required for its partner-mediated derepression - was dispensable for myeloid immortalization by E2a-Pbx1. While stabilizing the heterodimer, the 310 helix C-terminal to the Pbx1 HD was also dispensable for the ability of E2a-Pbx1 to heterodimerize with Hox proteins and immortalize myeloblasts. Retention of myeloid immortalization by E2a-Pbx1 proteins lacking all Pbx1 sequences N- or C-terminal to the HD indicates that Hox proteins, or a yet undefined factor that binds the Pbx1 HD and derepresses DNA-binding by the HD, cooperate with E2a-Pbx1 in myeloid immortalization.

  10. Sequential magnetic switching in Fe/MgO(001) superlattices

    Science.gov (United States)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  11. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  12. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    International Nuclear Information System (INIS)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2014-01-01

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ( 258 RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP 289 ). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved

  13. Pharmacologic study of C-terminal fragments of frog skin calcitonin gene-related peptide.

    Science.gov (United States)

    Ladram, Ali; Besné, Isabelle; Breton, Lionel; de Lacharrière, Olivier; Nicolas, Pierre; Amiche, Mohamed

    2008-07-01

    The calcitonin gene-related peptide from the skin of the frog Phyllomedusa bicolor (pbCGRP) is a 37-residue neuropeptide that differs from human alpha CGRP (halphaCGRP) at 16 positions. The affinities of the C-terminal fragments of pbCGRP and halphaCGRP were evaluated in SK-N-MC cells: pbCGRP(8-37) (K(i)=0.2nM) and pbCGRP(27-37) (K(i)=95nM) were, respectively, 3 times and 20 times more potent than the human fragments halphaCGRP(8-37) and halphaCGRP(27-37). Their antagonistic potencies were measured in SK-N-MC and Col 29 cells, and the rat vas deferens. pbCGRP(8-37) inhibited the halphaCGRP-stimulated production of cAMP by SK-N-MC and Col 29 cells 3 to 4 times more strongly than halphaCGRP(8-37). Thus pbCGRP(8-37) is the most potent CGRP-1 competitive antagonist of all the natural sequences reported to date. pbCGRP(27-37) was also as potent as [D(31), A(34), F(35)] halphaCGRP(27-37), a prototypic antagonist analog derived from structure-activity relationship studies of halphaCGRP(8-37).

  14. Function of C-terminal hydrophobic region in fructose dehydrogenase

    International Nuclear Information System (INIS)

    Sugimoto, Yu; Kawai, Shota; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2015-01-01

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  15. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site.

    Science.gov (United States)

    Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia

    2012-10-01

    The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.

  16. RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location.

    Science.gov (United States)

    Serghini, M A; Fuchs, M; Pinck, M; Reinbolt, J; Walter, B; Pinck, L

    1990-07-01

    The nucleotide sequence of the genomic RNA2 (3774 nucleotides) of grapevine fanleaf virus strain F13 was determined from overlapping cDNA clones and its genetic organization was deduced. Two rapid and efficient methods were used for cDNA cloning of the 5' region of RNA2. The complete sequence contained only one long open reading frame of 3555 nucleotides (1184 codons, 131K product). The analysis of the N-terminal sequence of purified coat protein (CP) and identification of its C-terminal residue have allowed the CP cistron to be precisely positioned within the polyprotein. The CP produced by proteolytic cleavage at the Arg/Gly site between residues 680 and 681 contains 504 amino acids (Mr 56019) and has hydrophobic properties. The Arg/Gly cleavage site deduced by N-terminal amino acid sequence analysis is the first for a nepovirus coat protein and for plant viruses expressing their genomic RNAs by polyprotein synthesis. Comparison of GFLV RNA2 with M RNA of cowpea mosaic comovirus and with RNA2 of two closely related nepoviruses, tomato black ring virus and Hungarian grapevine chrome mosaic virus, showed strong similarities among the 3' non-coding regions but less similarity among the 5' end non-coding sequences than reported among other nepovirus RNAs.

  17. Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor

    Science.gov (United States)

    Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro

    2014-01-01

    Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384

  18. Experimental study on the 4H-SiC-based VDMOSFETs with lightly doped P-well field-limiting rings termination

    Science.gov (United States)

    He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming

    2017-03-01

    A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.

  19. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    Energy Technology Data Exchange (ETDEWEB)

    Guardado Calvo, Pablo [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Llamas-Saiz, Antonio L. [Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Langlois, Patrick [Agence Francaise de Securité Sanitaire des Aliments, Unité Génétique Virale et Biosecurité, Site Les Croix, BP 53, F-22440 Ploufragan (France); Raaij, Mark J. van, E-mail: vanraaij@usc.es [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain)

    2006-05-01

    Avian adenovirus long-fibre head trimers were expressed, purified and crystallized. The crystals belong to space group C2 (unit-cell parameters a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°). A complete highly redundant data set was collected to 2.2 Å resolution at 100 K using a rotating-anode X-ray source. Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress.

  20. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  1. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    International Nuclear Information System (INIS)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-01-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical

  2. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.

  3. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  4. The α-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance.

    Science.gov (United States)

    Tycko, Robert; Savtchenko, Regina; Ostapchenko, Valeriy G; Makarava, Natallia; Baskakov, Ilia V

    2010-11-09

    We report the results of solid state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the full-length prion protein PrP (residues 23−231, Syrian hamster sequence). Measurements of intermolecular 13C−13C dipole−dipole couplings in selectively carbonyl-labeled samples indicate that β-sheets in these fibrils have an in-register parallel structure, as previously observed in amyloid fibrils associated with Alzheimer’s disease and type 2 diabetes and in yeast prion fibrils. Two-dimensional 13C−13C and 15N−13C solid state NMR spectra of a uniformly 15N- and 13C-labeled sample indicate that a relatively small fraction of the full sequence, localized to the C-terminal end, forms the structurally ordered, immobilized core. Although unique site-specific assignments of the solid state NMR signals cannot be obtained from these spectra, analysis with a Monte Carlo/simulated annealing algorithm suggests that the core is comprised primarily of residues in the 173−224 range. These results are consistent with earlier electron paramagnetic resonance studies of fibrils formed by residues 90−231 of the human PrP sequence, formed under somewhat different conditions [Cobb, N. J., Sonnichsen, F. D., McHaourab, H., and Surewicz, W. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 18946−18951], suggesting that an in-register parallel β-sheet structure formed by the C-terminal end may be a general feature of PrP fibrils prepared in vitro.

  5. CDNA encoding a polypeptide including a hevein sequence

    Science.gov (United States)

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  6. Interaction of C-terminal truncated human alphaA-crystallins with target proteins.

    Directory of Open Access Journals (Sweden)

    Anbarasu Kumarasamy

    2008-09-01

    Full Text Available Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH and betaL-crystallin as target proteins, was increased in alphaA(1-172 and decreased in alphaA(1-168 and alphaA(1-162. The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k for ADH and alphaA(1-172 was nearly the same as that of ADH and alphaA-wt, alphaA(1-168 had lower and alphaA(1-162 had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172 had slightly higher k value than alphaA-wt and alphaA(1-168 and alphaA(1-162 had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172 was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168 was similar to that of alphaA-wt and alphaA(1-162 had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble.

  7. Preparation and switching kinetics of Pb(Zr, Ti)O3 thin films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Hase, Takashi; Shiosaki, Tadashi

    1991-01-01

    Ferroelectric Pb(Zr, Ti)O 3 [PZT] thin films have been prepared on Pt/Ti/SiO 2 /Si and Pt/SiO 2 /Si substrates using the reactive sputtering method with a metal composite target. The (111)-oriented PZT (80/20) thin films with a perovskite structure have been obtained at a substrate temperature of 595degC on highly (111)-oriented Pt films formed on SiO 2 /Si substrates. When an 8 V pulse sequence was applied to a 265 nm-thick film with an electrode area of 50 x 50 μm 2 , the switching time and the switched charge density measured were 20 ns and 10 μC/cm 2 , respectively. The switching time was strongly dependent on the electrode area. (author)

  8. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  9. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  10. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  11. DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    Full Text Available BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb has only one subunit of HU coded by ORF Rv2986c (hupB gene. One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb and another which expresses only the N terminal region (first 95 amino acid of hupB (HupB(MtbN. Gel retardation assays revealed that HupB(MtbN is almost like E. coli HU (heat stable nucleoid protein in terms of its DNA binding, with a binding constant (K(d for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region of HupB(Mtb imparts greater specificity in DNA binding. HupB(Mtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.

  12. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    International Nuclear Information System (INIS)

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2 1 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction

  13. Co-expression of the C-terminal domain of Yersinia enterocolitica ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 40; Issue 1. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus. Helin Li Pengbo Ning Zhi Lin Wulong Liang Kai Kang Lei He Yanming Zhang. Articles Volume ...

  14. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D. [Department of Microbiology and Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada (Canada); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, The University of Western Ontario, A4-833 London Regional Cancer Centre, 800 Commissioners Road E., London, Ontario, N6A 4L6 Canada (Canada); Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, Ontario (Canada)

    2014-11-15

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.

  15. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-13C2]Glucose Metabolism in Anesthetized Rats.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The 13 C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6- 13 C 2 ]glucose or [2- 13 C]acetate. Nerve terminal 13 C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13 C labeling from [1,6- 13 C 2 ]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (Glu C4 , 21.8 min; GABA C2 21.0 min) compared to cortical tissue (Glu C4 , 12.4 min; GABA C2 , 14.5 min), except for Asp C3 , which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13 C labeling ratio for glutamate-C4 from [2- 13 C]acetate over that of 13 C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13 C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  16. cDNA sequences of two inducible T-cell genes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, B.S. (Indiana Univ. School of Medicine, Indianapolis (USA) Guthrie Research Institute, Sayre, PA (USA)); Weissman, S.M. (Yale Univ., New Haven, CT (USA))

    1989-03-01

    The authors have previously described a set of human T-lymphocyte-specific cDNA clones isolated by a modified differential screening procedure. Apparent full-length cDNAs containing the sequences of 14 of the 16 initial isolates were sequenced and were found to represent five different species of mRNA; three of the five species were identical to previously reported cDNA sequences of preproenkephalin, T-cell-replacing factor, and a serine esterase, respectively. The other two species, 4-1BB and L2G25B, were inducible sequences found in mRNA from both a cytolytic T-lymphocyte and a helper T-lymphocyte clone and were not previously described in T-cell mRNA; these mRNA sequences encode peptides of 256 and 92 amino acids, respectively. Both peptides contain putative leader sequences. The protein encoded by 4-1BB also has a potential membrane anchor segment and other features also seen in known receptor proteins.

  17. Coupled qubits as a quantum heat switch

    Science.gov (United States)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  18. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  19. Structure of a mouse immunoglobulin G that lacks the entire C sub H 1 domain: Protein sequencing and small-angle X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Takako; Tanaka, Toshiyuki; Nakanishi, Mamoru; Arata, Yoji (Univ. of Tokyo (Japan)); Sato, Mamoru; Katsube, Yukiteru (Osaka Univ. (Japan)); Takio, Koji (Institute of Physical and Chemical Research, Saitama (Japan))

    1990-06-19

    The structure of a short-chain IgG2a antibody, which is a member of the family of mouse anti-dansyl switch variant antibodies with identical variable regions but different heavy-chain constant regions, is reported. Amino acid sequencing analyses have demonstrated that in the short-chain IgG2a antibody the entire C{sub H}1 domain is deleted whereas the hinge region remains intact. Small-angle X-ray scattering data were collected for the short-chain IgG2a antibody and compared with those for the switch variant IgG1, IgG2a, and IgG2b antibodies with the normal heavy chain. It has been concluded that deletion of the C{sub H}1 domain results in a large structural change and the short-chain IgG2a antibody possesses an elongated molecular shape with a much smaller hinge angle as compared with the normal IgG2a antibody that is a Y-shaped molecule.

  20. Nonlinear dynamics of C-terminal tails in cellular microtubules

    Science.gov (United States)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  1. An intermediate region in C-terminal of phosphoprotein is required ...

    African Journals Online (AJOL)

    In this study, the region of P that binds to NPNC was mapped. To determine the binding region, 18 N- and C-terminally truncated P mutants were synthesized by in vitro translation in rabbit reticulocytes and mixed with purified NP (NPNC). The mutants which did not bind to NP were considered as mutants and they contain ...

  2. Uranyl Photocleavage of Phosphopeptides Yields Truncated C-Terminally Amidated Peptide Products

    DEFF Research Database (Denmark)

    Elnegaard, Rasmus L B; Møllegaard, Niels Erik; Zhang, Qiang

    2017-01-01

    photocleavage reaction of a tetraphosphorylated β-casein model peptide. We show that the primary photocleavage products of the uranyl-catalysed reaction are C-terminally amidated. This could be of great interest to the pharmaceutical industry, as efficient peptide amidation reactions are one of the top...

  3. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    Science.gov (United States)

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  4. Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning

    International Nuclear Information System (INIS)

    Pierce, R.A.; Deak, S.B.; Stolle, C.A.; Boyd, C.D.

    1990-01-01

    A λgt11 library constructed from poly(A+) RNA isolated from aortic tissue of neonatal rats was screened for rat tropoelastin cDNAs. The first, screen, utilizing a human tropoelastin cDNA clone, provided rat tropoelastin cDNAs spanning 2.3 kb of carboxy-terminal coding sequence and extended into the 3'-untranslated region. A subsequent screen using a 5' rat tropoelastin cDNA clone yielded clones extending into the amino-terminal signal sequence coding region. Sequence analysis of these clones has provided the complete derived amino acid sequence of rat tropoelastin and allowed alignment and comparison with published bovine cDNA sequence. While the overall structure of rat tropoelastin is similar to bovine sequence, numerous substitutions, deletions, and insertions demonstrated considerable heterogeneity between species. In particular, the pentapeptide repeat VPGVG, characteristic of all tropoelastins analyzed to date, is replaced in rat tropoelastin by a repeating pentapeptide, IPGVG. The hexapeptide repeat VGVAPG, the bovine elastin receptor binding peptide, is not encoded by rat tropoelastin cDNAs. Variations in coding sequence between rat tropoelastin CDNA clones were also found which may represent mRNA heterogeneity produced by alternative splicing of the rat tropoelastin pre-mRNA

  5. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  6. Truncation of the C-terminal region of Toscana Virus NSs protein is critical for interferon-β antagonism and protein stability.

    Science.gov (United States)

    Gori Savellini, Gianni; Gandolfo, Claudia; Cusi, Maria Grazia

    2015-12-01

    Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Forward modeling of fluctuating dietary 13C signals to validate 13C turnover models of milk and milk components from a diet-switch experiment.

    Directory of Open Access Journals (Sweden)

    Alexander Braun

    Full Text Available Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ~12 h, and that of feces ~20 h. The half-life (t½ for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The (13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose, and a slower pool with a t½ of 21 h (likely including casein and milk fat. The diet-switch based turnover information provided a precise prediction (RMSE ~0.2 ‰ of the natural (13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition.

  8. Assessment of the PrPc Amino-Terminal Domain in Prion Species Barriers.

    Science.gov (United States)

    Davenport, Kristen A; Henderson, Davin M; Mathiason, Candace K; Hoover, Edward A

    2016-12-01

    Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion diseases that are caused by the same protein-misfolding mechanism, but they appear to pose different risks to humans. We are interested in understanding the differences between the species barriers of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central molecular event in prion disease, the templated misfolding of the normal prion protein, PrP c , to a pathogenic, amyloid isoform, scrapie prion protein, PrP Sc We examined the role of the PrP c amino-terminal domain (N-terminal domain [NTD], amino acids [aa] 23 to 90) in cross-species conversion by comparing the conversion efficiency of various prion seeds in either full-length (aa 23 to 231) or truncated (aa 90 to 231) PrP c We demonstrate that the presence of white-tailed deer and bovine NTDs hindered seeded conversion of PrP c , but human and bank vole NTDs did the opposite. Additionally, full-length human and bank vole PrP c s were more likely to be converted to amyloid by CWD prions than were their truncated forms. A chimera with replacement of the human NTD by the bovine NTD resembled human PrP c The requirement for an NTD, but not for the specific human sequence, suggests that the NTD interacts with other regions of the human PrP c to increase promiscuity. These data contribute to the evidence that, in addition to primary sequence, prion species barriers are controlled by interactions of the substrate NTD with the rest of the substrate PrP c molecule. We demonstrate that the amino-terminal domain of the normal prion protein, PrP c , hinders seeded conversion of bovine and white-tailed deer PrP c s to the prion forms, but it facilitates conversion of the human and bank vole PrP c s to the prion forms. Additionally, we demonstrate that the amino-terminal domain of human and bank vole PrP c s requires interaction with the rest of the molecule to facilitate conversion by CWD

  9. NMR assignments of SPOC domain of the human transcriptional corepressor SHARP in complex with a C-terminal SMRT peptide.

    Science.gov (United States)

    Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki

    2013-10-01

    The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.

  10. Impact analysis of tap switch out of step for converter transformer

    Science.gov (United States)

    Hong-yue, ZHANG; Zhen-hua, ZHANG; Zhang-xue, XIONG; Gao-wang, YU

    2017-06-01

    AC transformer load regulation is mainly used to adjust the load side voltage level, improve the quality of power supply, the voltage range is relatively narrow. In DC system, converter transformer is the core equipment of AC and DC power converter and inverter. converter transformer tap adjustment can maintain the normal operation of the converter in small angle range control, the absorption of reactive power, economic operation, valve less stress, valve damping circuit loss, AC / DC harmonic component is also smaller. In this way, the tap switch action is more frequent, and a large range of the tap switch adjustment is required. Converter transformer with a more load voltage regulation switch, the voltage regulation range of the switch is generally 20~30%, the adjustment of each file is 1%~2%. Recently it is often found that the tap switch of Converter Transformers is out of step in Converter station. In this paper, it is analyzed in detail the impact of tap switch out of step for differential protection, overexcitation protection and zero sequence over current protection. Analysis results show that: the tap switch out of step has no effect on the differential protection and the overexcitation protection including the tap switch. But the tap switch out of step has effect on zero sequence overcurrent protection of out of step star-angle converter transformer. The zero sequence overcurrent protection will trip when the tap switch out of step is greater than 3 for out of step star-angle converter transformer.

  11. Preparation and switching kinetics of Pb(Zr, Ti)O sub 3 thin films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Takashi; Shiosaki, Tadashi [Kyoto Univ. (Japan). Faculty of Engineering

    1991-09-01

    Ferroelectric Pb(Zr, Ti)O{sub 3} (PZT) thin films have been prepared on Pt/Ti/SiO{sub 2}/Si and Pt/SiO{sub 2}/Si substrates using the reactive sputtering method with a metal composite target. The (111)-oriented PZT (80/20) thin films with a perovskite structure have been obtained at a substrate temperature of 595degC on highly (111)-oriented Pt films formed on SiO{sub 2}/Si substrates. When an 8 V pulse sequence was applied to a 265 nm-thick film with an electrode area of 50 x 50 {mu}m{sup 2}, the switching time and the switched charge density measured were 20 ns and 10 {mu}C/cm{sup 2}, respectively. The switching time was strongly dependent on the electrode area. (author).

  12. Structural and dynamic properties of the C-terminal region of the Escherichia coli RNA chaperone Hfq: integrative experimental and computational studies.

    Science.gov (United States)

    Wen, Bin; Wang, Weiwei; Zhang, Jiahai; Gong, Qingguo; Shi, Yunyu; Wu, Jihui; Zhang, Zhiyong

    2017-08-09

    In Escherichia coli, hexameric Hfq is an important RNA chaperone that facilitates small RNA-mediated post-transcriptional regulation. The Hfq monomer consists of an evolutionarily conserved Sm domain (residues 1-65) and a flexible C-terminal region (residues 66-102). It has been recognized that the existence of the C-terminal region is important for the function of Hfq, but its detailed structural and dynamic properties remain elusive due to its disordered nature. In this work, using integrative experimental techniques, such as nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, as well as multi-scale computational simulations, new insights into the structure and dynamics of the C-terminal region in the context of the Hfq hexamer are provided. Although the C-terminal region is intrinsically disordered, some residues (83-86) are motionally restricted. The hexameric core may affect the secondary structure propensity of the C-terminal region, due to transient interactions between them. The residues at the rim and the proximal side of the core have significantly more transient contacts with the C-terminal region than those residues at the distal side, which may facilitate the function of the C-terminal region in the release of double-stranded RNAs and the cycling of small non-coding RNAs. Structure ensembles constructed by fitting the experimental data also support that the C-terminal region prefers to locate at the proximal side. From multi-scale simulations, we propose that the C-terminal region may play a dual role of steric effect (especially at the proximal side) and recruitment (at the both sides) in the binding process of RNA substrates. Interestingly, we have found that these motionally restricted residues may serve as important binding sites for the incoming RNAs that is probably driven by favorable electrostatic interactions. These integrative studies may aid in our understanding of the functional role of the C-terminal region of Hfq.

  13. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  14. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed...

  15. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayan Banerjee

    2009-07-01

    Full Text Available Making the correct choice between transcription elongation and transcription termination is essential to the function of RNA polymerase II, and fundamental to gene expression. This choice can be influenced by factors modifying the transcription complex, factors modifying chromatin, or signals mediated by the template or transcript. To aid in the study of transcription elongation and termination we have developed a transcription elongation reporter system that consists of tandem luciferase reporters flanking a test sequence of interest. The ratio of expression from the reporters provides a measure of the relative rates of successful elongation through the intervening sequence.Size matched fragments containing the polyadenylation signal of the human beta-actin gene (ACTB and the human beta-globin gene (HBB were evaluated for transcription termination using this new ratiometric tandem reporter assay. Constructs bearing just 200 base pairs on either side of the consensus poly(A addition site terminated 98% and 86% of transcription for ACTB and HBB sequences, respectively. The nearly 10-fold difference in read-through transcription between the two short poly(A regions was eclipsed when additional downstream poly(A sequence was included for each gene. Both poly(A regions proved very effective at termination when 1100 base pairs were included, stopping 99.6% of transcription. To determine if part of the increased termination was simply due to the increased template length, we inserted several kilobases of heterologous coding sequence downstream of each poly(A region test fragment. Unexpectedly, the additional length reduced the effectiveness of termination of HBB sequences 2-fold and of ACTB sequences 3- to 5-fold.The tandem construct provides a sensitive measure of transcription termination in human cells. Decreased Xrn2 or Senataxin levels produced only a modest release from termination. Our data support overlap in allosteric and torpedo mechanisms

  16. A chain-retrieval model for voluntary task switching.

    Science.gov (United States)

    Vandierendonck, André; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick

    2012-09-01

    To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Universal statistics of terminal dynamics before collapse

    Science.gov (United States)

    Lenner, Nicolas; Eule, Stephan; Wolf, Fred

    Recent biological developments have both drastically increased the precision as well as amount of generated data, allowing for a switching from pure mean value characterization of the process under consideration to an analysis of the whole ensemble, exploiting the stochastic nature of biology. We focus on the general class of non-equilibrium processes with distinguished terminal points as can be found in cell fate decision, check points or cognitive neuroscience. Aligning the data to a terminal point (e.g. represented as an absorbing boundary) allows to device a general methodology to characterize and reverse engineer the terminating history. Using a small noise approximation we derive mean variance and covariance of the aligned data for general finite time singularities.

  18. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

    International Nuclear Information System (INIS)

    Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2008-01-01

    Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

  19. 275 C Downhole Switched-Mode Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Vijay Madhuravasal

    2008-08-31

    A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

  20. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  1. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Kampen, van T.; Kammen, van A.; Wellink, J.

    2002-01-01

    The genomic sequence of a Zimbabwe isolate of Cowpea aphid-borne mosaic virus (CABMV-Z) was determined by sequencing overlapping viral cDNA clones generated by RT-PCR using degenerate and/or specific primers. The sequence is 9465 nucleotides in length excluding the 3' terminal poly (A) tail and

  2. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    International Nuclear Information System (INIS)

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-01-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed

  3. Genetic variation in N- and C-terminal regions of bovine DNAJA1 heat shock protein gene in African, Asian and American cattle

    Science.gov (United States)

    Ajayi, Oyeyemi O.; Peters, Sunday O.; De Donato, Marcos; Mujibi, F. Denis; Khan, Waqas A.; Hussain, Tanveer; Babar, Masroor E.; Imumorin, Ikhide G.; Thomas, Bolaji N.

    2018-01-01

    DNAJA1 or heat shock protein 40 (Hsp40) is associated with heat adaptation in various organisms. We amplified and sequenced a total of 1,142 bp of bovine Hsp40 gene representing the critical N-terminal (NTR) and C-terminal (CTR) regions in representative samples of African, Asian and American cattle breeds. Eleven and 9 different haplotypes were observed in the NTR in Asian and African breeds respectively while in American Brangus, only two mutations were observed resulting in two haplotypes. The CTR appears to be highly conserved between cattle and yak. In-silico functional analysis with PANTHER predicted putative deleterious functional impact of c.161 T>A; p. V54Q while alignment of bovine and human NTR-J domains revealed that p.Q19H, p.E20Q and p. E21X mutations occurred in helix 2 and p.V54Q missense mutation occurred in helix 3 respectively. The 124 bp insertion found in the yak DNAJA1 ortholog may have significant functional relevance warranting further investigation. Our results suggest that these genetic differences may be concomitant with population genetic history and possible functional consequences for climate adaptation in bovidae. PMID:29290829

  4. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  5. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    Science.gov (United States)

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  7. Abrupt climate changes during Termination III in Southern Europe.

    Science.gov (United States)

    Pérez-Mejías, Carlos; Moreno, Ana; Sancho, Carlos; Bartolomé, Miguel; Stoll, Heather; Cacho, Isabel; Cheng, Hai; Edwards, R Lawrence

    2017-09-19

    The Late Quaternary glacial-interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution δ 13 C, δ 18 O, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium-thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I).

  8. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, in Escherichia coli

    Science.gov (United States)

    Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi

    2013-01-01

    In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391

  9. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence.

    Science.gov (United States)

    Ikemoto, Hideya; Yoshino, Tatsuhiko; Sakata, Ken; Matsunaga, Shigeki; Kanai, Motomu

    2014-04-09

    A unique synthetic utility of a Cp*Co(III) catalyst in comparison with related Cp*Rh(III) catalysts is described. A C2-selective indole alkenylation/annulation sequence proceeded smoothly with catalytic amount of a [Cp*Co(III)(C6H6)](PF6)2 complex and KOAc. Intramolecular addition of an alkenyl-Cp*Co species to a carbamoyl moiety gave pyrroloindolones in 58-89% yield in one pot. Clear difference was observed between the catalytic activity of the Cp*Co(III) complex and those of Cp*Rh(III) complexes, highlighting the unique nucleophilic activity of the organocobalt species. The Cp*Co(III) catalysis was also suitable for simple alkenylation process of N-carbamoyl indoles, and broad range of alkynes, including terminal alkynes, were applicable to give C2-alkenylated indoles in 50-99% yield. Mechanistic studies on C-H activation step under Cp*Co(III) catalysis with the aid of an acetate unit as well as evaluation of the difference between organo-Co(III) species and organo-Rh(III) species are also described.

  10. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    Science.gov (United States)

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Effect of switching surges on ehv system design

    Energy Technology Data Exchange (ETDEWEB)

    Baril, G A; McGillis, D

    1966-01-01

    The presence of switching surges imposes certain conditions on the design of ehv system and certain resulting requirements in the basic components of these systems. At extra high voltage, it becomes both a practical as well as an economic necessity to limit the magnitude of switching surge overvoltages. This can be accomplished by the installation of suitable terminal equipment, and for the 735 kV system it was found necessary to install permanently connected shunt reactors on the transmission lines and to provide for the installation of closing resistors on the circuit breakers.

  12. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    Science.gov (United States)

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.

  13. DEMONSTRATION BY MASS-SPECTROMETRY THAT PSEUDO-HEVEIN AND HEVEIN HAVE RAGGED C-TERMINAL SEQUENCES

    NARCIS (Netherlands)

    SOEDJANAATMADJA, UMS; HOFSTEENGE, J; JERONIMUSSTRATINGH, CM; BRUINS, AP; BEINTEMA, JJ

    1994-01-01

    The primary structure of pseudo-hevein, a minor hevein component from the latex of the rubber tree, Hevea brasiliensis, was determined. Six differences with the sequence of the major hevein component were found, one of which is a replacement of tryptophan by tyrosine in the carbohydrate binding

  14. Multilocus sequence typing (MLST methods for the emerging Campylobacter species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus and C. curvus

    Directory of Open Access Journals (Sweden)

    William G Miller

    2012-04-01

    Full Text Available Multilocus sequence typing (MLST systems have been reported previously for multiple food- and food animal-associated Campylobacter species (e.g. C. jejuni, C. coli, C. lari and C. fetus to both differentiate strains and identify clonal lineages. These MLST methods focused primarily on campylobacters of human clinical (e.g. C. jejuni or veterinary (e.g. C. fetus relevance. However, other, emerging, Campylobacter species have been isolated increasingly from environmental, food animal or human clinical samples. We describe herein MLST methods for five emerging Campylobacter species: C. hyointestinalis, C. lanienae, C. sputorum, C. concisus and C. curvus. The concisus/curvus method uses the loci aspA, atpA, glnA, gltA, glyA, ilvD and pgm, whereas the other methods use the seven loci defined for C. jejuni (i.e., aspA, atpA, glnA, gltA, glyA, pgm, and tkt. Multiple food animal and human clinical C. hyointestinalis (n=48, C. lanienae (n=34 and C. sputorum (n=24 isolates were typed, along with 86 human clinical C. concisus and C. curvus isolates. A large number of sequence types (STs were identified using all four MLST methods. Similar to Campylobacter MLST methods described previously, these novel MLST methods identified mixed isolates containing two or more strains of the same species. Additionally, these methods speciated unequivocally isolates that had been typed ambiguously using other molecular-based speciation methods, such as 16S rDNA sequencing. Finally, the design of degenerate primer pairs for some methods permitted the typing of related species; for example, the C. hyointestinalis primer pairs could be used to type C. fetus strains. Therefore, these novel Campylobacter MLST methods will prove useful in speciating and differentiating strains of multiple, emerging Campylobacter species.

  15. Numerical simulation of fire spread in terminal 2 of Belgrade airport

    Directory of Open Access Journals (Sweden)

    Stevanović Žarko

    2007-01-01

    Full Text Available This paper concern the results of software fire spread process prototype in terminal 2 of Belgrade airport using computational fluid dynamics. Numerical simulation of fire for the most critical fire scenario has been performed, primarily obtaining the space and time distribution of: velocity, pressure, temperature, and smoke concentration, assuming that HVAC systems have been switched off and all doors on the evacuation ways have been opened, just as the fire started. Also, two simulations have been compared of the smoke ventilation and not ventilation for the same scenario. Within the framework of the results presentation, isosurfaces of constant temperature (100 ºC and smoke concentration (4000 ppm are presented, based on the numerical simulation. Progression of these surfaces along the terminal 2 coincides to the experimental and experience evidence, forming the plume zone just above the fireplace, and spreading in the zone of underground ceiling and stairwell openings. .

  16. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; Casals, C

    2001-01-01

    . The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-phosphatidylethanolamine, and indicates that the N-terminal end of the protein is located at the surface of the membranes and is exposed to the aqueous environment. In membranes containing...... phosphatidylglycerol (PG), the fluorescence of Dns-SP-C shows a 3-fold increase with respect to the fluorescence of phosphatidylcholine (PC), suggesting that electrostatic lipid-protein interactions induce important effects on the structure and disposition of the N-terminal segment of the protein in these membranes...... of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers...

  17. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  18. Effect of automated ultraviolet C-emitting device on decontamination of hospital rooms with and without real-time observation of terminal room disinfection.

    Science.gov (United States)

    Penno, Katie; Jandarov, Roman A; Sopirala, Madhuri M

    2017-11-01

    We studied the effectiveness of an ultraviolet C (UV-C) emitter in clinical settings and compared it with observed terminal disinfection. We cultured 22 hospital discharge rooms at a tertiary care academic medical center. Phase 1 (unobserved terminal disinfection) included cultures of 11 high-touch environmental surfaces (HTSs) after terminal room disinfection (AD) and after the use of a UV-C-emitting device (AUV). Phase 2 (observed terminal disinfection) included cultures before terminal room disinfection (BD), AD, and AUV. Zero-inflated Poisson regression compared mean colony forming units (CFU) between the groups. Two-sample proportion tests identified significance of the observed differences in proportions of thoroughly cleaned HTSs (CFU cleaning significantly reduced microbial burden and improved the thoroughness of terminal disinfection. We found no further benefit to UV-C use if standard terminal disinfection was observed. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

    Directory of Open Access Journals (Sweden)

    Yuichi Tsuchiya

    2015-12-01

    Full Text Available cFLIP (cellular FLICE-like inhibitory protein is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR. cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.

  20. Conversion of functionally undefined homopentameric protein PbaA into a proteasome activator by mutational modification of its C-terminal segment conformation.

    Science.gov (United States)

    Yagi-Utsumi, Maho; Sikdar, Arunima; Kozai, Toshiya; Inoue, Rintaro; Sugiyama, Masaaki; Uchihashi, Takayuki; Yagi, Hirokazu; Satoh, Tadashi; Kato, Koichi

    2018-01-01

    Recent bioinformatic analyses identified proteasome assembly chaperone-like proteins, PbaA and PbaB, in archaea. PbaB forms a homotetramer and functions as a proteasome activator, whereas PbaA does not interact with the proteasome despite the presence of an apparent C-terminal proteasome activation motif. We revealed that PbaA forms a homopentamer predominantly in the closed conformation with its C-terminal segments packed against the core domains, in contrast to the PbaB homotetramer with projecting C-terminal segments. This prompted us to create a novel proteasome activator based on a well-characterized structural framework. We constructed a panel of chimeric proteins comprising the homopentameric scaffold of PbaA and C-terminal segment of PbaB and subjected them to proteasome-activating assays as well as small-angle X-ray scattering and high-speed atomic force microscopy. The results indicated that the open conformation and consequent proteasome activation activity could be enhanced by replacement of the crystallographically disordered C-terminal segment of PbaA with the corresponding disordered segment of PbaB. Moreover, these effects can be produced just by incorporating two glutamate residues into the disordered C-terminal segment of PbaA, probably due to electrostatic repulsion among the negatively charged segments. Thus, we successfully endowed a functionally undefined protein with proteasome-activating activity by modifying its C-terminal segment. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-01-01

    A cDNA coding for human liver NADH-cytochrome b 5 reductase was cloned from a human liver cDNA library constructed in phage λgt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b 5 reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb 5 R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb 5 R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  2. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    Science.gov (United States)

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-04-27

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors.

  3. Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin*

    Science.gov (United States)

    Koiwai, Kotaro; Hartmann, Marcus D.; Linke, Dirk; Lupas, Andrei N.; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs) on the cell surface of Gram-negative pathogens mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific high adhesiveness to abiotic material surfaces as well as to biotic surfaces. It consists of a passenger domain secreted by the C-terminal transmembrane anchor domain (TM), and the passenger domain contains an N-terminal head, N-terminal stalk, C-terminal head (Chead), and C-terminal stalk (Cstalk). The Chead-Cstalk-TM fragment, which is conserved in many Acinetobacter TAAs, has by itself the head-stalk-anchor architecture of a complete TAA. Here, we show the crystal structure of the Chead-Cstalk fragment, AtaA_C-terminal passenger domain (CPSD), providing the first view of several conserved TAA domains. The YadA-like head (Ylhead) of the fragment is capped by a unique structure (headCap), composed of three β-hairpins and a connector motif; it also contains a head insert motif (HIM1) before its last inner β-strand. The headCap, Ylhead, and HIM1 integrally form a stable Chead structure. Some of the major domains of the CPSD fragment are inherently flexible and provide bending sites for the fiber between segments whose toughness is ensured by topological chain exchange and hydrophobic core formation inside the trimer. Thus, although adherence assays using in-frame deletion mutants revealed that the characteristic adhesive sites of AtaA reside in its N-terminal part, the flexibility and toughness of the CPSD part provide the resilience that enables the adhesive properties of the full-length fiber across a wide range of conditions. PMID:26698633

  4. Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells.

    Science.gov (United States)

    Matsui, T; Nakayama, H; Yoshida, K; Shinmyo, A

    2003-10-01

    Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.

  5. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide

    International Nuclear Information System (INIS)

    Faravelli, Alessandro; Dimasi, Nazzareno

    2005-01-01

    Several crystals of the Grb2-like C-terminal SH3 domain in complex with a motif peptide from the SLP-76 protein were obtained and characterized. The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized

  6. High-voltage switching for in-flight capture of keV antiprotons in a Penning trap

    International Nuclear Information System (INIS)

    Fei, X.; Davisson, R.; Gabrielse, G.

    1987-01-01

    The recently observed in-flight capture of keV antiprotons and protons in a Penning trap requires that the -3-kV potentials on electrodes of a Penning trap near 4.2 K be switched on and off with switching times less than 20 ns. These rapidly switched potentials are applied via transmission lines which are not terminated at the trap, thereby avoiding unacceptable heat load on the helium Dewar. Simple high-voltage switching circuits are constructed using krytrons and reed relays. A krytron provides the rapid switching and stays on just long enough for a reed relay to kick in and maintain the switched state indefinitely

  7. Structure of the Reston ebolavirus VP30 C-terminal domain.

    Science.gov (United States)

    Clifton, Matthew C; Kirchdoerfer, Robert N; Atkins, Kateri; Abendroth, Jan; Raymond, Amy; Grice, Rena; Barnes, Steve; Moen, Spencer; Lorimer, Don; Edwards, Thomas E; Myler, Peter J; Saphire, Erica Ollmann

    2014-04-01

    The ebolaviruses can cause severe hemorrhagic fever. Essential to the ebolavirus life cycle is the protein VP30, which serves as a transcriptional cofactor. Here, the crystal structure of the C-terminal, NP-binding domain of VP30 from Reston ebolavirus is presented. Reston VP30 and Ebola VP30 both form homodimers, but the dimeric interfaces are rotated relative to each other, suggesting subtle inherent differences or flexibility in the dimeric interface.

  8. Few-nanosecond pulse switching with low write error for in-plane nanomagnets using the spin-Hall effect

    Science.gov (United States)

    Aradhya, Sriharsha; Rowlands, Graham; Shi, Shengjie; Oh, Junseok; Ralph, D. C.; Buhrman, Robert

    Magnetic random access memory (MRAM) using spin transfer torques (STT) holds great promise for replacing existing best-in-class memory technologies in several application domains. Research on conventional two-terminal STT-MRAM thus far has revealed the existence of limitations that constrain switching reliability and speed for both in-plane and perpendicularly magnetized devices. Recently, spin torque arising from the giant spin-Hall effect in Ta, W and Pt has been shown to be an efficient mechanism to switch magnetic bits in a three-terminal geometry. Here we report highly reliable, nanosecond timescale pulse switching of three-terminal devices with in-plane magnetized magnetic tunnel junctions. We obtain write error rates (WER) down to ~10-5 using pulses as short as 2 ns, in contrast to conventional in-plane STT-MRAM devices where write speeds were limited to a few tens of nanoseconds for comparable WER. Utilizing micro-magnetic simulations, we discuss the differences from conventional MRAM that allow for this unanticipated and significant performance improvement. Finally, we highlight the path towards practical application enabled by the ability to separately optimize the read and write pathways in three-terminal devices.

  9. Structure-based domain assignment in Leishmania infantum EndoG: characterization of a pH-dependent regulatory switch and a C-terminal extension that largely dictates DNA substrate preferences.

    Science.gov (United States)

    Oliva, Cristina; Sánchez-Murcia, Pedro A; Rico, Eva; Bravo, Ana; Menéndez, Margarita; Gago, Federico; Jiménez-Ruiz, Antonio

    2017-09-06

    Mitochondrial endonuclease G from Leishmania infantum (LiEndoG) participates in the degradation of double-stranded DNA (dsDNA) during parasite cell death and is catalytically inactive at a pH of 8.0 or above. The presence, in the primary sequence, of an acidic amino acid-rich insertion exclusive to trypanosomatids and its spatial position in a homology-built model of LiEndoG led us to postulate that this peptide stretch might act as a pH sensor for self-inhibition. We found that a LiEndoG variant lacking residues 145-180 is indeed far more active than its wild-type counterpart at pH values >7.0. In addition, we discovered that (i) LiEndoG exists as a homodimer, (ii) replacement of Ser211 in the active-site SRGH motif with the canonical aspartate from the DRGH motif of other nucleases leads to a catalytically deficient enzyme, (iii) the activity of the S211D variant can be restored upon the concomitant replacement of Ala247 with Arg and (iv) a C-terminal extension is responsible for the observed preferential cleavage of single-stranded DNA (ssDNA) and ssDNA-dsDNA junctions. Taken together, our results support the view that LiEndoG is a multidomain molecular machine whose nuclease activity can be subtly modulated or even abrogated through architectural changes brought about by environmental conditions and interaction with other binding partners. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Influence of C-terminal tail deletion on structure and stability of hyperthermophile Sulfolobus tokodaii RNase HI.

    Science.gov (United States)

    Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-06-01

    The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.

  11. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  12. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    Science.gov (United States)

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  13. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  14. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    Science.gov (United States)

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  15. Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain.

    Science.gov (United States)

    Rust, K; Grosso, L; Zhang, V; Chang, D; Persson, A; Longmore, W; Cai, G Z; Crouch, E

    1991-10-01

    Lung surfactant protein D (SP-D) shows calcium-dependent binding to specific saccharides, and is similar in domain structure to certain members of the calcium-dependent (C-type) lectin family. Using a degenerate oligomeric probe corresponding to a conserved peptide sequence derived from the amino-terminus of the putative carbohydrate binding domain of rat and bovine SP-D, we screened a human lung cDNA library and isolated a 1.4-kb cDNA for the human protein. The relationship of the cDNA to SP-D was established by several techniques including amino-terminal microsequencing of SP-D-derived peptides, and immunoprecipitation of translation products of transcribed mRNA with monospecific antibodies to SP-D. In addition, antibodies to a synthetic peptide derived from a predicted unique epitope within the carbohydrate recognition domain of SP-D specifically reacted with SP-D. DNA sequencing demonstrated a noncollagenous carboxy-terminal domain that is highly homologous with the carboxy-terminal globular domain of previously described C-type lectins. This domain contains all of the so-called "invariant residues," including four conserved cysteine residues, and shows high homology with the mannose-binding subfamily of C-type lectins. Sequencing also demonstrated an amino-terminal collagenous domain that contains an uninterrupted sequence of 59 Gly-X-Y triplets and that also contains the only identified consensus for asparagine-linked oligosaccharides. The studies demonstrate that SP-D is a member of the C-type lectin family, and confirm predicted structural similarities to conglutinin, SP-D, and the serum mannose binding proteins.

  16. Structure and function of C-terminal catalytic region of pasteurella multocida toxin

    International Nuclear Information System (INIS)

    Kitadokoro, Kengo; Kamitami, Shigeki; Horiguchi, Yasuhiko

    2008-01-01

    Pasteurella multocida toxin (PMT) is one of virulence factors responsible for the pathogenesis in some Pasteurellosis. We determined the crystal structure of the C-terminal region of PMT (C-PMT), which carries an intracellularly active moiety. The overall structure of C-PMT displays three different domains designated C1, C2 and C3. We found in the C3 domain the Cys-His-Asp catalytic triad that is organized only when the Cys is released from a disulfide bond. The steric alignment of the triad corresponded well to that of papain or other enzymes carrying the Cys-His-Asp triad. Our results demonstrate that PMT is an enzymatic toxin carrying the cysteine-protease like catalytic triad, which is organized only under reducing conditions. (author)

  17. Role of the ribosomal P-site elements of m²G966, m⁵C967, and the S9 C-terminal tail in maintenance of the reading frame during translational elongation in Escherichia coli.

    Science.gov (United States)

    Arora, Smriti; Bhamidimarri, Satya Prathyusha; Weber, Michael H W; Varshney, Umesh

    2013-08-01

    The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9Δ3 background caused significantly increased -1 frameshifting at 37°C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30°C, supporting its context-dependent role.

  18. Specific features of the switch-on gate current and different switch-on modes in silicon carbide thyristors

    International Nuclear Information System (INIS)

    Yurkov, S N; Mnatsakanov, T T; Levinshtein, M E; Cheng, L; Palmour, J W

    2014-01-01

    The specific features of the temperature and bias dependences of the switch-on gate current in SiC thyristors are examined analytically for two possible switching mechanisms. The so-called γ-mechanism, which is highly typical of the conventional Si thyristors, is characterized by very weak temperature and bias dependences. By contrast, the so-called α-mechanism, which is very characteristic of SiC thyristors, is highly sensitive to changes in temperature and bias. If the thyristor is switched on by the α-mechanism, the switch-on gate current density decreases very steeply with increasing temperature. As a result, the thyristor can lose its working capacity at elevated temperatures due to the instability against even very weak impacts. With decreasing the bias voltage U a , the gate switch-on current increases very steeply, which can make switching the thyristor on difficult. The unintentional shunting, which is apparently present in high-voltage SiC thyristors, causes the transition from the α- to the γ-mechanism at elevated temperatures and high biases. It can be supposed that introduction of a controllable technological shunting of the emitter–thin base junction allows stabilization of the temperature and bias parameters of SiC thyristors. The analytical results are confirmed by computer simulations performed in wide temperature and bias ranges for a 4H-SiC thyristor of the 18 kV class. (paper)

  19. The N-terminal of a heparin-binding sperm membrane mitogen possess lectin-like sequence

    International Nuclear Information System (INIS)

    Mor, Visesato; Chatterjee, Tapati

    2007-01-01

    Glycosaminoglycans like heparin and heparin sulfate in follicular fluid induce changes in the intracellular environment during the spermatozoal functional maturation. We previously reported the isolation, purification and partial characterization of a heparin binding sperm membrane protein (HBSM). In the present study, the amino acids analysis provided evidence of a single sequence, which suggest the homogeneity of the purified HBSM. Fourteen amino acids- 1 A D T I V A V E L D T Y P N 14 -correspond to the amino terminal sequence of Concanavalin A (Con A) and contain 45.2% carbohydrate by weight. HBSM possess mitogenic property on lymphocytes with comparable magnitude to the well-known mitogen; Con A, inducing 83% radiolabel thymidine incorporation in growing lymphocytes. Unlike Con A, there was no agglutination of cell by HBSM upto 5 ng/ml concentration. Interestingly, we found that heparin and chondroitin sulfate-conjugated HBSM inhibit the proliferative activity. Similar effect was also found with an in-house isolate sulfated glycans; G-I (28% sulfate). In contrast, there was no inhibition by the desulfated form; G-ID. Altogether, our data suggest that the mechanism of cell proliferative pathway may be different for HBSM and Con A

  20. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Directory of Open Access Journals (Sweden)

    Britta Hansmann

    2015-09-01

    Full Text Available Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2, a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  1. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Science.gov (United States)

    Hansmann, Britta; Schröder, Jens-Michael; Gerstel, Ulrich

    2015-09-01

    Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  2. Human terminal deoxyribonucleotidyltransferase: molecular cloning and structural analysis of the gene and 5' flanking region

    International Nuclear Information System (INIS)

    Riley, L.K.; Morrow, J.K.; Danton, M.J.; Coleman, M.S.

    1988-01-01

    Human terminal deoxyribonucleotidyltransferase cDNA contains an open reading frame of 1530 base pairs (bp) corresponding to a protein containing 510 amino acids. The encoded protein is a template-independent DNA polymerase found only in a restricted population of normal and malignant prelymphocytes. To begin to investigate the genetic elements responsible for the tissue-specific expression of terminal deoxyribonucleotidyltransferase, genomic clones, containing the entire human gene were isolated and characterized. Initially, cDNA clones were isolated from a library generated from the human lymphoblastoid cell line, MOLT-4R. A cDNA clone containing the entire coding region of the protein was used to isolate a series of overlapping clones from two human genomic libraries. The gene comprises 11 exons and 10 introns and spans 49.4 kilobases. The 5' flanking region (709 bp) including exon 1 was sequenced. Several putative transcription initiation sites were mapped. Within 500 nucleotides of the translation start site, a series of promoter elements was detected. TATA and CAAT sequences, respectively, were found to start at nucleotides -185 and -204, -328 and -370, and -465 and -505. Start sites were found for a cyclic AMP-dependent promoter analog at nucleotide -121, an eight-base sequence corresponding to the IgG promoter enhancer (cd) at nucleotide -455, and an analog of the IgG promoter (pd) at nucleotide -159. These findings suggest that transcripts coding for terminal deoxyribonucleotidyltransferase may be variable in length and that transcription may be influenced by a variety of genetic elements

  3. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  4. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  5. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  6. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    electron-vibration coupling in transport through single moleculesKatharina J Franke and Jose Ignacio Pascual Vibrational heating in single-molecule switches: an energy-dependent density-of-states approachT Brumme, R Gutierrez and G Cuniberti Reversible switching of single tin phthalocyanine molecules on the InAs(111)A surfaceC Nacci, K Kanisawa and S Fölsch Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube-spiropyran distanceP Bluemmel, A Setaro, C Maity, S Hecht and S Reich Carbon nanotubes as substrates for molecular spiropyran-based switchesE Malic, A Setaro, P Bluemmel, Carlos F Sanz-Navarro, Pablo Ordejón, S Reich and A Knorr Ultrafast dynamics of dithienylethenes differently linked to the surface of TiO2 nanoparticlesLars Dworak, Marc Zastrow, Gehad Zeyat, Karola Rück-Braun and Josef Wachtveitl Switching the electronic properties of Co-octaethylporphyrin molecules on oxygen-covered Ni films by NO adsorptionC F Hermanns, M Bernien, A Krüger, J Miguel and W Kuch STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100)K Zenichowski, Ch Nacci, S Fölsch, J Dokić, T Klamroth and P Saalfrank A switch based on self-assembled thymineFatih Kalkan, Michael Mehlhorn and Karina Morgenstern The growth and electronic structure of azobenzene-based functional molecules on layered crystalsJ Iwicki, E Ludwig, J Buck, M Kalläne, F Köhler, R Herges, L Kipp and K Rossnagel Voltage-dependent conductance states of a single-molecule junctionY F Wang, N Néel, J Kröger, H Vázquez, M Brandbyge, B Wang and R Berndt Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulationJohannes Mielke, Sofia Selvanathan, Maike Peters, Jutta Schwarz, Stefan Hecht and Leonhard Grill Preparing and regulating a bi-stable molecular switch by atomic manipulationS Sakulsermsuk, R E Palmer and P A Sloan Mixed self

  7. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  8. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  9. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    Science.gov (United States)

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  10. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  11. Overexpression and Purification of C-terminal Fragment of the Passenger Domain of Hap Protein from Nontypeable Haemophilus influenzae in a Highly Optimized Escherichia coli Expression System

    Science.gov (United States)

    Tabatabaee, Akram; Siadat, Seyed Davar; Moosavi, Seyed Fazllolah; Aghasadeghi, Mohammad Reza; Memarnejadian, Arash; Pouriayevali, Mohammad Hassan; Yavari, Neda

    2013-01-01

    Background Nontypeable Haemophilus influenzae (NTHi) is a common cause of respiratory tract disease and initiates infection by colonization in nasopharynx. The Haemophilus influenzae (H. influenzae) Hap adhesin is an auto transporter protein that promotes initial interaction with human epithelial cells. Hap protein contains a 110 kDa internal passenger domain called “HapS” and a 45 kDa C-terminal translocator domain called “Hapβ”. Hap adhesive activity has been recently reported to be connected to its Cell Binding Domain (CBD) which resides within the 311 C-terminal residues of the internal passenger domain of the protein. Furthermore, immunization with this CBD protein has been shown to prevent bacterial nasopharynx colonization in animal models. Methods To provide enough amounts of pure HapS protein for vaccine studies, we sought to develop a highly optimized system to overexpress and purify the protein in large quantities. To this end, pET24a-cbd plasmid harboring cbd sequence from NTHi ATCC49766 was constructed and its expression was optimized by testing various expression parameters such as growth media, induction temperature, IPTG inducer concentration, induction stage and duration. SDS-PAGE and Western-blotting were used for protein analysis and confirmation and eventually the expressed protein was easily purified via immobilized metal affinity chromatography (IMAC) using Ni-NTA columns. Results The highest expression level of target protein was achieved when CBD expressing E. coli BL21 (DE3) cells were grown at 37°C in 2xTY medium with 1.0 mM IPTG at mid-log phase (OD600 nm equal to 0.6) for 5 hrs. Amino acid sequence alignment of expressed CBD protein with 3 previously published CBD amino acid sequences were more than %97 identical and antigenicity plot analysis further revealed 9 antigenic domains which appeared to be well conserved among different analyzed CBD sequences. Conclusion Due to the presence of high similarity among CBD from NTHi ATCC

  12. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.

    Science.gov (United States)

    Vedovato, Natascia; Gadsby, David C

    2010-07-01

    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K-adenosine triphosphatase (ATPase) alpha subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane's electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis alpha1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain-sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 microM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump-induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  13. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  14. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    International Nuclear Information System (INIS)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C.

    1988-01-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3')-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3' flip and 3' flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of [ 35 S]methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3'-terminal deletions was prepared from separately subcloned 3'-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3' end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus

  15. KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jia; Harrison, Rane A.; Li, Lianbo; Zeng, Mei; Gondi, Sudershan; Scott, David; Gray, Nathanael S.; Engen, John R.; Westover, Kenneth D. (NEU); (DFCI); (UTSMC); (Harvard-Med)

    2017-09-01

    KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basis for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.

  16. C-terminal region of EBNA-2 determines the superior transforming ability of type 1 Epstein-Barr virus by enhanced gene regulation of LMP-1 and CXCR7.

    Directory of Open Access Journals (Sweden)

    Laila Cancian

    2011-07-01

    Full Text Available Type 1 Epstein-Barr virus (EBV strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7 required for proliferation and survival of EBV-LCLs.

  17. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  18. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  19. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    International Nuclear Information System (INIS)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko; Sugiyama, Hironobu; Takahashi, Hisaaki; Tanaka, Junya

    2006-01-01

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, a cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25

  20. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; hide

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  1. The Minimum Requirements of Language Control: Evidence from Sequential Predictability Effects in Language Switching

    Science.gov (United States)

    Declerck, Mathieu; Koch, Iring; Philipp, Andrea M.

    2015-01-01

    The current study systematically examined the influence of sequential predictability of languages and concepts on language switching. To this end, 2 language switching paradigms were combined. To measure language switching with a random sequence of languages and/or concepts, we used a language switching paradigm that implements visual cues and…

  2. Decay accelerating factor (DAF) is anchored to membranes by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Medof, M.E.; Haas, R.; Walter, E.I.; Rosenberry, T.L.

    1986-01-01

    Purified 70 kDa membrane (m) DAF incorporates into cells when added in vitro. A 2 kDa smaller DAF form which functions extrinsically like C4bp but is unable to incorporate can be isolated from urine (u). Because of common deficits of mDAF and acetylcholinesterase (AChE) in erythrocytes (E) of patients with paroxysmal nocturnal hemoglobinuria (PNH), mDAF was analyzed for a O-terminal glycolipid membrane anchor similar to that in E AChE. Incubation of E with phosphatidylinositol-specific phospholipase C, an enzyme which cleaves a similar glycolipid anchor in trypanosome variant surface glycoproteins (mfVSGs), released 20% of the DAF antigen. The released DAF species resembled uDAF in size, extrinsic model of C4b2a decay, and lack of hydrophobicity. Reductive radiomethylation of mDAF with [ 14 C]HCHO and NaCNBH 3 revealed ethanolamine and glucosamine in proportions similar to those in the E AChE glycolipid anchor. Papain cleavage of radiomethylated mDAF released the labeled ethanolamine and glucosamine in small O-terminal fragments from the residual DAF that retained N-terminal Asp. Following labeling of the anchors of mDAF and E AChE with the lipophilic photoreagent 3-trifluoromethyl-3-(m-[ 125 I]iodophenyl)diazirine, cleavage at the glucosamine residue by deamination quantitatively released the label from both proteins. Biosynthetic labeling of Hela cells with [ 3 H]ethanolamine resulted in rapid 3 H incorporation into both 48 kDa proDAF and 70 kDa mDAF. These data indicate that mDAF is anchored by a glycolipid similar to that in E AChE, mfVSGs and Thy-1 antigen and raise the possibility that a defect in the assembly or attachment of this structure could account for the deficits of mDAF and E AChE in PNH

  3. 47 CFR 69.106 - Local switching.

    Science.gov (United States)

    2010-10-01

    ... foreign services that use local exchange switching facilities. (c) If end users of an interstate or... local exchange carriers shall establish rate elements for local switching as follows: (1) Price cap... use local exchange switching facilities for the provision of interstate or foreign services. The...

  4. The Rho Termination Factor of Clostridium botulinum contains a Prion-Like Domain with a highly Amyloidogenic Core

    Directory of Open Access Journals (Sweden)

    Irantzu ePallares

    2016-01-01

    Full Text Available Prion-like proteins can switch between a soluble intrinsically disordered conformation and a highly ordered amyloid assembly. This conformational promiscuity is encoded in specific sequence regions, known as prion domains (PrDs. Prions are best known as the causative factors of neurological diseases in mammals. However, bioinformatics analyses reveal that proteins bearing PrDs are present in all kingdoms of life, including bacteria, thus supporting the idea that they serve conserved beneficial cellular functions. Despite the proportion of predicted prion-like proteins in bacterial proteomes is generally low, pathogenic species seem to have a higher prionic load, suggesting that these malleable proteins may favor pathogenic traits. In the present work, we performed a stringent computational analysis of the Clostridium botulinum pathogen proteome in the search for prion-like proteins. A total of 54 candidates were predicted for this anaerobic bacterium, including the transcription termination Rho factor. This RNA-binding protein has been shown to play a crucial role in bacterial adaptation to changing environments. We show here that the predicted disordered PrD domain of this RNA-binding protein contains an inner, highly polar, asparagine-rich short sequence able to spontaneously self-assemble into amyloid-like structures, bearing thus the potential to induce a Rho factor conformational switch that might rewire gene expression in response to environmental conditions.

  5. A Two-terminal Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This letter proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. It is application independent and can be specified by rated...... voltage, ripple current, equivalent series resistance, and operational frequency range. The concept, control method, self-power scheme, and impedance characteristics of the active capacitor are presented. A case study of the proposed active capacitor for a capacitive DC-link application is discussed....... The results reveal a significantly lower overall energy storage of passive elements and a reduced cost to fulfill a specific reliability target, compared to a passive capacitor solution. Proof-of-concept experimental results are given to verify the functionality of the proposed capacitor....

  6. Two distinct binding modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B.

    Science.gov (United States)

    Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Sette, Paola; Rudd, Victoria; Chuenchor, Watchalee; Bello, Nana F; Bouamr, Fadila; Xiao, Tsan Sam

    2012-05-09

    Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Science.gov (United States)

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  8. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Bernardo Ramírez-Zavala

    Full Text Available Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white to an elongated cell type (opaque, which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11(ΔN467 efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11(ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase.

  9. Four-terminal circuit element with photonic core

    Science.gov (United States)

    Sampayan, Stephen

    2017-08-29

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.

  10. A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.

    Science.gov (United States)

    Gustafson, Chelsea L; Parsley, Nicole C; Asimgil, Hande; Lee, Hsiau-Wei; Ahlbach, Christopher; Michael, Alicia K; Xu, Haiyan; Williams, Owen L; Davis, Tara L; Liu, Andrew C; Partch, Carrie L

    2017-05-18

    The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  12. 40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Medium. 2 High High. 3 Medium Low. 4 High High. 5 Low Medium. 6 Medium Low. 7 Low Medium. 8 Medium Low. 9...

  13. Theoretical model for plasma opening switch

    International Nuclear Information System (INIS)

    Baker, L.

    1980-07-01

    The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d 0 )/sup 1/2/P 0 2 P/sub e//sup -5/2/ where m is the foil mass per unit area, d 0 the channel thickness and P 0 the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective

  14. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody*

    Directory of Open Access Journals (Sweden)

    Merkel George

    2006-06-01

    Full Text Available Abstract Background To further our understanding of the structure and function of HIV-1 integrase (IN we developed and characterized a library of monoclonal antibodies (mAbs directed against this protein. One of these antibodies, mAb33, which is specific for the C-terminal domain, was found to inhibit HIV-1 IN processing activity in vitro; a corresponding Fv fragment was able to inhibit HIV-1 integration in vivo. Our subsequent studies, using heteronuclear nuclear magnetic resonance spectroscopy, identified six solvent accessible residues on the surface of the C-terminal domain that were immobilized upon binding of the antibody, which were proposed to comprise the epitope. Here we test this hypothesis by measuring the affinity of mAb33 to HIV-1 proteins that contain Ala substitutions in each of these positions. To gain additional insight into the mode of inhibition we also measured the DNA binding capacity and enzymatic activities of the Ala substituted proteins. Results We found that Ala substitution of any one of five of the putative epitope residues, F223, R224, Y226, I267, and I268, caused a decrease in the affinity of the mAb33 for HIV-1 IN, confirming the prediction from NMR data. Although IN derivatives with Ala substitutions in or near the mAb33 epitope exhibited decreased enzymatic activity, none of the epitope substitutions compromised DNA binding to full length HIV-1 IN, as measured by surface plasmon resonance spectroscopy. Two of these derivatives, IN (I276A and IN (I267A/I268A, exhibited both increased DNA binding affinity and uncharacteristic dissociation kinetics; these proteins also exhibited non-specific nuclease activity. Results from these investigations are discussed in the context of current models for how the C-terminal domain interacts with substrate DNA. Conclusion It is unlikely that inhibition of HIV-1 IN activity by mAb33 is caused by direct interaction with residues that are essential for substrate binding. Rather

  15. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo.

    Science.gov (United States)

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M; Melendy, Thomas; Archambault, Jacques

    2016-01-06

    The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed for the structural

  16. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo

    Science.gov (United States)

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.

    2016-01-01

    ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed

  17. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  18. RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (Family Totiviridae).

    Science.gov (United States)

    Li, Hua; Havens, Wendy M; Nibert, Max L; Ghabrial, Said A

    2011-07-01

    The genome-length, dicistronic mRNA of the double-stranded RNA fungal virus Helminthosporium victoriae virus 190S (genus Victorivirus, family Totiviridae) contains two long open reading frames (ORFs) that overlap in the tetranucleotide AUGA. Translation of the downstream ORF, which encodes the RNA-dependent RNA polymerase (RdRp), has been proposed to depend on ribosomal reinitiation following termination of the upstream ORF, which encodes the capsid protein. In the current study, we examined the RNA sequence determinants for RdRp translation in this virus and demonstrated that a coupled termination-reinitiation (stop-restart) strategy is indeed used. Signals for termination-reinitiation are found within a 32-nucleotide stretch of RNA immediately upstream of the AUGA motif, including a predicted pseudoknot structure. The close proximity in which this predicted structure is followed by the upstream ORF's stop codon appears to be especially important for promoting translation of the downstream ORF. The normal strong preferences for an AUG start codon and the canonical sequence context to favor translation initiation appear somewhat relaxed for the downstream ORF. Similar sequence motifs and predicted RNA structures in other victoriviruses suggest that they all share a related stop-restart strategy for RdRp translation. Members of the genus Victorivirus thus provide new and unique opportunities for exploring the molecular mechanisms of translational coupling, which remain only partly understood in this and other systems.

  19. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis.

    Science.gov (United States)

    Battista, S; Fidanza, V; Fedele, M; Klein-Szanto, A J; Outwater, E; Brunner, H; Santoro, M; Croce, C M; Fusco, A

    1999-10-01

    Rearrangements of the HMGI-C gene have frequently been detected in human benign tumors of mesenchymal origin, including lipomas. The HMGI-C protein has three AT-hook domains and an acidic COOH-terminal tail. The HMGI-C modifications consist in the loss of the C-tail and the fusion with ectopic sequences. Recent results show that the loss of the COOH-terminal region, rather than the acquisition of new sequences, is sufficient to confer to HMGI-C the ability to transform NIH3T3 cells. Therefore, transgenic mice carrying a HMGI-C construct (HMGI-C/T), containing only the three AT-hook domains, were generated. The HMGI-C/T mice showed a giant phenotype, together with a predominantly abdominal/pelvic lipomatosis, suggesting a pivotal role of the HMGI-C truncation in the generation of human lipomas.

  20. Optimization of Contact Force and Pull-in Voltage for Series based MEMS Switch

    Directory of Open Access Journals (Sweden)

    Abhijeet KSHIRSAGAR

    2010-04-01

    Full Text Available Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RF MEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. The cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied, but it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. Again it results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the finding of optimum contact force and pull-in voltage.

  1. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    Science.gov (United States)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  2. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Matsui, Mari; Yamane, Kunikazu; Takeuchi, Fumihiko; Ohnishi, Makoto; Hishinuma, Akira; Arakawa, Yoshichika; Kuroda, Makoto

    2011-01-01

    The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  3. 47 CFR 68.110 - Compatibility of the public switched telephone network and terminal equipment.

    Science.gov (United States)

    2010-10-01

    ... changes in its communications facilities, equipment, operations or procedures, where such action is... in this part. If such changes can be reasonably expected to render any customer's terminal equipment... network and terminal equipment. 68.110 Section 68.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  4. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.

    Science.gov (United States)

    Garcia-Olivares, Jennie; Alekov, Alexi; Boroumand, Mohammad Reza; Begemann, Birgit; Hidalgo, Patricia; Fahlke, Christoph

    2008-11-15

    Eukaryotic ClC channels are dimeric proteins with each subunit forming an individual protopore. Single protopores are gated by a fast gate, whereas the slow gate is assumed to control both protopores through a cooperative movement of the two carboxy-terminal domains. We here study the role of the carboxy-terminal domain in modulating fast and slow gating of human ClC-2 channels, a ubiquitously expressed ClC-type chloride channel involved in transepithelial solute transport and in neuronal chloride homeostasis. Partial truncation of the carboxy-terminus abolishes function of ClC-2 by locking the channel in a closed position. However, unlike other isoforms, its complete removal preserves function of ClC-2. ClC-2 channels without the carboxy-terminus exhibit fast and slow gates that activate and deactivate significantly faster than in WT channels. In contrast to the prevalent view, a single carboxy-terminus suffices for normal slow gating, whereas both domains regulate fast gating of individual protopores. Our findings demonstrate that the carboxy-terminus is not strictly required for slow gating and that the cooperative gating resides in other regions of the channel protein. ClC-2 is expressed in neurons and believed to open at negative potentials and increased internal chloride concentrations after intense synaptic activity. We propose that the function of the ClC-2 carboxy-terminus is to slow down the time course of channel activation in order to stabilize neuronal excitability.

  5. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.

  6. Cross-protective immunity to Leishmania amazonensis is mediated by CD4+ and CD8+-epitopes of Leishmania donovani Nucleoside Hydrolase terminal domains

    Directory of Open Access Journals (Sweden)

    Dirlei eNico

    2014-05-01

    Full Text Available The Nucleoside hydrolase of Leishmania donovani (NH36 is a phylogenetic marker of high homology among Leishmania parasites. In mice and dog vaccination NH36 induces a CD4+ T cell-driven protective response against Leishmania chagasi infection directed against its C-terminal domain (F3. The C-terminal and N-terminal domain vaccines also decreased the footpad lesion caused by Leishmania amazonensis. We studied the basis of the crossed immune response using recombinant generated peptides covering the whole NH36 sequence and saponin for mice prophylaxis against L. amazonensis. The F1 (amino acids 1-103 and F3 peptide (amino acids 199-314 vaccines enhanced the IgG and IgG2a anti-NH36 antibodies to similar levels. The F3 vaccine induced the strongest DTH response, the highest proportions of NH36-specific CD4+ and CD8+ T cells after challenge and the highest expression of IFN-γ and TNF-α. The F1 vaccine, on the other hand, induced a weaker but significant DTH response and a mild enhancement of IFN-γ and TNF-α levels. The in vivo depletion with anti-CD4 or CD8 monoclonal antibodies disclosed that cross-protection against L. amazonensis infection was mediated by a CD4+ T cell response directed against the C-terminal domain (75% of reduction of the size of footpad lesion followed by a CD8+ T cell response against the N-terminal domain of NH36 (57% of reduction of footpad lesions. Both vaccines were capable of inducing long-term cross-immunity. The amino acid sequence of NH36 showed 93% identity to the sequence of the NH A34480 of L. amazonensis which also showed the presence of completely conserved predicted epitopes for CD4+ and CD8+ T cells in F1 domain, and of CD4+ epitopes differing in a single amino acid, in F1 and F3 domains. The identification of the C-terminal and N-terminal domains as the targets of the immune response to NH36 in the model of L. amazonesis infection represents a basis for the rationale development of a bivalent vaccine

  7. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  8. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  9. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  10. Sequencing Lys-N Proteolytic Peptides by ESI and MALDI Tandem Mass Spectrometry

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Verdié, Pascal; Martinez, Jean; Enjalbal, Christine

    2011-02-01

    In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.

  11. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    Science.gov (United States)

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  12. Crystal structure of Aquifex aeolicus gene product Aq1627: a putative phosphoglucosamine mutase reveals a unique C-terminal end-to-end disulfide linkage.

    Science.gov (United States)

    Sridharan, Upasana; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2017-06-27

    The Aq1627 gene from Aquifex aeolicus, a hyperthermophilic bacterium has been cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity and its X-ray crystal structure was determined to 1.3 Å resolution using multiple wavelength anomalous dispersion phasing. The structural and sequence analysis of Aq1627 is suggestive of a putative phosphoglucosamine mutase. The structural features of Aq1627 further indicate that it could belong to a new subclass of the phosphoglucosamine mutase family. Aq1627 structure contains a unique C-terminal end-to-end disulfide bond, which links two monomers and this structural information can be used in protein engineering to make proteins more stable in different applications.

  13. Chinese very small aperture terminal system for ministries

    Science.gov (United States)

    Dan, Sen

    The objective and technologic approach of the Chinese very small aperture terminal (VSAT) system of data communications is described in this paper. The system is primarily designed for the management business of many governmental ministries and administrations. It consists of a centralized processing and switching facility and a number of groups of remote terminals. The network is constructed in a star configuration because of simplicity and the inherent nature of the management business. Either Intelsat of Chinese domestic communications satellite can be used for the space segment. The system performance has been verified by field trials. Some results of system analysis can be used for traffic design.

  14. Distinct repeat motifs at the C-terminal region of CagA of Helicobacter pylori strains isolated from diseased patients and asymptomatic individuals in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Santanu

    2012-05-01

    Full Text Available Abstract Background Infection with Helicobacter pylori strains that express CagA is associated with gastritis, peptic ulcer disease, and gastric adenocarcinoma. The biological function of CagA depends on tyrosine phosphorylation by a cellular kinase. The phosphate acceptor tyrosine moiety is present within the EPIYA motif at the C-terminal region of the protein. This region is highly polymorphic due to variations in the number of EPIYA motifs and the polymorphism found in spacer regions among EPIYA motifs. The aim of this study was to analyze the polymorphism at the C-terminal end of CagA and to evaluate its association with the clinical status of the host in West Bengal, India. Results Seventy-seven H. pylori strains isolated from patients with various clinical statuses were used to characterize the C-ternimal polymorphic region of CagA. Our analysis showed that there is no correlation between the previously described CagA types and various disease outcomes in Indian context. Further analyses of different CagA structures revealed that the repeat units in the spacer sequences within the EPIYA motifs are actually more discrete than the previously proposed models of CagA variants. Conclusion Our analyses suggest that EPIYA motifs as well as the spacer sequence units are present as distinct insertions and deletions, which possibly have arisen from extensive recombination events. Moreover, we have identified several new CagA types, which could not be typed by the existing systems and therefore, we have proposed a new typing system. We hypothesize that a cagA gene encoding higher number EPIYA motifs may perhaps have arisen from cagA genes that encode lesser EPIYA motifs by acquisition of DNA segments through recombination events.

  15. Dipolar molecules inside C-70: an electric field-driven room-temperature single-molecule switch

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Andrushchenko, Valery; Straka, Michal

    2016-01-01

    Roč. 18, č. 48 (2016), s. 32673-32677 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : room-temperature single-molecule switch * electric field * endohedral fullerene * density functional calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cp/c6cp06986j

  16. A comparison of 454 sequencing and clonal sequencing for the characterization of hepatitis C virus NS3 variants

    NARCIS (Netherlands)

    Ho, Cynthia K. Y.; Welkers, Matthijs R. A.; Thomas, Xiomara V.; Sullivan, James C.; Kieffer, Tara L.; Reesink, Henk W.; Rebers, Sjoerd P. H.; de Jong, Menno D.; Schinkel, Janke; Molenkamp, Richard

    2015-01-01

    We compared 454 amplicon sequencing with clonal sequencing for the characterization of intra-host hepatitis C virus (HCV) NS3 variants. Clonal and 454 sequences were obtained from 12 patients enrolled in a clinical phase I study for telaprevir, an NS3-4a protease inhibitor. Thirty-nine datasets were

  17. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  18. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  19. Recombinant production of peptide C-terminal α-amides using an engineered intein

    DEFF Research Database (Denmark)

    Albertsen, Louise; Shaw, Allan C; Norrild, Jens Chr.

    2013-01-01

    is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially......, we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues...

  20. Dicty_cDB: [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VF (Link to library) VFC171 (Link to dictyBase) - - - Contig-U16478-1 VFC171P (Link... to Original site) VFC171F 482 VFC171Z 633 VFC171P 1115 - - Show VFC171 Library VF (Link to library) Clone ID VFC171 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U16478-1 Original site URL http://dict...ptttrlptt trlstttrlptttrlptttrlptttrlptttrlsttrlxtttrlstswctswctswictr ygswissrllcwynhs*l*t*c*sfkksnerywyk*i...ologous to C-terminal repeat sequence of rhodopsin and synaptophysin. 88 1e-15 3 X54062 |X54062.1 Dictyostel

  1. Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status.

    Directory of Open Access Journals (Sweden)

    Amandine Rovini

    Full Text Available We previously showed that vinflunine, a microtubule-targeting drug of the Vinca-alkaloid family exerted its anti-angiogenic/anti-migratory activities through an increase in microtubule dynamics and an inhibition of microtubule targeting to adhesion sites. Such effect was associated with a reduction of EB1 comet length at microtubule (+ ends. In this work we first showed that the pro-angiogenic vascular endothelial growth factor VEGF suppressed microtubule dynamics in living Human Umbilical Vein Endothelial Cells (HUVECs, increased EB1 comet length by 40%, and induced EB1 to bind all along the microtubules, without modifying its expression level. Such microtubule (+ end stabilization occurred close to the plasma membrane in the vicinity of focal adhesion as shown by TIRF microscopy experiments. Vinflunine completely abolished the effect of VEGF on EB1 comets. Interestingly, we found a correlation between the reduction of EB1 comet length by vinflunine and the inhibition of cell migration. By using 2D gel electrophoresis we demonstrated for the first time that EB1 underwent several post-translational modifications in endothelial and tumor cells. Particularly, the C-terminal EEY sequence was poorly detectable in control and VEGF-treated HUVECs suggesting the existence of a non-tyrosinated form of EB1. By using specific antibodies that specifically recognized and discriminated the native tyrosinated form of EB1 and a putative C-terminal detyrosinated form, we showed that a detyrosinated form of EB1 exists in HUVECs and tumor cells. Interestingly, vinflunine decreased the level of the detyrosinated form and increased the native tyrosinated form of EB1. Using 3-L-Nitrotyrosine incorporation experiments, we concluded that the EB1 C-terminal modifications result from a detyrosination/retyrosination cycle as described for tubulin. Altogether, our results show that vinflunine inhibits endothelial cell migration through an alteration of EB1 comet length

  2. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPas

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, Jens Preben

    2010-01-01

    severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely...

  3. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, J Preben

    2010-01-01

    severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely...

  4. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  5. 75 FR 60258 - Federal Acquisition Regulation; Termination for Default Reporting

    Science.gov (United States)

    2010-09-29

    ..., Sequence 1] RIN 9000-AL45 Federal Acquisition Regulation; Termination for Default Reporting AGENCIES... terminations for cause or default and defective cost or pricing data, into the Past Performance Information... defective cost or pricing data and terminations for cause or default into the FAPIIS module of the PPIRS...

  6. Effect of an ntrC mutation on amino acid or urea utilization and on nitrogenase switch-off in Herbaspirillum seropedicae.

    Science.gov (United States)

    Gusso, Claudio L; de Souza, Emanuel M; Rigo, Liu Un; de Oliveira Pedrosa, Fábio; Yates, M G; de M Rego, Fabiane G; Klassen, Giseli

    2008-03-01

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.

  7. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with [1-13C]methionine

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V H , V L , and C L domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C H 1 domain is deleted. The switch variant antibodies were specifically labeled with [1- 13 C]methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating 15 N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of [α- 15 N]lysine and [ 15 N]threonine, both of which cannot become the substrate of transaminases. It was found that β-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with 15 N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present 13 C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed

  8. Expression, crystallization and preliminary crystallographic study of mouse hepatitis virus (MHV) nucleocapsid protein C-terminal domain

    International Nuclear Information System (INIS)

    Tong, Xiaohang; Ma, Yanlin; Li, Xuemei

    2010-01-01

    The C-terminal domain of mouse hepatitis virus nucleocapsid protein has been overexpressed in E. coli, purified and crystallized. The crystal belonged to space group P422, with unit-cell parameters a = 66.6, c = 50.8 Å, and diffracted to 2.20 Å resolution. Mouse hepatitis virus (MHV) belongs to the group II coronaviruses. The virus produces nine genes encoding 11 proteins that could be recognized as structural proteins and nonstructural proteins and are crucial for viral RNA synthesis. The nucleocapsid (N) protein, one of the structural proteins, interacts with the 30.4 kb virus genomic RNA to form the helical nucleocapsid and associates with the membrane glycoprotein via its C-terminus to stabilize virion assembly. Here, the expression and crystallization of the MHV nucleocapsid protein C-terminal domain are reported. The crystals diffracted to 2.20 Å resolution and belonged to space group P422, with unit-cell parameters a = 66.6, c = 50.8 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content is 43.0% (V M = 2.16 Å 3 Da −1 )

  9. Three-Dimensionally Printed Micro-electromechanical Switches.

    Science.gov (United States)

    Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin

    2018-05-09

    Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.

  10. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  11. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  12. Comparative sequence analysis of acid sensitive/resistance proteins in Escherichia coli and Shigella flexneri

    Science.gov (United States)

    Manikandan, Selvaraj; Balaji, Seetharaaman; Kumar, Anil; Kumar, Rita

    2007-01-01

    The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily. PMID:21670792

  13. Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop.

    Science.gov (United States)

    Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R

    2013-02-15

    PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.

  14. Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn

    2009-01-01

    Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining c

  15. Characterization of full-length sequenced cDNA inserts (FLIcs from Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Lunner Sigbjørn

    2009-10-01

    Full Text Available Abstract Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP, the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91% of the transcripts were annotated using Gene Ontology (GO terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS. The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS. This

  16. Machine-Checked Sequencer for Critical Embedded Code Generator

    Science.gov (United States)

    Izerrouken, Nassima; Pantel, Marc; Thirioux, Xavier

    This paper presents the development of a correct-by-construction block sequencer for GeneAuto a qualifiable (according to DO178B/ED12B recommendation) automatic code generator. It transforms Simulink models to MISRA C code for safety critical systems. Our approach which combines classical development process and formal specification and verification using proof-assistants, led to preliminary fruitful exchanges with certification authorities. We present parts of the classical user and tools requirements and derived formal specifications, implementation and verification for the correctness and termination of the block sequencer. This sequencer has been successfully applied to real-size industrial use cases from various transportation domain partners and led to requirement errors detection and a correct-by-construction implementation.

  17. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity

    Directory of Open Access Journals (Sweden)

    Kumaran Sangaralingam

    2011-07-01

    Full Text Available Abstract Background Methionine aminopeptidase (MetAP is a ubiquitous enzyme in both prokaryotes and eukaryotes, which catalyzes co-translational removal of N-terminal methionine from elongating polypeptide chains during protein synthesis. It specifically removes the terminal methionine in all organisms, if the penultimate residue is non-bulky and uncharged. The MetAP action for exclusion of N-terminal methionine is mandatory in 50-70% of nascent proteins. Such an activity is required for proper sub cellular localization, additional processing and eventually for the degradation of proteins. Results We cloned genes encoding two such metalloproteases (MtMetAP1a and MtMetAP1c present in Mycobacterium tuberculosis and expressed them as histidine-tagged proteins in Escherichia coli. Although they have different substrate preferences, for Met-Ala-Ser, we found, MtMetAP1c had significantly high enzyme turnover rate as opposed to MtMetAP1a. Circular dichroism spectroscopic studies as well as monitoring of enzyme activity indicated high temperature stability (up to 50°C of MtMetAP1a compared to that of the MtMetAP1c. Modelling of MtMetAP1a based on MtMetAP1c crystal structure revealed the distinct spatial arrangements of identical active site amino acid residues and their mutations affected the enzymatic activities of both the proteins. Strikingly, we observed that 40 amino acid long N-terminal extension of MtMetAP1c, compared to its other family members, contributes towards the activity and stability of this enzyme, which has never been reported for any methionine aminopeptidase. Furthermore, mutational analysis revealed that Val-18 and Pro-19 of MtMetAP1c are crucial for its enzymatic activity. Consistent with this observation, molecular dynamic simulation studies of wild-type and these variants strongly suggest their involvement in maintaining active site conformation of MtMetAP1c. Conclusion Our findings unequivocally emphasized that N-terminal

  18. Cloning of a cDNA encoding the human cation-dependent mannose 6-phosphate-specific receptor

    International Nuclear Information System (INIS)

    Pohlmann, R.; Nagel, G.; Schmidt, B.

    1987-01-01

    Complementary DNA clones for the human cation-dependent mannose 6-phosphate-specific receptor have been isolated from a human placenta library in λgt11. The nucleotide sequence of the 2463-base-pair cDNA insert includes a 145-base-pair 5' untranslated region, an open reading frame of 831 base pairs corresponding to 277 amino acids, and a 1487-base-pair 3' untranslated region. The deduced amino acid sequence is colinear with that determined by amino acid sequencing of the N-terminus peptide (41 residues) and nine tryptic peptides (93 additional residues). The receptor is synthesized as a precursor with a signal peptide of 20 amino acids. The hydrophobicity profile of the receptor indicates a single membrane-spanning domain, which separates an N-terminal region containing five potential N-glycosylation sites from a C-terminal region lacking N-glycosylation sites. Thus the N-terminal (M/sub r/ = 18,299) and C-terminal (M/sub r/ ≤ 7648) segments of the mature receptor are assumed to be exposed to the extracytosolic and cytosolic sides of the membrane, respectively. Analysis of a panel of somatic cell (mouse-human) hybrids shows that the gene for the receptor is located on human chromosome 12

  19. Potential Capsule Switching from Serogroup Y to B: The Characterization of Three such Neisseria meningitidis Isolates Causing Invasive Meningococcal Disease in Canada

    Directory of Open Access Journals (Sweden)

    Raymond SW Tsang

    2005-01-01

    Full Text Available Three group B Neisseria meningitidis isolates, recovered from meningococcal disease cases in Canada and typed as B:2c:P1.5, were characterized. Multilocus sequence typing showed that all three isolates were related because of an identical sequence type (ST 573. Isolates typed as 2c:P1.5 are common in serogroup Y meningococci but rare in isolates from serogroups B or C. Although no serogroup Y isolates have been typed as ST-573, eight isolates showed five to six housekeeping gene alleles that were identical to that of ST-573. This suggested that the B:2c:P1.5 isolates may have originated from serogroup Y organisms, possibly by capsule switching.

  20. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV.

    Directory of Open Access Journals (Sweden)

    Angèle Geldreich

    Full Text Available Cauliflower mosaic virus (CaMV TAV protein (TransActivator/Viroplasmin plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA, which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB, which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.

  1. Dicty_cDB: Contig-U11295-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 382126 |pid:none) Kluyveromyces lactis strain NRRL... 120 1e-25 BC122690_1( BC122690 |pid:none) Bos taurus transcription term...ns RNA polymerase II ter... 119 2e-25 (Q9UNY4) RecName: Full=Transcription termination factor 2; ... 119 ...345( CU633901 |pid:none) Podospora anserina genomic DNA c... 116 2e-24 (Q5NC05) RecName: Full=Transcription term...|pid:none) Mus musculus transcription termina... 115 2e-24 AL596125_1( AL596125 |pid:none) Mouse DNA sequenc...se (hZF... 115 4e-24 ( P34739 ) RecName: Full=Transcription termination factor 2;

  2. The function analysis of full-length cDNA sequence from IRM-2 mouse cDNA library

    International Nuclear Information System (INIS)

    Wang Qin; Liu Xiaoqiu; Xu Chang; Du Liqing; Sun Zhijuan; Wang Yan; Liu Qiang; Song Li; Li Jin; Fan Feiyue

    2013-01-01

    Objective: To identify the function of full-length cDNA sequence from IRM-2 mouse cDNA library. Methods: Full-length cDNA products were amplified by PCR from IRM-2 mouse cDNA library according to twenty-one pieces of expressed sequence tag. The expression of full-length cDNAs were detected after mouse embryonic fibroblasts were exposed to 6.5 Gy γ-ray radiation. And the effect on the growth of radiosensitivity cells AT5B1VA transfected with full-length cDNAs was investigated. Results: The expression of No.4, 5 and 2 full-length cDNAs from IRM-2 mouse were higher than that of parental ICR and 615 mouse after mouse embryonic fibroblasts irradiated with γ-ray radiation. And the survival rate of AT5B1VA cells transfected with No.4, 5 and 2 full-length cDNAs was high. Conclusion: No.4, 5 and 2 full-length cDNAs of IRM-2 mouse are of high radioresistance. (authors)

  3. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    International Nuclear Information System (INIS)

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene

  4. Multi-Channel Data Recording of Marx switch closures

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Ziska, G.R.

    1984-01-01

    The authors have measured the optical signals associated with switch closure on the Demon marx at Sandia National Laboratories. Using the High Speed Multi-Channel Data Recorder(HSMCDR), they have recorded the time histories of the optical signals from the thirty switches in the marx generator. All thirty switches were fiber connected to the HSMCDR. The HSMCDR consists of a high speed streak camera, and a microcomputer-based video digitizing system. Since the thirty signals are recorded on a single streak, the time sequence can be determined with great accuracy. The appearance of a given signal can be determined to within two samples of the 256 samples that make up the time streak. The authors have found that the light intensity and time history of any given switch varied over a large range from shot to shot. Thus, the ability to record the entire optical signal as a function of time for each switch on every shot is necessary if accurate timing results are required

  5. Insights into the Structure of Dimeric RNA Helicase CsdA and Indispensable Role of Its C-Terminal Regions.

    Science.gov (United States)

    Xu, Ling; Wang, Lijun; Peng, Junhui; Li, Fudong; Wu, Lijie; Zhang, Beibei; Lv, Mengqi; Zhang, Jiahai; Gong, Qingguo; Zhang, Rongguang; Zuo, Xiaobing; Zhang, Zhiyong; Wu, Jihui; Tang, Yajun; Shi, Yunyu

    2017-12-05

    CsdA has been proposed to be essential for the biogenesis of ribosome and gene regulation after cold shock. However, the structure of CsdA and the function of its long C-terminal regions are still unclear. Here, we solved all of the domain structures of CsdA and found two previously uncharacterized auxiliary domains: a dimerization domain (DD) and an RNA-binding domain (RBD). Small-angle X-ray scattering experiments helped to track the conformational flexibilities of the helicase core domains and C-terminal regions. Biochemical assays revealed that DD is indispensable for stabilizing the CsdA dimeric structure. We also demonstrate for the first time that CsdA functions as a stable dimer at low temperature. The C-terminal regions are critical for RNA binding and efficient enzymatic activities. CsdA_RBD could specifically bind to the regions with a preference for single-stranded G-rich RNA, which may help to bring the helicase core to unwind the adjacent duplex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dual regulatory switch confers tighter control on HtrA2 proteolytic activity.

    Science.gov (United States)

    Singh, Nitu; D'Souza, Areetha; Cholleti, Anuradha; Sastry, G Madhavi; Bose, Kakoli

    2014-05-01

    High-temperature requirement protease A2 (HtrA2), a multitasking serine protease that is involved in critical biological functions and pathogenicity, such as apoptosis and cancer, is a potent therapeutic target. It is established that the C-terminal post-synaptic density protein, Drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) domain of HtrA2 plays pivotal role in allosteric modulation, substrate binding and activation, as commonly reported in other members of this family. Interestingly, HtrA2 exhibits an additional level of functional modulation through its unique N-terminus, as is evident from 'inhibitor of apoptosis proteins' binding and cleavage. This phenomenon emphasizes multiple activation mechanisms, which so far remain elusive. Using conformational dynamics, binding kinetics and enzymology studies, we addressed this complex behavior with respect to defining its global mode of regulation and activity. Our findings distinctly demonstrate a novel N-terminal ligand-mediated triggering of an allosteric switch essential for transforming HtrA2 to a proteolytically competent state in a PDZ-independent yet synergistic activation process. Dynamic analyses suggested that it occurs through a series of coordinated structural reorganizations at distal regulatory loops (L3, LD, L1), leading to a population shift towards the relaxed conformer. This precise synergistic coordination among different domains might be physiologically relevant to enable tighter control upon HtrA2 activation for fostering its diverse cellular functions. Understanding this complex rheostatic dual switch mechanism offers an opportunity for targeting various disease conditions with tailored site-specific effector molecules. © 2014 FEBS.

  7. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  8. Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis.

    Science.gov (United States)

    Selvakumaran, M; Liebermann, D; Hoffman-Liebermann, B

    1993-05-01

    Conditional mutants of the myeloblastic leukemic M1 cell line, expressing the chimeric mycer transgene, have been established. It is shown that M1 mycer cells, like M1, undergo terminal differentiation coupled to growth arrest and programmed cell death (apoptosis) after treatment with the physiologic differentiation inducer interleukin-6. However, when beta-estradiol is included in the culture medium, M1 mycer cells respond to differentiation inducers like M1 myc cell lines, where the differentiation program is blocked at an intermediate stage. By manipulating the function of the mycer transgene product, it is shown that there is a 10-hour window during myeloid differentiation, from 30 to 40 hours after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, where activation of c-myc has no apparent effect on mature macrophages. M1 mycer cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal myelopoiesis and in leukemogenesis, also providing a strategy to clone c-myc target genes.

  9. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer's disease: Identification as the microtubule-associated protein tau

    International Nuclear Information System (INIS)

    Goedert, M.; Wischik, C.M.; Crowther, R.A.; Walker, J.E.; Klug, A.

    1988-01-01

    Screening of cDNA libraries prepared from the frontal cortex of an Alzheimer's disease patient and from fetal human brain has led to isolation of the cDNA for a core protein of the paired helical filament of Alzheimer's disease. The partial amino acid sequence of this core protein was used to design synthetic oligonucleotide probes. The cDNA encodes a protein of 352 amino acids that contains a characteristic amino acid repeat in its carboxyl-terminal half. This protein is highly homologous to the sequence of the mouse microtubule-associated protein tau and thus constitutes the human equivalent of mouse tau. RNA blot analysis indicates the presence of two major transcripts, 6 and 2 kilobases long, with a wide distribution in normal human brain. Tau protein mRNAs were found in normal amounts in the frontal cortex from patients with Alzheimer's disease. The proof that at least part of tau protein forms a component of the paired helical filament core opens the way to understanding the mode of formation of paired helical filaments and thus, ultimately, the pathogenesis of Alzheimer's disease

  10. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  11. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Shin, J.W.; Oh, D.H.; Kim, T.W.; Cho, W.J.

    2009-01-01

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si 1-x C x nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO 2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO 2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  12. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  13. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  14. Mapping the transcription termination region of the mouse immunoglobulin kappa gene

    International Nuclear Information System (INIS)

    Xu, M.; Garrard, W.T.

    1986-01-01

    To define the transcription termination region of the mouse immunoglobulin kappa gene, they have subcloned single copy DNA sequences corresponding to both the template and the non-template strands of this locus. In vitro nuclear transcription with isolated MPC-11 nuclei was performed and the resulting 32 P-labeled RNA was hybridized to slot-blotted, single-stranded M13 probes covering regions within and flanking the kappa gene. The hybridization pattern for the template-strand reveals that transcription terminates within the region between 1.1 to 2.3 kb downstream from the poly(A) site. Ten different short sequences (8-13 bp) reside within 460 bp of this region that exhibit homology with sequences found in the termination regions of mouse β-globin and chicken ovalbumin genes. Transcription of the non-template strand occurs on either side of this termination region. They note that no transcription is detectable on the non-template strand downstream of the enhancer, indicating that if RNA polymerase II enters at this site, it does not initiate transcription during transit to the promoter region. They conclude that transcription of the kappa gene passes the poly(A) addition site and terminates within 2.3 Kb downstream

  15. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein

    OpenAIRE

    Theo Luiz Ferraz de Souza; Sheila Maria Barbosa de Lima; Vanessa L. de Azevedo Braga; David S. Peabody; Davis Fernandes Ferreira; M. Lucia Bianconi; Andre Marco de Oliveira Gomes; Jerson Lima Silva; Andréa Cheble de Oliveira

    2016-01-01

    Background Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specific...

  16. Conformational effects of a common codon 751 polymorphism on the C-terminal domain of the xeroderma pigmentosum D protein

    Directory of Open Access Journals (Sweden)

    Monaco Regina

    2009-01-01

    Full Text Available Aim: The xeroderma pigmentosum D (XPD protein is a DNA helicase involved in the repair of DNA damage, including nucleotide excision repair (NER and transcription-coupled repair (TCR. The C-terminal domain of XPD has been implicated in interactions with other components of the TFIIH complex, and it is also the site of a common genetic polymorphism in XPD at amino acid residue 751 (Lys->Gln. Some evidence suggests that this polymorphism may alter DNA repair capacity and increase cancer risk. The aim of this study was to investigate whether these effects could be attributable to conformational changes in XPD induced by the polymorphism. Materials and Methods: Molecular dynamics techniques were used to predict the structure of the wild-type and polymorphic forms of the C-terminal domain of XPD and differences in structure produced by the polymorphic substitution were determined. Results: The results indicate that, although the general configuration of both proteins is similar, the substitution produces a significant conformational change immediately N-terminal to the site of the polymorphism. Conclusion: These results provide support for the hypothesis that this polymorphism in XPD could affect DNA repair capability, and hence cancer risk, by altering the structure of the C-terminal domain.

  17. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with (1- sup 13 C)methionine

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo, Hongo (Japan))

    1991-01-01

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C{sub H}1 domain is deleted. The switch variant antibodies were specifically labeled with (1-{sup 13}C)methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating {sup 15}N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of ({alpha}-{sup 15}N)lysine and ({sup 15}N)threonine, both of which cannot become the substrate of transaminases. It was found that {beta}-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with {sup 15}N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present {sup 13}C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed.

  18. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  19. Identification of human synenkephalin-like immunoreactivity in phaechromacytoma tissue using a novel carboxy-terminal radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Corder, R; Gaillard, R C; Rossier, J

    1987-12-04

    An antiserum raised against the synthetic tyrosinylated carboxy-terminal sequence of synenephalin (Tyr-Glu-Glu-Ser-His-Leu-Leu-Ala) has been used to chromatographically characterize the human synenkephalin-like immunoreactivity extracted from 3 adrenal medullary phaechromocytomas. Gel filtration chromatography identified in each tumor a single peak of 8kDa which on subsequent ion-exchange chromatography had the elution characteristics of an acidic polypeptide. These results are compatible with the human-synenkephalin sequence predicted from cDNA studies, and indicate that this is the authentic peptide. 17 refs.

  20. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg

    2003-01-01

    structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two...

  1. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion.

    Science.gov (United States)

    Tanzawa, Takehito; Kato, Koji; Girodat, Dylan; Ose, Toyoyuki; Kumakura, Yuki; Wieden, Hans-Joachim; Uchiumi, Toshio; Tanaka, Isao; Yao, Min

    2018-04-06

    Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.

  2. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  3. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  4. Behavioral plasticity through the modulation of switch neurons.

    Science.gov (United States)

    Vassiliades, Vassilis; Christodoulou, Chris

    2016-02-01

    A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Generation and Analysis of Full-length cDNA Sequences from Elephant Shark (Callorhinchus milii)

    KAUST Repository

    Kodzius, Rimantas

    2009-03-17

    Cartilaginous fishes are the oldest living group of jawed vertebrates and therefore is an important group for understanding the evolution of vertebrate genomes including the human genome. Our laboratory has proposed elephant shark (C. milii) as a model cartilaginous fish genome because of its relatively small genome size (910 Mb). The whole genome of C. milii is being sequenced (first cartilaginous fish genome to be sequenced completely). To characterize the transcriptome of C. milii and to assist in annotating exon-intron boundaries, transcriptional start sites and alternatively spliced transcripts, we are generating full-length cDNA sequences from C. milii.

  6. Combined deficiency of MSH2 and Sμ region abolishes class switch recombination.

    Science.gov (United States)

    Leduc, Claire; Haddad, Dania; Laviolette-Malirat, Nathalie; Nguyen Huu, Ngoc-Sa; Khamlichi, Ahmed Amine

    2010-10-01

    Class switch recombination (CSR) is mediated by G-rich tandem repeated sequences termed switch regions. Transcription of switch regions generates single-stranded R loops that provide substrates for activation-induced cytidine deaminase. Mice deficient in MSH2 have a mild defect in CSR and analysis of their switch junctions has led to a model in which MSH2 is more critical for switch recombination events outside than within the tandem repeats. It is also known that deletion of the whole Sμ region severely impairs but does not abrogate CSR despite the lack of detectable R loops. Here, we demonstrate that deficiency of both MSH2 and the Sμ region completely abolishes CSR and that the abrogation occurs at the genomic level. This finding further supports the crucial role of MSH2 outside the tandem repeats. It also indicates that during CSR, MSH2 has access to activation-induced cytidine deaminase targets in R-loop-deficient Iμ-Cμ sequences rarely used in CSR, suggesting an MSH2-dependent DNA processing activity at the Iμ exon that may decrease with transcription elongation across the Sμ region.

  7. Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase.

    Science.gov (United States)

    El Zoeiby, A; Sanschagrin, F; Lamoureux, J; Darveau, A; Levesque, R C

    2000-02-15

    We cloned and sequenced the murC gene from Pseudomonas aeruginosa encoding a protein of 53 kDa. Multiple alignments with 20 MurC peptide sequences from different bacteria confirmed the presence of highly conserved regions having sequence identities ranging from 22-97% including conserved motifs for ATP-binding and the active site of the enzyme. Genetic complementation was done in Escherichia coli (murCts) suppressing the lethal phenotype. The murC gene was subcloned into the expression vector pET30a and overexpressed in E. coli BL21(lambdaDE3). Three PCR cloning strategies were used to obtain the three recombinant plasmids for expression of the native MurC, MurC His-tagged at N-terminal and at C-terminal, respectively. MurC His-tagged at C-terminal was chosen for large scale production and protein purification in the soluble form. The purification was done in a single chromatographic step on an affinity nickel column and obtained in mg quantities at 95% homogeneity. MurC protein was used to produce monoclonal antibodies for epitope mapping and for assay development in high throughput screenings. Detailed studies of MurC and other genes of the bacterial cell cycle will provide the reagents and strain constructs for high throughput screening and for design of novel antibacterials.

  8. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins

    Directory of Open Access Journals (Sweden)

    Ralf eEnz

    2012-04-01

    Full Text Available Metabotropic glutamate receptors (mGluRs regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g. night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson´s disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors´ C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.

  9. Cloning and characterization of the human colipase cDNA

    International Nuclear Information System (INIS)

    Lowe, M.E.; Rosenblum, J.L.; McEwen, P.; Strauss, A.W.

    1990-01-01

    Pancreatic lipase hydrolyzes dietary triglycerides to monoglycerides and fatty acids. In the presence of bile salts, the activity of pancreatic lipase is markedly decreased. The activity can be restored by the addition of colipase, a low molecular weight protein secreted by the pancreas. The action of pancreatic lipase in the gut lumen is dependent upon its interaction with colipase. As a first step in elucidating the molecular events governing the interaction of lipase and colipase with each other and with fatty acids, a cDNA encoding human colipase was isolated from a λgt11 cDNA library with a rabbit polyclonal anti-human colipase antibody. The full-length 525 bp cDNA contained an open reading frame encoding 112 amino acids, including a 17 amino acid signal peptide. The predicted sequence contains 100% of the published protein sequence for human colipase determined by chemical methods, but predicts the presence of five additional NH 2 -terminal amino acids and four additional COOH-terminal amino acids. Comparison of the predicted protein sequence with the known sequences of colipase from other species reveals regions of extensive identity. The authors report, for the first time, a cDNA for colipase. The cDNA predicts a human procolipase an suggests that there may also be processing at the COOH-terminus. The regions of identity with colipase from other species will aid in defining the interaction with lipase and lipids through site-specific mutagenesis

  10. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  11. Nucleotide sequence of tomato ringspot virus RNA-2.

    Science.gov (United States)

    Rott, M E; Tremaine, J H; Rochon, D M

    1991-07-01

    The sequence of tomato ringspot virus (TomRSV) RNA-2 has been determined. It is 7273 nucleotides in length excluding the 3' poly(A) tail and contains a single long open reading frame (ORF) of 5646 nucleotides in the positive sense beginning at position 78 and terminating at position 5723. A second in-frame AUG at position 441 is in a more favourable context for initiation of translation and may act as a site for initiation of translation. The TomRSV RNA-2 3' noncoding region is 1550 nucleotides in length. The coat protein is located in the C-terminal region of the large polypeptide and shows significant but limited amino acid sequence similarity to the putative coat proteins of the nepoviruses tomato black ring (TBRV), Hungarian grapevine chrome mosaic (GCMV) and grapevine fanleaf (GFLV). Comparisons of the coding and non-coding regions of TomRSV RNA-2 and the RNA components of TBRV, GCMV, GFLV and the comovirus cowpea mosaic virus revealed significant similarity for over 300 amino acids between the coding region immediately to the N-terminal side of the putative coat proteins of TomRSV and GFLV; very little similarity could be detected among the non-coding regions of TomRSV and any of these viruses.

  12. cDNA, genomic sequence cloning, and overexpression of EIF1 from the giant panda (Ailuropoda Melanoleuca) and the black bear (Ursus Thibetanus Mupinensis).

    Science.gov (United States)

    Hou, Wan-ru; Tang, Yun; Hou, Yi-ling; Song, Yan; Zhang, Tian; Wu, Guang-fu

    2010-07-01

    Eukaryotic initiation factor (eIF) EIF1 is a universally conserved translation factor that is involved in translation initiation site selection. The cDNA and the genomic sequences of EIF1 were cloned successfully from the giant panda (Ailuropoda melanoleuca) and the black bear (Ursus thibetanus mupinensis) using reverse transcription polymerase chain reaction (RT-PCR) technology and touchdown-polymerase chain reaction, respectively. The cDNAs of the EIF1 cloned from the giant panda and the black bear are 418 bp in size, containing an open reading frame (ORF) of 342 bp encoding 113 amino acids. The length of the genomic sequence of the giant panda is 1909 bp, which contains four exons and three introns. The length of the genomic sequence of the black bear is 1897 bp, which also contains four exons and three introns. Sequence alignment indicates a high degree of homology to those of Homo sapiens, Mus musculus, Rattus norvegicus, and Bos Taurus at both amino acid and DNA levels. Topology prediction shows there are one N-glycosylation site, two Casein kinase II phosphorylation sites, and a Amidation site in the EIF1 protein of the giant panda and black bear. In addition, there is a protein kinase C phosphorylation site in EIF1 of the giant panda. The giant panda and the black bear EIF1 genes were overexpressed in E. coli BL21. The results indicated that the both EIF1 fusion proteins with the N-terminally His-tagged form gave rise to the accumulation of two expected 19 kDa polypeptide. The expression products obtained could be used to purify the proteins and study their function further.

  13. Kaufman oculo-cerebro-facial syndrome in a child with small and absent terminal phalanges and absent nails.

    Science.gov (United States)

    Kariminejad, Ariana; Ajeawung, Norbert Fonya; Bozorgmehr, Bita; Dionne-Laporte, Alexandre; Molidperee, Sirinart; Najafi, Kimia; Gibbs, Richard A; Lee, Brendan H; Hennekam, Raoul C; Campeau, Philippe M

    2017-04-01

    Kaufman oculo-cerebro-facial syndrome (KOS) is caused by recessive UBE3B mutations and presents with microcephaly, ocular abnormalities, distinctive facial morphology, low cholesterol levels and intellectual disability. We describe a child with microcephaly, brachycephaly, hearing loss, ptosis, blepharophimosis, hypertelorism, cleft palate, multiple renal cysts, absent nails, small or absent terminal phalanges, absent speech and intellectual disability. Syndromes that were initially considered include DOORS syndrome, Coffin-Siris syndrome and Dubowitz syndrome. Clinical investigations coupled with karyotype analysis, array-comparative genomic hybridization, exome and Sanger sequencing were performed to characterize the condition in this child. Sanger sequencing was negative for the DOORS syndrome gene TBC1D24 but exome sequencing identified a homozygous deletion in UBE3B (NM_183415:c.3139_3141del, p.1047_1047del) located within the terminal portion of the HECT domain. This finding coupled with the presence of characteristic features such as brachycephaly, ptosis, blepharophimosis, hypertelorism, short palpebral fissures, cleft palate and developmental delay allowed us to make a diagnosis of KOS. In conclusion, our findings highlight the importance of considering KOS as a differential diagnosis for patients under evaluation for DOORS syndrome and expand the phenotype of KOS to include small or absent terminal phalanges, nails, and the presence of hallux varus and multicystic dysplastic kidneys.

  14. Study of the density of ganglion cells in the terminal bowel of rats with anorectal malformations Estudo da densidade das células ganglionares no intestino terminal de ratos portadores de anomalia anorretal

    Directory of Open Access Journals (Sweden)

    Maurício Macedo

    2007-12-01

    Full Text Available PURPOSE: To study the ganglion cells (GC in the terminal bowel of rats with ethylenethiourea (ETU induced anorectal malformations (ARM. METHODS: The animals were divided into three groups: Group A - normal fetuses from pregnant rats that were not administered ETU; Group B - fetuses without ARM born from pregnant rats that were administered ETU and Group C - fetuses with ARM born from pregnant rats that received ETU. ETU was administered on the 11th day of pregnancy at the dose of 125 mg/kg body weight by gastric gavage. The rats had cesarean section on the 21st day of gestation. The fetuses’ terminal bowel tissue was analyzed by immunohistochemistry to demonstrate ganglion cells. RESULTS: Statistically significant differences were found between groups A, B and C regarding ganglion cell densities. Group A had the highest cell density, followed by Group B and the lowest density was found in Group C. CONCLUSION: Ganglion cell densities are decreased in the terminal bowel of rats with ARM.OBJETIVO: Estudar as células ganglionares (CG no intestino terminal de ratos portadores de anomalia anorretal (AAR induzida pela etilenotiouréia (ETU. MÉTODOS: Os animais foram distribuídos em três grupos: Grupo A - fetos normais, obtidos de ratas grávidas às quais não foi administrada ETU; Grupo B - fetos não portadores de AAR obtidos de ratas grávidas às quais foi administrada ETU e Grupo C - fetos portadores de AAR obtidos de ratas grávidas às quais foi administrada ETU. A ETU foi administrada no décimo primeiro dia de gestação na dose de 125 mg/Kg, por gavagem. As ratas foram submetidas à laparotomia e histerotomia para retirada dos fetos no vigésimo primeiro dia de gestação. O intestino terminal dos fetos foi retirado e analisado por imunohistoquímica para pesquisa de CG. RESULTADOS: Foram encontradas diferenças estatisticamente significantes entre os grupos A, B e C quanto à densidade de CG. O grupo A apresentou a maior densidade

  15. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger.

    Science.gov (United States)

    Xu, Wenxuan; Liu, Yajuan; Ye, Yanxin; Liu, Meng; Han, Laichuang; Song, Andong; Liu, Liangwei

    2016-10-01

    The 9_2 carbohydrate-binding module (C2) locates natively at the C-terminus of the GH10 thermophilic xylanase from Thermotoga marimita. When fused to the C-terminus, C2 improved thermostability of a GH11 xylanase (Xyn) from Aspergillus niger. However, a question is whether the C-terminal C2 would have a thermostabilizing effect when fused to the N-terminus of a catalytic module. A chimeric enzyme, C2-Xyn, was created by step-extension PCR, cloned in pET21a(+), and expressed in E. coli BL21(DE3). The C2-Xyn exhibited a 2 °C higher optimal temperature, a 2.8-fold longer thermostability, and a 4.5-fold higher catalytic efficiency on beechwood xylan than the Xyn. The C2-Xyn exhibited a similar affinity for binding to beechwood xylan and a higher affinity for oat-spelt xylan than Xyn. C2 is a thermostabilizing carbohydrate-binding module and provides a model of fusion at an enzymatic terminus inconsistent with the modular natural terminal location.

  16. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2007-07-01

    Full Text Available Abstract Background Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62. FAM62 genes also have a similar domain architecture. Little is known about the functions of the plant genes and animal FAM62 genes. Indeed, many members of the large and diverse Syt gene family await functional characterization. Understanding the evolutionary relationships among these genes will help to realize the full implications of functional studies and lead to improved genome annotation. Results I collected and compared plant Syt-like sequences from the primary nucleotide sequence databases at NCBI. The collection comprises six groups of plant genes conserved in embryophytes: NTMC2Type1 to NTMC2Type6. I collected and compared metazoan FAM62 sequences and identified some similar sequences from other eukaryotic lineages. I found evidence of RNA editing and alternative splicing. I compared the intron patterns of Syt genes. I also compared Rabphilin and Doc2 genes. Conclusion Genes encoding proteins with N-terminal-transmembrane-C2 domain architectures resembling synaptotagmins, are widespread in eukaryotes. A collection of these genes is presented here. The collection provides a resource for studies of intron evolution. I have classified the collection into homologous gene families according to distinctive patterns of sequence conservation and intron position. The evolutionary histories of these gene families are traceable through the appearance of family members in different eukaryotic lineages. Assuming an intron-rich eukaryotic ancestor, the conserved intron patterns distinctive of individual gene families, indicate independent origins of Syt, FAM62 and NTMC2 genes. Resemblances

  17. Experience with oral emergency contraception since the OTC switch in Germany.

    Science.gov (United States)

    Kiechle, Marion; Neuenfeldt, Miriam

    2017-03-01

    In March 2015, the oral emergency contraceptives levonorgestrel (LNG) and ulipristal acetate (UPA) were released from prescription-only status in Germany. The main research question is to analyse whether the OTC status of oral emergency contraceptives has an influence on the patterns of use. All information is based on searches for public domain sources on emergency contraception. Searches were made for scientific publications, statistics, and surveys. Due to additional active ingredient properties, UPA is superior to LNG in terms of ovulation-inhibiting effect. Since the OTC switch, demand for oral emergency contraceptives has risen by almost 50%, especially at weekends when sexual encounters and thus contraceptive failures are most frequent. However, the age distribution of the users has not changed as a result of the OTC switch. Doctors still play an important role in advising on emergency contraception after the removal of the prescription-only requirement. Pregnancies despite emergency contraception are terminated in more than half of the cases. In federal states with higher rates of use of the morning-after pill, fewer terminations of pregnancy were performed. As a result of the OTC switch, more women and girls use the morning-after pill after unprotected intercourse and the time between unprotected intercourse and taking the oral emergency contraceptive decreases. This is of great advantage in terms of the mechanism of action. UPA is used more frequently than LNG. Only half of all people aged between 16 and 39 years in Germany are aware of the morning-after pill and 94% of women who had a pregnancy terminated in 2015 did not use any emergency contraception after the unprotected intercourse. In the population, there is still a great need for information and education on contraception and emergency contraception.

  18. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-01-01

    AIM To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). METHODS The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. RESULTS The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of

  19. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database.

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-10-28

    To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences

  20. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.

    Science.gov (United States)

    Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente

    2006-06-01

    Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

  1. Evidence for Rare Capsular Switching in Streptococcus agalactiae▿

    Science.gov (United States)

    Martins, Elisabete Raquel; Melo-Cristino, José; Ramirez, Mário

    2010-01-01

    The polysaccharide capsule is a major antigenic factor in Streptococcus agalactiae (Lancefield group B streptococcus [GBS]). Previous observations suggest that exchange of capsular loci is likely to occur rather frequently in GBS, even though GBS is not known to be naturally transformable. We sought to identify and characterize putative capsular switching events, by means of a combination of phenotypic and genotypic methods, including pulsed-field gel electrophoretic profiling, multilocus sequence typing, and surface protein and pilus gene profiling. We show that capsular switching by horizontal gene transfer is not as frequent as previously suggested. Serotyping errors may be the main reason behind the overestimation of capsule switching, since phenotypic techniques are prone to errors of interpretation. The identified putative capsular transformants involved the acquisition of the entire capsular locus and were not restricted to the serotype-specific central genes, the previously suggested main mechanism underlying capsular switching. Our data, while questioning the frequency of capsular switching, provide clear evidence for in vivo capsular transformation in S. agalactiae, which may be of critical importance in planning future vaccination strategies against this pathogen. PMID:20023016

  2. Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

    Directory of Open Access Journals (Sweden)

    Seur Kee Park

    2015-09-01

    Full Text Available The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

  3. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  4. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  5. A termination criterion for parameter estimation in stochastic models in systems biology.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven

    2015-11-01

    Parameter estimation procedures are a central aspect of modeling approaches in systems biology. They are often computationally expensive, especially when the models take stochasticity into account. Typically parameter estimation involves the iterative optimization of an objective function that describes how well the model fits some measured data with a certain set of parameter values. In order to limit the computational expenses it is therefore important to apply an adequate stopping criterion for the optimization process, so that the optimization continues at least until a reasonable fit is obtained, but not much longer. In the case of stochastic modeling, at least some parameter estimation schemes involve an objective function that is itself a random variable. This means that plain convergence tests are not a priori suitable as stopping criteria. This article suggests a termination criterion suited to optimization problems in parameter estimation arising from stochastic models in systems biology. The termination criterion is developed for optimization algorithms that involve populations of parameter sets, such as particle swarm or evolutionary algorithms. It is based on comparing the variance of the objective function over the whole population of parameter sets with the variance of repeated evaluations of the objective function at the best parameter set. The performance is demonstrated for several different algorithms. To test the termination criterion we choose polynomial test functions as well as systems biology models such as an Immigration-Death model and a bistable genetic toggle switch. The genetic toggle switch is an especially challenging test case as it shows a stochastic switching between two steady states which is qualitatively different from the model behavior in a deterministic model. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  7. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  8. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  9. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.

    Science.gov (United States)

    Nelson, Gregory M; Huffman, Holly; Smith, David F

    2003-01-01

    Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.

  10. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange.

    Science.gov (United States)

    Ren, Yansong; Svensson, Per H; Ramström, Olof

    2018-05-22

    A multiresponsive enamine-based molecular switch is presented, in which forward/backward configurational rotation around the C=C bond could be precisely controlled by the addition of an acid/base or metal ions. Fluorescence turn-on/off effects and large Stokes shifts were observed while regulating the switching process with Cu II . The enamine functionality furthermore enabled double dynamic regimes, in which configurational switching could operate in conjunction with constitutional enamine exchange of the rotor part. This behavior was used to construct a prototypical dynamic covalent switch system through enamine exchange with primary amines. The dynamic exchange process could be readily turned on/off by regulating the switch status with pH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  12. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    Science.gov (United States)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  13. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  14. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco.

    Science.gov (United States)

    Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A

    2004-03-01

    Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic

  15. Sequencing of the Hepatitis C Virus: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Brendan Jacka

    Full Text Available Since the identification of hepatitis C virus (HCV, viral sequencing has been important in understanding HCV classification, epidemiology, evolution, transmission clustering, treatment response and natural history. The length and diversity of the HCV genome has resulted in analysis of certain regions of the virus, however there has been little standardisation of protocols. This systematic review was undertaken to map the location and frequency of sequencing on the HCV genome in peer reviewed publications, with the aim to produce a database of sequencing primers and amplicons to inform future research. Medline and Scopus databases were searched for English language publications based on keyword/MeSH terms related to sequence analysis (9 terms or HCV (3 terms, plus "primer" as a general search term. Exclusion criteria included non-HCV research, review articles, duplicate records, and incomplete description of HCV sequencing methods. The PCR primer locations of accepted publications were noted, and purpose of sequencing was determined. A total of 450 studies were accepted from the 2099 identified, with 629 HCV sequencing amplicons identified and mapped on the HCV genome. The most commonly sequenced region was the HVR-1 region, often utilised for studies of natural history, clustering/transmission, evolution and treatment response. Studies related to genotyping/classification or epidemiology of HCV genotype generally targeted the 5'UTR, Core and NS5B regions, while treatment response/resistance was assessed mainly in the NS3-NS5B region with emphasis on the Interferon sensitivity determining region (ISDR region of NS5A. While the sequencing of HCV is generally constricted to certain regions of the HCV genome there is little consistency in the positioning of sequencing primers, with the exception of a few highly referenced manuscripts. This study demonstrates the heterogeneity of HCV sequencing, providing a comprehensive database of previously

  16. Cross-Platform Android/iOS-Based Smart Switch Control Middleware in a Digital Home

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-01-01

    Full Text Available With technological and economic development, people’s lives have been improved substantially, especially their home environments. One of the key aspects of these improvements is home intellectualization, whose core is the smart home control system. Furthermore, as smart phones have become increasingly popular, we can use them to control the home system through Wi-Fi, Bluetooth, and GSM. This means that control with phones is more convenient and fast and now becomes the primary terminal controller in the smart home. In this paper, we propose middleware for developing a cross-platform Android/iOS-based solution for smart switch control software, focus on the Wi-Fi based communication protocols between the cellphone and the smart switch, achieved a plugin-based smart switch function, defined and implemented the JavaScript interface, and then implemented the cross-platform Android/iOS-based smart switch control software; also the scenarios are illustrated. Finally, tests were performed after the completed realization of the smart switch control system.

  17. Ab initio investigation of the switching behavior of the dithiole-benzene nano-molecular wire

    International Nuclear Information System (INIS)

    Darvish Ganji, M.; Rungger, I.

    2008-01-01

    We report a first-principle study of electrical transport and switching behavior in a single molecular conductor consisting of a dithiole-benzene sandwiched between two Au( 100) electrodes. Ab initio total energy calculations reveal dithiole-benzene molecules on a gold surface, contacted by a monoatomic gold scanning tunneling microscope tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it 10 change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly. despite their apparent simplicity, these Au-dithiole-benzene -Au nano wires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. The projected density of states and transmission coefficients are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to switching behavior

  18. Cloning, sequencing and expression of cDNA encoding growth ...

    Indian Academy of Sciences (India)

    Unknown

    of medicine, animal husbandry, fish farming and animal ..... northern pike (Esox lucius) growth hormone; Mol. Mar. Biol. ... prolactin 1-luciferase fusion gene in African catfish and ... 1988 Cloning and sequencing of cDNA that encodes goat.

  19. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    Science.gov (United States)

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.

  20. Multiuser switched diversity scheduling systems with per-user threshold

    KAUST Repository

    Nam, Haewoon

    2010-05-01

    A multiuser switched diversity scheduling scheme with per-user feedback threshold is proposed and analyzed in this paper. The conventional multiuser switched diversity scheduling scheme uses a single feedback threshold for every user, where the threshold is a function of the average signal-to-noise ratios (SNRs) of the users as well as the number of users involved in the scheduling process. The proposed scheme, however, constructs a sequence of feedback thresholds instead of a single feedback threshold such that each user compares its channel quality with the corresponding feedback threshold in the sequence. Numerical and simulation results show that thanks to the flexibility of threshold selection, where a potentially different threshold can be used for each user, the proposed scheme provides a higher system capacity than that for the conventional scheme. © 2006 IEEE.

  1. Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Gohil, Ghanshyamsinh Vijaysinh

    2015-01-01

    A voltage source converter is used as a front end converter typically. In this paper, a converter which is realized using SiC MOSFET is considered. Due to SiC MOSFET, a switching frequency more than 50 kHz can be achieved. This can help increasing the current control loop bandwidth, which is not ...... together with a positive-sequence current controller for the front-end rectifier. A gain in the feedforward term can be changed to control the negative-sequence current. Simulation results are presented to verify the theory....

  2. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    Science.gov (United States)

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  3. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    International Nuclear Information System (INIS)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in λ gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated λ hARG6 and λ hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying λ hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes

  4. Cloning and expression of cDNA coding for bouganin.

    Science.gov (United States)

    den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo

    2002-03-01

    Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.

  5. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...... similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family...

  6. The amino acid sequence of cytochrome c from Cucurbita maxima L. (pumpkin)

    Science.gov (United States)

    Thompson, E. W.; Richardson, M.; Boulter, D.

    1971-01-01

    The amino acid sequence of pumpkin cytochrome c was determined on 2μmol of protein. Some evidence was found for the occurrence of two forms of cytochrome c, whose sequences differed in three positions. Pumpkin cytochrome c consists of 111 residues and is homologous with mitochondrial cytochromes c from other plants. Experimental details are given in a supplementary paper that has been deposited as Supplementary Publication SUP 50005 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1971), 121, 7. PMID:5131733

  7. Crystallization and preliminary crystallographic studies of the C-terminal domain of outer membrane protein A from enterohaemorrhagic Escherichia coli

    International Nuclear Information System (INIS)

    Gu, Jiang; Ji, Xiaowei; Qi, Jianxun; Ma, Ying; Mao, Xuhu; Zou, Quanming

    2010-01-01

    In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. Outer membrane protein A (OmpA) of enterohaemorrhagic Escherichia coli (EHEC) plays multiple roles in bacterial physiology and pathogenesis, such as mediation of bacterial conjunction, maintenance of cell shape, induction of adhesion of EHEC to host cells etc. Better understanding of the functions of OmpA will help in the control of EHEC infections. OmpA is composed of two domains: the N-terminal domain and the C-terminal domain. The N-terminal domain is a β-barrel structure and embeds in the outer membrane of the bacterium. The structure and function of the C-terminal domain of OmpA (OmpAC) remain elusive. In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. The crystals belonged to space group I4 1 32, with unit-cell parameter a = 158.99 Å. The Matthews coefficient and solvent content were calculated to be 2.55 Å 3 Da −1 and 51.77%, respectively, for two molecules in the asymmetric unit

  8. A C-terminal segment of the V{sub 1}R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Adikesavan, Nallini Vijayarangan; Mahmood, Syed Saad; Stanley, Nithianantham; Xu, Zhen; Wu, Nan [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Thibonnier, Marc [Department of Medicine, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Shoham, Menachem, E-mail: mxs10@case.edu [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States)

    2005-04-01

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V{sub 1} vascular vasopressin receptor (V{sub 1}R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V{sub 1}R has been cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V{sub 1}R.

  9. Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol

    Science.gov (United States)

    Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.

    2014-01-01

    This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.

  10. Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

    Directory of Open Access Journals (Sweden)

    Angel Marinov

    2014-08-01

    Full Text Available This paper presents a power loss analysis for a Single Ended Parallel Resonance (SEPR Converter used for induction heating. The analysis includes a comparison of the losses in the electronic switch when the circuit is realized using a conventional Silicon (Si based IGBT or when using Silicon Carbide (SiC based MOSFET. The analysis includes modelling and simulation as well as experimental verification through power loss and heat dissipation measurement. The presented results can be used as a base of comparison between the switches and can be a starting point for efficiency based design of those types of converters.

  11. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    International Nuclear Information System (INIS)

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-01-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination

  12. Tissue factor pathway inhibitor 2 is found in skin and its C-terminal region encodes for antibacterial activity.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Lundqvist, Katarina; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2012-01-01

    Tissue factor pathway inhibitor 2 (TFPI-2) is a matrix-associated serine protease inhibitor with an enigmatic function in vivo. Here, we describe that TFPI-2 is present in fibrin of wounds and also expressed in skin, where it is up-regulated upon wounding. Neutrophil elastase cleaved TFPI-2, and a C-terminal fragment was found to bind to bacteria. Similarly, a prototypic peptide representing this C-terminal part, EDC34, bound to bacteria and bacterial lipopolysaccharide, and induced bacterial permeabilization. The peptide also induced leakage in artificial liposomes, and displayed a random coil conformation upon interactions with liposomes as well as lipopolysaccharide. EDC34 was antibacterial against both Gram-negative and Gram-positive bacteria in physiological buffer conditions. The results demonstrate that the C-terminus of TFPI-2 encodes for antimicrobial activity, and may be released during wounding.

  13. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex

    Science.gov (United States)

    Andrejka, Laura; Wen, Hong; Ashton, Jonathan; Grant, Megan; Iori, Kevin; Wang, Amy; Manak, J. Robert; Lipsick, Joseph S.

    2011-01-01

    Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics. PMID:21969598

  14. Structure of the C-terminal domain of nsp4 from feline coronavirus

    International Nuclear Information System (INIS)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Snijder, Eric J.; Gorbalenya, Alexander E.; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-01-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4 3 . The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions

  15. Structure of the C-terminal domain of nsp4 from feline coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Snijder, Eric J.; Gorbalenya, Alexander E. [Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Berglind, Hanna; Nordlund, Pär [Division of Biophysics, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, Karolinska Institute, SE-171 77 Stockholm (Sweden); Coutard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille (France); Tucker, Paul A., E-mail: tucker@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  16. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, Inés; Rivas, Luis; Keough, Kevin M W

    2004-01-01

    aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N......-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even...

  17. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides AT+CG in the mitogenome of Kamimuria wangi.

    Science.gov (United States)

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (XY, i.e. AC) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the AT+CG exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  18. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches.

    Directory of Open Access Journals (Sweden)

    Tobias Sikosek

    2016-06-01

    Full Text Available Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.

  19. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3.

    Science.gov (United States)

    Mimura, Satoru; Kubota, Yumiko; Takisawa, Haruhiko

    2018-01-01

    The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.

  20. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  1. High-power semiconductor RSD-based switch

    Energy Technology Data Exchange (ETDEWEB)

    Bezuglov, V G; Galakhov, I V; Grusin, I A [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The operating principle and test results of a high-power semiconductor RSD-based switch with the following operating parameters is described: operating voltage 25 kV, peak operating current 200 kA, maximum transferred charge 70 C. The switch is intended for use by high-power capacitor banks of state-of-the-art research facilities. The switch was evaluated for applicability in commercial pulsed systems. The possibility of increasing the peak operating current to 500 kA is demonstrated. (author). 4 figs., 2 refs.

  2. Mismatch-shaping switching for two-capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, U.; Temes, G.C.

    1998-01-01

    A mismatch-shaping scheme is proposed for a two-capacitor digital-to-analogue converter (DAC). It uses a delta-sigma loop for finding the optimal switching sequence for each input word. Simulations indicate that the scheme can be used for the realisation of DACs with 16 bit linearity and SNR...

  3. A retrospective 15-year review: survival advantage after switching to sirolimus in hepatitis C virus infected liver graft recipients.

    Science.gov (United States)

    Shah, M; Shankar, A; Gee, I; Nash, K; Hoare, M; Gibbs, P; Davies, S; Alexander, G J M

    2015-02-01

    The use of sirolimus-based immune suppression in liver transplantation, particularly in hepatitis C virus (HCV)-infected recipients, remains contentious. There is some evidence that sirolimus retards hepatic fibrosis, is renal sparing and may be of benefit in preventing hepatocellular carcinoma (HCC) recurrence. Sirolimus has not been adopted by many transplant centres because of persistent concerns regarding an increased risk of hepatic artery thrombosis, graft loss and death with de novo sirolimus. To review the impact of switching to sirolimus monotherapy in HCV-infected liver recipients with respect to survival, graft loss and hepatic fibrosis. A retrospective review of 190 patients from a single centre undergoing first liver transplantation for HCV over 15 years. 113 patients were switched from calcineurin inhibitor (CNI)-based therapy to low-dose sirolimus monotherapy at a median of 15 months after transplantation for HCV-related fibrosis (72%), renal impairment (14%) or high-risk HCC (5%). Patients switched to sirolimus had improved survival (P diabetes (P = 0.03). These data suggest selective switching to low-dose sirolimus monotherapy in HCV-positive liver recipients improves clinical outcome. © 2014 John Wiley & Sons Ltd.

  4. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  5. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    International Nuclear Information System (INIS)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy; Wyns, Lode; Dao-Thi, Minh-Hoa

    2005-01-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA C36 ; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8 Å resolution. Form III belongs to space group P2 1 , with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution

  6. The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity

    NARCIS (Netherlands)

    van Hennik, Paula B.; ten Klooster, Jean Paul; Halstead, Jon R.; Voermans, Carlijn; Anthony, Eloise C.; Divecha, Nullin; Hordijk, Peter L.

    2003-01-01

    Rho-like GTPases control a wide range of cellular functions such as integrin- and cadherin-mediated adhesion, cell motility, and gene expression. The hypervariable C-terminal domain of these GTPases has been implicated in membrane association and effector binding. We found that cell-permeable

  7. A Compact MIMO Antenna with Inverted C-Shaped Ground Branches for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Zixian Yang

    2016-01-01

    Full Text Available A compact printed MIMO antenna for mobile terminals is presented. With two planar antenna elements, the −6 dB impedance bandwidth of 2.32 GHz (1.48–3.8 GHz is obtained, which covers GSM 1800/1900, UMTS, WLAN, Wimax, S-band, and most of LTE bands. Each antenna element with a small occupation of 15 × 20 mm2 consists of a driven strip and a shorted strip. Two inverted C-shaped ground branches are introduced between two elements to improve the isolation. The simulated results are studied and the measured results show that high isolation of more than 18 dB at the entire operating band is achieved. Meanwhile, the impedance performance is also improved by adding the branches. Furthermore, the measured radiation performances and envelope correlation coefficient also demonstrate that the proposed antenna could be a good candidate for mobile terminals.

  8. Quantitation of some amino-terminal residues in proteins using 3H-labelled dansyl chloride and 14C labelled amino acids

    International Nuclear Information System (INIS)

    Flengsrud, R.

    1979-01-01

    A method for quantitation of amino-terminal residues in proteins is presented. The method is a modification of a double isotope-labelling technique, using 3 H-labelled dansyl chloride and 14 C-labelled amino acids as internal standards. The method is demonstrated on human fibrinogen, horse myoglobin and on mouse myoloma IgA. A linear relationship between the ratio 3 H/ 14 C in the separated amino-terminal amino acid of the protein and the amount of protein added in the labelling mixture was obtained with standard deviations of +- 7.4%, +-3.4% and +-10.3%, respectively. An application of the method is demonstrated by measuring the increase in amino-terminal glycine in fibrinogen following the proteolytic action of thrombin. The method seems to be useful when 0.1 nmol or more of protein is used. (author)

  9. New OprM structure highlighting the nature of the N-terminal anchor

    Directory of Open Access Journals (Sweden)

    Laura eMONLEZUN

    2015-07-01

    Full Text Available Among the different mechanisms used by bacteria to resist antibiotics, active efflux plays a major role. In gram-negative bacteria, active efflux is carried out by tripartite efflux pumps that form a macromolecular assembly spanning both membranes of the cellular wall. At the outer membrane level, a well-conserved Outer Membrane Factor (OMF protein acts as an exit duct, but its sequence varies greatly among different species. The OMFs share a similar tri-dimensional structure that includes a beta-barrel pore domain that stabilizes the channel within the membrane. In addition, OMFs are often subjected to different N-terminal post-translational modifications, such as an acylation with a lipid. The role of additional N-terminal anchors is all the more intriguing since it is not always required among the OMFs family. Understanding this optional post-translational modification could open new research lines in the field of antibiotics resistance. In E. coli, it has been shown that CusC is modified with a tri-acylated lipid, whereas TolC does not show any. In the case of OprM from Pseudomonas aeruginosa, the N-terminal modification remains a matter of debate, therefore, we used several approaches to investigate this issue. As definitive evidence, we present a new X ray structure at 3.8Å resolution that was solved in a new space group, making it possible to model the N-terminal residue as a palmitylated cysteine.

  10. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  11. Human pro. cap alpha. 1)(I) collagen: cDNA sequence for the C-propeptide domain

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, J K; Raassina, M; Virta, A; Vuorio, E

    1988-01-11

    The authors have previously constructed a cDNA clone pHCAL1, covering most of the C-terminal propeptide domain of human pro..cap alpha..1(I) collagen mRNA,by inserting a 678 bp EcoRI-XhoI fragment of cDNA into pBR322. Since the XhoI/SalI ligation prevented removal of the insert, they used the same strategy to obtain a similar clone in pUC8. RNA was isolated from fetal calvarial bones. The cDNA was digested with EcoRI and XhoI and fractionated on a 1 % agarose gel. Fragments of 650-700 bp were cloned in pUC8 at the polylinker site, which now permits easy removal of the insert. The new clone was named pHCAL1U since the RNA was isolated from another individual. The approach outlined is useful for studies on individual variation which is important to recognize when searching for disease-related mutations in type I collagen.

  12. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging

    Science.gov (United States)

    Dixit, Aparna Banerjee; Ray, Krishanu; Thomas, Julie A.; Black, Lindsay W.

    2013-01-01

    Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal–terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279–316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5 nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase–portal orientation fits better to a proposed “DNA crunching” compression packaging motor and to portal determined DNA headful cutting. PMID:24074593

  13. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    Science.gov (United States)

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  14. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  15. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    International Nuclear Information System (INIS)

    Russo, Andrew T.; Watowich, Stanley J.

    2006-01-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2 1 2 1 2 1 . Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way

  16. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu [Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX (United States)

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.

  17. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  18. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein.

    Science.gov (United States)

    de Souza, Theo Luiz Ferraz; de Lima, Sheila Maria Barbosa; Braga, Vanessa L de Azevedo; Peabody, David S; Ferreira, Davis Fernandes; Bianconi, M Lucia; Gomes, Andre Marco de Oliveira; Silva, Jerson Lima; de Oliveira, Andréa Cheble

    2016-01-01

    Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro . The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.

  19. A Sub-µW Tuneable Switched-Capacitor Amplifier-Filter for Neural Recording Using a Class-C Inverter

    Directory of Open Access Journals (Sweden)

    A Ghorbani-Nejad

    2013-12-01

    Full Text Available A two stage sub-µW Inverter-based switched-capacitor amplifier-filter is presented which is capable of amplifying both spikes and local field potentials (LFP signals. Here we employ a switched capacitor technique for frequency tuning and reducing of 1/f noise of two stages. The reduction of power consumption is very necessary for neural recording devices however, in switched capacitor (SC circuits OTA is a major building block that consumes most of the power. Therefore an OTA-less technique utilizing a class-C inverter is employed that significantly reduces the power consumption. A detailed analysis of noise performance for the inverter-based SC circuits is presented. A mathematical model useful for analysis of such SC integrators is derived and a good comparison is obtained between simulation and analytical technique. With a supply voltage of 0.7V and using 0.18 µm CMOS technology, this design can achieves a power consumption of about 538 nW. The designed amplifier-filter has the gains 18.6 dB and 28.2 dB for low pass only and cascaded filter, respectively. By applying different sampling frequencies, the filter attains a reconfigurable bandwidth.

  20. N-terminal nesprin-2 variants regulate β-catenin signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa; Li, Chen; Porter, Lauren J.; Zhou, Can; Gao, Fang; Zhang, Junyi; Rajgor, Dipen; Autore, Flavia; Shanahan, Catherine M.; Warren, Derek T., E-mail: derek.warren@kcl.ac.uk

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragment of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.