WorldWideScience

Sample records for c-n bond formation

  1. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-03

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling.

  2. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    Science.gov (United States)

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  3. Consecutive condensation, C-N and N-N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole.

    Science.gov (United States)

    Kumar, Manian Rajesh; Park, Ahbyeol; Park, Namjin; Lee, Sunwoo

    2011-07-01

    2H-Indazoles are synthesized using copper-catalyzed, one-pot, three-component reactions of 2-bromobenzaldehydes, primary amines, and sodium azide. A copper catalyst plays the key role in the formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for a variety of functional groups.

  4. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    Science.gov (United States)

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.

  5. Oxidative cleavage of benzylic C-N bonds under metal-free conditions.

    Science.gov (United States)

    Gong, Jin-Long; Qi, Xinxin; Wei, Duo; Feng, Jian-Bo; Wu, Xiao-Feng

    2014-10-14

    An interesting procedure for the oxidative cleavage of benzylic C-N bonds has been developed. Using TBAI as the catalyst and H2O2 as the oxidant, various benzylamines were transformed into their corresponding aromatic aldehydes in moderate to good yields. Notably, this is the first example of an oxidative cleavage of benzylic C-N bonds under metal-free conditions.

  6. Synthesis of azoaromatic dyes via redox driven C-N bond fusion.

    Science.gov (United States)

    Sinan, Mominul; Panda, Manashi; Banerjee, Priyabrata; Shinisha, C B; Sunoj, Raghavan B; Goswami, Sreebrata

    2009-08-06

    Two novel organic azo-dyes (2(+)) that feature an intense intramolecular charge transfer transition with end absorption reaching into the NIR region are introduced. Syntheses of these compounds were achieved by an unusual redox-driven C-N bond fusion of the tricyclo azo-aromatic compounds (1(+)). The compounds show reversible electro- as well as proton chromism. The results have generated further scope of research in the area of designed syntheses of functional azoaromatics.

  7. Wettability and Bonding between Ni and Ti(C, N) with Multiple Carbide Additions

    Institute of Scientific and Technical Information of China (English)

    Ning LIU; Minghai CHEN; Yudong XU; Jie ZHOU; Min SHI

    2005-01-01

    The wettability and bonding in Ni/Ti(C, N) systems with multiple carbide additions were studied by sessile drop technique and vacuum brazing technique, respectively. The phase characterizations of substrates and fracture surfaces were conducted by XRD. The microstructures at metal/ceramic interfaces and fracture surfaces were observed via SEM in back scattered mode and second electron mode, respectively. Furthermore, an X-ray energy-dispersive spectrometer (EDS) attached to SEM was used to study the elements diffusion in interfacial regions. The results reveal that diffusion and dissolution mechanism controlled reactive wetting takes place in the system in high temperature wetting. Results also show that the contact angles decrease with multiple carbide additions, and the effect of multiple carbide additions is stronger than that of single additions. The contact angle reaches the lowest value in the lowest TiC content case. The enhancement of the wettability is due to alloying procedure during high temperature wetting when metallic atoms diffuse into Ni phase, which decreases the interfacial energy of Ni/Ti(C, N) systems. The bonding results show that the interfacial bonding strength is higher than that of solid solutions, that makes most of the specimens fail in ceramics matrix.

  8. First-principles analysis of the C-N bond scission of methylamine on Mo-based model catalysts

    Science.gov (United States)

    Lv, Cun-Qin; Li, Jun; Tao, Shu-Xia; Ling, Kai-Cheng; Wang, Gui-Chang

    2010-01-01

    The C-N bond breaking of methylamine on clean, carbon (nitrogen, oxygen)-modified Mo(100) [denoted as Mo(100) and Mo(100)-C(N,O), respectively], Mo2C(100), MoN(100), and Pt(100) surfaces has been investigated by the first-principles density functional theory (DFT) calculations. The results show that the reaction barriers of the C-N bond breaking in CH3NH2 on Mo(100)-C(N,O) are higher than that on clean Mo(100). The calculated energy barrier can be correlated linearly with the density of Mo 4d states at the Fermi level after the adsorption of CH3NH2 for those surfaces. Moreover, the DFT results show that the subsurface atom, e.g., carbon, can reduce the reaction barrier. In addition, We noticed that the activation energies for the C-N bond breaking on Mo2C(100) and MoN(100) are similar to that on Pt(100), suggesting that the catalytic properties of the transition metal carbides and nitrides for C-N bond scission of CH3NH2 might be very similar to the expensive Pt-group metals.

  9. Alcohol-Induced C-N Bond Cleavage of Cyclometalated N-Heterocyclic Carbene Ligands with a Methylene-Linked Pendant Imidazolium Ring.

    Science.gov (United States)

    Zhong, Wei; Fei, Zhaofu; Scopelliti, Rosario; Dyson, Paul J

    2016-08-16

    Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2 ]2 with 1,1'-diphenyl-3,3'-methylenediimidazolium diiodide in non-alcohol solvents, in the presence of base, led to the formation of bis-carbene complex [Cp*Rh(bis-NHC)I]I (bis-NHC=1,1'-diphenyl-4,4'-methylenediimidazoline-5,5'-diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C-N bond is observed, affording ether-functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1'-diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C-N bond and, based on additional experimental data, a SN 2 mechanism for the reaction is tentatively proposed.

  10. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  11. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Science.gov (United States)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  12. B-C-N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-Guang; HE Ju-Long

    2012-01-01

    We perform first-principles calculations of the structural and electronic properties of hypothetical bc6-BC4N and N-substituted bc6-BC4N,which are derived from a body-center-cubic carbon structure.Our calculations show that the former is a semiconductor with an indirect band gap of 0.91 eV and the latter is metallic.The calculated bond length,bond population,and charge density of N-substituted bc6-BC4N indicate that one C-N bond has been broken after N-substitution,which means that the structure contains a mixed hybridization of sp2-like and sp3-1ike bonds.At the pressure above 100 GPa,the structure changes to a pure sp3-like hybridization.

  13. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.

    Science.gov (United States)

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok

    2015-04-21

    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new

  14. Density Functional Method Studies of X-H (X=C, N, O, Si, P, S) Bond Dissociation Energies

    Institute of Scientific and Technical Information of China (English)

    FU Yao; DONG Xiao-Yu; WANG Yi-Min; LIU Lei; GUO Qing-Xiang

    2005-01-01

    The performances of the density functional theory (DFT) methods in calculating X-H bond dissociation energies (BDE, X=C, N, O, Si, P, S) were evaluated. It was found that most DFT methods including B3LYP, B3PW91,G96LYP, PBE1PBE and BH&HLYP significantly underestimated the X-H BDE by as much as 13-24 kJ/mol.The underestimation is not due to the use of finite basis set, because the DFT methods still significantly underestimate the X-H BDE with the complete basis set. Therefore, these DFT methods can not be used to calculate the BDE directly. Nevertheless, the B3P86 method shows very small underestimation for the X-H BDE. Further analysis suggests that there be no advantage for using the restricted open-shell DFT methods. The unrestricted DFT methods actually perform slightly better than the restricted open-shell DFT methods in most cases. Finally, it was found that the underestimation by the DFT methods was largely systematic. The use of the calibrated UDFT/6-311+ + G(d, p) method was recommended to calculate the X-H BDE.

  15. Energy-efficient green catalysis: supported gold nanoparticle-catalyzed aminolysis of esters with inert tertiary amines by C-O and C-N bond activations.

    Science.gov (United States)

    Bao, Yong-Sheng; Baiyin, Menghe; Agula, Bao; Jia, Meilin; Zhaorigetu, Bao

    2014-07-18

    Catalyzed by supported gold nanoparticles, an aminolysis reaction between various aryl esters and inert tertiary amines by C-O and C-N bond activations has been developed for the selective synthesis of tertiary amides. Comparison studies indicated that the gold nanoparticles could perform energy-efficient green catalysis at room temperature, whereas Pd(OAc)2 could not.

  16. Substituent-controlled selective synthesis of N-acyl 2-aminothiazoles by intramolecular Zwitterion-mediated C-N bond cleavage.

    Science.gov (United States)

    Wang, Yang; Zhao, Fei; Chi, Yue; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-11-21

    The cleavage of C-N bonds is an interesting and challenging subject in modern organic synthesis. We have achieved the first zwitterion-controlled C-N bond cleavage in the MCR reaction among lithium alkynethiolates, bulky carbodiimides, and acid chlorides to construct N-acyl 2-aminothiazoles. This is a simple, highly efficient, and general method for the preparation of N-acyl 2-aminothiazoles with a broad range of substituents. The selective synthesis of N-acyl 2-aminothiazoles significantly depends on the steric hindrance of carbodiimides. The result is in striking contrast with our previous convergent reaction giving 5-acyl-2-iminothiazolines via 1,5-acyl migration. It is indeed interesting that the slight change of the substituents on the carbodiimides can completely switch the product structure. Experimental and theoretical results demonstrate the reason why the C-N bond cleavage in the present system is prior to the acyl migration. The intramolecular hydrogen relay via unprecedented Hofmann-type elimination is essential for this totally new zwitterion-controlled C-N bond cleavage.

  17. Binuclear metal carbonyl DAB complexes X. Activation of h2-C=N coordinated DAB ligands towards C-C bond formation with alkynes. The X-ray structure of {2-phenyl-3-(tert-butylamino)-4-(tertbutyl-imino)-1-butene-1-yl}Ru2(CO)5. Application to the catalytic cyclotrimerization of alkynes

    NARCIS (Netherlands)

    Koten, G. van; Staal, L.H.; Vrieze, K.; Santen, B. van; Stam, C.H.

    1981-01-01

    Ru,(CO),(DAB) (DAB = 1,4-diazabutadiene) complexes react with alkynes forming RU,(CO)~(AIB) complexes (AIB = 3-amino-4-imino-1-buten-1-ylI)n. these products the DAB ligand and the alkyne are coupled via a C-C bond. The molecular structure of these complexes has been determined by a single-crystal X-

  18. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  19. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    Science.gov (United States)

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  20. A class of luminescent cyclometalated alkynylgold(III) complexes: synthesis, characterization, and electrochemical, photophysical, and computational studies of [Au(C=N=C)(C triple bond C-R)] (C=N=C = kappa(3)C,N,C bis-cyclometalated 2,6-diphenylpyridyl).

    Science.gov (United States)

    Wong, Keith Man-Chung; Hung, Ling-Ling; Lam, Wai Han; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2007-04-11

    A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR'')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR'') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.

  1. Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines.

    Science.gov (United States)

    Greb, Lutz; Eichhöfer, Andreas; Lehn, Jean-Marie

    2015-11-23

    The thermal and photochemical E/Z isomerization of camphorquinone-derived imines was studied by a combination of kinetic, structural, and computational methods. The thermal isomerization proceeds by linear N inversion, whereas the photoinduced process occurs through C=N bond rotation with preferred directionality as a result of diastereoisomerism. Thereby, these imines are arguably the simplest example of synthetic molecular motors. The generality of the orthogonal trajectories of the thermal and photochemical pathways allows for the postulation that every suitable chiral imine qualifies, in principle, as a molecular motor driven by light or heat.

  2. Shedding light on disulfide bond formation

    DEFF Research Database (Denmark)

    Ostergaard, H; Henriksen, A; Hansen, F G;

    2001-01-01

    in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivo by non-invasive fluorimetric measurements. The 1.5 A crystal structure of the oxidized protein revealed a disulfide bond-induced distortion of the beta-barrel, as well as a structural...

  3. Disulphide bond formation in food protein aggregation and gelation

    NARCIS (Netherlands)

    Visschers, R.W.; Jongh, de H.H.J.

    2005-01-01

    In this short review we discuss the role of cysteine residues and cystine bridges for the functional aggregation of food proteins. We evaluate how formation and cleavage of disulphide bonds proceeds at a molecular level, and how inter- and intramolecular disulfide bonds can be detected and modified.

  4. Preparation of phosphines through C–P bond formation

    Directory of Open Access Journals (Sweden)

    Iris Wauters

    2014-05-01

    Full Text Available Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond.

  5. Sequential C-H and C-Ru Bond Formation and Cleavage During the Thermally Induced Rearrangement of Aryl Ruthenium(II) Complexes with [C6H3(CH2NMe2)2-2,6]-as a Bidentate n2-C,N Coordinated Ligand. The Crystal Structures of the Isomeric Pairs [RuCI{n6-C10H14 n2-C,n-C6H3(CH2NMe2)2,n}] (N=4 or 6) and [Ru(n5-C5H5){n2-C,N-C6H3(CH2NMe2)2-2,n}(PPh)] (n= 4 or 6)

    NARCIS (Netherlands)

    Koten, G. van; Steenwinkel, P.; James, S.L.; Gossage, R.A.; Grove, D.M.; Kooijman, H.; Smeets, W.J.J.; Spek, A.L.

    1998-01-01

    New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2NMe2)2-2,6]- (NCN) are described. These complexes are [RuCl{2-C,N-C6H3(CH2NMe2)2-2,6}(6-C10H14)] (2; C10H14 = p-cymene = C6H4Me-iPr-4), [Ru{2-C,N-C6H3(CH2NMe2)2-2,6}(5-C5H5)(PPh3)] (5), and their isomeric forms [RuCl

  6. Formation of Embedded Microstructures by Thermal Activated Solvent Bonding

    CERN Document Server

    Ng, S H; Wang, Z F; Lu, A C W; Rodriguez, I; De Rooij, N

    2008-01-01

    We present a thermal activated solvent bonding technique for the formation of embedded microstrucutres in polymer. It is based on the temperature dependent solubility of polymer in a liquid that is not a solvent at room temperature. With thermal activation, the liquid is transformed into a solvent of the polymer, creating a bonding capability through segmental or chain interdiffusion at the bonding interface. The technique has advantages over the more commonly used thermal bonding due to its much lower operation temperature (30 degrees C lower than the material's Tg), lower load, as well as shorter time. Lap shear test indicated bonding shear strength of up to 2.9 MPa. Leak test based on the bubble emission technique showed that the bonded microfluidic device can withstand at least 6 bars (87 psi) of internal pressure (gauge) in the microchannel. This technique can be applied to other systems of polymer and solvent.

  7. Formation of Au-Silane Bonds

    Directory of Open Access Journals (Sweden)

    Shira Yochelis

    2012-01-01

    Full Text Available Many intriguing aspects of molecular electronics are attributed to organic-inorganic interactions, yet charge transfer through such junctions still requires fundamental study. Recently, there is a growing interest in anchoring groups, which considered dominating the charge transport. With this respect, we choose to investigate self-assembly of disilane molecules sandwiched between gold surface and gold nanoparticles. These assemblies are found to exhibit covalent bonds not only between the anchoring Si groups and the gold surfaces but also in plane crosslinks that increase the monolayer stability. Finally, using scanning tunneling spectroscopy we demonstrate that the disilane molecules provide strong electrical coupling between the Au nanoparticles and a superconductor substrate.

  8. The nature of solid-state N-H triplebondO/O-H triplebond N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the triplebond O=C-C=N-NH triple bond --> <-- triplebond HO-C=C-N=N triplebond Ketohydrazone-Azoenol system. A variable-temperature X-ray crystallographic and DFT computational study.

    Science.gov (United States)

    Gilli, Paola; Bertolasi, Valerio; Pretto, Loretta; Lycka, Antonín; Gilli, Gastone

    2002-11-13

    The tautomeric.O=C-C=N-NH triplebond --> competition in these compounds is studied here through variable-temperature (100, 150, 200, and 295 K) crystal-structure determination of pF = 1-(4-F-phenylazo)2-naphthol and oF = 1-(2-F-phenylazo)2-naphthol, two molecules that, on the ground of previous studies (Gilli, P; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405), were expected to represent an almost perfect balance of the two tautomers. According to predictions, the two molecules form remarkably strong bonds (d(N triplebond O) = 2.53-2.55 A) of double-minimum or LBHB type with dynamic N-H triplebond O/ O-H triplebond N exchange in the solid state. The enthalpy differences between the two minima, as measured by van't Hoff methods from the X-ray-determined proton populations, are very small and amount to DeltaH degrees = -0.120 and DeltaH degrees = -0.156 kcal mol(-)(1) in favor of the N-H triplebond O form for pF and oF, respectively. Successive emulation of pF by DFT methods at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level has shown that both energetic and geometric experimental aspects can be almost perfectly reproduced. Generalization of these results was sought by performing DFT calculations at the same level of theory along the complete proton-transfer (PT) pathway for five test molecules designed in such a way that the RAHB formed changes smoothly from weak N-H triplebond O to strong O-H.N through very strong N-H triplebond O/O-H triplebond N bond of LBHB type. A systematic correlation analysis of H-bond energies, H-bond and pi-conjugated fragment geometries, and H-bond Bader's AIM topological properties performed along the PT-pathways leads to the following conclusions: (a) any X-H triplebond Y H-bonded system is fully characterized by its intrinsic PT-barrier, that is, the symmetric barrier occurring when the proton affinities of X and Y are identical; (b) the intrinsic X-H triplebond Y bond associated with the symmetric barrier is

  9. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    Science.gov (United States)

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule.

  10. Experimental and theoretical investigations of copper (I/II) complexes with triazine-pyrazole derivatives as ligands and their in situ C-N bond cleavage

    Science.gov (United States)

    Wang, Ji-Xiao; Wang, Che; Wang, Xuan; Wang, Xin-Yu; Xing, Yong-Heng; Sun, Qiao

    2015-05-01

    Two copper complexes, Cu(SCN)(Mpz∗T-(EtO)2) (1) (Mpz∗T-(EtO)2 = L3) and CuCl(H2O)(Mpz∗T-O2) (2) (Mpz∗T-O2 = L4) were synthesized by the reaction of 2,4,6-tri(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (L1) or 2,4,6-tri(1H-pyrazol-1-yl)-1,3,5-triazine (L2) with CuCl2·2H2O in anhydrous ethanol and methanol, respectively. The complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single crystal X-ray diffraction and X-ray powder diffraction. The structural characterizations and quantum mechanical calculations of the two complexes were analyzed in detail. It was found that an in site reaction occurred during the synthesis process of complexes 1 and 2, likely due to catalytic property of copper ions which leads to the C-N bond cleavage to generate new organic species, namely, Mpz∗T-(EtO)2 (L3) and Mpz∗T-O2 (L4).

  11. Rh(III)/Cu(II)-cocatalyzed synthesis of 1H-indazoles through C-H amidation and N-N bond formation.

    Science.gov (United States)

    Yu, Da-Gang; Suri, Mamta; Glorius, Frank

    2013-06-19

    Substituted 1H-indazoles can be formed from readily available arylimidates and organo azides by Rh(III)-catalyzed C-H activation/C-N bond formation and Cu-catalyzed N-N bond formation. For the first time the N-H-imidates are demonstrated to be good directing groups in C-H activation, also capable of undergoing intramolecular N-N bond formation. The process is scalable and green, with O2 as the terminal oxidant and N2 and H2O formed as byproducts. Moreover, the products could be transformed to diverse important derivatives.

  12. Interface formation and strength of Be/DSCu diffusion bonding

    Science.gov (United States)

    Makino, T.; Iwadachi, T.

    1998-10-01

    Beryllium has been proposed to be used as a plasma facing material of the first wall for ITER, and will be bonded by HIP process to Dispersion Strengthened Copper (DSCu). Be/DSCu diffusion bonding tests in the range of temperature from 600°C to 850°C by hot pressing techniques have been conducted to identify the effect of bonding temperature and time on interface formation and joint strength. The bonded Be/DSCu joints were evaluated by microstructural analysis of the interface and shear strength tests at room temperature. The diffusion layer of directly bonded Be/DSCu joints and the joints with Be-Cu interlayer consisted of Be 2Cu( δ) phase on the Be side and Cu + BeCu( γ) phase on the DSCu side. Cu + BeCu( γ) phase generated remarkably fast at 800-850°C. The thickness of the diffusion layer was linear to a square root of bonding time. Shear strength of the joints bonded at 650-750°C are all around 200 MPa. Shear strength is dominated by the formation of the layer of Be 2Cu( δ) phase on the Be side.

  13. Disulfide bond formation in prokaryotes: history, diversity and design.

    Science.gov (United States)

    Hatahet, Feras; Boyd, Dana; Beckwith, Jon

    2014-08-01

    The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  14. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    Science.gov (United States)

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  15. Hydrophobic interactions and hydrogen bonds in \\beta-sheet formation

    CERN Document Server

    Narayanan, Chitra

    2013-01-01

    In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for \\beta-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt \\beta-sheet conformations at short interpeptide distances (\\xi ~ 0.5 nm) and at intermediate distances (~ 0.8 nm), valine and leucine homodimers assume cross-\\beta-like conformations with side chains interpenetrating each other. These two states are identified as minima in the Potential of Mean Force (PMF). While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of \\beta-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by...

  16. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  17. Regioselectivity and Mechanism of Synthesizing N-Substituted 2-Pyridones and 2-Substituted Pyridines via Metal-Free C-O and C-N Bond-Cleaving of Oxazoline[3,2-a]pyridiniums

    Science.gov (United States)

    Li, Bo; Xue, Susu; Yang, Yang; Feng, Jia; Liu, Peng; Zhang, Yong; Zhu, Jianming; Xu, Zhijian; Hall, Adrian; Zhao, Bo; Shi, Jiye; Zhu, Weiliang

    2017-01-01

    Novel intermediate oxazoline[3,2-a]pyridiniums were facilely prepared from 2-(2,2-dimethoxyethoxy)-pyridines via acid promoted intramolecular cyclization. Sequentially, the quaternary ammonium salts were treated with different nucleophiles for performing regioselective metal-free C-O and C-N bond-cleaving to afford prevalent heterocyclic structures of N-substituted pyridones and 2-substituted pyridines. The reaction mechanism and regioselectivity were then systematically explored by quantum chemistry calculations at B3LYP/6-31 g(d) level. The calculated free energy barrier of the reactions revealed that aniline and aliphatic amines (e.g., methylamine) prefer to attack C8 of intermediate 4a, affording N-substituted pyridones, while phenylmethanamine, 2-phenylethan-1-amine and 3-phenylpropan-1-amine favor to attack C2 of the intermediate to form 2-substituted pyridines. With the optimized geometries of the transition states, we found that the aromatic ring of the phenyl aliphatic amines may form cation-π interaction with the pyridinium of the intermediates, which could stabilize the transition states and facilitate the formation of 2-substituted pyridines. PMID:28120894

  18. Sulfur(IV)-mediated carbon-carbon bond formation

    OpenAIRE

    Dean, William Michael

    2016-01-01

    This thesis details the development of methods for and application of the synthesis of carbon carbon bonds using organic sulfur(IV) chemistry. More specifically, the formation of C(sp2) C(sp3) and C(sp3) C(sp3) bonds is explored in detail. The necessity for this research stems from a correlation between a high proportion of sp3 centres in drug candidates, and their success in clinical trials. By facilitating the synthesis of drug candidates with higher fractions of sp3 hybridised carbon atoms...

  19. Irregular Characteristics of Bond Interface Formation in Ultrasonic Wire Wedge Bonding

    Institute of Scientific and Technical Information of China (English)

    Mingyu LI; Hongjun JI; Chunqing WANG; Au Tai KUNG; Han Sur BANG; Hee Seon BANG

    2006-01-01

    The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between Al and Ni at bond interface.

  20. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    Science.gov (United States)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  1. Design and synthesis of multidentate ligands via metal promoted C-N bond formation processes and their coordination chemistry

    Indian Academy of Sciences (India)

    Kunal K Kamar; Amrita Saha; Sreebrata Goswami

    2002-08-01

    This presentation reports some novel examples of organic ring amination reactions via metal mediation. The organic transformations are highly regioselective and can be controlled by the proper selection of the mediator complex. The two isomeric organic ligands viz. HL1 and HL2 were isolated in their pure states by the removal of the metal ions. These were fully characterized. The ligand HL1 has low , 8.5. Upon deprotonation, it behaves as a potential bis chelating N,N,N-donors. The coordination chemistry of the HL1 ligand involving some 3-metal ions is described. Two unusual low-spin complexes of manganese(II) and iron(III) are reported. The ferric complex displayed a rhombic EPR while, the corresponding manganese compound showed a complex pattern due to hyperfine coupling. All the complexes displayed large number of redox responses. A brief mention about the future projection of this work is noted.

  2. Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Tian, Jia-Jia; Li, Chang-Jiu; Yang, Guan-Jun; Li, Cheng-Xin

    2016-12-01

    Interlamellar bonding is an important factor controlling the mechanical, thermal and electrical properties of plasma sprayed ceramic coatings. In order to understand the formation of limited interlamellar bonding, a theoretical model is proposed based on the concept of the intrinsic bonding temperature. The numerical simulation of the interface temperature between a molten splat and underlying splats was performed for splats with uniform and non-uniform thickness, in order to reveal the conditions for the interlamellar bonding formation. The interlamellar bonding ratio was theoretically estimated based on the bonding forming conditions. The features of interlamellar bonding revealed by the simulation agree well with the experimental observations. The bonding ratio of plasma sprayed coatings is significantly influenced by the distribution of splat thickness. According to the distribution of Al2O3 splat thickness in the coating, the theoretical estimation of bonding ratio yielded a value of 0.41 for the plasma sprayed Al2O3 coating at the ambient atmosphere conditions, which is reasonably consistent with the observation value. Therefore, the limited interlamellar bonding can be reasonably explained based on the sufficient condition that the maximum interface temperature between a molten splat and underlying splats is larger than the intrinsic bonding temperature.

  3. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    2014-01-01

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  4. Addition of Carbon–Fluorine Bonds to a Mg(I)–Mg(I) Bond: An Equivalent of Grignard Formation in Solution

    Science.gov (United States)

    2016-01-01

    Addition of the carbon–fluorine bond of a series of perfluorinated and polyfluorinated arenes across the Mg–Mg bond of a simple coordination complex proceeds rapidly in solution. The reaction results in the formation of a new carbon–magnesium bond and a new fluorine–magnesium bond and is analogous to Grignard formation in homogeneous solution. PMID:27636244

  5. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease in the i......To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...

  6. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  7. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation.

    Science.gov (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi

    2014-02-18

    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  8. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  9. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    Science.gov (United States)

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-09

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

  10. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  11. Formation of amide bonds without a condensation agent and implications for origin of life.

    Science.gov (United States)

    Keller, M; Blöchl, E; Wächtershäuser, G; Stetter, K O

    1994-04-28

    Amide bonds are of central importance for biochemistry; in the guise of peptide bonds, they form the backbone of proteins. The formation of amide bonds without the assistance of enzymes poses a major challenge for theories of the origin of life. Enzyme-free formation of amide bonds between amino acids has been demonstrated in the presence of condensing agents such as cyanamide. Here we report the formation of amide bonds in aqueous solution in the absence of any condensing agent. We find that the formation of pyrite (FeS2) from FeS and H2S can provide the driving force for reductive acetylation of amino acids with mercaptoacetic acid (HSCH2COOH). The redox energy of pyrite formation permits the activation of the carboxylic acid group, which is converted to a species that reacts readily with amines. This process provides support for the chemo-autotrophic theory for the origin of life, in which pyrite formation supplies the energy source for the first autocatalytic reproduction cycle.

  12. Maturation of Pseudomonas aeruginosa elastase - Formation of the disulfide bonds

    NARCIS (Netherlands)

    Braun, P; Ockhuijsen, C; Eppens, E; Koster, M; Bitter, W; Tommassen, J

    2001-01-01

    Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. After propeptide-mediated folding in the periplasm, the proenzyme is autoproteolytically processed, prior to translocation of both the mature enzyme and the propeptide across the outer membrane. The formation of the two disulfide b

  13. Drinking alcohol has sex-dependent effects on pair bond formation in prairie voles.

    Science.gov (United States)

    Anacker, Allison M J; Ahern, Todd H; Hostetler, Caroline M; Dufour, Brett D; Smith, Monique L; Cocking, Davelle L; Li, Ju; Young, Larry J; Loftis, Jennifer M; Ryabinin, Andrey E

    2014-04-22

    Alcohol use and abuse profoundly influences a variety of behaviors, including social interactions. In some cases, it erodes social relationships; in others, it facilitates sociality. Here, we show that voluntary alcohol consumption can inhibit male partner preference (PP) formation (a laboratory proxy for pair bonding) in socially monogamous prairie voles (Microtus ochrogaster). Conversely, female PP is not inhibited, and may be facilitated by alcohol. Behavior and neurochemical analysis suggests that the effects of alcohol on social bonding are mediated by neural mechanisms regulating pair bond formation and not alcohol's effects on mating, locomotor, or aggressive behaviors. Several neuropeptide systems involved in the regulation of social behavior (especially neuropeptide Y and corticotropin-releasing factor) are modulated by alcohol drinking during cohabitation. These findings provide the first evidence to our knowledge that alcohol has a direct impact on the neural systems involved in social bonding in a sex-specific manner, providing an opportunity to explore the mechanisms by which alcohol affects social relationships.

  14. 高炉内Ti(C,N)生成的热力学分析%Thermodynamic analysis of titanium carbonitride formation in blast furnace

    Institute of Scientific and Technical Information of China (English)

    李扬; 程树森; 蔡皓宇

    2013-01-01

    通过热力学计算,研究了高炉中钛氧化物的还原过程,分析了TiC、TiN在高炉风口回旋区、渣铁层及铁水中的生成和转移,并得到了Ti(C,N)在渣铁界面析出时的炉渣中TiO2的临界质量分数.利用Factsage软件计算分析了渣铁平衡时铁水中w(Ti)与w(Si)之间的相互关系,发现:w(Si)、w(Ti)及w(Si) /w(Ti)的值在炉渣成分不改变的情况下会随温度的升高而增大;炉渣碱度0.9~1.2,炉渣w(TiO2)在5.5%以下时,铁水中的w(Ti)会随碱度升高而增加;在炉缸温度一定时,炉缸中Ti(C,N)的生成依赖于渣中w(TiO2).

  15. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  16. Formation of RNA phosphodiester bond by histidine-containing dipeptides

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Chotera, Agata;

    2013-01-01

    A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out....... Details of the mechanism and kinetics, which were elucidated with a set of control experiments, further establish that the imidazole side chain of a histidine at the carboxyl end of the dipeptide plays a crucial role in the catalysis. These results suggest that this oligomerisation catalysis occurs...

  17. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  18. Enhanced van der Waals epitaxy via electron transfer-enabled interfacial dative bond formation

    CERN Document Server

    Xie, Weiyu; Wang, Gwo-Ching; Bhat, Ishwara; Zhang, Shengbai

    2016-01-01

    Enhanced van der Waals (vdW) epitaxy of semiconductors on layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe2 is a vdW layered material, first-principles calculations reveal that the bond strength at CdTe-NbSe2 interface is five times as large as that of vdW interaction at CdTe-graphene interface. The unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at CdTe surface to metallic non-bonding NbSe2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  19. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  20. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals.

    Science.gov (United States)

    Sato, Yoshimi; Inaba, Kenji

    2012-07-01

    Almost all organisms, from bacteria to humans, possess catalytic systems that promote disulfide bond formation-coupled protein folding, i.e. oxidative protein folding. These systems are necessary for the biosynthesis of many secretory and membrane proteins, such as antibodies, major histocompatibility complex molecules, growth factors, and insulin. Over the last decade, structural studies have made striking progress in this field of research, identifying how oxidative systems operate in a specific and regulated manner to maintain redox and protein homeostasis within cells. Interestingly, more and more novel catalysts that promote disulfide bond formation have been discovered in mammals, suggesting that the oxidative protein folding network is even more complicated in higher eukaryotes than previously thought. This review highlights the physiological roles and molecular bases of the disulfide bond formation pathways that have evolved in the bacterial periplasm and the endoplasmic reticulum of fungi and mammals. Accumulating knowledge about disulfide bond formation networks widely distributed throughout the biological kingdom has significantly advanced our understanding of the cellular mechanisms dedicated to protein quality control.

  1. Ring-opening of cyclic ethers with carbon–carbon bond formation by Grignard reagents

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    The ring-opening of cyclic ethers with concomitant C–C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to ∼160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained wi...

  2. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-01-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the slidin

  3. Exploring a Chemical Route for the Formation of Stable Anions of Polyynes [C n H- (n=2,4)] in Molecular Clouds

    Science.gov (United States)

    Gianturco, F. A.; Satta, M.; Mendolicchio, M.; Palazzetti, F.; Piserchia, A.; Barone, V.; Wester, R.

    2016-10-01

    Using quantum chemical methods, we investigate the possible outcomes of {{{H}}}- reactions with acetylene and diacetylene molecules. We find both reactions to be exothermic reactions without barriers, yielding stable anions of the corresponding polyynes: {{{C}}}2{{{H}}}- and {{{C}}}4{{{H}}}-. We show in this work that the computed chemical rates in the case of the formation of the {{{C}}}4{{{H}}}- anion would be larger than those existing for the direct radiative electron attachment (REA) process, the main mechanism generally suggested for their formation. In the case of the {{{C}}}2{{{H}}}- anion, however, the present chemical rates of formation at low T are even lower than those known for its REA process, both mechanisms being inefficient for its formation under astrochemical conditions. The present results are discussed in view of their consequences on the issue of the possible presence of such anions in the ISM environments. They clearly indicate the present chemical route to {{{C}}}2{{{H}}}- formation to be inefficient at the expected temperatures of a dark molecular cloud, whereas this is found not to be the case for the {{{C}}}4{{{H}}}-, in line with the available experimental findings.

  4. Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation.

    Science.gov (United States)

    Zhou, Shiqing; Zhu, Shumin; Shao, Yisheng; Gao, Naiyun

    2015-04-01

    Extracellular organic matter (EOM) and intracellular organic matter (IOM) of Microcystis aeruginosa have been reported to contribute to the formation of carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs). Little is known about DBPs formation from different molecular weight (MW) fractions, especially for N-nitrosodimethylamine (NDMA). This study fractionated EOM and IOM into several MW fractions using a series of ultrafiltration membranes and is the first to report on the C-DBPs and N-DBPs formation from chlorination and chloramination of different MW fractions. Results showed that EOM and IOM were mainly distributed in low-MW (100 KDa) fractions. Additionally, the low-MW and high-MW fractions of EOM and IOM generally took an important part in forming C-DBPs and N-DBPs, either in chlorination or in chloramination. Furthermore, the effects of pre-ozonation on the formation of DBPs in subsequent chlorination and chloramination were also investigated. It was found that ozone shifted the high-MW fractions of EOM and IOM into lower MW fractions and increased the C-DBPs and N-DBPs yields to different degrees. As low-MW fractions are more difficult to remove than high-MW fractions by conventional treatment processes, therefore, activated carbon adsorption, nanofiltration (NF) and biological treatment processes can be ideal to remove the low-MW fractions and minimize the formation potential of C-DBPs and N-DBPs. Moreover, the use of ozone should be carefully considered in the treatment of algal-rich water.

  5. Identification of disulfide bond formation between MitoNEET and glutamate dehydrogenase 1.

    Science.gov (United States)

    Roberts, Morgan E; Crail, Jacquelyn P; Laffoon, Megan M; Fernandez, William G; Menze, Michael A; Konkle, Mary E

    2013-12-17

    MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.

  6. Performance evaluation of the UV/H2O2 process on selected nitrogenous organic compounds: reductions of organic contents vs. corresponding C-, N-DBPs formations.

    Science.gov (United States)

    Chen, Huei-Wen; Chen, Chia-Yang; Wang, Gen-Shuh

    2011-10-01

    The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomethanes, haloacetic acids and nitrosamines in finished water. This study applied both medium-pressure and low-pressure ultraviolet light coupled with hydrogen peroxide (UV/H2O2) to evaluate its efficacy for degradation of selected nitrogenous organic compounds and corresponding disinfection byproduct (DBP) formation. Six organic compounds were chosen as target precursors based on their nitrogen contents and molecular structures. The results showed that higher oxidation capacity resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for compounds with complicated structure such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after chlorination or chloramination. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMAFP could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments.

  7. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    Science.gov (United States)

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  8. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles.

    Science.gov (United States)

    Li, Xianwei; He, Li; Chen, Huoji; Wu, Wanqing; Jiang, Huanfeng

    2013-04-19

    A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp(2))-H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery.

  9. Efficient C-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneous Brønsted acid.

    Science.gov (United States)

    Motokura, Ken; Nakagiri, Nobuaki; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-28

    Nucleophilic addition of sulfonamides and carboxamides to simple alkenes proceeded smoothly using a proton-exchanged montmorillonite catalyst. The spent catalyst was recovered easily from the reaction mixture and was reusable at least five times without any loss of activity. The unique acidity of the proton-exchanged montmorillonite (H-mont) catalyst was found to be applicable to additional reactions: substitution of hydroxyl groups of alcohols with amides and anilines.

  10. Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Hang, Tao, E-mail: hangtao@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Mao, Dali [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Li, Ming, E-mail: mingli90@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Qian, Kaiyou; Lv, Zhong; Chiu, Hope [Packaging RnD and Advanced MFG Engineering, SanDisk Semiconductor (Shanghai) Co., Ltd., Shanghai (China)

    2014-03-05

    Highlights: • Two IMC layers formed between Ag–8Au–3Pd alloy wire and Al pad were identified. • IMCs growth during annealing was discussed by diffusion kinetics. • Ag diffusion controls voids filling at bonding interface during thermal aging. -- Abstract: Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects from integrated circuits to substrates. This work is undertaken to gain a better understanding on the intermetallic compounds (IMC) formation and evolution at the interface between Ag–8Au–3Pd wire and Al metallization pad. Longitudinal cross-section of bond interface was prepared by dual-beam focused ion beam (FIB) micro-machining for transmission electron microscopy (TEM) analysis. Two intermetallic regions formed at interface were crystallochemically identified as AuAl{sub 2} + (Au, Ag){sub 4}Al and Ag{sub 2}Al respectively. Interface evolution tracking by back scattered electron (BSE) imaging showed that IMC initially formed at periphery of bonding area. After short-term annealing treatment (175 °C for 24 h), the voids in the center of the bonding interface shrank and vanished, due to the Ag diffusion played dominant part in IMC growing. The mechanism of IMC formation and evolution at interface was finally elaborated on the basis of thermodynamics and diffusion kinetics respectively.

  11. Characteristics of C-, N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent.

    Science.gov (United States)

    Chang, Huihsien; Chen, Chiayang; Wang, Genshuh

    2013-05-15

    The objective of this study is to clarify the relationships between the characteristics of dissolved organic nitrogen (DON) and disinfection by-products (DBPs) formation. Treated wastewater effluents from the Neihu wastewater treatment plant in Taipei City (TN) and source waters from the Tai Lake water treatment plant in Kinmen (KT) were evaluated. These water samples were fractionated to obtain 7 DON isolates with different characteristics. The DON isolates were freeze-dried and re-dissolved to different DON fraction solutions containing 10 mg-C/L of non-purgeable dissolved organic carbon (NPDOC). The DBPs formation potentials (DBPFPs) (trihalomethanes (THMs), haloacetic acids (HAAs), and nitrosamines) of different DON fraction solutions were then assessed with chlorine and monochloramine treatments. After fractionation schemes, mass concentrations of dried DON-enriched isolates ranged from 0.2 to 46.4 mg/L. Both TN effluents and KT raw waters had similar compositions of DON fractions except for the amounts of amphiphilic bases/neutrals (AMPB/N) isolates: hydrophobic acids (HPOA) > hydrophilic acids/neutrals (HPIA/N) > AMPB/N of KT raw waters > hydrophilic bases (HPIB) > amphiphilic acids (AMPA) > hydrophobic bases/neutrals (HPOB/N) > AMPB/N of TN effluents > amino acids (AA). For carbonated DBPs (C-DBPs), AA fraction treated with NaOCl formed the greatest amounts of C-DBPs (up to 1258.2 μg/L of THMs and 1140.6 μg/L of HAAs). For nitrogenated DBPs (N-DBPs), the AMPB/N fraction (DON = 1.4 mg-N/L) treated with NH2Cl was the most important precursor to form N-nitrosodimethylamine (NDMA) and generated up to 9238.0 ng/L of NDMA from KT raw water. Taking both DBP formation and organic composition into account, the HPOA (31.9%-38.4%)/HPIA/N (17.6%-35.7%) fractions and AMPB/N fraction (38.4%-93.9%) were the most important contributors to the overall C-DBPFPs and N-DBPFPs, respectively.

  12. Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses.

    Science.gov (United States)

    Hakim, Motti; Fass, Deborah

    2010-10-01

    Proteins that have evolved to contain stabilizing disulfide bonds generally fold in a membrane-delimited compartment in the cell [i.e., the endoplasmic reticulum (ER) or the mitochondrial intermembrane space (IMS)]. These compartments contain sulfhydryl oxidase enzymes that catalyze the pairing and oxidation of cysteine residues. In contrast, most proteins in a healthy cytosol are maintained in reduced form through surveillance by NADPH-dependent reductases and the lack of sulfhydryl oxidases. Nevertheless, one of the core functionalities that unify the broad and diverse set of nucleocytoplasmic large DNA viruses (NCLDVs) is the ability to catalyze disulfide formation in the cytosol. The substrates of this activity are proteins that contribute to the assembly, structure, and infectivity of the virions. If the last common ancestor of NCLDVs was present during eukaryogenesis as has been proposed, it is interesting to speculate that viral disulfide bond formation pathways may have predated oxidative protein folding in intracellular organelles.

  13. Lewis acid promoted dual bond formation: facile synthesis of dihydrocoumarins and spiro-tetracyclic dihydrocoumarins.

    Science.gov (United States)

    Niharika, Pedireddi; Ramulu, Bokka Venkat; Satyanarayana, Gedu

    2014-07-07

    Lewis acid (FeCl3) mediated dual bond (C-C and C-O) formation for synthesis of 3,4-dihydrocoumarins is presented. This method has successfully delivered a number of dihydrocoumarins containing dense functionalities on the aromatic ring. Significantly, the present method enabled achieving dihydrocoumarins with tertiary as well as quaternary carbon atoms at the benzylic position. Gratifyingly, the novel spiro-tetracyclic lactones have also been dextrously prepared using this process.

  14. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    Science.gov (United States)

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks.

  15. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  16. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    Science.gov (United States)

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  17. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: miuray@jaist.ac.j [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-11-30

    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  18. Progress in the Formation of Carbon-Hetero Bond Based on 2(5H)-Furanones%基于2(5H)-呋喃酮的碳-杂成键反应研究进展

    Institute of Scientific and Technical Information of China (English)

    谭越河; 李建晓; 洪文坤; 汪朝阳

    2011-01-01

    2(5H)-呋喃酮结构单元广泛存在于天然产物中,同时许多2(5H)-呋喃酮类化合物也是重要的有机合成中间体.因此,基于常见2(5H)-呋喃酮(1)的有机合成研究近年来引起了人们的关注.根据在有机合成反应中成键方式的不同,综述了在2(5H)-呋喃酮(1)环上形成C-O,C-N,C-S,C-P,C-Se,C-Si等碳-杂键的反应研究进展.%Recently, the organic synthesis based on 2(5H)-furanones (1) has attracted much attention owing to the unique carbon skeleton of 2(5H)-furanone which is widely present in a variety of natural products and their utility as valuable synthetic intermediates.Classified as different bond kinds, the progress in the formation reactions of carbon-oxygen bond, carbon-nitrogen bond, carbon-sulfur bond, carbon-phosphorus bond, carbon-selenium bond and carbon-silicon bond on 2(5H)-furanone ring is reviewed.

  19. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products.

    Science.gov (United States)

    Schmidt, Nina G; Eger, Elisabeth; Kroutil, Wolfgang

    2016-07-01

    Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.

  20. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    Science.gov (United States)

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261

  1. Understanding the effect of substitution on the formation of S. . .F chalcogen bond

    Indian Academy of Sciences (India)

    RAHUL SHUKLA; DEEPAK CHOPRA

    2016-10-01

    In this study, we have investigated the effect of substitution on the formation of S. . .F non-covalent interactions in XHS. . .FCH₃ complexes (X= −H, −F, −Cl, −OH, −OCH₃, −NH₂, −NHCH₃, −NO₂, −CN) at MP2/aug-cc-pVDZ level of theory. The formation of S. . .F chalcogen bonds was observed in all the cases, except for X = −H. The binding energy of the S. . .F non-covalent interactions is strongly dependent on the nature of the substituent groups. The energy decomposition analysis revealed that electrostatic and exchangeenergy component are the dominant contributors towards the stability of these interactions. The topological analysis established the presence of the S. . .F chalcogen bond due to the presence of a bond critical point exclusively between sulphur and fluorine atoms representing a closed-shell interaction. The natural bondorbital analysis shows that the stability of the interaction comes from a charge transfer from F(lp) to σ* (S-X) orbital transition.

  2. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.

    Science.gov (United States)

    Wallentin, Carl-Johan; Nguyen, John D; Stephenson, Corey R J

    2012-01-01

    This mini-review highlights the Stephenson group's contribution to the field of photoredox catalysis with emphasis on carbon-carbon bond formation. The realization of photoredox mediated reductive dehalogenation initiated investigations toward both intra- and intermolecular coupling reactions. These reactions commenced via visible light-mediated reduction of activated halogens to give carbon-centered radicals that were subsequently involved in carbon-carbon bond forming transformations. The developed protocols using Ru and Ir based polypyridyl complexes as photoredox catalysts were further tuned to efficiently catalyze overall redox neutral atom transfer radical addition reactions. Most recently, a simplistic flow reactor technique has been utilized to affect a broad scope of photocatalytic transformations with significant enhancement in reaction efficiency.

  3. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  4. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    Science.gov (United States)

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  5. A Synthesis of 1H-Indazoles via a Cu(OAc)2-Catalyzed N-N Bond Formation.

    Science.gov (United States)

    Chen, Cheng-yi; Tang, Guangrong; He, Fengxian; Wang, Zhaobin; Jing, Hailin; Faessler, Roger

    2016-04-01

    A facile synthesis of 1H-indazoles featuring a Cu(OAc)2-catalyzed N-N bond formation using oxygen as the terminal oxidant is described. The reaction of readily available 2-aminobenzonitriles with various organometallic reagents led to o-aminoaryl N-H ketimine species. The subsequent Cu(OAc)2-catalyzed N-N bond formation in DMSO under oxygen afforded a wide variety of 1H-indazoles in good to excellent yields.

  6. Bridging and bonding interactions in higher education: social capital and students' academic and professional identity formation.

    Science.gov (United States)

    Jensen, Dorthe H; Jetten, Jolanda

    2015-01-01

    It is increasingly recognized that graduates' achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students' socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students' professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students' parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students' professional identity development.

  7. An erbium-based bifuctional heterogeneous catalyst: a cooperative route towards C-C bond formation.

    Science.gov (United States)

    Oliverio, Manuela; Costanzo, Paola; Macario, Anastasia; De Luca, Giuseppina; Nardi, Monica; Procopio, Antonio

    2014-07-15

    Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III)-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid-base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  8. An Erbium-Based Bifuctional Heterogeneous Catalyst: A Cooperative Route Towards C-C Bond Formation

    Directory of Open Access Journals (Sweden)

    Manuela Oliverio

    2014-07-01

    Full Text Available Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid–base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  9. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Gong, Hao [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Sun, Yue [College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yan, Juan; Cheng, Biao; Zhang, Xin [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Huang, Jing [College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yu, Mengying; Guo, Yu [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Zheng, Ling, E-mail: lzheng217@hotmail.com [College of Life Sciences, Wuhan University, Wuhan 430072 (China); Huang, Kun, E-mail: kunhuang2008@hotmail.com [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Centre for Biomedicine Research, Wuhan Institutes of Biotechnology, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We dissect how individual disulfide bond affects the amyloidogenicity of insulin. Black-Right-Pointing-Pointer A controlled reduction system for insulin is established in this study. Black-Right-Pointing-Pointer Disulfide breakage is associated with unfolding and increased amyloidogenicity. Black-Right-Pointing-Pointer Breakage of A6-A11 is associated with significantly increased cytotoxicity. Black-Right-Pointing-Pointer Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7

  10. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    Science.gov (United States)

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-08

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  11. Bimetallic bonding and mixed oxide formation in the Ga-Pd-CeO2 system

    Science.gov (United States)

    Skála, Tomáš; Tsud, Nataliya; Prince, Kevin C.; Matolín, Vladimír

    2011-08-01

    The interaction of gallium and palladium with 2 nm CeO2(111) layers grown on Cu(111) was studied by core level photoelectron spectroscopy and resonant valence band spectroscopy. Palladium alone interacted weakly with ceria layers. Gallium deposited on cerium dioxide formed a mixed Ga2O3-Ce2O3 oxide of 1:1 stoichiometry (cerium gallate CeGaO3), with both metals in the M3+ oxidation state. Increasing Ga coverages led to the formation of lower oxidation states, i.e., Ga1+ in Ga2O oxide and metallic Ga0. Palladium deposited onto this complex system interacted with gallium leading to a breakage of Ga-ceria bonds, a decrease of the oxidation state of gallium, and formation of a Ga-Pd intermetallic alloy in which all components (CeO2, CeGaO3, Ga2O, Ga-Pd, and Pd) are in equilibrium.

  12. Evaluation of the Role of Water in the H2 Bond Formation by Ni(II)-Based Electrocatalysts.

    Science.gov (United States)

    Ho, Ming-Hsun; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Bullock, R Morris

    2013-08-13

    We investigate the role of water in the H-H bond formation by a family of nickel molecular catalysts that exhibit high rates for H2 production in acetonitrile solvent. A key feature leading to the high reactivity is the Lewis acidity of the Ni(II) center and pendant amines in the diphosphine ligand that function as Lewis bases, facilitating H-H bond formation or cleavage. Significant increases in the rate of H2 production have been reported in the presence of added water. Our calculations show that molecular water can displace an acetonitrile solvent molecule in the first solvation shell of the metal. One or two water molecules can also participate in shuttling a proton that can combine with a metal hydride to form the H-H bond. However the participation of the water molecules does not lower the barrier to H-H bond formation. Thus these calculations suggest that the rate increase due to water in these electrocatalysts is not associated with the elementary step of H-H bond formation or cleavage but rather with the proton delivery steps. We attribute the higher barrier in the H-H bond formation in the presence of water to a decrease in direct interaction between the protic and hydridic hydrogen atoms forced by the water molecules.

  13. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  14. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  15. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    Institute of Scientific and Technical Information of China (English)

    Marije A Jongsma; Henny C van der Mei; Jelly Atema-Smit; Henk J Busscher; Yijin Ren

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires;bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride-or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  16. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras

    2010-09-01

    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  17. A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation

    Science.gov (United States)

    Limozin, Laurent; Bongrand, Pierre; Robert, Philippe

    2016-01-01

    Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation. PMID:27731375

  18. Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes.

    Science.gov (United States)

    Ponec, Robert; Cooper, David L

    2007-01-01

    We demonstrate that domain-average Fermi hole (DAFH) analysis, which has previously been used at the Hartree-Fock level, remains useful after the proper introduction of electron correlation. We perform a systematic investigation of the variation of the picture of bonding with increasing bond length in simple diatomic molecules such as N2 and LiH. Alongside values of a shared-electron distribution index (SEDI), this analysis provides further insight into the geometry dependence of the extent of electron sharing in polar and non-polar systems. We also use DAFH analysis, with correlated wave functions, to evaluate the (potential) multicentre bonding in the electron-deficient and electron-rich molecules CH2Li2 and CH2N2, respectively.

  19. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  20. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium

    OpenAIRE

    Lin, Dongxia; Kim, Byoungkwan; Slauch, James M.

    2009-01-01

    Disulfide bond formation in periplasmic proteins is catalysed by the DsbA/DsbB system in most Gram-negative bacteria. Salmonella enterica serovar Typhimurium also encodes a paralogous pair of proteins to DsbA and DsbB, DsbL and DsbI, respectively, downstream of a periplasmic arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI function as a redox pair contributing to periplasmic disulfide bond formation and, as such, affect transcription of the Salmonella pathogenicity island 1 (SP...

  1. Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG.

    Science.gov (United States)

    Geng, Jiafeng; Huo, Lu; Liu, Aimin

    2017-02-01

    The diheme enzyme MauG utilizes H2O2 to perform oxidative posttranslational modification on a protein substrate. A bis-Fe(IV) species of MauG was previously identified as a key intermediate in this reaction. Heterolytic cleavage of the OO bond of H2O2 drives the formation of the bis-Fe(IV) intermediate. In this work, we tested a hypothesis that a glutamate residue, Glu113 in the distal pocket of the pentacoordinate heme of MauG, facilitates heterolytic OO bond cleavage, thereby leading to bis-Fe(IV) formation. This hypothesis was proposed based on sequence alignment and structural comparison with other H2O2-utilizing hemoenzymes, especially those from the diheme enzyme superfamily that MauG belongs to. Electron paramagnetic resonance (EPR) characterization of the reaction between MauG and H2O2 revealed that mutation of Glu113 inhibited heterolytic OO bond cleavage, in agreement with our hypothesis. This result was further confirmed by the HPLC study in which an analog of H2O2, cumene hydroperoxide, was used to probe the pattern of OO bond cleavage. Together, our data suggest that Glu113 functions as an acid-base catalyst to assist heterolytic OO bond cleavage during the early stage of the catalytic reaction. This work advances our mechanistic understanding of the H2O2-activation process during bis-Fe(IV) formation in MauG.

  2. Bond formation effects on the metal-insulator transition in the half-filled kagome Hubbard model

    Science.gov (United States)

    Higa, Ryota; Asano, Kenichi

    2016-06-01

    We study the metal-insulator transition in the half-filled Hubbard model on a Kagome lattice using the variational cluster approximation. The strong coupling limit of the model corresponds to the S =1 /2 Kagome Heisenberg antiferromagnet, which is known to have a singlet ground state, although its detail is still debated. As the results of the cluster methods generally depend much on the choice of the unit cluster, we have chosen the clusters that are compatible with these singlet ground states in the strong coupling case found so far, which basically consist of even number of sites. It is found that the correlated electrons on the Kagome lattice have a strong tendency to form valence-bond structures, which are the resonation of electrons on a single bond or several bonds forming loops. The zero-temperature metal-insulator transition at some interaction strength is possibly driven by the formation of such short range valence bonds and shows a second order character, which is distinctive from the Brinkman-Rice scenario. The electrons on these valence bonds further localizes onto each site as the interaction increases, and the valence bonds of electrons finally turn into magnetic singlet bonds between localized S =1 /2 spins, which are consistent with the ground states of the Kagome antiferromagnet.

  3. Paleobotany and palynology of the Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of the Illinois Basin (Upper Pennsylvania)

    Energy Technology Data Exchange (ETDEWEB)

    Willard, D.A.; Phillips, T.L. [US Geological Survey, Reston, VA (United States)

    1993-12-01

    Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psaronius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals.

  4. Effects of chain length and Au spin-orbit coupling on 3(pi pi*) emission from bridging Cn2- units: theoretical characterization of spin-forbidden radiative transitions in metal-capped one-dimensional carbon chains [H3PAu(C[triple bond]C)nAuPH3].

    Science.gov (United States)

    Cao, Zexing; Zhang, Qianer

    2004-04-19

    Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.

  5. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Directory of Open Access Journals (Sweden)

    Tyo Keith EJ

    2012-03-01

    Full Text Available Abstract Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor or a larger protein (α-amylase. Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a degradation of protein/recycling amino acids, (b overall transcription/translation repression, and (c oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.

  6. Ions colliding with clusters of fullerenes-Decay pathways and covalent bond formations

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, F.; Zettergren, H.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H. [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Rousseau, P.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Mery, A.; Maclot, S.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Universite de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Universite de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Wang, Y.; Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA-Nano), Cantoblanco, 28049 Madrid (Spain); Rangama, J.; Domaracka, A.; Vizcaino, V. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Universite de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); and others

    2013-07-21

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C{sub 60} molecules following collisions with Ar{sup 2+}, He{sup 2+}, and Xe{sup 20+} at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C{sub 60} monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C{sub 60}]{sub n}{sup +}{yields}C{sub 60}{sup +}+(n-1)C{sub 60} evaporation model. Excitation energies in the range of only {approx}0.7 eV per C{sub 60} molecule in a [C{sub 60}]{sub 13}{sup +} cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar{sup 2+} and He{sup 2+} collisions, we observe very efficient C{sub 119}{sup +} and C{sub 118}{sup +} formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C{sub 59}{sup +} or C{sub 58}{sup +} and C{sub 60} during cluster fragmentation. In the Ar{sup 2+} case, it is possible to form even smaller C{sub 120-2m}{sup +} molecules (m= 2-7), while no molecular fusion reactions are observed for the present Xe{sup 20+} collisions.

  7. Ti(C,N)在炭砖中的原位形成及其对炭砖性能的影响%In-situ formation of Ti(C, N) in carbon blocks and its effect on properties of carbon blocks

    Institute of Scientific and Technical Information of China (English)

    李亦韦; 桑绍柏; 李亚伟

    2015-01-01

    为了提升高导热炭砖的抗侵蚀性,以人造石墨(≤0.075、≤1 mm)、Si粉(≤0.045 mm)、Al粉(≤0.075mm)、活性Al2 O3(2μm)为原料,酚醛树脂为结合剂,分别外加质量分数6%的TiO2、TiC微粉,经混料、成型,于1 200和1 400℃埋炭热处理后制备了高炉用炭砖试样,研究了TiO2 、TiC微粉对试样的物相变化、微孔结构、热导率及抗铁水侵蚀等性能的影响.结果表明:经1 400℃埋炭热处理后,外加6%(w)TiO2试样原位生成了Ti(C,N)和TiN,而引入的TiC较为稳定,在热处理过程中未与其他组分发生反应,且外加6%(w)TiO2试样在SiC晶须的密集区生成了Ti(C,N),与其他试样相比,SiC晶须的量较多,长径比较大;外加6%(w)TiO2试样的平均孔径低于100 nm,小于1μm孔的孔容积率达90%,室温热导率达53.43W·m-1· K-1;抗铁水侵蚀性试验显示,通过引入TiO2原位形成Ti(C,N)的炭砖试样,其抗铁水熔损性优于直接引入TiC的试样.

  8. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.

    Science.gov (United States)

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2012-07-01

    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.

  9. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  10. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization.

    Science.gov (United States)

    Kpadeh, Zegbeh Z; Day, Shandra R; Mills, Brandy W; Hoffman, Paul S

    2015-03-01

    Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.

  11. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials

    NARCIS (Netherlands)

    Jongsma, Marije A.; Pelser, Floris D. H.; van der Mei, Henny C.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.; Ren, Yijin

    2013-01-01

    OBJECTIVE: Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on d

  12. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    NARCIS (Netherlands)

    Jongsma, Marije A.; van der Mei, Henny C.; Atema-Smit, Jelly; Busscher, Henk I.; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased po

  13. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan;

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  14. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    Science.gov (United States)

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  15. Formation process,microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint

    Institute of Scientific and Technical Information of China (English)

    孙大谦; 刘卫红; 贾树盛; 邱小明

    2004-01-01

    The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium-based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al2Cu and MgAl2O4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al2 Cu brittle phase and promoting homogenization of joint.

  16. Slow peptide bond formation by proline and other N-alkylamino acids in translation

    Science.gov (United States)

    Pavlov, Michael Y.; Watts, Richard E.; Tan, Zhongping; Cornish, Virginia W.; Ehrenberg, Måns; Forster, Anthony C.

    2009-01-01

    Proteins are made from 19 aa and, curiously, one N-alkylamino acid (“imino acid”), proline (Pro). Pro is thought to be incorporated by the translation apparatus at the same rate as the 19 aa, even though the alkyl group in Pro resides directly on the nitrogen nucleophile involved in peptide bond formation. Here, by combining quench-flow kinetics and charging of tRNAs with cognate and noncognate amino acids, we find that Pro incorporates in translation significantly more slowly than Phe or Ala and that other N-alkylamino acids incorporate much more slowly. Our results show that the slowest step in incorporation of N-alkylamino acids is accommodation/peptidyl transfer after GTP hydrolysis on EF-Tu. The relative incorporation rates correlate with expectations from organic chemistry, suggesting that amino acid sterics and basicities affect translation rates at the peptidyl transfer step. Cognate isoacceptor tRNAs speed Pro incorporation to rates compatible with in vivo, although still 3–6 times slower than Phe incorporation from Phe-tRNAPhe depending on the Pro codon. Results suggest that Pro is the only N-alkylamino acid in the genetic code because it has a privileged cyclic structure that is more reactive than other N-alkylamino acids. Our data on the variation of the rate of incorporation of Pro from native Pro-tRNAPro isoacceptors at 4 different Pro codons help explain codon bias not accounted for by the “tRNA abundance” hypothesis. PMID:19104062

  17. Modification of the catalytic function of human hydroxysteroid sulfotransferase hSULT2A1 by formation of disulfide bonds.

    Science.gov (United States)

    Qin, Xiaoyan; Teesch, Lynn M; Duffel, Michael W

    2013-05-01

    The human cytosolic sulfotransferase hSULT2A1 catalyzes the sulfation of a broad range of xenobiotics, as well as endogenous hydroxysteroids and bile acids. Reversible modulation of the catalytic activity of this enzyme could play important roles in its physiologic functions. Whereas other mammalian sulfotransferases are known to be reversibly altered by changes in their redox environment, this has not been previously shown for hSULT2A1. We have examined the hypothesis that the formation of disulfide bonds in hSULT2A1 can reversibly regulate the catalytic function of the enzyme. Three thiol oxidants were used as model compounds to investigate their effects on homogeneous preparations of hSULT2A1: glutathione disulfide, 5,5'-dithiobis(2-nitrobenzoic acid), and 1,1'-azobis(N,N-dimethylformamide) (diamide). Examination of the effects of disulfide bond formation with these agents indicated that the activity of the enzyme is reversibly altered. Studies on the kinetics of the hSULT2A1-catalyzed sulfation of dehydroepiandrosterone (DHEA) showed the effects of disulfide bond formation on the substrate inhibition characteristics of the enzyme. The effects of these agents on the binding of substrates and products, liquid chromatography-mass spectrometry identification of the disulfides formed, and structural modeling of the modified enzyme were examined. Our results indicate that conformational changes at cysteines near the nucleotide binding site affect the binding of both the nucleotide and DHEA to the enzyme, with the specific effects dependent on the structure of the resulting disulfide. Thus, the formation of disulfide bonds in hSULT2A1 is a potentially important reversible mechanism for alterations in the rates of sulfation of both endogenous and xenobiotic substrates.

  18. Regioselective carbon–carbon bond formation of 5,5,5-trifluoro-1-phenylpent-3-en-1-yne

    Directory of Open Access Journals (Sweden)

    Motoki Naka

    2013-10-01

    Full Text Available The regioselective carbon–carbon bond formation was studied using 5,5,5-trifluoro-1-phenylpent-3-en-1-yne as a model substrate, and predominant acceptance of electrophiles β to a CF3 group as well as a deuterium trap experiment of the lithiated species led to the conclusion that the obtained regioselectivity is kinetically determined for the reactions with electrophiles, under equilibration of the possible two anionic species.

  19. Surveying approaches to the formation of carbon-carbon bonds between a pyran and an adjacent ring

    OpenAIRE

    Frein, Jeffrey D.; Rovis, Tomislav

    2006-01-01

    We have examined several methods for the stereoselective formation of carbon-carbon bonds between contiguous rings where a stereogenic center is already present. The approaches investigated were a [1,3] oxygen to carbon rearrangement of cyclic vinyl acetals, an intermolecular enolsilane addition into an in situ generated oxocarbenium ion, an intramolecular conjugate addition of tethered alkoxy enones, and epimerization of several α-pyranyl cycloalkanones. These routes have been found to be co...

  20. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions.

    Science.gov (United States)

    Zamfir, Alexandru; Schenker, Sebastian; Freund, Matthias; Tsogoeva, Svetlana B

    2010-12-07

    BINOL-derived phosphoric acids have emerged during the last five years as powerful chiral Brønsted acid catalysts in many enantioselective processes. The most successful transformations carried out with chiral BINOL phosphates include C-C bond formation reactions. The recent advances have been reviewed in this article with a focus being placed on hydrocyanations, aldol-type, Mannich, Friedel-Crafts, aza-ene-type, Diels-Alder, as well as cascade and multi-component reactions.

  1. Homolytic substitution at phosphorus for C–P bond formation in organic synthesis

    Science.gov (United States)

    2013-01-01

    Summary Organophosphorus compounds are important in organic chemistry. This review article covers emerging, powerful synthetic approaches to organophosphorus compounds by homolytic substitution at phosphorus with a carbon-centered radical. Phosphination reagents include diphosphines, chalcogenophosphines and stannylphosphines, which bear a weak P–heteroatom bond for homolysis. This article deals with two transformations, radical phosphination by addition across unsaturated C–C bonds and substitution of organic halides. PMID:23843922

  2. Homolytic substitution at phosphorus for C–P bond formation in organic synthesis

    Directory of Open Access Journals (Sweden)

    Hideki Yorimitsu

    2013-06-01

    Full Text Available Organophosphorus compounds are important in organic chemistry. This review article covers emerging, powerful synthetic approaches to organophosphorus compounds by homolytic substitution at phosphorus with a carbon-centered radical. Phosphination reagents include diphosphines, chalcogenophosphines and stannylphosphines, which bear a weak P–heteroatom bond for homolysis. This article deals with two transformations, radical phosphination by addition across unsaturated C–C bonds and substitution of organic halides.

  3. Functional-Group-Tolerant, Silver-Catalyzed N-N Bond Formation by Nitrene Transfer to Amines.

    Science.gov (United States)

    Maestre, Lourdes; Dorel, Ruth; Pablo, Óscar; Escofet, Imma; Sameera, W M C; Álvarez, Eleuterio; Maseras, Feliu; Díaz-Requejo, M Mar; Echavarren, Antonio M; Pérez, Pedro J

    2017-02-15

    Silver(I) promotes the highly chemoselective N-amidation of tertiary amines under catalytic conditions to form aminimides by nitrene transfer from PhI═NTs. Remarkably, this transformation proceeds in a selective manner in the presence of olefins and other functional groups without formation of the commonly observed aziridines or C-H insertion products. The methodology can be applied not only to rather simple tertiary amines but also to complex natural molecules such as brucine or quinine, where the products derived from N-N bond formation were exclusively formed. Theoretical mechanistic studies have shown that this selective N-amidation reaction proceeds through triplet silver nitrenes.

  4. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    Science.gov (United States)

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  5. Mechanism for Forming B,C,N,O Rings from NH3BH3 and CO2 via Reaction Discovery Computations.

    Science.gov (United States)

    Li, Maxwell W; Pendleton, Ian M; Nett, Alex J; Zimmerman, Paul M

    2016-03-03

    This study employs computational reaction finding tools to probe the unique biphilic reactivity between ammonia-borane (AB) and CO2. The results show that sequential reactions involving multiple equivalents of AB and CO2 can lead to the formation of stable nonplanar B,C,N,O-heterocycles (Cy-BCN). Cy-BCN is shown to emerge through boron-oxygen bond formation, hydroboration, dative bond formation, and single- or double-hydrogen transfers. The most kinetically facile reactions (computed at the coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory) result from polarized nitrogen-boron double bonds whereas thermodynamic stability results from formation of covalent boron-oxygen bonds. An important structure, HCOOBHNH2 (DHFAB), contains both of these features and is the key intermediate involved in generation of Cy-BCN. Crucially, it is shown that favorable boron-oxygen bond formation results in production of Cy-BCN species that are more stable than polyaminoboranes. These types of reaction intermediates could serve as building blocks in the formation of B,N-codoped graphene oxide (BCN).

  6. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT.

    Science.gov (United States)

    Nahakpam, Lokendrajit; Chipem, Francis A S; Chingakham, Brajakishor S; Laitonjam, Warjeet S

    2016-08-10

    An efficient method for the transformation of N-substituted-N'-benzoylthioureas to substituted N-benzoxazol-2-yl-amides using diacetoxyiodobenzene (DIB) is described in this work. The transformation follows the C-O bond formation leading to the benzoxazole derivative, due to oxidative dehydrogenation by DIB, instead of the expected C-S bond formation of the benzothiazole moiety. The C-O bond formation leading to benzoxazole is due to consecutive acylation and deacylation in conjunction with the reduction of two moles of DIB. A plausible mechanism was proposed for the reaction and density functional calculations were also performed to study the reaction mechanism.

  7. Synthesis of Oxygen Heterocycles via Aromatic C-O Bond Formation Using Arynes.

    Science.gov (United States)

    Miyabe, Hideto

    2015-07-09

    Most of the synthetic approaches to the benzo-fused heterocycles containing an oxygen atom have involved the use of phenol derivatives as a starting material. This review highlights the new synthetic approaches involving the aromatic C-O bond-forming process using arynes. The insertion of arynes into the C=O bond gives the unstable intermediates, [2 + 2] cycloaddition-type adducts, which can be easily converted into a variety of oxygen atom-containing heterocycles in a single operation. In this review, the syntheses of oxygen heterocycles, such as coumarin, chromene, xanthene, dihydrobenzofuran and benzofuran derivatives, via the insertion of arynes into the C=O bond of aldehydes or formamides are summarized.

  8. Synthesis of Oxygen Heterocycles via Aromatic C-O Bond Formation Using Arynes

    Directory of Open Access Journals (Sweden)

    Hideto Miyabe

    2015-07-01

    Full Text Available Most of the synthetic approaches to the benzo-fused heterocycles containing an oxygen atom have involved the use of phenol derivatives as a starting material. This review highlights the new synthetic approaches involving the aromatic C-O bond-forming process using arynes. The insertion of arynes into the C=O bond gives the unstable intermediates, [2 + 2] cycloaddition-type adducts, which can be easily converted into a variety of oxygen atom-containing heterocycles in a single operation. In this review, the syntheses of oxygen heterocycles, such as coumarin, chromene, xanthene, dihydrobenzofuran and benzofuran derivatives, via the insertion of arynes into the C=O bond of aldehydes or formamides are summarized.

  9. Sequential C-Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors

    DEFF Research Database (Denmark)

    Nielsen, Lone; Skrydstrup, Troels

    2008-01-01

    and the first new carbon-silicon bond. The next step is the reduction of this hydridosilane with lithium metal providing a silyl lithium reagent, which undergoes a highly diastereoselective addition to an optically active tert-butanesulfinimine, thus generating the second C-Si bond. This method allows......-step assembly of the carbon-silicon backbone of a silane-containing dipeptide fragment. The synthetic scheme is comprised of an alkene hydrosilylation step with the simple precursor, diphenylsilane, using either a radical initiator or RhCl(PPh3)3, Wilkinson's catalyst, for the creation of a hydridosilane...

  10. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: adodji@gmail.com [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2014-11-30

    Highlights: • Natural metal-oxides, hydroxides are detected on the top surface of steel substrates we tested. • Polysilazane reacts with hydroxide functional groups on steel substrates to form Cr–O–Si and Fe–O–Si covalent bonds. • Covalent bonding between steel and polysilazane at the interface was probed using spectroscopic techniques. - Abstract: In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se{sub 2} (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me–O–Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr–O–Si and Fe–O–Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  11. Effect of hydrogen bonding and hydrophobic interaction on the formation of supramolecular hydrogels formed by L-phenylalanine derivative hydrogelator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new hydrogelator, pyridinium bromide salt of N-6-bromohexanoyl-L-phenylamino octadecane, was synthesized. Supramolecular hydrogels can be formed through the self-assembly of this hydrogelator in water. In this work, D2O was used instead of H2O as solvent for FT-IR measurement due to the fact that it is impossible to obtain useful FT-IR information on the hydrogen bonding in water. The investigation of FT-IR and steady-state fluorescence indicated that the driving forces for the self-assembly were mainly hydrogen bonding and hydrophobic interaction. Based on the data of XRD and molecular modeling, the possible mechanism of the formation of hydrogelator aggregates was proposed.

  12. Computational assessment of electron density in metallo-organic nickel pincer complexes for formation of PC bonds.

    Science.gov (United States)

    Eller, Joshua J; Downey, Karen

    2015-10-05

    Hydrophosphination is an atomically efficient method for introducing new carbon-phosphorous bonds in organic synthesis. New late-transition metal catalytic complexes are proposed to facilitate this process. These nickel-based complexes are analyzed using semiempirical (SE), Hartree-Fock (H-F), and density functional theory (DFT) models. H-F proves to be ineffective, while the SE approach has limited, qualitative use. DFT shows electron density at the metal center suitable for catalyzing bond formation in the proposed, reductive hydrophosphination mechanism. It also shows that the pincer complexes under investigation are relatively insensitive to solvent dielectric constant and to the chemical character of the monodentate ligand, both in terms of electron distribution and in terms of molecular orbital energies.

  13. Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open Shell First Row Transition Metal Catalysts.

    Science.gov (United States)

    Chirik, Paul James

    2017-01-12

    Unique features of Earth abundant transition metal catalysts are reviewed in the context of catalytic carbon-carbon bond forming reactions. Aryl-substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open shell iron and cobalt alkyl complexes have been synthesized that serve as single component olefin polymerization catalysts. Reduced bis(imino)pyridine iron- and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Electronic structure studies support open shell intermediates, a deviation from traditional strong field organometallic compounds that promote catalytic C-C bond formation.

  14. Structure of DC sputtered Si-C-N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Radnoczi, G.; Safran, G.; Czigany, Zs.; Berlind, T.; Hultman, L

    2003-09-01

    Si-C-N films of maximum 65 at.% of Si and maximum 40 at.% of N were prepared by reactive magnetron sputtering and their fine structure was investigated by high-resolution transmission electron microscopy. For compositions, where C-C and C-N bonds prevail, the films had anisotropic structure on the atomic scale, composed of curved graphitic layers, aligned parallel to the substrate normal. An isotropic structure was detected in the middle of the compositional triangle. On a larger scale, a columnar morphology, aligned in the direction of the deposition flux was formed in films containing more than 15 at.% of Si. Singular or simultaneous appearance of the above structures depended on film composition.

  15. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  16. Effects of Cluster Size on Platinum-Oxygen Bonds Formation in Small Platinum Clusters

    Science.gov (United States)

    Oemry, Ferensa; Padama, Allan Abraham B.; Kishi, Hirofumi; Kunikata, Shinichi; Nakanishi, Hiroshi; Kasai, Hideaki; Maekawa, Hiroyoshi; Osumi, Kazuo; Sato, Kaoru

    2012-03-01

    We present the results of density functional theory calculation in oxygen dissociative adsorption process on two types of isolated platinum (Pt) clusters: Pt4 and Pt10, by taking into account the effect of cluster reconstruction. The strength of Pt-Pt bonds in the clusters is mainly defined by d-d hybridization and interstitial bonding orbitals (IBO). Oxygen that adsorbed on the clusters is weakening the IBO and thus inducing geometry reconstruction as occurred in Pt10 cluster. However, cluster that could undergo structural deformation is found to promote oxygen dissociation with no energy barrier. The details show that maintaining well-balanced of attractive and repulsive (Hellmann-Feynman) forces between atoms is considered to be the main key to avoid any considerable rise of energy barrier. Furthermore, a modest energy barrier that gained in Pt4 cluster is presumed to be originate from inequality of intramolecular forces between atoms.

  17. Disulfide bond formation and folding of plant peroxidases expressed as inclusion body protein in Escherichia coli thioredoxin reductase negative strains

    DEFF Research Database (Denmark)

    Teilum, K; Ostergaard, L; Welinder, K G

    1999-01-01

    , two Ca2+ ions, and a heme group. We have studied the expression yield and folding efficiency of (i) a novel Arabidopsis thaliana peroxidase, ATP N; and (ii) barley grain peroxidase, BP 1. The expression yield ranges from 0 to 60 microgram/ml of cell culture depending on the peroxidase gene...... and the vector/host combination. The choice of E. coli strain in particular affects the yield of active peroxidase obtained in the folding step. Thus, the yield of active ATP N peroxidase can be increased 50-fold by using thioredoxin reductase negative strains, which facilitate the formation of disulfide bonds...

  18. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark

    2014-01-01

    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...

  19. Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation

    Science.gov (United States)

    Fuse, Shinichiro; Mifune, Yuto; Nakamura, Hiroyuki; Tanaka, Hiroshi

    2016-11-01

    Feglymycin is a naturally occurring, anti-HIV and antimicrobial 13-mer peptide that includes highly racemizable 3,5-dihydroxyphenylglycines (Dpgs). Here we describe the total synthesis of feglymycin based on a linear/convergent hybrid approach. Our originally developed micro-flow amide bond formation enabled highly racemizable peptide chain elongation based on a linear approach that was previously considered impossible. Our developed approach will enable the practical preparation of biologically active oligopeptides that contain highly racemizable amino acids, which are attractive drug candidates.

  20. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  1. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin [UC

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  2. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence.

    Science.gov (United States)

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-02-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal-sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207-C207 intermolecular bond. We then found bile salt-dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation.

  3. Structural and microtribological studies of Ti-C-N based nanocomposite coatings prepared by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Martinez, D. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain)]. E-mail: jcslopez@icmse.csic.es; Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. de Sevilla), Avda, Americo Vespucio, s/n, Sevilla 41092 (Spain); Eaton, P. [Instituto de Investigaciones Quimicas (CSIC-Univ. de Sevilla) (Spain); Belin, M. [Ecole Centrale de Lyon, LTDS (France)

    2005-01-24

    Ti-C-N thin films were synthesized at near room temperature by reactive magnetron sputtering of titanium and graphite targets in Ar or Ar/N{sub 2} mixtures. The microstructure and chemical composition of the coatings were studied by transmission electron microscopy, atomic force microscopy (AFM), electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. For a pure Ar atmosphere, a microstructure constituted by small grains (10-20 nm) of a TiC phase encapsulated into an amorphous matrix is observed. AFM lateral force mapping shows a strong frictional contrast between the two phases. When nitrogen is introduced in the gas phase during preparation, the granular microstructure is not seen and the chemical composition is enriched in amorphous nonstoichiometric CN{sub x} phases (a-CN{sub x}) with different content of nitrogen (0.5{<=}x{<=}0.7). The type of structure and chemical bonding of the Ti-C-N films are correlated with the tribological properties at the microscopic level in order to establish the synthesis conditions leading to the nanocomposite formation.

  4. Regio-selectivity of the Oxidative C-S Bond Formation in Ergothioneine and Ovothiol Biosyntheses

    Science.gov (United States)

    Song, Heng; Leninger, Maureen; Lee, Norman

    2014-01-01

    Ergothioneine (5) and ovothiol (8) are two novel thiol-containing natural products. Their C-S bonds are formed by oxidative coupling reactions catalyzed by EgtB and OvoA enzymes, respectively. In this work, it was discovered that besides catalyzing the oxidative coupling between histidine and cysteine (1 → 6 conversion), OvoA can also catalyze a direct oxidative coupling between hercynine (2) and cysteine (2 → 4 conversion), which can shorten the ergothioneine biosynthetic pathway by two steps. PMID:24016264

  5. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.

    Science.gov (United States)

    Song, Heng; Leninger, Maureen; Lee, Norman; Liu, Pinghua

    2013-09-20

    Ergothioneine (5) and ovothiol (8) are two novel thiol-containing natural products. Their C-S bonds are formed by oxidative coupling reactions catalyzed by EgtB and OvoA enzymes, respectively. In this work, it was discovered that in addition to catalyzing the oxidative coupling between histidine and cysteine (1 → 6 conversion), OvoA can also catalyze a direct oxidative coupling between hercynine (2) and cysteine (2 → 4 conversion), which can shorten the ergothioneine biosynthetic pathway by two steps.

  6. Instantaneous carbon-carbon bond formation using a microchannel reactor with a catalytic membrane.

    Science.gov (United States)

    Uozumi, Yasuhiro; Yamada, Yoichi M A; Beppu, Tomohiko; Fukuyama, Naoshi; Ueno, Masaharu; Kitamori, Takehiko

    2006-12-20

    Instantaneous catalytic carbon-carbon bond forming reactions were achieved in a microchannel reactor having a polymeric palladium complex membrane. The catalytic membrane was constructed inside the microchannel via self-assembling complexation at the interface between the organic and aqueous phases flowing laminarly, where non-cross-linked polymer-bound phosphine and ammonium tetrachloropalladate dissolved, respectively. A palladium-catalyzed coupling reaction of aryl halides and arylboronic acids was performed using the microchannel reactor to give quantitative yields of biaryls within 4 s of retention time in the defined channel region.

  7. Formation and densification of SiAlON materials by reaction bonding and silicothermal reduction routes

    Science.gov (United States)

    Rouquié, Yann; Jones, Mark I.

    2011-05-01

    Samples of β and O-sialon with different levels of substitution (i.e. z = 1 and 4 for β-sialon and x = 0.05 and 0.2 for O-sialon) have been synthesized by both reaction bonding and silicothermal reduction techniques in a nitrogen atmosphere. The possibility of obtaining dense sialon materials by these lower cost production methods has been investigated using a statistical design methodology. The influence of different parameters (temperature, gas pressure and additive type) on the densification and decomposition has been studied and will be discussed in this presentation.

  8. Formation and densification of SiAlON materials by reaction bonding and silicothermal reduction routes

    Energy Technology Data Exchange (ETDEWEB)

    Rouquie, Yann; Jones, Mark I, E-mail: yrou002@aucklanduni.ac.nz [Department of Material and Chemicals Engineering, University of Auckland, New Zealand Private bag 92019, Auckland Mail Center, Auckland, 1142 (New Zealand)

    2011-05-15

    Samples of {beta} and O-sialon with different levels of substitution (i.e. z = 1 and 4 for {beta}-sialon and x = 0.05 and 0.2 for O-sialon) have been synthesized by both reaction bonding and silicothermal reduction techniques in a nitrogen atmosphere. The possibility of obtaining dense sialon materials by these lower cost production methods has been investigated using a statistical design methodology. The influence of different parameters (temperature, gas pressure and additive type) on the densification and decomposition has been studied and will be discussed in this presentation.

  9. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  10. Emotional experiences of preservice science teachers in online learning: the formation, disruption and maintenance of social bonds

    Science.gov (United States)

    Bellocchi, Alberto; Mills, Kathy A.; Ritchie, Stephen M.

    2016-09-01

    The enactment of learning to become a science teacher in online mode is an emotionally charged experience. We attend to the formation, maintenance and disruption of social bonds experienced by online preservice science teachers as they shared their emotional online learning experiences through blogs, or e-motion diaries, in reaction to videos of face-to-face lessons. A multi-theoretic framework drawing on microsociological perspectives of emotion informed our hermeneutic interpretations of students' first-person accounts reported through an e-motion diary. These accounts were analyzed through our own database of emotion labels constructed from the synthesis of existing literature on emotion across a range of fields of inquiry. Preservice science teachers felt included in the face-to-face group as they watched videos of classroom transactions. The strength of these feelings of social solidarity were dependent on the quality of the video recording. E-motion diaries provided a resource for interactions focused on shared emotional experiences leading to formation of social bonds and the alleviation of feelings of fear, trepidation and anxiety about becoming science teachers. We offer implications to inform practitioners who wish to improve feelings of inclusion amongst their online learners in science education.

  11. Formation of Me-O-Si covalent bonds at the interface between polysilazane and stainless steel

    Science.gov (United States)

    Amouzou, Dodji; Fourdrinier, Lionel; Maseri, Fabrizio; Sporken, Robert

    2014-11-01

    In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se2 (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me-O-Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr-O-Si and Fe-O-Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  12. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes.

    Science.gov (United States)

    Jones, Guy M; Arnold, Polly L; Love, Jason B

    2013-07-29

    Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.

  13. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    Science.gov (United States)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  14. Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation.

    Science.gov (United States)

    Metsä-Ketelä, Mikko; Oja, Terhi; Taguchi, Takaaki; Okamoto, Susumu; Ichinose, Koji

    2013-08-01

    Pyranonaphthoquinones synthesized by Streptomyces bacteria via type II polyketide pathways are aromatic compounds build around a common three-ring structure, which is composed of pyran, quinone and benzene rings. Over the years, actinorhodin in particular has served as a model compound for studying the biosynthesis of aromatic polyketides, while some of the other metabolites such as granaticin, medermycin, frenolicin and alnumycin A have enabled comparative studies that complement our understanding how these complex biological systems function and have evolved. In addition, despite the similarity of the aglycone units, pyranonaphthoquinones in effect display remarkable diversity in tailoring reactions, which include numerous enzymatic carbon-carbon bond forming reactions. This review focuses on the current status of molecular genetic, biochemical and structural investigations on this intriguing family of natural products.

  15. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP

    DEFF Research Database (Denmark)

    Teilum, K; Kragelund, B B; Knudsen, J;

    2000-01-01

    A burst phase in the early folding of the four-helix two-state folder protein acyl-coenzyme A binding protein (ACBP) has been detected using quenched-flow in combination with site-specific NMR-detected hydrogen exchange. Several of the burst phase structures coincide with a structure consisting...... of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...... collapsed types of burst phase intermediates observed in the folding of other proteins....

  16. Thermoacoustical analysis of solutions of poly(ethylene glycol) 200 through H-bond complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin, Maimoona, E-mail: myasmin908@gmail.com [Department of Physics, University of Lucknow, Lucknow 226007 (India); Gupta, Manisha, E-mail: guptagm@rediffmail.com [Department of Physics, University of Lucknow, Lucknow 226007 (India)

    2011-05-10

    Research highlights: {yields} The presence of two electronegative elements viz. nitrogen and oxygen in its molecular architecture, ethanolamine has greater extent of interaction with PEG. {yields} Ethanolamine and m-cresol may be involved in a complex type of network of hydrogen bonding. {yields} Ethanolamine has greater extent of interaction with PEG than m-cresol and aniline particularly with least magnitude from aniline, where electron availability is least because of delocalization. {yields} The difference in molar volume between the components of the mixture control the mixture properties. - Abstract: Densities ({rho}) and ultrasonic velocities (u) of binary mixtures of poly(ethylene glycol) 200, PEG, with ethanolamine, m-cresol and aniline have been measured at various concentrations at 293.15, 303.15 and 313.15 K and have been fitted by third order polynomial equations at each temperature. The calculated values of isentropic compressibility (k{sub s}), free volume (V{sub f}), internal pressure ({pi}{sub i}), relaxation time ({tau}) and surface tension ({sigma}) at different mole fractions of PEG have been used to explain the hydrogen bonding and intermolecular interactions present in the mixture. Using these data, excess molar volume (V{sup E}), excess intermolecular free length (L{sub f}{sup E}), excess acoustic impedance (Z{sup E}) and excess pseudo-Grueneisen parameter ({Gamma}{sup E}) have been calculated and the results have been fitted to Redlich-Kister polynomial equation. All the results support each other and help in understanding the interactions in the mixture. Various models and mixing rules have been applied to evaluate the ultrasonic velocity data and have been compared with the experimental results.

  17. Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment.

    Science.gov (United States)

    Dorofeeva, Olga V; Ryzhova, Oxana N

    2016-04-21

    Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O• calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement.

  18. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  19. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates

    DEFF Research Database (Denmark)

    Due-Hansen, Maria E; Pandey, Sunil K; Christiansen, Elisabeth;

    2016-01-01

    A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed....

  20. Assembly of macrocycles by zirconocene-mediated, reversible carbon-carbon bond formation.

    Science.gov (United States)

    Gessner, Viktoria H; Tannaci, John F; Miller, Adam D; Tilley, T Don

    2011-06-21

    Macrocyclic compounds have attracted considerable attention in numerous applications, including host-guest chemistry, chemical sensing, catalysis, and materials science. A major obstacle, however, is the limited number of convenient, versatile, and high-yielding synthetic routes to functionalized macrocycles. Macrocyclic compounds have been typically synthesized by ring-closing or condensation reactions, but many of these procedures produce mixtures of oligomers and cyclic compounds. As a result, macrocycle syntheses are often associated with difficult separations and low yields. Some successful approaches that circumvent these problems are based on "self-assembly" processes utilizing reversible bond-forming reactions, but for many applications, it is essential that the resulting macrocycle be built with a strong covalent bond network. In this Account, we describe how zirconocene-mediated reductive couplings of alkynes can provide reversible carbon-carbon bond-forming reactions well-suited for this purpose. Zirconocene coupling of alkenes and alkynes has been used extensively as a source of novel, versatile pathways to functionalized organic compounds. Here, we describe the development of zirconocene-mediated reductive couplings as a highly efficient method for the preparation of macrocycles and cages with diverse compositions, sizes, and shapes. This methodology is based on the reversible, regioselective coupling of alkynes with bulky substituents. In particular, silyl substituents provide regioselective, reversible couplings that place them into the α-positions of the resulting zirconacyclopentadiene rings. According to density functional theory (DFT) calculations and kinetic studies, the mechanism of this coupling involves a stepwise process, whereby an insertion of the second alkyne influences regiochemistry through both steric and electronic factors. Zirconocene coupling of diynes that incorporate silyl substituents generates predictable macrocyclic products

  1. Proton transfer in hydrogen-bonded network of phenol molecules: intracluster formation of water.

    Science.gov (United States)

    Lengyel, Jozef; Gorejová, Radka; Herman, Zdeněk; Fárník, Michal

    2013-11-07

    Electron ionization and time-of-flight mass spectrometry was used to investigate the phenol clusters (PhOH)n of different size from single molecule to large clusters: in coexpansion with He, the dimers n = 2 are mostly generated; in Ar, large species of n ≥ 10 also occur. Besides [(PhOH)n](+•) cluster ion series, hydrated phenol cluster ions [(PhOH)n·xH2O](+•) with up to x = 3 water molecules and dehydrated phenol clusters [(PhOH)n-H2O](+•) were observed. The hydrated phenol series exhibits minima and maxima that are interpreted as evidence for proton transfer between the hydrogen bonded cluster ions of cyclic structures. The proton transfer leads to a water generation within the clusters, and subsequent elimination of the diphenyl ether molecule(s) from the cluster yields the hydrated phenol cluster ions. Alternatively, a water molecule release yields a series of dehydrated phenols, among which the diphenyl ether ion [PhOPh](+•) (n = 2) constitutes the maximum.

  2. Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices.

    Science.gov (United States)

    Momand, Jamo; Wang, Ruining; Boschker, Jos E; Verheijen, Marcel A; Calarco, Raffaella; Kooi, Bart J

    2015-12-07

    GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)-Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application.

  3. Interface structure and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Vacuum diffusion bonding of a TiAl-based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa. The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al-rich α(Ti)layer adjacent to TC2,and the other is (Ti3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three-stage mechanism,namely(a)the occurrence of a single-phase α(Ti)layer;(b)the occurrence of a duplex-phase(Ti3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti3Al+TiAl)layers.

  4. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zhifeng, E-mail: scut0533@126.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Du Chang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang Nan [Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, 610031 Chengdu (China); Wang Lin; Ning Chengyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N{sub 2} to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N{sub 2} to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  5. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles

    OpenAIRE

    Chu, Crystal K.; Liang, Yufan; Fu, Gregory C.

    2016-01-01

    A wide array of cross-coupling methods for the formation of C–C bonds from unactivated alkyl electrophiles have been described in recent years. In contrast, progress in the development of methods for the construction of C–heteroatom bonds has lagged; for example, there have been no reports of metal-catalyzed cross-couplings of unactivated secondary or tertiary alkyl halides with silicon nucleophiles to form C–Si bonds. In this study, we address this challenge, establishing that a simple, comm...

  6. Supramolecular Formation via Hydrogen Bonding in Copper and Nickel Complexes with 2-Hydroxynicotinic Acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two complexes, Cu(HnicO)2 1 and Ni(HnicO)2(H2O)2 2 (H2nicO = 2-hydroxy- nicolinic acid), were synthesized by hydrothermal reactions and structurally characterized. Complex 1 crystallizes in monoclinic, space group P21/n, with a = 8.314(7), b = 6.275(4), c = 11.283(7) (A), β = 98.32(3)°, V = 582.5(7) (A)3, Z = 2, Mr = 339.74, Dc = 1.937 g/cm3, F(000) = 342, μ = 1.908 mm-1, S = 1.097, the final R = 0.0284 and wR = 0.0781 for 1177 observed reflections with I>2σ(I). Complex 2 crystallizes in monoclinic, space group P21/c, with a = 7.438(5), b = 12.22(1), c = 7.537(5) (A), β = 100.07(3)°, V = 674.3(8) (A)3, Z = 2, Mr = 370.95, Dc = 1.827 g/cm3, F(000) = 380, μ = 1.487 mm-1, S = 1.041, the final R = 0.0335 and wR = 0.0779 for 1202 observed reflections with I>2σ(I). There are extended 3D framework structures in complexes 1 and 2 due to the N-H…O and C-H…O hydrogen bonds. The copper atom in 1 has square planar coordination, while the nickel atom in 2 adopts octahedral coordination geometry. The TG curve shows that complex 2 is stable in solid state to 150 ℃.

  7. On the formation and bonding of a surface carbonate on Ni(100)

    Science.gov (United States)

    Behm, R. J.; Brundle, C. R.

    1991-09-01

    The formation, stability, adsorption geometry and electronic structure of a surface carbonate on Ni(100) have been investigated by photoemission (XPS, UPS) and temperature-programmed reaction (TPR). The core level binding energies of 531.2 eV for 0(1s) and 289.0 eV for C(1s) are comparable to those of bulk carbonates. The He(II) spectrum of the carbonate valence levels is not well defined because of the coexisting adsorbed and oxidic oxygen. The angular dependence of the carbonate core level intensities is characteristic of the carbonate being present as an overlayer species rather than a thicker surface phase. The XPS data and isotope labelled TPR experiments indicate the oxygen atoms of the carbonate to be electronically and chemically equivalent, and on this basis we favor a structure in which the carbonate is attached to the metal via all three oxygen atoms. This is supported by comparision with the core level binding energies of HCOO ab and chemisorbed CO 2,ad, which are similarly attached to the surface. From the core level angular behavior, the close similarity of core level binding energies and available vibrational spectroscopic data, a (nearly) planar geometry of the CO 3,ad on Ni(100) is concluded, which is comparable to the planar bulk carbonate anion and the planar carbonate species on Ag(110). The activation barrier for decomposition is estimated from the observed maximum in TPR at 420 K to be 25 ± 2 kcal/mol. CO 2 does not accumulate on the clean or O ad-precovered Ni(100) surface at 130 K. The stabilized, chemisorbed CO 2,ad species often observed on other metal surfaces therefore does not play a critical role for carbonate formation on Ni(100). Also a mechanism involving the disproportionation of a CO 2… CO 2,ad- dimer anion can be ruled out from TPR data. The evidence of the experiments discussed in this paper suggests that the carbonate is predominantly formed by reaction of CO 2,ad with a less stable, defect (disordered) O ad species rather

  8. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.

    OpenAIRE

    Guilhot, C; Jander, G.; Martin, N L; Beckwith, J

    1995-01-01

    Disulfide bond formation is catalyzed in the periplasm of Escherichia coli. This process involves at least two proteins: DsbA and DsbB. Recent evidence suggests that DsbA, a soluble periplasmic protein directly catalyzes disulfide bond formation in proteins, whereas DsbB, an inner membrane protein, is involved in the reoxidation of DsbA. Here we present direct evidence of an interaction between DsbA and DsbB. (Kishigami et al. [Kishigami, S., Kanaya, E., Kikuchi, M. & Ito, K. (1995) J. Biol. ...

  9. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  10. Evidence for chemical bond formation at rubber-brass interface: Photoelectron spectroscopy study of bonding interaction between copper sulfide and model molecules of natural rubber

    Science.gov (United States)

    Ozawa, Kenichi; Mase, Kazuhiko

    2016-12-01

    Strong adhesion between rubber and brass has been considered to arise mainly from the mechanical interaction, which is characterized by dendritic interlocking at the interface. In order to examine a possible contribution of the chemical interaction, chemical state analysis was carried out for model molecules of natural rubber (2-methyl-2-butene and isoprene) adsorbed on Cu2S, a key chemical species for adhesion, by means of photoelectron spectroscopy (PES). Absence of a C 1s PES component associated with C=C bonds and the appearance of adsorption-induced components in the S 2p region indicate that the molecules interact with the Cu2S surface via the C=C bond to form C-S covalent bonds. This proves that the chemical interaction certainly plays a role in rubber-brass adhesion along with the mechanical interaction.

  11. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    Science.gov (United States)

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-05

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  12. High N-content a-C:N films elaborated by femtosecond PLD with plasma assistance

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, C. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Donnet, C., E-mail: Christophe.Donnet@univ-st-etienne.fr [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Loir, A.-S.; Tite, T. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Barnier, V. [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 Saint-Etienne (France); Rojas, T.C.; Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) , Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Wolski, K. [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 Saint-Etienne (France); Garrelie, F. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France)

    2015-03-30

    Graphical abstract: - Highlights: • Nitrogen doped amorphous carbon films were deposited by DC reactive plasma femtosecond (fs) -PLD and conventional fs-PLD. • High nitrogen content in plasma assisted films. • More ordered sp2 rich graphitic clusters both in terms of structural and topological order. • Correlation length La of the clusters increases with nitrogen incorporation. • Formation of CN bonds at the expense of CC bonds with N content. • At the highest nitrogen concentration, terminal C≡N groups are incorporated in the film. • Correlation between film composition and plasma process. - Abstract: Amorphous carbon nitride (a-C:N) thin films are a interesting class of carbon-based electrode materials. Therefore, synthesis and characterization of these materials have found lot of interest in environmental analytical microsystems. Herein, we report the nitrogen-doped amorphous carbon thin film elaboration by femtosecond pulsed laser deposition (fs-PLD) both with and without a plasma assistance. The chemical composition and atomic bonding configuration of the films were investigated by multi-wavelength (MW) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). The highest nitrogen content, 28 at.%, was obtained with plasma assistance. The I(D)/I(G) ratio and the G peak position increased as a function of nitrogen concentration, whereas the dispersion and full width at half maximum (FWHM) of G peak decreased. This indicates more ordered graphitic like structures in the films both in terms of topological and structural, depending on the nitrogen content. EELS investigations were correlated with MW Raman results. The interpretation of XPS spectra of carbon nitride films remains a challenge. Plasma assisted PLD in the femtosecond regime led to a significant high nitrogen concentration, which is highlighted on the basis of collisional processes in the carbon plasma plume interacting with the nitrogen

  13. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    Science.gov (United States)

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions.

  14. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    Science.gov (United States)

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  15. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Science.gov (United States)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  16. Theoretical studies on N-O or N-N bond formation from aryl azide catalyzed by iron(II) bromide complex.

    Science.gov (United States)

    Li, Juan; Zhang, Qi; Zhou, Lixin

    2012-03-02

    DFT calculations have been carried out to study the reaction mechanism on N-O or N-N bond formation from aryl azide catalyzed by iron(II) bromide complex. A favorable reaction pathway is proposed to account for the construction of the core structure of 2H-indazoles or 2,1-benzisoxazoles.

  17. A domino palladium-catalyzed C-C and C-O bonds formation via dual O-H bond activation: synthesis of 6,6-dialkyl-6H-benzo[c]chromenes.

    Science.gov (United States)

    Mahendar, Lodi; Krishna, Jonnada; Reddy, Alavala Gopi Krishna; Ramulu, Bokka Venkat; Satyanarayana, Gedu

    2012-01-20

    An efficient Pd-catalyzed domino reaction of α,α-dialkyl-(2-bromoaryl)methanols to 6,6-dialkyl-6H-benzo[c]chromenes is presented. Their formation can be explained via a five membered Pd(II)-cycle that efficiently involves a domino homocoupling with the second molecule, β-carbon cleavage, and finally intramolecular Buchwald-Hartwig cyclization. This domino process effectively involves breaking of five σ-bonds (2C-Br, 2O-H, and a C-C) and formation of two new σ-bonds (C-C and C-O). This mechanistic pathway is unprecedented and further illustrates the power of transition metal catalysis.

  18. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  19. Carenium—Calkyl Bond Making and Breaking: Key Process in the Platinum-Mediated Caryl—Calkyl Bond Formation. Analogies to Organic Electrophilic Aromatic Substitution

    NARCIS (Netherlands)

    Koten, G. van; Albrecht, M.A.; Spek, A.L.

    2001-01-01

    The reaction of cationic platinum aqua complexes 2 [Pt(C6H2{CH2NMe2}2-E-4)(OH2)](X') (X' = SO3CF3, BF4) with alkyl halides RX gave various air-stable arenium complexes 3-5 containing a new C-C bond (R = Me, 3; Et, 4; Bn, 5). Electron-releasing oxo-substituents on the aromatic ligand (E = e.g., OH, b

  20. Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation

    Science.gov (United States)

    He, Liang; Li, Sha; Chung, Cordelia T. W.; Gao, Chang; Xin, John H.

    2016-11-01

    Recently zwitterionic materials have been widely applied in the biomedical and bioengineering fields due to their excellent biocompatibility. Inspired by these, this study presents a graft-to strategy via covalent bond formation to fabricate safe and durable antibacterial textile surfaces. A novel zwitterionic sulfobetaine containing triazine reactive group was specifically designed and synthesized. MTT assay showed that it had no obvious cytotoxicity to human skin HaCaT cells as verified by ca. 89.9% relative viability at a rather high concentration of 0.8 mg·mL‑1. In the evaluation for its skin sensitization, the maximum score for symptoms of erythema and edema in all tests were 0 in all observation periods. The sulfobetaine had a hydrophilic nature and the hydrophilicity of the textiles was enhanced by 43.9% when it was covalently grafted onto the textiles. Moreover, the textiles grafted with the reactive sulfobetaine exhibited durable antibacterial activities, which was verified by the fact that they showed antibacterial rates of 97.4% against gram-positive S. aureus and 93.2% against gram-negative E. coli even after they were laundered for 30 times. Therefore, the titled zwitterionic sulfobetaine is safe to human for healthcare and wound dressing and shows a promising prospect on antibacterial textile application.

  1. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  2. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore.

    Science.gov (United States)

    Tan, Cherie S; Riedl, Jan; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2016-12-27

    The latch region of the wild-type α-hemolysin (α-HL) protein channel can be used to distinguish single base modifications in double-stranded DNA (dsDNA) via ion channel measurements upon electrophoretic capture of dsDNA in the vestibule of α-HL. Herein, we investigated the use of the latch region to detect a nick in the phosphodiester DNA backbone. The presence of a nick in the phosphodiester backbone of one strand of the duplex results in a significant increase in both the blockade current and noise level relative to the intact duplex. Differentiation between the nicked and intact duplexes based on blockade current or noise, with near baseline resolution, allows real-time monitoring of the rate of T3-DNA ligase-catalyzed phosphodiester bond formation. Under low ionic strength conditions containing divalent cations and a molecular crowding agent (75 mg mL(-1) PEG), the rate of enzyme-catalyzed reaction in the bulk solution was continuously monitored by electrophoretically capturing reaction substrate or product dsDNA in the α-HL protein channel vestibule. Enzyme kinetic results obtained from the nanopore experiments match those from gel electrophoresis under the same reaction conditions, indicating the α-HL nanopore measurement provides a viable approach for monitoring enzymatic DNA repair activity.

  3. On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures.

    Science.gov (United States)

    Peyrot, David; Silly, Fabien

    2016-05-24

    The competition between the on-surface synthesis of covalent nanoarchitectures and the self-assembly of star-shaped 1,3,5-Tris(4-iodophenyl)benzene molecules on Au(111) in vacuum is investigated using scanning tunneling microscopy above room temperature. The molecules form covalent polygonal nanoachitectures at the gold surface step edges and at the elbows of the gold reconstruction at low coverage. With coverage increasing two-dimensional halogen-bonded structures appear and grow on the surface terraces. Two different halogen-bonded nanoarchitectures are coexisting on the surface and hybrid covalent-halogen bonded structures are locally observed. At high coverage covalent nanoarchitectures are squeezed at the domain boundary of the halogen-bonded structures. The competitive growth between the covalent and halogen-bonded nanoarchitectures leads to formation of a two-layer film above one monolayer deposition. For this coverage, the covalent nanoarchitectures are propelled on top of the halogen-bonded first layer. These observations open up new opportunities for decoupling covalent nanoarchitectures from catalytically active and metal surfaces in vacuum.

  4. Density functional study of hydrogen bond formation between methanol and organic molecules containing Cl, F, NH2, OH, and COOH functional groups.

    Science.gov (United States)

    Kolev, Stefan K; St Petkov, Petko; Rangelov, Miroslav A; Vayssilov, Georgi N

    2011-12-08

    Various hydrogen-bonded complexes of methanol with different proton accepting and proton donating molecules containing Cl, F, NH(2), OH, OR, and COOH functional groups have been modeled using DFT with hybrid B3LYP and M05-2X functionals. The latter functional was found to provide more accurate estimates of the structural and thermodynamic parameters of the complexes of halides, amines, and alcohols. The characteristics of these complexes are influenced not only by the principle hydrogen bond of the methanol OH with the proton acceptor heteroatom, but also by additional hydrogen bonds of a C-H moiety with methanol oxygen as a proton acceptor. The contribution of the former hydrogen bond in the total binding enthalpy increases in the order chlorides contribution of the second type of hydrogen bond increases in the reverse order. A general correlation was found between the binding enthalpy of the complex and the electrostatic potential at the hydrogen center participating in the formation of the hydrogen bond. The calculated binding enthalpies of different complexes were used to clarify which functional groups can potentially form a hydrogen bond to the 2'-OH hydroxyl group in ribose, which is strong enough to block it from participation in the intramolecular catalytic activation of the peptide bond synthesis. Such blocking could result in inhibition of the protein biosynthesis in the living cell if the corresponding group is delivered as a part of a drug molecule in the vicinity of the active site in the ribosome. According to our results, such activity can be accomplished by secondary or tertiary amines, alkoxy groups, deprotonated carboxyl groups, and aliphatic fluorides, but not by the other modeled functional groups.

  5. An efficient computational model to predict protonation at the amide nitrogen and reactivity along the C-N rotational pathway.

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-04-14

    N-Protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C-N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology.

  6. Hypertriglyceridemia associated with the c.553G>T APOA5 SNP results from aberrant hetero-disulfide bond formation

    Science.gov (United States)

    Sharma, Vineeta; Witkowski, Andrzej; Witkowska, H. Ewa; Dykstra, Andrew; Simonsen, Jens B.; Nelbach, Lisa; Beckstead, Jennifer A.; Pullinger, Clive R.; Kane, John P.; Malloy, Mary J.; Watson, Gordon; Forte, Trudy M.; Ryan, Robert O.

    2014-01-01

    Objective Apolipoprotein (apo) A-V is a low abundance plasma protein that modulates triacylglycerol (TG) homeostasis. Gene transfer studies were undertaken in apoa5 (−/−) mice to define the mechanism underlying the correlation between the single nucleotide polymorphism (SNP) c.553G>T in APOA5 and hypertriglyceridemia (HTG). Approach and Results Adeno-associated virus (AAV) 2/8 mediated gene transfer of wild type (WT) apoA-V induced a dramatic lowering of plasma TG in apoa5 (−/−) mice while AAV2/8-Gly162Cys apoA-V (corresponding to the c.553G>T SNP: rs2075291) had a modest effect. Characterization studies revealed that plasma levels of WT- and G162C apoA-V in transduced mice were similar and within the physiological range. Fractionation of plasma from mice transduced with AAV2/8-G162C apoA-V indicated that, unlike WT apoA-V, >50% of G162C apoA-V was recovered in the lipoprotein-free fraction. Non-reducing SDS-PAGE immunoblot analysis provided evidence that G162C apoA-V present in the lipoprotein-free fraction, but not that portion associated with lipoproteins, displayed altered electrophoretic mobility consistent with disulfide-linked hetero-dimer formation. Immunoprecipitation followed by liquid chromatography/mass spectrometry of human plasma from subjects homozygous for WT APOA5 and c.553G>T APOA5 revealed that G162C apoA-V forms adducts with extraneous plasma proteins including fibronectin, kininogen-1 and others. Conclusion Substitution of Cys for Gly at position 162 of mature apoA-V introduces a free cysteine that forms disulfide bonds with plasma proteins such that its lipoprotein binding and TG modulation functions are compromised. PMID:25127531

  7. Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength

    Directory of Open Access Journals (Sweden)

    Kyung Hwan Kim

    2016-07-01

    Full Text Available The [Au(CN2−]3 trimer in water experiences a strong van der Waals interaction between the d10 gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0 exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1 has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors.

  8. Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium

    Science.gov (United States)

    Batan, A.; Mine, N.; Douhard, B.; Brusciotti, F.; De Graeve, I.; Vereecken, J.; Wenkin, M.; Piens, M.; Terryn, H.; Pireaux, J. J.; Reniers, F.

    2010-06-01

    Silane and silane-like films were deposited from bis-1,2-(triethoxysilyl)ethane by vacuum and atmospheric plasma onto aluminium. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for probing the aluminium/plasma polymer film interface. An AlOSi + fragment was identified at nominal mass m/ z = 70.9539 amu, indicating a strong chemical interaction (formation of a covalent bond) at the substrate/film interface. Until now, this strong silane-aluminium interaction has never been observed in plasma polymer BTSE films. Ageing tests in an ultrasonic water bath combined with X-ray photoelectron spectroscopy measurements allowed to indirectly confirm good adhesion, and therefore the formation of a chemical bond at the interface.

  9. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by “Chan-Lam Cross-Coupling” Reaction

    Indian Academy of Sciences (India)

    SATYA KARUNA PULAKHANDAM; NARESH KUMAR KATARI; RAVI PRAKASH REDDY MANDA

    2017-02-01

    An efficient method for the synthesis of S-aryl/heteroaryl-quinazoline has been developed through the cross-coupling of 1,4-dihydroquinazoline with a variety of aryl and heteroaryl boronic acids assisted by [Cu(OAc)₂] as the catalyst for the formation of carbon-sulfur bonds. This newly developed method demonstratesthat the conditions of the traditional copper-catalyzed Chan-Lam reaction can be improved. Optimized reaction involves base, solvent and catalyst.

  10. Multidegrees of tame automorphisms of C^n

    CERN Document Server

    Karaś, Marek

    2011-01-01

    Let F=(F_1,...,F_n):C^n --> C^n be a polynomial mapping. By the multidegree of the mapping F we mean mdeg F=(deg F_1,...,deg F_n), an element of N^n. The aim of this paper is to study the following problem (especially for n=3): for which sequence (d_1,...,d_n) in N^n there is a tame automorphism F of C^n such that mdeg F=(d_1,...,d_n). In other words we investigate the set mdeg(Tame(C^n)), where Tame(C^n) denotes the group of tame automorphisms of C^n and mdeg denotes the mapping from the set of polynomial endomorphisms of C^n into the set N^n. Since for all permutation s of {1,...,n} we have (d_1,...,d_n) is in mdeg(Tame(C^n)) if and only if (d_s(1),...,d_s(n)) is in mdeg(Tame(C^n)) we may focus on the set mdeg(Tame(C^n)) intersected with {(d_1,...,d_n) : d_1<=...<=d_n}. In the paper, among other things, we give complete description of the sets: mdeg(Tame(C^n)) intersected with {(3,d_2,d_3):3<=d_2<=d_3}}, mdeg(Tame(C^n)) intersected with {(5,d_2,d_3):5<=d_2<=d_3}}, In the examination of the...

  11. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  12. NMR properties of hydrogen-bonded glycine cluster in gas phase

    Science.gov (United States)

    Carvalho, Jorge R.; da Silva, Arnaldo Machado; Ghosh, Angsula; Chaudhuri, Puspitapallab

    2016-11-01

    Density Functional Theory (DFT) calculations have been performed to study the effect of the hydrogen bond formation on the Nuclear Magnetic Resonance (NMR) parameters of hydrogen-bonded clusters of glycine molecules in gas-phase. DFT predicted isotropic chemical shifts of H, C, N and O of the isolated glycine with respect to standard reference materials are in reasonable agreement with available experimental data. The variations of isotropic and anisotropic chemical shifts for all atoms constituting these clusters containing up to four glycine molecules have been investigated systematically employing gradient corrected hybrid B3LYP functional with three different types of extended basis sets. The clusters are mainly stabilized by a network of strong hydrogen bonds among the carboxylic (COOH) groups of glycine monomers. The formation of hydrogen bond influences the molecular structure of the clusters significantly which, on the other hand, gets reflected in the variations of NMR properties. The carbon (C) atom of the sbnd COOH group, the bridging hydrogen (H) and the proton-donor oxygen (O) atom of the Osbnd H bond suffer downfield shift due to the formation of hydrogen bond. The hydrogen bond lengths and the structural complexity of the clusters are found to vary with the number of participating monomers. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed in all cases. The individual variations of the principal axis elements in chemical shift tensor provide additional insight about the different nature of the monomers within the cluster.

  13. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ.

    Science.gov (United States)

    Klvaňa, Martin; Bren, Urban; Florián, Jan

    2016-12-29

    Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3'-OH group of the primer DNA strand, and the subsequent formation and cleavage of P-O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol(-1) for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P-O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pKa of the 3'-OH group as a predictor of the catalytic rate of X-family DNA polymerases.

  14. Molecular chirality and chiral capsule-type dimer formation of cyclic triamides via hydrogen-bonding interactions.

    Science.gov (United States)

    Fujimoto, Noriko; Matsumura, Mio; Azumaya, Isao; Nishiyama, Shizuka; Masu, Hyuma; Kagechika, Hiroyuki; Tanatani, Aya

    2012-05-18

    Chiral properties of bowl-shaped cyclic triamides bearing functional groups with hydrogen-bonding ability were examined. Chiral induction of cyclic triamide 3a was observed by addition of chiral amine in solution, and chiral separation was achieved by simple crystallization to afford chiral capsule-type dimer structure of 4a.

  15. Experimental and theoretical evaluation of the reactions leading to formation of internal double bonds in suspension PVC

    NARCIS (Netherlands)

    Purmova, Jindra; Pauwels, Kim F. D.; Agostini, Michela; Bruinsma, Maarten; Vorenkamp, Eltio J.; Schouten, Arend J.; Coote, Michelle L.

    2008-01-01

    The number of internal double bonds in poly(vinyl chloride) (PVC) samples was studied as a function of molecular weight at various monomer conversions. These defect structures were found to exhibit end-group-like characteristics: their concentration per chain was largely constant as a function of mo

  16. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation.

    Science.gov (United States)

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A; Lambrecht, Marlies A; Koehler, Peter; Delcour, Jan A

    2015-07-20

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing.

  17. Free-Radical Triggered Ordered Domino Reaction: An Approach to C-C Bond Formation via Selective Functionalization of α-Hydroxyl-(sp(3))C-H in Fluorinated Alcohols.

    Science.gov (United States)

    Xu, Zhengbao; Hang, Zhaojia; Liu, Zhong-Quan

    2016-09-16

    A free-radical mediated highly ordered radical addition/cyclization/(sp(3))C-C(sp(3)) formation domino reaction is developed. Three new C-C bonds are formed one by one in a mixed system. Furthermore, it represents the first example of cascade C-C bond formation via selective functionalization of α-hydroxyl-C(sp(3))-H in fluorinated alcohols.

  18. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  19. The new C-C bond formation in the reaction of o-amidophenolate indium(III) complex with alkyl iodides.

    Science.gov (United States)

    Piskunov, Alexandr V; Meshcheryakova, Irina N; Fukin, Georgy K; Shavyrin, Andrei S; Cherkasov, Vladimir K; Abakumov, Gleb A

    2013-08-07

    The reaction of bis(4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-amidophenolato)indium(III) anion with alkyl iodides is reported. This process includes oxidative addition of two RI (R = Me, Et) molecules to the non-transition metal complex and results in an alkyl transfer to ring carbon atoms with the formation of two new C-C bonds. The interaction proceeds at mild conditions and gives new indium(III) derivatives containing iminocyclohexa-1,4-dienolate type ligands.

  20. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    Science.gov (United States)

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  1. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark;

    2014-01-01

    . This was seen as evidence for covalent bonds between lignin phenolics and the coupling agents. No spectral changes were observed when the coupling agents were mixed with the wood constituents cellulose and hemicellulose. For verification of the results, a modified EN 311 wet adhesion pull strength test...... was performed with softwood panels painted with a solvent-borne alkyd/acrylic coating. The results revealed an improved adhesion for all tested coupling agents compared to the untreated reference. The spectroscopic and pull test results underline that the presence of the lignin moiety in wood is of central...

  2. Preparation of ultrafine Ti (C, N)-based cermet using oxygen-rich powders

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; HE Yue-hui; XIONG Wei-hao; XIAO Yi-feng

    2005-01-01

    The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.

  3. Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration

    CERN Document Server

    Salaris, Maurizio; Piersimoni, Anna M; Cassisi, Santi

    2015-01-01

    We performed a detailed analysis of the use of [C/N] measured in red giant branch stars between the completion of the first dredge up and the red giant branch bump ([C/N]_{FDU}) as age indicator. [C/N]_{FDU} cannot give accurate ages for individual stars, but may provide a general chronology for the formation of composite populations and add constraints to analyses of red giants from surface gravity-effective temperature diagrams. We provide a theoretical calibration of [C/N]_{FDU} in terms of total metallicity [M/H] and age, for ages greater than 1 Gyr, which we tested against variations in the initial heavy element distribution (scaled-solar vs alpha-enhanced), efficiency of overshooting from MS convective cores and from the convective envelopes, variations in the initial He abundance and in the mixing length parameter. Our calibration is compared with a small sample of available measurements of [C/N]_{FDU} in star clusters and halo field stars, which at least qualitatively confirm the overall trend of the ...

  4. Effect of intrachain hydrogen bond on the formation of L amino acids along α helix of peptide

    Institute of Scientific and Technical Information of China (English)

    梅镇岳

    1995-01-01

    The model of right-handed α helix of peptide,in which the intrachain hydrogen bonds be-tween amino acid residues are in the direction of the axis of the helix,is used to compute the energy differ-ences between D-and L-form residues.The dominant intramolecular interactions involved are the Coulombinteraction for the residues with charged and polarized R group and van der Waals interaction for thehydrophobic residues respectively.The results obtained show that the energy states of L-forms are lower thanthose of the corresponding D-forms.Therefore,L-form states are more stable.The racemization of the aminoacid after the residue has been dislocated from the peptide chain is interpreted as the consequence of the pari-ty conservation of the electromagnetic interaction.

  5. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  6. How covalent heme to protein bonds influence the formation and reactivity of redox intermediates of a bacterial peroxidase.

    Science.gov (United States)

    Auer, Markus; Nicolussi, Andrea; Schütz, Georg; Furtmüller, Paul G; Obinger, Christian

    2014-11-07

    The most striking feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO) is the existence of covalent bonds between the prosthetic group and the protein, which has a strong impact on their (electronic) structure and biophysical and chemical properties. Recently, a novel bacterial heme peroxidase with high structural and functional similarities to LPO was described. Being released from Escherichia coli, it contains mainly heme b, which can be autocatalytically modified and covalently bound to the protein by incubation with hydrogen peroxide. In the present study, we investigated the reactivity of these two forms in their ferric, compound I and compound II state in a multi-mixing stopped-flow study. Upon heme modification, the reactions between the ferric proteins with cyanide or H2O2 were accelerated. Moreover, apparent bimolecular rate constants of the reaction of compound I with iodide, thiocyanate, bromide, and tyrosine increased significantly and became similar to LPO. Kinetic data are discussed and compared with known structure-function relationships of the mammalian peroxidases LPO and myeloperoxidase.

  7. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability

    OpenAIRE

    Mensink, Maarten A.; Van Bockstal, Pieter-Jan; Pieters, S; De Meyer, Laurens; Frijlink, Henderik W.; van der Voort Maarschalk, Kees; Hinrichs, Wouter L.J.; De Beer, Thomas

    2015-01-01

    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying conditions in particular, can be related to the preservation of the functionality and structure of proteins during storage. The disaccharide trehalose was best capable of forming hydrogen bonds wit...

  8. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    Science.gov (United States)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  9. Roles of Intramolecular and Intermolecular Hydrogen Bonding in a Three-Water-Assisted Mechanism of Succinimide Formation from Aspartic Acid Residues

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2014-08-01

    Full Text Available Aspartic acid (Asp residues in peptides and proteins are prone to isomerization to the β-form and racemization via a five-membered succinimide intermediate. These nonenzymatic reactions have relevance to aging and age-related diseases. In this paper, we report a three water molecule-assisted, six-step mechanism for the formation of succinimide from Asp residues found by density functional theory calculations. The first two steps constitute a stepwise iminolization of the C-terminal amide group. This iminolization involves a quintuple proton transfer along intramolecular and intermolecular hydrogen bonds formed by the C-terminal amide group, the side-chain carboxyl group, and the three water molecules. After a conformational change (which breaks the intramolecular hydrogen bond involving the iminol nitrogen and a reorganization of water molecules, the iminol nitrogen nucleophilically attacks the carboxyl carbon of the Asp side chain to form a five-membered ring. This cyclization is accompanied by a triple proton transfer involving two water molecules, so that a gem-diol tetrahedral intermediate is formed. The last step is dehydration of the gem-diol group catalyzed by one water molecule, and this is the rate-determining step. The calculated overall activation barrier (26.7 kcal mol−1 agrees well with an experimental activation energy.

  10. Formation of intersubunit disulfide bonds and properties of the single histidine and cysteine residues in each subunit relative to the decameric structure of cyanase.

    Science.gov (United States)

    Anderson, P M; Korte, J J; Holcomb, T A; Cho, Y G; Son, C M; Sung, Y C

    1994-05-27

    Reaction of the single cysteine residue in each subunit of cyanase with certain SH reagents gives an active decameric derivative that dissociates reversibly to an inactive dimer derivative (Anderson, P. M., Johnson, W. V., Korte, J. J., Xiong, X., Sung, Y.-c., and Fuchs, J. A. (1988) J. Biol. Chem. 263, 5674-5680). Reaction of mixed disulfide dimer derivatives of cyanase with dithiothreitol at 0 degree C results in formation of a disulfide bond between the subunits in the dimer. The disulfide dimer was inactive and did not associate to a decamer; the intersubunit disulfide bond could not be formed when the dimers were associated as a decamer. The two SH groups apparently are in close proximity to each other in the dissociated dimer but not when the dimer is associated to a decamer. Substitution of glycine for the cysteine residue or of tyrosine, asparagine, glycine, valine, or leucine for the single histidine residue in each subunit gave mutant enzymes that were active. However, H113N, H113Y, and C83G were unstable at low temperature and/or ionic strength, dissociating reversibly to an inactive dimer. Efficient reassociation required the presence of bicarbonate or cyanate analog. The results are consistent with a proposed single site per subunit model explaining apparent half-site binding of substrates and the requirement of decameric structure for activity.

  11. Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Chu

    2013-11-01

    Full Text Available After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide (PEO-b-PPO-b-PEO with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40–60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer.

  12. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou

    2016-06-01

    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  13. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation.

    Science.gov (United States)

    Alanen, Heli I; Walker, Kelly L; Lourdes Velez Suberbie, M; Matos, Cristina F R O; Bönisch, Sarah; Freedman, Robert B; Keshavarz-Moore, Eli; Ruddock, Lloyd W; Robinson, Colin

    2015-03-01

    Numerous therapeutic proteins are expressed in Escherichia coli and targeted to the periplasm in order to facilitate purification and enable disulfide bond formation. Export is normally achieved by the Sec pathway, which transports proteins through the plasma membrane in a reduced, unfolded state. The Tat pathway is a promising alternative means of export, because it preferentially exports correctly folded proteins; however, the reducing cytoplasm of standard strains has been predicted to preclude export by Tat of proteins that contain disulfide bonds in the native state because, in the reduced state, they are sensed as misfolded and rejected. Here, we have tested a series of disulfide-bond containing biopharmaceuticals for export by the Tat pathway in CyDisCo strains that do enable disulfide bond formation in the cytoplasm. We show that interferon α2b, human growth hormone (hGH) and two antibody fragments are exported with high efficiency; surprisingly, however, they are efficiently exported even in the absence of cytoplasmic disulfide formation. The exported proteins acquire disulfide bonds in the periplasm, indicating that the normal disulfide oxidation machinery is able to act on the proteins. Tat-dependent export of hGH proceeds even when the disulfide bonds are removed by substitution of the Cys residues involved, suggesting that these substrates adopt tertiary structures that are accepted as fully-folded by the Tat machinery.

  14. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.

    Science.gov (United States)

    Wang, Li Kai; Ho, C Kiong; Pei, Yi; Shuman, Stewart

    2003-08-08

    T4 RNA ligase 1 (Rnl1) exemplifies an ATP-dependent RNA ligase family that includes fungal tRNA ligase (Trl1) and a putative baculovirus RNA ligase. Rnl1 acts via a covalent enzyme-AMP intermediate generated by attack of Lys-99 N zeta on the alpha phosphorus of ATP. Mutation of Lys-99 abolishes ligase activity. Here we tested the effects of alanine mutations at 19 conserved positions in Rnl1 and thereby identified 9 new residues essential for ligase activity: Arg-54, Lys-75, Phe-77, Gly-102, Lys-119, Glu-227, Gly-228, Lys-240, and Lys-242. Seven of the essential residues are located within counterparts of conserved nucleotidyltransferase motifs I (99KEDG102), Ia (118SK119), IV (227EGYVA231), and V (238HFKIK242) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligase 2. Three other essential residues, Arg-54, Lys-75 and Phe-77, are located upstream of the AMP attachment site within a conserved domain unique to the Rnl1-like ligase family. We infer a shared evolutionary history and active site architecture in Rnl1 (a tRNA repair enzyme) and Trl1 (a tRNA splicing enzyme). We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of Rnl1 adenylylation (step 1) and phosphodiester bond formation (step 3). Lys-75, Lys-240, and Lys-242 were found to be essential for step 1 and overall ligation of 5'-phosphorylated RNA but not for phosphodiester bond formation. These results suggest that the composition of the Rnl1 active site is different during steps 1 and 3. Mutations at Arg-54 and Lys-119 abolished the overall RNA ligation reaction without affecting steps 1 and 3. Arg-54 and Lys-119 are thereby implicated as specific catalysts of the RNA adenylation reaction (step 2) of the ligation pathway.

  15. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co–Co Bonds in a Low-Temperature Polymorph of GdCoSi 2

    Energy Technology Data Exchange (ETDEWEB)

    Vinokur, Anastasiya I.; Fredrickson, Daniel C.

    2016-06-20

    Diffusionless (or displacive) phase transitions allow inorganic materials to show exquisite responsiveness to external stimuli, as is illustrated vividly by the superelasticity, shape memory, and magnetocaloric effects exhibited by martensitic materials. In this Article, we present a new diffusionless transition in the compound GdCoSi2, whose origin in frustrated bonding points toward generalizable design principles for these transformations. We first describe the synthesis of GdCoSi2 and the determination of its structure using single crystal X-ray diffraction. While previous studies based on powder X-ray diffraction assigned this compound to the simple CeNi1–xSi2 structure type (space group Cmcm), our structure solution reveals a superstructure variant (space group Pbcm) in which the Co sublattice is distorted to create zigzag chains of Co atoms. DFT-calibrated Hückel calculations, coupled with a reversed approximation Molecular Orbital (raMO) analysis, trace this superstructure to the use of Co–Co isolobal bonds to complete filled 18 electron configurations on the Co atoms, in accordance with the 18–n rule. The formation of these Co–Co bonds is partially impeded, however, by a small degree of electron transfer from Si-based electronic states to those with Co–Co σ* character. The incomplete success of Co–Co bond creation suggests that these interactions are relatively weak, opening the possibility of them being overcome by thermal energy at elevated temperatures. In fact, high-temperature powder and single crystal X-ray diffraction data, as well as differential scanning calorimetry, indicate that a reversible Pbcm to Cmcm transition occurs at about 380 K. This transition is diffusionless, and the available data point toward it being first-order. We expect that similar cases of frustrated interactions could be staged in other rare earth–transition metal–main group phases, providing a potentially rich

  16. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide.

  17. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  18. Photoelectric properties of n-SiC/n-Si heterojunctions

    Directory of Open Access Journals (Sweden)

    Semenov A. V.

    2012-10-01

    Full Text Available Photovoltaic effect in isotype heterotructure formed by nanocrystalline silicon carbide films on single crystal n-Si substrates (n-SiC/n-Si heterojunction was studied. The films were produced by direct ionic deposition method. The model that takes into account the quantum wells and potential barriers caused by band offsets was proposed to explain the current-voltage characteristics and photovoltaic properties of the heterostructure n-SiC/n-Si.

  19. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry

    Science.gov (United States)

    Whitby, Raymond L. D.; Korobeinyk, Alina; Mikhalovsky, Sergey V.; Fukuda, Takahiro; Maekawa, Toru

    2011-10-01

    Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.

  20. Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb2Te3 superlattices

    Science.gov (United States)

    Momand, Jamo; Wang, Ruining; Boschker, Jos E.; Verheijen, Marcel A.; Calarco, Raffaella; Kooi, Bart J.

    2015-11-01

    GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)-Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application.GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)-Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized

  1. Intramolecular C-N bond activation and ring-expansion reactions of N-heterocyclic carbenes.

    Science.gov (United States)

    Hemberger, Patrick; Bodi, Andras; Berthel, Johannes H J; Radius, Udo

    2015-01-19

    Intramolecular ring-expansion reactions (RER) of the N-heterocyclic carbene 1,3-dimethylimidazolin-2-ylidene were observed upon vacuum ultraviolet (VUV) photoexcitation. Similarly to RERs reported in the solvent phase, for the reaction of NHCs with main-group-element hydrides, hydrogen transfer to the NHC carbon atom is the crucial initial step. In an ionization-mediated protonation, 1,3-dimethylimidazolin-2-ylidene forms an imidazolium ion, which is the rate-limiting step on the pathway to two six-membered ring products, namely, methylpyrimidinium and -pyrazinium ions. To unravel the reaction path, we have used imaging photoelectron photoion coincidence spectroscopy with VUV synchrotron radiation, as well as high-level composite method calculations. Similarities and differences between the mechanism in the gas phase and in the condensed phase are discussed.

  2. Hydrogen Implantation in Silicates: The role of solar wind in OH bond formation on the lunar surface

    Science.gov (United States)

    Schaible, Micah J; Baragiola, Raul

    2014-06-01

    Airless bodies in space such as the Moon, asteroids and interplanetary dust particles are subject to bombardment from energetic electrons and ions, ultraviolet photons, micrometeorites and cosmic rays. These bombarding particles modify optical, chemical and physical characteristics of the ices and minerals that make up these bodies in a process known as space weathering. In particular, solar wind protons implanted in silicate materials can participate in hydroxylation reactions with the oxygen to form OH. This mechanism has been suggested to explain a reported 3-14% absorption signal identified as OH on the surface of lunar soil grains and present in decreasing magnitude from polar to equatorial latitudes. With the goal of determining a precise OH formation rate due to H+ implantation in silicates, a series of experiments were carried out on terrestrial minerals as analogs to lunar and interstellar material.Experiments were carried out under UHV pressures (OH in thermally grown silicon oxide and San Carlos olivine, before and after irradiated with 1 - 5 keV H+ ions. The increase in Si-OH content due to irradiation was determined by subtracting the unirradiated spectra from the irradiated spectra. The implanted protons induced OH stretch absorptions in the mid-infrared peaked at 3673 cm-1 for SiO2 and 3570 cm-1 for olivine. The initial yield (OH formed per incident ion) was ~90% and the OH absorption band was found to saturate at implantation fluences of ~2x1017 H/cm2. Irradiation also modified the Si-O stretch band at ~1090 cm-1 (9.2 μm) causing an exponential decrease in the peak height with increasing fluence and the appearance of a silanol structure peaking at ~1030 cm-1. These measurements allow constraints to be placed on stellar wind contribution to observational and theoretical models of water on the lunar surface and on interstellar dust grains.

  3. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds.

    Science.gov (United States)

    Paula, Amauri J; Stéfani, Diego; Souza Filho, Antonio G; Kim, Yoong Ahm; Endo, Morinobu; Alves, Oswaldo L

    2011-03-07

    The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

  4. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil; Pandey, Ravindra, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Karna, Shashi P., E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: RDRL-WM, Aberdeen Proving Ground, Maryland 21005-5069 (United States)

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  5. Effects of extrinsic point defects in phosphorene: B, C, N, O and F Adatoms

    CERN Document Server

    Wang, Gaoxue; Karna, Shashi P

    2015-01-01

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp3 bonds of phosphorene, and reside at the interstitial sites in the 2D lattice by forming sp2 bonds with the native atoms. On the other hand, N, O and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N and F adatoms will modify the band gap of phosphorene yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunnel...

  6. Thermal Expansion Behavior of Precursor-Derived Amorphous Si-C-N and Si-B-C-N Ceramics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thermal expansion behaviors of some precursor-derived amorphous Si-C-N and Si-B-C-N ceramics, which were shaped by plastic forming after crosslink, were studied. To complete the shrinkage and densification, after thermolysis specimens were heat treated at a temperature of 1400℃ for 10 h in nitrogen atmosphere. The thermal expansion coefficient of VT50-derived amorphous Si-C-N ceramic increases from 1.98×10-6/K at 400℃ to 3.09×10-6/K at 1000℃, of NCP200-derived amorphous Si-C-N ceramic increases from 2.35× 10-6/K at 400℃ to 3.45×10-6/K at1000℃, and of T2-1-derived amorphous Si-B-C-N ceramic increases from 2.08×10-6/K at 400℃ to 3.18×10-6/K at 1000℃. No glass transition for these amorphous ceramic materials was detected, indicating that as-thermolyzed precursor-derived Si-(B-)C-N ceramic materials are amorphous solids, but not glasses.

  7. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability.

    Science.gov (United States)

    Mensink, Maarten A; Van Bockstal, Pieter-Jan; Pieters, Sigrid; De Meyer, Laurens; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J; De Beer, Thomas

    2015-12-30

    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying conditions in particular, can be related to the preservation of the functionality and structure of proteins during storage. The disaccharide trehalose was best capable of forming hydrogen bonds with the model protein, lactate dehydrogenase, thereby stabilizing it, followed by the molecularly flexible oligosaccharide inulin 4kDa. The molecularly rigid oligo- and polysaccharides dextran 5kDa and 70kDa, respectively, formed the least amount of hydrogen bonds and provided least stabilization of the protein. It is concluded that smaller and molecularly more flexible sugars are less affected by steric hindrance, allowing them to form more hydrogen bonds with the protein, thereby stabilizing it better.

  8. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  9. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability

    NARCIS (Netherlands)

    Mensink, Maarten A; Van Bockstal, Pieter-Jan; Pieters, Sigrid; De Meyer, Laurens; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J; De Beer, Thomas

    2015-01-01

    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying

  10. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  11. Calorimetric and computational study of thiacyclohexane 1-oxide and thiacyclohexane 1,1-dioxide (thiane sulfoxide and thiane sulfone). Enthalpies of formation and the energy of the S=O bond.

    Science.gov (United States)

    Roux, María Victoria; Temprado, Manuel; Jiménez, Pilar; Dávalos, Juan Zenón; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2003-03-01

    A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively.

  12. Hydrogen atom abstraction reactions from tertiary amines by benzyloxyl and cumyloxyl radicals: influence of structure on the rate-determining formation of a hydrogen-bonded prereaction complex.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2011-08-05

    A time-resolved kinetic study on the hydrogen atom abstraction reactions from a series of tertiary amines by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. With the sterically hindered triisobutylamine, comparable hydrogen atom abstraction rate constants (k(H)) were measured for the two radicals (k(H)(BnO(•))/k(H)(CumO(•)) = 2.8), and the reactions were described as direct hydrogen atom abstractions. With the other amines, increases in k(H)(BnO(•))/k(H)(CumO(•)) ratios of 13 to 2027 times were observed. k(H) approaches the diffusion limit in the reactions between BnO(•) and unhindered cyclic and bicyiclic amines, whereas a decrease in reactivity is observed with acyclic amines and with the hindered cyclic amine 1,2,2,6,6-pentamethylpiperidine. These results provide additional support to our hypothesis that the reaction proceeds through the rate-determining formation of a C-H/N hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the nitrogen lone pair wherein hydrogen atom abstraction occurs, and demonstrate the important role of amine structure on the overall reaction mechanism. Additional mechanistic information in support of this picture is obtained from the study of the reactions of the amines with a deuterated benzyloxyl radical (PhCD(2)O(•), BnO(•)-d(2)) and the 3,5-di-tert-butylbenzyloxyl radical.

  13. The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Paul C P; Mureau, Natacha; Tang, Zhenni; Miyajima, Yoji; Carey, J David; Silva, S Ravi P [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-05-02

    We report the electrical responses of water vapour and O{sub 2} adsorption onto macroscopic multi-walled carbon nanotube (MWCNT) ropes, and compare the results with mats of acid-treated MWCNTs on SiO{sub 2} substrates in order to investigate the importance of oxygen-containing defects on CNTs. In the outgassed state both carbon nanotube (CNT) materials exhibit rapid changes in electrical resistance when exposed to dry air, humid air or water vapour at standard temperature and pressure (STP). The measured electrical responses are highly reversible at STP when cycled between humid air, vacuum and dry air. We report a decrease in resistance for the CNT materials in dry air, attributed to O{sub 2} p-type doping of the CNTs, whereas there is an increase in resistance when exposed to a humid environment. This latter effect is attributed to the formation of hydrogen bonding from the polar water molecules with the oxygen-containing defects on the CNTs. Our observations indicate that the increase in electrical resistance upon water absorption affects a reduction of the electron-withdrawing power of the oxygen-containing defect groups, thus leading to a reduced hole carrier concentration in the p-type nanotubes.

  14. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    Science.gov (United States)

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  15. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB Family

    Directory of Open Access Journals (Sweden)

    Carville G. Bevans

    2015-07-01

    Full Text Available In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630, we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  16. Formation of cationic [RP5Cl](+)-cages via insertion of [RPCl](+)-cations into a P-P bond of the P4 tetrahedron.

    Science.gov (United States)

    Holthausen, Michael H; Feldmann, Kai-Oliver; Schulz, Stephen; Hepp, Alexander; Weigand, Jan J

    2012-03-19

    Fluorobenzene solutions of RPCl(2) and a Lewis acid such as ECl(3) (E = Al, Ga) in a 1:1 ratio are used as reactive sources of chlorophosphenium cations [RPCl](+), which insert into P-P bonds of dissolved P(4). This general protocol represents a powerful strategy for the synthesis of new cationic chloro-substituted organophosphorus [RP(5)Cl](+)-cages as illustrated by the isolation of several monocations (21a-g(+)) in good to excellent yields. For singular reaction two possible reaction mechanisms are proposed on the basis of quantum chemical calculations. The intriguing NMR spectra and structures of the obtained cationic [RP(5)Cl](+)-cages are discussed. Furthermore, the reactions of dichlorophosphanes and the Lewis acid GaCl(3) in various stoichiometries are investigated to obtain a deeper understanding of the species involved in these reactions. The formation of intermediates such as RPCl(2)·GaCl(3) (14) adducts, dichlorophosphanylchlorophosphonium cations [RPCl(2)-RPCl](+) (16(+)) and [RPCl(2)-RPCl-GaCl(3)](+) (17(+)) in reaction mixtures of RPCl(2) and GaCl(3) in fluorobenzene strongly depends on the basicity of the dichlorophosphane RPCl(2) (R = tBu, Cy, iPr, Et, Me, Ph, C(6)F(5)) and the reaction stoichiometry.

  17. Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains.

    Science.gov (United States)

    Reddy, P; Sparvoli, A; Fagioli, C; Fassina, G; Sitia, R

    1996-01-01

    Exposed thiols act as intracellular retention elements for unassembled secretory molecules. Yet, some free Ig lambda light chains are secreted despite the presence of an unpaired cysteine (Cys214). This is due largely to the presence of a flanking acidic residue: substitution of Asp213 for Gly or Lys increases pre-Golgi retention and degradation of free lambda. Secretion is restored by exogenous reducing agents or by assembly with heavy chains. In the endoplasmic reticulum (ER), lambda chains form covalent complexes with many proteins through Cys214. These complexes are absent from the Golgi. They are more abundant in transfectants expressing the lambdaGly2I3 and lambdaLys213 mutants that are poorly secreted. Radioactive N-ethylmaleimide labels some monomeric lambda chains isolated from the ER, but not from the Golgi or from the medium, indicating that the Cys214 thiol is masked during ER-Golgi transport. Mass spectrometry reveals the presence of a free cysteine residue disulfide-linked to Cys214. We suggest that thiol-mediated retention involves the formation of reversible disulfide bonds with the protein matrix of the ER. The presence of an acidic residue next to the critical cysteine may allow the masking of the thiol and transport to the Golgi. Images PMID:8641273

  18. LAMMPS Framework for Directional Dynamic Bonding

    DEFF Research Database (Denmark)

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  19. Neural Regulation of Pair Bond Formation in a Monogamous Rodent Species%单配制啮齿动物Pair Bond形成的神经调节机制

    Institute of Scientific and Technical Information of China (English)

    Brandon J.Aragona; J.Thomas Curtis; 刘彦; 汪作新

    2004-01-01

    单配制啮齿动物社会结构的神经生物学原理可以通过实验室研究Social bonding而获得.在本文中,我们探讨了如何利用单配制的草原田鼠(Microtus ochrogaster)作为研究模型揭示pair bond形成的神经调控机制.我们进而探讨了单配制与多配制田鼠之间神经解剖学的差异以及神经化学物质的调节是怎样影响pair bond的.本篇综述还讨论了与pair bond形成有关的神经化学系统之间的相互影响以及pair bond形成过程中的两性差异.最后,我们预测了这一研究领域的未来研究方向以及研究social bonding的神经调控对人类健康的重要性.%The neurobiology of monogamous social organization can be studied by laboratory examination of social bonding. In this review, we discuss how the monogamous prairie vole (Microtus ochrogaster) has been used as a model system to provide tremendous insight into the neural regulation of pair bond formation. Neuroanatomical differences between monogamous and non-monogamous voles, as well as how neurochemical manipulations affect pair bond formation are reviewed. In addition, interactions among neurochemical systems that regulate pair bond formation and the extent of sexual dimorphism associated with pair bonding are discussed. Finally, we propose future directions for this line of research and explain why understanding the neural regulation of social bonding is important for human health.

  20. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Feng, J C; Liu, J H; Tian, H; Wang, S J

    2017-05-01

    High melting point Ni3Sn4 joints for the die attachment of SiC-based high temperature power devices was successfully achieved using an ultrasound-induced transient liquid phase (TLP) bonding process within a remarkably short bonding time of 8s. The formed intermetallic joints, which are completely composed of the refined equiaxial Ni3Sn4 grains with the average diameter of 2μm, perform the average shear strength of 26.7MPa. The sonochemical effects of ultrasonic waves dominate the mechanism and kinetics of the rapid formation of Ni3Sn4 joints.

  1. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  2. Bond Growth under Temperature Gradient.

    Directory of Open Access Journals (Sweden)

    P.K. Satyawali

    1999-12-01

    Full Text Available Grain and bond growth for dry snow are determined by the distribution of temperature andtemperature gradient in the snow matrix. From the standpoint of particle approach and based oncubic packing structure, a bond growth model has been developed for TG metamorphism. The paper.highlights the importance of bond formation and its effect on snow viscosity and finally on the rateof settlement. This is very important for developing a numerical snow pack model if microstructureis considered to be a basic parameter. A few experiments have been carried out to validate bond formation under temperature gradient.

  3. Formation of a dinuclear copper(II) complex through the cleavage of CBond' name='Single-Bond' value='Single-Bond'/>N bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Energy Technology Data Exchange (ETDEWEB)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia); Kassim, Mohammad B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia and Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}Bond' name='Single-Bond' value='Single-Bond'/>N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  4. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  5. Transition metal chemistry of cyclodiphosphanes containing phosphine and amide-phosphine functionalities: formation of a stable dipalladium(II) complex containing a Pd-P σ-bond.

    Science.gov (United States)

    Balakrishna, Maravanji S; Venkateswaran, Ramalingam; Mague, Joel T

    2010-12-14

    Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment

  6. Structural, Mechanical and Optical Properties of Plasma-chemical Si-C-N Films

    Directory of Open Access Journals (Sweden)

    A.O. Kozak

    2014-11-01

    Full Text Available An influence of the substrate temperature in the range of 40-400 °C on the properties of the Si-C-N films deposited by plasma enhanced chemical vapor deposition (PECVD technique using hexamethyldisilazane is analyzed. Study of the structure, chemical bonding, surface morphology, mechanical properties and energy gap of the obtained films was carried out using X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, optical measurements and nanoindentation. It was established that all the films were X-ray amorphous and had low surface roughness. Intensive hydrogen effusion from the films takes place, when substrate temperature increases up to 400 °C, which promotes a decrease of roughness and an increase in hardness and Young modules more than twice.

  7. Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU–4-nitrophenol (1/2 adduct: the role of anomeric effect in the formation of a second hydrogen-bond interaction

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2015-11-01

    Full Text Available In the title ternary co-crystalline adduct, C7H14N4·2C6H5NO3, molecules are linked by two intermolecular O—H...N hydrogen bonds, forming a tricomponent aggregates in the asymmetric unit. The hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. In the title adduct, the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0157 (13 and 0.0039 (13 Å. The dihedral angles between the planes of the nitro group and the attached benzene rings are 4.04 (17 and 5.79 (17°. In the crystal, aggregates are connected by C—H...O hydrogen bonds, forming a supramolecular dimer enclosing an R66(32 ring motif. Additional C—H...O intermolecular hydrogen-bonding interactions form a second supramolecular inversion dimer with an R22(10 motif. These units are linked via C—H...O and C—H...N hydrogen bonds, forming a three-dimensional network.

  8. Evolution of Ti(C,N)-based cermet microstructures

    Institute of Scientific and Technical Information of China (English)

    李晨辉; 熊惟皓; 余立新

    2002-01-01

    Two series of Ti(C,N)-based cermet materials originating from the same chemical composition but with different grain size distribution and sintered to different stages of the sintering cycle have been studied using SEM,TEM,EDX,and XRD.Much of the surrounding structure is formed during solid state sintering.During the solid state sintering,at first,the Mo and W rich (Ti,Mo,W)C inner rim is formed by the interaction among TiC,WC,and Mo2C;then the Mo and W lean (Ti,Mo,W)(C,N)outer rim is formed.During the liquid phase sintering,the outer rim of coarse grains grows rapidly throw a solution-reprecipitation process;also coarse grains grow by particle coalescence.The interface between coarse grain outer rim and binder is flat (crystal surface).

  9. Preparation of bulk superhard B-C-N nanocomposite compact

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yusheng (Los Alamos, NM); He, Duanwei (Sichuan, CN)

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  10. C. N. Yang on Teaching and Research in Physics

    Science.gov (United States)

    Shi, Yu; Waxman, David

    2016-04-01

    This document is based on five conversations between Prof. C. N. Yang and others in Beijing in 1986. In the conversations, Yang gave his views on the state and development of physics at that time, and the relationship between physics and philosophy. The conversations also contain Yang’s reminiscences on the creation of Yang-Mills theory and his advice to young people, especially those in China.

  11. Boundary Regularity of Correspondences in $\\mathbb{C}^n$

    Indian Academy of Sciences (India)

    Rasul Shafikov; Kaushal Verma

    2006-02-01

    Let ,′ be smooth, real analytic hypersurfaces of finite type in $\\mathbb{C}^n$ and $\\hat{f}$ a holomorphic correspondence (not necessarily proper) that is defined on one side of , extends continuously up to and maps to ′. It is shown that $\\hat{f}$ must extend across as a locally proper holomorphic correspondence. This is a version for correspondences of the Diederich–Pinchuk extension result for CR maps.

  12. The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation.

    Science.gov (United States)

    Yu, Huan; He, Zheng-Wei; Kong, Bo; Weng, Zhong-Yin; Shi, Ze-Ming

    2016-04-01

    The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.

  13. Interface structure and formation mechanism of vacuum-free vibration liquid phase diffusion-bonded joints of SiCp/ZL101A composites

    Institute of Scientific and Technical Information of China (English)

    YAN Jiu-chun; XU Hui-bin; XU Zhi-wu; LI Da-cheng; YANG Shi-qin

    2005-01-01

    The vacuum-free vibration liquid phase(VLP) diffusion-bonding of SiCp/ZL101A composites was investigated. The effects of vibration on the interface structure, the phase transformation and the tensile strength of bonded joints were examined. Experimental results show that the oxide film on the surface of the composites is a key factor affecting the tensile strength of boned joints. The distribution of the oxide layers at the interface changes from a continuous line to a discontinuous one during vibration. The tensile strength of the VLP diffusion-bonded joints increases with the vibration time, and is up to the maximum of 172 MPa when the vibration time is 30 s. The phase structure of the bond region changes from the Zn-Al-Cu hyper-eutectic (η+ (β+ η)+(β+η+ε)) phases to Al-rich Al-base solid solution (α-Al) with increasing the vibration time.

  14. Copper-Catalyzed Redox-Triggered Remote C-H Functionalization: Highly Selective Formation of C-CF3 and C-O Bonds

    Institute of Scientific and Technical Information of China (English)

    Taotao Li; Peng Yu; Jin-Shun Lin; Yonggang Zhi; Xin-Yuan Liu

    2016-01-01

    A Cu-catalyzed remote sp3 C-H/unactivated alkenes functionalization reaction for the concomitant construction ofC-CF3 and C-O bonds was described.An 1,5-H radical transfer involving an sp3 C-H bond adjacent to a nitrogen atom and an α-CF3-alkyl radical intermediate derived from unactivated alkenes was observed and demonstrated to proceed via the radical process.

  15. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type.

    Science.gov (United States)

    Kaufmann, S H; Brunet, G; Talbot, B; Lamarr, D; Dumas, C; Shaper, J H; Poirier, G

    1991-02-01

    The recovery of the enzyme poly(ADP-ribose) polymerase (pADPRp) in the nuclease- and 1.6 M NaCl-resistant nuclear subfraction prepared from a number of different sources was assessed by Western blotting. When rat liver nuclei were treated with DNase I and RNase A followed by 1.6 M NaCl, approximately 10% of the nuclear pADPRp was recovered in the sedimentable fraction. The proportion of pADPRp recovered with the residual fraction decreased to less than 5% of the total nuclear polymerase when nuclei were prepared in the presence of the sulfhydryl blocking reagent iodoacetamide and increased to approximately 50% of the total nuclear pADPRp when nuclei were treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to fractionation. To determine whether this effect of disulfide bond formation was unique to rat liver nuclei, nuclear matrix/cytoskeleton structures were prepared in situ by sequentially treating monolayers of tissue culture cells with Nonidet-P40, DNase I and RNase A, and 1.6 M NaCl (S.H. Kaufmann and J.H. Shaper (1991) Exp. Cell Res. 192, 511-523). When nuclear monolayers were prepared from HTC rat hepatoma cells, CaLu-1 human lung carcinoma cells, and CHO hamster ovary cells in the absence of NaTT, pADPRp was undetectable in the nuclease- and 1.6 M NaCl-resistant fraction. In contrast, when nuclear monolayers were isolated in the presence of NaTT, from 5% (CaLu-1) to 26% (HTC cells) of the total nuclear pADPRp was recovered with the nuclease- and salt-resistant fraction. Examination of these residual structures by SDS-polyacrylamide gel electrophoresis under nonreducing conditions suggested that pADPRp was present as a component of disulfide cross-linked complexes. Further analysis by immunofluorescence revealed that the pADPRp was diffusely distributed throughout the CaLu-1 or CHO nuclear matrix. In addition, when matrices were prepared in the absence of RNase A, pADPRp was also observed in the residual nucleoli. These

  16. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  17. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  18. On the C^n/Z_m fractional branes

    CERN Document Server

    Karp, R L

    2006-01-01

    We construct several geometric representatives for the C^n/Z_m fractional branes on either a partially or the completely resolved orbifold. In the process we use large radius and conifold-type monodromies, and provide a strong consistency check. In particular, for C^3/Z_5 we give three different sets of geometric representatives. We also find the explicit Seiberg-duality, in the Berenstein-Douglas sense, which connects our fractional branes to the ones given by the McKay correspondence.

  19. Crystal Structure of the 5-Chloro Salicylamides: Three Different Types of the H-bonding Influenced Linear Chain Formation in the Solid State

    Directory of Open Access Journals (Sweden)

    Jiří Hanusek

    2012-05-01

    Full Text Available Three N-substituted 5-chlorosalicylamides (4-chlorophenyl, 2a; benzyl, 2b; phenethyl 2c differing in the length of the 'linker' between the benzene ring and the amide moiety were prepared in order to compare their supramolecular architecture. The intramolecular NH···O(H hydrogen bond and the intermolecular C=O···H–O hydrogen bond were found in the crystal structure of 2a and 2c thus forming an infinite linear chain. Compound 2b had a different arrangement with the intramolecular C=O···H–O hydrogen bond and another intermolecular NH···O(H hydrogen forming a linear infinite chain.

  20. SOCIAL BONDING: REGULATION BY NEUROPEPTIDES

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2014-06-01

    Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.

  1. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf (UC)

    2012-09-05

    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  2. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-vinyl pyrrolidone.

    Science.gov (United States)

    Zhunuspayev, Daulet E; Mun, Grigoriy A; Hole, Patrick; Khutoryanskiy, Vitaliy V

    2008-12-02

    The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

  3. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  4. Crystal Structure, Thermal Decomposition Behavior and the Standard Molar Enthalpy of Formation of a Novel 3D Hydrogen Bonded Supramolecular [Co(HnicO)2·(H2O)2

    Institute of Scientific and Technical Information of China (English)

    ZENG,Ming-Hua; WU,Mei-Chun; ZHU,Li-Hong; LIANG,Hong; YANG Xu-Wu

    2007-01-01

    Hydrothermal synthesis and X-ray characterized 3D supramolecular networks were constructed by [Co(HnicO)2·(H2O)2] (HnicOH=2-hydroxynicotinic acid) (1) as building block via abundant dimeric homomeric (N-H…O) and unusually cyclic tetrameric heteromeric (O-H…O) hydrogen-bonds. It is noted that there exist unusually linear metal-water chains comprised of tetrameric units linked by vertexes sharing cobalt centers through hydrogen-bonding. TG-DTG curves illustrated that thermal decomposition was completed by two steps, one is the loss of two terminal water molecules in the range of 156-234 ℃, and the other is the pyrolysis of HnicO ligand in the range of 234-730 ℃. The standard molar enthalpy of formation of the complex was determined to be (-1845.43±2.77) kJ·mol-1 by a rotary-bomb combustion calorimeter.

  5. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    Science.gov (United States)

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  6. The thermodynamics and kinetics of phosphoester bond formation, use, and dissociation in biology, with the example of polyphosphate in platelet activation, trasience, and mineralization.

    Science.gov (United States)

    Omelon, S. J.

    2014-12-01

    Mitochondria condense orthophosphates (Pi), forming phosphoester bonds for ATP production that is important to life. This represents an exchange of energy from dissociated carbohydrate bonds to phosophoester bonds. These bonds are available to phosphorylate organic compounds or hydrolyze to Pi, driving many biochemical processes. The benthic bacteria T. namibiensis 1 and Beggiatoa 2 condense Pi into phosphate polymers in oxygenated environments. These polyphosphates (polyPs) are stored until the environment becomes anoxic, when these bacteria retrieve the energy from polyP dissociation into Pi3. Dissociated Pi is released outside of the bacteria, where it precipitates as apatite.The Gibbs free energy of polyP phosphoester bond hydrolysis is negative, however, the kinetics are slow4. Diatoms contain a polyP pool that is stable until after death, after which the polyPs hydrolyze and form apatite5. The roles of polyP in eukaryotic organism biochemistry continue to be discovered. PolyPs have a range of biochemical roles, such as bioavailable P-storage, stress adaptation, and blood clotting6. PolyP-containing granules are released from anuclear platelets to activate factor V7 and factor XII in the blood clotting process due to their polyanionic charge8. Platelets have a lifespan of approximately 8 days, after which they undergo apoptosis9. Data will be presented that demonstrate the bioactive, thermodynamically unstable polyP pool within older platelets in vitro can spontaneously hydrolyze and form phosphate minerals. This process is likely avoided by platelet digestion in the spleen and liver, possibly recycling platelet polyPs with their phosphoester bond energy for other biochemical roles. 1 Schulz HN et al. Science (2005) 307: 416-4182 Brüchert V et al. Geochim Cosmochim Acta (2003) 67: 4505-45183 Goldhammer T et al. Nat Geosci (2010) 3: 557-5614 de Jager H-J et al. J Phys Chem A (1988) 102: 2838-28415 Diaz, J et al. Science (2008) 320: 652-6556 Mason KD et al

  7. Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy.

    Science.gov (United States)

    Bonetti, Cosimo; Mathes, Tilo; van Stokkum, Ivo H M; Mullen, Katharine M; Groot, Marie-Louise; van Grondelle, Rienk; Hegemann, Peter; Kennis, John T M

    2008-11-15

    BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD(*-) and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD(*-) to result in FADH(*) on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH(*) C=N stretch marker mode, with tyrosine as the likely proton donor. FADH(*) is reoxidized in 67 ps (180 ps in D(2)O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by approximately 180 degrees through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch.

  8. The Role of Ice Compositions for Snowlines and the C/N/O Ratios in Active Disks

    Science.gov (United States)

    Piso, Ana-Maria A.; Pegues, Jamila; Öberg, Karin I.

    2016-12-01

    The elemental compositions of planets define their chemistry, and could potentially be used as beacons for their formation location if the elemental gas and grain ratios of planet birth environments, i.e., protoplanetary disks, were well understood. In disks, the ratios of volatile elements, such as C/O and N/O, are regulated by the abundance of the main C, N, O carriers, their ice binding environment, and the presence of snowlines of major volatiles at different distances from the central star. We explore the effects of disk dynamical processes, molecular compositions and abundances, and ice compositions on the snowline locations of the main C, O, and N carriers, and the C/N/O ratios in gas and dust throughout the disk. The gas-phase N/O ratio enhancement in the outer disk (exterior to the H2O snowline) exceeds the C/O ratio enhancement for all reasonable volatile compositions. Ice compositions and disk dynamics individually change the snowline location of N2, the main nitrogen carrier, by a factor of 2-3, and when considered together the range of possible N2 snowline locations is ˜11-˜79 au in a standard disk model. Observations that anchor snowline locations at different stages of planet formation are therefore key to developing C/N/O ratios as a probe of planet formation zones.

  9. Preparation of Polyaminopyridines Using a CuI/l-Proline-Catalyzed C-N Polycoupling Reaction

    Directory of Open Access Journals (Sweden)

    Paulo C. M. L. Miranda

    2012-11-01

    Full Text Available Polyaminopyridines (PAPy were chemically prepared from amino-bromopyridines by a CuI/l-proline-catalyzed C-N polycondensation reaction. The formation of the polymer was confirmed by GPC, XRD, XRF, FTIR, UV-vis (λmax = 400 nm, 1H and 13C NMR. The number-average molecular weights (Mn were estimated by end-group analysis using X-ray fluorescence (up to 6000 Da. TGA analysis of PAPy with higher Mn showed greater thermal stability up to 170 oC. Viscosity measurements of polymer in formic acid at 30 oC indicated a polyelectrolyte nature of PAPy solutions. Furthermore, the amorphicity of the material was observed by X-ray diffraction analysis.

  10. Design and synthesis of quasi-diastereomeric molecules with unchanging central, regenerating axial and switchable helical chirality via cleavage and formation of Ni(II–O and Ni(II–N coordination bonds

    Directory of Open Access Journals (Sweden)

    Vadim A. Soloshonok

    2012-11-01

    Full Text Available We describe herein the design and synthesis of asymmetric, pentadentate ligands, which are able to coordinate to Ni(II cations leading to quasi-diastereomeric complexes displaying two new elements of chirality: stereogenic axis and helix along with configurational stabilization of the stereogenic center on the nitrogen. Due to the stereocongested structural characteristics of the corresponding Ni(II complexes, the formation of quasi-diastereomeric products is highly stereoselective providing formation of only two, (Ra*,Mh*,Rc* and (Ra*,Ph*,Rc*, out of the four possible stereochemical combinations. The reversible quasi-diastereomeric transformation between the products (Ra*,Mh*,Rc* and (Ra*,Ph*,Rc* occurs by intramolecular trans-coordination of Ni–NH and Ni–O bonds providing a basis for a chiral switch model.

  11. Facile Formation and Dissociation Behaviour of C–C Bond Resulted from the Nucleophilic Attack of Carbanions on a Carbonyl Carbon in [Pt(hfac)2

    OpenAIRE

    2000-01-01

    [Pt(hfac)2] (hfac:hexafluoroacetylacetonate) reacts with MeNH2 in CH2Cl2/MeOH to give an –NHMe adduct complex on one of the carbonyl carbons, (MeNH3)[Pt(hfac)(hfac–NHMe)] 1 which is a tetrahedral intermediate of a Schiff base complex,[Pt(CF3COCHC(NMe)CF3)2] 2. Complex 1 activates H2O,MeOH, MeNO2 or acetone in solution to form the correspondingconjugate base adducts. The C–C bond in–CH2NO2 adduct 6, easily cleaves and generates nitromethane in solution.

  12. Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE.

    Science.gov (United States)

    Lester, Jeffrey; Kichler, Sari; Oickle, Brandon; Fairweather, Spencer; Oberc, Alexander; Chahal, Jaspreet; Ratnayake, Dinath; Creuzenet, Carole

    2015-04-01

    Helicobacter pylori is a human gastric pathogen that colonizes ∼ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H. pylori's pathogenic mechanisms. H. pylori produces secreted proteins that may play a role in virulence, including the Helicobacter cysteine-rich protein HcpE (aka HP0235). We demonstrate herein that HcpE is secreted in the culture supernatant both as a soluble protein and in association with outer membrane vesicles. We show that the structure of HcpE comprises an organized array of disulfide bonds. We identify DsbK (aka HP0231) as a folding factor necessary for HcpE production and secretion in H. pylori and show that recombinant DsbK can interact with and refold unprocessed, reduced HcpE in vitro. These experiments highlight the first biologically relevant substrate for DsbK. Furthermore, we show that DsbK has disulfide bond (Dsb) forming activity on reduced lysozyme and demonstrate a DsbA-type of activity for DsbK upon expression in E. coli, despite its similarity with DsbG. Finally, we show a role of DsbK in maintaining redox homeostasis in H. pylori.

  13. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor.

    Science.gov (United States)

    Wild, Ute; Neuhäuser, Christiane; Wiesner, Sven; Kaifer, Elisabeth; Wadepohl, Hubert; Himmel, Hans-Jörg

    2014-05-12

    Herein the synthesis, structures and properties of hydrogen-bonded aggregates involving redox-active guanidine superbases are reported. Reversible hydrogen bonding is switched on by oxidation of the hydrogen-donor unit, and leads to formation of aggregates in which the hydrogen-bond donor unit is sandwiched by two hydrogen-bond acceptor units. Further oxidation (of the acceptor units) leads again to deaggregation. Aggregate formation is associated with a distinct color change, and the electronic situation could be described as a frozen stage on the way to hydrogen transfer. A further increase in the basicity of the hydrogen-bond acceptor leads to deprotonation reactions.

  14. Oxidative formation of phosphinyl radicals from a trigonal pyramidal terminal phosphide Rh(i) complex, with an unusually long Rh-P bond.

    Science.gov (United States)

    Fischbach, Urs; Trincado, M; Grützmacher, Hansjörg

    2017-03-14

    A rhodium complex containing a tetrapodal triolefin ligand (trop3P) and a phosphanyl ligand (PPh2(-)) has been prepared and characterised. The special structural confinements of the tetradentate ligand impose an unusually long Rh-PPh2 bond. Chemical oxidation of the complex with FcOTf affords [Rh(OTf)(trop3P)] and plausibly phosphanyl radicals, which react instantly with a spin trap reagent forming a nitroxide-based persistent radical, undergo HAT with silanes or dimerise to the corresponding diphosphine (PPh2)2. Chemical oxidation with a peroxide leads to complex [Rh(POPh2)(trop3P)] which is photolabile and loses the Ph2PO moiety upon irradiation with UV/Vis light in CH2Cl2.

  15. An Iterated GMM Procedure for Estimating the Campbell-Cochrane Habit Formation Model, with an Application to Danish Stock and Bond Returns

    DEFF Research Database (Denmark)

    Engsted, Tom; Møller, Stig Vinther

    2010-01-01

    We suggest an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane, and we apply the approach on annual and quarterly Danish stock and bond returns. For comparative purposes we also estimate and test the standard constant relative risk......-aversion (CRRA) model. In addition, we compare the pricing errors of the different models using Hansen and Jagannathan's specification error measure. The main result is that for Denmark the Campbell-Cochrane model does not seem to perform markedly better than the CRRA model. For the long annual sample period...... covering more than 80 years there is absolutely no evidence of superior performance of the Campbell-Cochrane model. For the shorter and more recent quarterly data over a 20-30 year period, there is some evidence of counter-cyclical time-variation in the degree of risk-aversion, in accordance...

  16. An iterated GMM procedure for estimating the Campbell-Cochrane habit formation model, with an application to Danish stock and bond returns

    DEFF Research Database (Denmark)

    Engsted, Tom; Møller, Stig V.

    We suggest an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane (1999), and we apply the approach on annual and quarterly Danish stock and bond returns. For comparative purposes we also estimate and test the standard CRRA model....... In addition, we compare the pricing errors of the different models using Hansen and Jagannathan's (1997) specification error measure. The main result is that for Denmark the Campbell-Cochrane model does not seem to perform markedly better than the CRRA model. For the long annual sample period covering more...... than 80 years there is absolutely no evidence of superior performance of the Campbell-Cochrane model. For the shorter and more recent quarterly data over a 20-30 year period, there is some evidence of counter-cyclical time-variation in the degree of risk-aversion, in accordance with the Campbell...

  17. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences.

    Science.gov (United States)

    Aggeler, R; Haughton, M A; Capaldi, R A

    1995-04-21

    A set of mutants of the Escherichia coli F1F0-type ATPase has been generated by site-directed mutagenesis as follows: beta E381C, beta S383C, beta E381C/epsilon S108C, and beta S383C/epsilon S108C. Treatment of ECF1 isolated from any of these mutants with CuCl2 induces disulfide bond formation. For the single mutants, beta E381C and beta S383C, a disulfide bond is formed in essentially 100% yield between a beta subunit and the gamma subunit, probably at Cys87 based on the recent structure determination of F1 (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). In the double mutants, two disulfide bonds are formed, again in essentially full yield, one between beta and gamma, the other between a beta and the epsilon subunit via Cys108. The same two cross-links are produced with CuCl2 treatment of ECF1F0 isolated from either of the double mutants. These results show that the parts of gamma around residue 87 (a short alpha-helix) and the epsilon subunit interact with different beta subunits. The yield of covalent linkage of beta to gamma is nucleotide dependent and highest in ATP and much lower with ADP in catalytic sites. The yield of covalent linkage of beta to epsilon is also nucleotide dependent but in this case is highest in ADP and much lower in ATP. Disulfide bond formation between either beta and gamma, or beta and epsilon inhibits the ATPase activity of the enzyme in proportion to the yield of the cross-linked product. Chemical modification of the Cys at either position 381 or 383 of the beta subunit inhibits ATPase activity in a manner that appears to be dependent on the size of the modifying reagent. These results are as expected if movements of the catalytic site-containing beta subunits relative to the gamma and epsilon subunits are an essential part of the cooperativity of the enzyme.

  18. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3 and Ammonia (NH3 Donor-Acceptor Complex

    Directory of Open Access Journals (Sweden)

    Dulal C. Ghosh

    2004-09-01

    Full Text Available The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule

  19. Computational study of the enthalpies of formation, DeltafH degrees, and mean bond enthalpies, mBEs, of H4-nEXn0/- and H3-nEXn+/0 (E=C, B; X=F-I).

    Science.gov (United States)

    Raabe, Ines; Himmel, Daniel; Krossing, Ingo

    2007-12-20

    To compensate for lacking experimental standard enthalpies of formation DeltafH degrees of haloboranes/-boranates as well as the isoelectronic halocarbenium ions and halomethanes, high-level quantum chemical calculations up to the ccsd(t)/(SDB-)aug-cc-pVQZ level have been performed to establish these values. Very reliable experimental data (e.g., DeltafH degrees of HCl, F, and CH4) or at the G3 level established values (e.g., DeltafH degrees of CF3+=410 kJ mol(-1)) were used as anchor points to obtain accurate absolute DeltafH degrees and mean bond enthalpy (mBE) values. To further minimize systematic errors of the protocol, all derived quantities were assessed in isodesmic reactions at the G3 and ccsd(t) level using the (SDB-)aug-cc-PVTZ basis set. The obtained DeltafH degrees values are in very good agreement to (scarcely available) accurate experimental and computational data. Almost all B-containing compounds have been assessed for the first time. We derived "best" DeltafH degrees values and used them to determine the mean E-X bond enthalpies in H4-nEXn-/0 and H3-nEXn0/+ (with n=1-3, E=B, C, and X=F-I). In each of the series, the DeltafH degrees values increase from fluorine to iodine, and except for the iodine-containing carbenium ions and the bromo- and iodomethanes, the DeltafH degrees values become lower with the more halogen atoms that are present in the particle. The boron containing species always have a lower DeltafH degrees than the isoelectronic carbenium ions and methanes, and the H4-nEXn-/0 are lower in energy than the parent H3-nEXn+/0. This reflects the greater average B-X bond strengths.

  20. Spectroscopic and thermodynamic evidence of dimer and trimer hydrogen bonded complex formation between chloroform and 2-butanone. Excess Molar enthalpy for the chloroform + 2-butanone binary system at 303 K.

    Science.gov (United States)

    Gómez Marigliano, Ana C; Campos, Viviana del Valle; Fernández, Lis; Roldán, M L; Sólimo, Horacio N

    2013-05-02

    FT-Raman and FT-infrared spectra of pure chloroform (A) and 2-butanone (B), as well as of the binary system chloroform + 2-butanone, were recorded to investigate the type and nature of the intermolecular complexes formed when both chemicals are mixed. The optimized structures and vibrational frequencies for 2-butanone, chloroform, and their 1:1 and 1:2 complexes were calculated by means of density functional theory (DFT) techniques using the B3LYP functional combined with the 6-31G(d,p) and 6-311++G(d,p) basis set. The recorded FTIR and Raman spectra confirm the existence of these types of hydrogen-bonded complexes, making it possible, furthermore, to calculate the heteroassociation constants. Heat of mixing at 303 K over the whole mole fraction range at atmospheric pressure was also measured. The excess molar enthalpy was fitted to a Redlich-Kister-type equation, using least-squares to obtain its dependence on concentration. The ideal associated solution model was also used to calculate these equilibrium constants among the chemical species in solution, which compare well with that calculated with the spectral determinations and the enthalpy of hydrogen bond formation. Furthermore, the McGlashan-Rastogi linearization test was also used to provide thermodynamic evidence about the stoichiometry of the formed complexes.

  1. Threshold photoionization and density functional theory studies of the niobium carbide clusters Nb3C(n) (n = 1-4) and Nb4C(n) (n = 1-6).

    Science.gov (United States)

    Dryza, Viktoras; Addicoat, Matthew A; Gascooke, Jason R; Buntine, Mark A; Metha, Gregory F

    2008-06-26

    We have used photoionization efficiency spectroscopy to determine ionization potentials (IP) of the niobium-carbide clusters, Nb3C(n) (n = 1-4) and Nb4C(n) (n = 1-6). The Nb3C2 and Nb4C4 clusters exhibit the lowest IPs for the two series, respectively. For clusters containing up to four carbon atoms, excellent agreement is found with relative IPs calculated using density functional theory. The lowest energy isomers are mostly consistent with the development of a 2 x 2 x 2 face-centered cubic structure of Nb4C4. However, for Nb3C4 a low-lying isomer containing a molecular C2 unit is assigned to the experimental IP rather than the depleted 2 x 2 x 2 nanocrystal isomer. For Nb4C5 and Nb4C6, interpretation is less straightforward, but results indicate isomers containing molecular C2 units are the lowest in energy, suggesting that carbon-carbon bonding is preferred when the number of carbon atoms exceeds the number of metal atoms. A double IP onset is observed for Nb4C3, which is attributed to ionization from the both the lowest energy singlet state and a meta-stable triplet state. This work further supports the notion that IPs can be used as a reliable validation for the geometries of metal-carbide clusters calculated by theory.

  2. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds.

    Science.gov (United States)

    Kodera, Masahito; Ishiga, Shin; Tsuji, Tomokazu; Sakurai, Katsutoshi; Hitomi, Yutaka; Shiota, Yoshihito; Sajith, P K; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi

    2016-04-18

    Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluenecumenereaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .

  3. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Science.gov (United States)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-01

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-{3-(pyridin-2-yl)-pyrazolato} and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the CbenzoylN bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the {3-(pyridin-2-yl)-pyrazolato}{3-(pyridin-2-yl)-1H-pyrazole}Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ɛ = 116 dm3 mol-1 cm-1) supports the presence of Cu(II) centres.

  4. It's all about Me: methyl-induced control of coordination stereochemistry by a flexible tridentate N,C,N' ligand.

    Science.gov (United States)

    Kariuki, Benson M; Platts, James A; Newman, Paul D

    2014-02-21

    A chiral, tridentate, pyridyl-functionalised NHC pro-ligand, S-L(Me)-H[PF₆], has been prepared diastereoselectively via a five step synthesis starting from 1R,3S-diamino-1,2,2-trimethylcyclopentane. The S prefix refers to the stereochemistry of a methyl substituted stereogenic carbon in one of the pyridyl arms which is generated by a stereoselective BH4(-) reduction of an imine precursor. The ligand has been coordinated to Rh(I) and Ir(I) to give trigonal bipyramidal complexes of the type [M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)]PF6 (M = Rh, Ir) as single diastereomers. A combination of spectroscopic and X-ray techniques confirm the stereoselective formation of the thermodynamically preferred endo,endo isomer. Similar reactions with R,S-L(Me)-H[PF₆] gave a mixture of endo,endo-[M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)](+) and exo,exo-[M(κ(3)-N,C,N'-R-L(Me))(1,5-COD)](+). The absolute configuration at the metal is, therefore, solely dictated by the stereochemistry of the single methylpyridyl carbon. The observation of stereoselection extends to the square planar Ni(II) complex [Ni(δ-κ(3)-N,C,N'-S-L(Me))Cl](+) which is isolated as one (δ) of the two possible conformational isomers. DFT studies have been employed to explain the observed stereoselectivity with the configurations observed in the solid state being confirmed as those of lowest energy.

  5. Study on Properties of Ti(C,N)/TiN Multi-Element-layer Films Plus Nanometer Lubrication Dry Films

    Institute of Scientific and Technical Information of China (English)

    HUANG Yuan-lin; MA Shi-ning; LI Chang-qing; ZHU You-li

    2004-01-01

    Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.1 which was nearly 21 times of that of the substrates. XRD analysis show that the main composition of the composite films system were Ti(C,N), TiN, Al3Ti, Al and a little Ti2N. The presence of Al3Ti new phase in the interface of the films/substrates indicated some metallurgical bonding between them, which implies higher adhesive strength of the films/substrates system. Pin-on-disc tests showed that the wear resistance of the substrates was improved substantially. However, the coefficient of friction of the films/substrate system was high (μ=0.66),which resulted in the wear of the counterparts. To reduce the coefficient of friction, nanometer lubrication dry films was applied on top of the multi-element-layer films to form composite films system and subsequent wear tests showed that the resulting composite films led to reduction of the coefficient of friction from 0.66 to 0.16. Meanwhile, wear mass loss of the counterpart was reduced from 1.29 mg to 0.02 mg, so that increased wear resistance and reduced friction effects were achieved.

  6. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    Science.gov (United States)

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  7. Bonding Character and Formation Energy of Point Defects of He and Vacancy on (001) Surface of bcc Iron by First Principle Calculations

    Institute of Scientific and Technical Information of China (English)

    Jun CAI; Daogang LU

    2013-01-01

    The structure and energy of He impurities and vacancy on (001) surface of bcc iron are investigated by an ab initio method.Three cases for stabilities of a He atom at the surface are found: some of He atoms at surface atomic layers (SAL) relax into vacuum gap; some of surface He atoms at octahedral interstitial site relax into more stable tetrahedral interstitial site; some of surface He atoms still stay at tetrahedral interstitial site.The un-stability of the He atom at the surface system can be explained by deformation mechanism of charge densities and electronic densities of states.It is found that formation energy of the point defects from the topmost SAL to bulk-like atomic layer increase gradually,for example,the formation energies of a monovacancy at the first five topmost SALs are equal to 0.33,1.56,2.04,2.02 and 2.11 eV,respectively.The magnetic moments of Fe atoms in the surface atomic layers are also calculated.

  8. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    Science.gov (United States)

    Hirn, Ulrich; Schennach, Robert

    2015-05-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption.

  9. Luminescent platinum complexes with terdentate ligands forming 6-membered chelate rings: advantageous and deleterious effects in N--N--N and N--C--N-coordinated complexes.

    Science.gov (United States)

    Garner, Katherine L; Parkes, Louise F; Piper, Jason D; Williams, J A Gareth

    2010-01-18

    Platinum(II) complexes of the form [PtL(n)Cl](+) are reported, containing the N--N--N-coordinating ligands 2,6-di(8-quinolyl)pyridine (L(1)), 2,6-di(8-quinolyl)-4-methoxypyridine (L(2)), or 2,6-di(7-aza-indolyl)-pyridine (L(3)). Metathesis of the chloride co-ligand in [PtL(1)Cl](+) can be accomplished under mild conditions, as exemplified by the formation of the complexes [PtL(1)OMe](+) and [PtL(1)(C[triple bond]C-tfp)](+), in which L(1) remains bound as a terdentate ligand {HC[triple bond]C-tfp = 3,5-bis(trifluoromethyl)-phenylacetylene}. An N--C--N-coordinated, cyclometalated analogue of [PtL(1)Cl](+) has also been prepared, namely, PtL(4)Cl where HL(4) is 1,3-di(8-quinolyl)benzene. The common feature among the six new complexes described here is that they contain 6-membered chelate rings, rather than the usual 5-membered rings that form when more common N--N--N ligands, such as 2,2':6',2''-terpyridine (tpy), bind to Pt(II). All the quinolyl-based complexes are phosphorescent in solution at room temperature, with quantum yields up to 4%. This contrasts with the well-established lack of emission from [Pt(tpy)Cl](+) under these conditions. Density functional theory calculations suggest that the improvement may stem, at least in part, from the relief of ring strain associated with the larger chelate ring size, leading to a more optimal bite angle at the metal, close to 180 degrees , and hence to a stronger ligand field. Consideration of the luminescence parameters, including data at 77 K, together with absorption and electrochemical data and the results of TD-DFT calculations, suggests that the lowest-lying singlet states have metal-to-ligand charge-transfer (MLCT) character, but that the triplet state from which emission occurs has more predominant ligand-centered character. The azaindolyl complex [PtL(3)Cl](+) is not emissive at room temperature, apparently owing to a particularly small radiative rate constant. The cyclometalated complex PtL(4)Cl emits at lower

  10. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree productivity and soil organic matter in high fertility forests

    Science.gov (United States)

    Cotrufo, M.; Alberti, G.; Vicca, S.; Inglima, I.; Belelli-Marchesini, L.; Genesio, L.; Miglietta, F.; Marjanovic, H.; Martinez, C.; Matteucci, G.; Peressotti, A.; Petrella, L.; Rodeghiero, M.

    2013-12-01

    The release of organic compounds from roots is a key process influencing soil carbon (C) dynamics and nutrient availability in terrestrial ecosystems and is a process by which plants stimulate microbial activity and soil organic matter (SOM) mineralization thus releasing nitrogen (N) to sustain their gross and net primary production (GPP and NPP). Root inputs also contribute to soil organic matter (SOM) formation. In this study, we quantified the annual net root derived C input to soil (Net-Croot) across six high fertile forests using an in-growth core isotope technique. On the basis of Net-Croot, wood and coarse root biomass changes and eddy covariance data, we quantified net belowground C sequestration. This and GPP were inversely related to soil C:N, but not to climate or age. Because, at these high fertile sites, biomass growth did not change with soil C:N ratio, biomass growth-to-GPP ratio significantly increased with increasing soil C:N. This was true for both our six forest sites and for high fertile sites across a set of other 23 sites selected at global scale. We suggest that, at high fertile sites, the interaction between plant demand for nutrients, soil stoichiometry and microbial activity sustain higher ecosystem C-sink allocation to above ground tree biomass with increasing soil C:N ratio and that this clear and strong relationship can be used for modelling forest C sink partitioning between plant biomass and soil. When C:N is high, microbes have a low C use efficiency, respire more of the fresh C inputs by roots and prime SOM decomposition increasing N availability for tree uptake. Soil C sequestration would therefore decrease, whereas the extra N released during SOM decomposition can promote tree growth and ecosystem C sink allocation in aboveground biomass. Conversely, C is sequestered in soil when the low soil C:N promotes microbial C use efficiency and new SOM formation.

  11. 3-Rhoda-1,2-diazacyclopentanes: a series of novel metallacycle complexes derived from C-N functionalization of ethylene.

    Science.gov (United States)

    Drover, Marcus W; Beh, Daniel W; Kennepohl, Pierre; Love, Jennifer A

    2014-10-01

    Rh-containing metallacycles, [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NR)2-]Cl; TPA = N,N,N,N-tris(2-pyridylmethyl)amine have been accessed through treatment of the Rh(I) ethylene complex, [(TPA)Rh(η(2)-CH2CH2)]Cl ([1]Cl) with substituted diazenes. We show this methodology to be tolerant of electron-deficient azo compounds including azo diesters (RCO2N=NCO2R; R = Et [3]Cl, R = iPr [4]Cl, R = tBu [5]Cl, and R = Bn [6]Cl) and a cyclic azo diamide: 4-phenyl-1,2,4-triazole-3,5-dione (PTAD), [7]Cl. The latter complex features two ortho-fused ring systems and constitutes the first 3-rhoda-1,2-diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N-N coordination followed by insertion of ethylene into a [Rh]-N bond. In terms of reactivity, [3]Cl and [4]Cl successfully undergo ring-opening using p-toluenesulfonic acid, affording the Rh chlorides, [(TPA)Rh(III)(Cl)(κ(1)-(C)-CH2CH2(NCO2R)(NHCO2R)]OTs; [13]OTs and [14]OTs. Deprotection of [5]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end-on coordinated diazene [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NH)2-](+) [16]Cl, a hitherto unreported motif. Treatment of [16]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NAc)2-](+), [17]Cl. Treatment of [1]Cl with AcN=NAc did not give the Rh-N insertion product, but instead the N,O-chelated complex [(TPA)Rh(I)(κ(2)-(O,N)-CH3(CO)(NH)(N=C(CH3)(OCH=CH2))]Cl [23]Cl, presumably through insertion of ethylene into a [Rh]-O bond.

  12. Formation of diphenylphosphanylbutadienyl complexes by insertion of two P-coordinated alkynylphosphanes into a PtbondC6F5 bond: detection of intermediate and reaction products.

    Science.gov (United States)

    Ara, Irene; Forniés, Juan; García, Ana; Gómez, Julio; Lalinde, Elena; Moreno, M Teresa

    2002-08-16

    The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento

  13. Diagraphies de cimentation : vers une analyse de la qualité du contact ciment-formation Cement Logging: Toward an Analysis of the Quality of Cement-Formation Bonding

    Directory of Open Access Journals (Sweden)

    Isambourg P.

    2006-11-01

    Full Text Available Les compagnies pétrolières ont un réel besoin d'évaluer correctement les cimentations de leurs puits : l'étanchéité entre les différentes zones est-elle assurée? Pour ce faire, les outils soniques et ultra-soniques ont été mis au point. Jusqu'à présent, la qualité du contactcasing-ciment était analysée quantitativement et celle du contactciment-formation était analysée qualitativement par les spécialistes (outil VDL. Le progrès le plus important que l'on pouvait apporter dans les logsde cimentation était de détecter les défauts à l'interface ciment-formation. C'est ce que nous avons fait dans le cadre d'un projet financé par l'ARTEP (Association de Recherche sur les Techniques d'Exploitation du Pétrole comprenant Total, Gaz de France GDF, Institut Français du Pétrole (IFP, et Elf Aquitaine Production (EAP. Les expériences laboratoires effectuées au Service Analyse FLuides de Boussens ont été conçues en injectant du ciment entre un casing et une formation-simulée avec présence, ou non, de boue d'épaisseur variable. Des formations rapides ou lentes, ainsi que des ciments, rapides ou lents, ont été utilisés. Les échos ultrasoniques, obtenus à l'aide d'une sonde CET en céramique, ont été enregistrés et analysés. La théorie, comme les expériences, ont montré que les échos ultrasoniques sont modifiés en présence de boue et/ou de gaz. Les relations entre la forme de l'onde ultrasonique et la présence de boue et de gaz entre le ciment et la formation ont été établies. Une procédure de traitement est proposée avec ses limites. Oil companies have a real need to make a correct assessment of cementing jobs in their wells. Is the seal ensured between different zones? To do this, sonic and ultrasonic logging tools have been developed. Up to now, the quality of the casing-cement contacthas been analyzed quantitatively, and that of the cement-formation contacthas been analyzed qualitatively by

  14. Profile and Character of Atmospheric Structure Constant of Refractive Index C_n~2

    Institute of Scientific and Technical Information of China (English)

    SUN Gang; WENG Ning-Quan; XIAO Li-Ming; WU Yi

    2012-01-01

    Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.

  15. Ti(C,N)基硬质合金中的润湿性研究%WETTABILITY OF Ti(C,N)-BASED CERMETS

    Institute of Scientific and Technical Information of China (English)

    刘红卫; 陈康华; 吕海波

    2000-01-01

    主要研究(C,N)基硬质合金中不同粘结相Ni-Co、Ni-Co-Mo和Ni-Co-Mo2C与不同TiN/(TiC+TiN)的硬质相Ti(C,N)之间的润湿性.研究表明,当硬质相中TiN/(TiC+TiN)<0.5时,Ni-Co粘结相是最好的,当TiN/(TiC+TiN)≥0.5时,最适合的粘结相为Ni-Co- Mo2C,而Ni-Co-Mo不宜作为Ti(C,N)基硬质合金的粘结相.

  16. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  17. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  18. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  19. Tree species is the major factor explaining C:N ratios in European forest soils

    DEFF Research Database (Denmark)

    Cools, Nathalie; Vesterdal, Lars; De Vos, Bruno

    2014-01-01

    The C:N ratio is considered as an indicator of nitrate leaching in response to high atmospheric nitrogen (N) deposition. However, the C:N ratio is influenced by a multitude of other site-related factors. This study aimed to unravel the factors determining C:N ratios of forest floor, mineral soil...... and peat top soils in more than 4000 plots of the ICP Forests large-scale monitoring network. The first objective was to quantify forest floor, mineral and peat soil C:N ratios across European forests. Secondly we determined the main factors explaining this C:N ratio using a boosted regression tree...... analysis (BRT), including fifteen site and environmental variables. Ninety-five percent of the C:N ratios were between 16 and 44 in the forest floor, between 13 and 44 in the peat topsoil and between 10 and 32 in the mineral topsoil. Within the aerated forest floor and the mineral soil, the C:N ratios...

  20. Reactivity of Tp(Me2) -supported yttrium alkyl complexes toward aromatic N-heterocycles: ring-opening or C-C bond formation directed by C-H activation.

    Science.gov (United States)

    Yi, Weiyin; Zhang, Jie; Huang, Shujian; Weng, Linhong; Zhou, Xigeng

    2014-01-13

    Unusual chemical transformations such as three-component combination and ring-opening of N-heterocycles or formation of a carbon-carbon double bond through multiple C-H activation were observed in the reactions of Tp(Me2) -supported yttrium alkyl complexes with aromatic N-heterocycles. The scorpionate-anchored yttrium dialkyl complex [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with 1-methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24-membered rare-earth metallomacrocyclic compound [Tp(Me2) Y(μ-N,C-Im)(η(2) -N,C-Im)]6 (1; Im=1-methylimidazolyl) through two kinds of C-H activations at the C2- and C5-positions of the imidazole ring. However, [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with two equivalents of 1-methylbenzimidazole to afford a C-C coupling/ring-opening/C-C coupling product [Tp(Me2) Y{η(3) -(N,N,N)-N(CH3 )C6 H4 NHCHC(Ph)CN(CH3 )C6 H4 NH}] (2). Further investigations indicated that [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C-C coupling/ring-opening product {(Tp(Me2) )Y[μ-η(2) :η(1) -SC6 H4 N(CHCHPh)](THF)}2 (3). Moreover, the mixed Tp(Me2) /Cp yttrium monoalkyl complex [(Tp(Me2) )CpYCH2 Ph(THF)] reacted with two equivalents of 1-methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [Tp(Me2) CpY(μ-N,C-Im)]3 (5), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [Tp(Me2) Y(Im-Tp(Me2) )] (7; Im-Tp(Me2) =1-methyl-imidazolyl-Tp(Me2) ) and [Cp3 Y(HIm)] (8; HIm=1-methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a CC bond through multiple C-H activations.

  1. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions%功能化离子液体催化碳-杂键形成反应

    Institute of Scientific and Technical Information of China (English)

    李满; 杨磊; 韩峰; 陈静; 夏春谷

    2013-01-01

    离子液体独特的溶剂性能使它在合成和催化领域得到了广泛的应用.然而,离子液体的经济问题和可能的环境友好性问题使得人们逐渐把目光投向了离子液体自身的催化性能.人们通过对离子液体结构的修饰设计出了各种具有特定催化性能的功能化离子液体.近年来功能化离子液体在催化碳-杂键形成反应方面有了相当多的应用.本文以形成的碳-杂原子键类型为主线,综述了功能化离子液体在催化碳-杂键形成反应方面的最新研究进展,涉及到了酸性离子液体、碱性离子液体、金属有机功能化离子液体、酸碱双功能离子液体、手性离子液体等多种类型的功能化离子液体.%Ionic liquids have emerged as excellent solvents for synthesis and catalysis in the past decades due to their special properties.However,their relatively high cost and potential risks to human health and environment make their function as catalysts rather than solvents more popular.Incorporating specific functional group(s) into one or both ions of ionic liquids to make them catalytic is highly important.Numerous so-called task-specific or functionalized ionic liquids are designed and successfully applied in catalyzing various reactions.In this review,we present the latest achievements in the carbon-heteroatom bond formation reactions catalyzed by task-specific ionic liquids.The contents are arranged according to the specific types of carbon-heteroatom bond formation reactions.As for the type of task-specific ionic liquids,this review focuses on acidic ionic liquids,basic ionic liquids,organometallic ionic liquids,acid-base bifunctional ionic liquids and chiral ionic liquids.

  2. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  3. Effectiveness of simplified dentin bonding systems.

    Science.gov (United States)

    Imai, T; Itoh, K; Tani, C; Manabe, A; Yamashita, T; Hisamitsu, H; Wakumoto, S

    1998-03-01

    The effectiveness of newly developed commercial dentin bonding systems (SB, MB II and KB) was evaluated by measuring the contraction gap width of a resin composite restored into a cylindrical dentin cavity prepared in an extracted human molar and by measuring the tensile bond strength to the flat dentin surface. In addition, calcium loss during dentin conditioning was analyzed using electron microanalyses. An experimental dentin bonding system composed of EDTA conditioning, GM solution priming and a bonding agent containing 10-MDP was employed as a control in which it was presumed that contraction gap formation was prevented completely. However, gap formation was observed using the three commercial simplified dentin bonding systems. SEM observation showed that the gap was formed between the resin composite and the top surface of the dentin cavity wall indicating that the fracture occurred at the adhesive interface, but never inside the dentin nor inside the resin composite.

  4. Metalorganic chemical vapor deposition of Ti-O-C-N thin films using TBOT as a promising precursor

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, O.A., E-mail: oafouad@yahoo.com [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt); Geioushy, R.A.; El-Sheikh, S.M. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt); Khedr, M.H. [Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Ibrahim, I.A. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt)

    2011-05-19

    Graphical abstract: Display Omitted Highlights: > Novel precursor (TBOT) has been used for synthesis of from Ti(O,C,N) thin films via APCVD process. > TiO{sub 2} and TiC compounds deposition were thermodynamically favored as products of metalorganic precursor decomposition in presence of H{sub 2} gas at temperature >500 deg. C. > TiO{sub 2} deposited in the form of spherical-like shape particles, TiC deposited in the form of fiber-like shape structures. > High hardness value was obtained for Ti-O-C-N films at 750 deg. C ({approx}425 HV{sub 50}) due to the formation of stoichiometric TiN phase. - Abstract: Ti-O, Ti-O-C and Ti-O-C-N thin films have been synthesized successfully via metalorganic chemical vapor deposition (MOCVD) technique. Tetrabutyl orthotitanate (TBOT) is used as a precursor in presence of Ar, H{sub 2}, and N{sub 2} as process gases. By controlling deposition temperature and type of process gases, it was possible to control the composition of the deposited films. The deposited films are composed mainly of Ti and O when H{sub 2} is used as a process gas in the temperature range 350-500 deg. C. As the temperature increased up to 600 deg. C, thin films containing anatase (TiO{sub 2}) and titanium carbide (TiC) phases are deposited and confirmed by XRD and EDX analyses. As the temperature increased to 750 deg. C, a transformation from anatase to rutile phase (TiO{sub 2}) is started and clearly observed from XRD patterns. Titanium nitride (Ti{sub 2}N and TiN) phase in addition to TiO{sub 2} and TiC phases are formed at 600-1000 deg. C in presence of nitrogen as a process gas. SEM images for all investigated film samples showed that the films are deposited mainly in the form of spherical particles ranged from few nano- to micrometer in size with some additional special features regardless the type of the process gas. Films containing carbon and nitrogen show higher hardness than that containing only oxygen. The obtained results may help in better

  5. Organomolybdenum (VI) and lithium Organomolybdate (VI) and (V) Complexes with C,N-Chelating Aminoaryl Ligands

    NARCIS (Netherlands)

    Koten, G. van; Brandts, J.A.M.; Leur, M. de; Gossage, R.A.; Spek, A.L.

    1999-01-01

    The synthesis and characterization of new, five-coordinate molybdenum bis(imidoaryl) complexes [Mo(NAr)2(C-N)X] (Ar = C6H3i-Pr2-2,6; C-N = [C6H4(CH2NMe2)-2]-; X = Cl (1), Me (2), Et (3), Bu (4), CH2SiMe3 (5), (p-tolyl) (6), (C-N) (7)) is reported. The solid-state structure of 2 has been elucidated b

  6. Spark Plasma Sintering Properties of Ultrafine Ti ( C,N)-based Cermet

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; XIONG Wei-hao; ZHENG Yong; YU Li-xin; XIA Yang-hua

    2004-01-01

    Ultrafine Ti( C, N )-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties, such as porosity, mechanical properties and phase transformation, were investigated by optical mi-croscopy (OM), scanning electron microscopy (SEM), X- ray diffraction (XRD), and differential scanning calo-rimeter (DSC). It is found that the spark plasma sintering properties of Ti( C, N )-based cermet differ from thoseof conventional vacuum sintering. The liquid phase appearance is at least lower by 150℃ than that in vacuum sin-tering. The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃ , and afterwards it almostkeeps invariable and no longer increases. SPS remarkably accelerates the phase transformation of Ti( C, N )-basedcermet and it has a powerful ability to remove oxides in Ti( C, N )-based cermets. Above 1 3502 ,denitrificationoccurred. Fresh graphite phase formed above 1 430℃ . Both the porosity and graphite are responsible for the poor TRS.

  7. Some Congruence Properties of a Restricted Bipartition Function cN(n

    Directory of Open Access Journals (Sweden)

    Nipen Saikia

    2016-01-01

    Full Text Available Let cN(n denote the number of bipartitions (λ,μ of a positive integer n subject to the restriction that each part of μ is divisible by N. In this paper, we prove some congruence properties of the function cN(n for N=7, 11, and 5l, for any integer l≥1, by employing Ramanujan’s theta-function identities.

  8. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat

    Science.gov (United States)

    Wang, Meng; Moore, Tim R.; Talbot, Julie; Richard, Pierre J. H.

    2014-01-01

    Northern peatlands are important carbon (C) sinks and while the patterns of C accumulation have been frequently investigated, nitrogen (N) and phosphorus (P) accumulation are often neglected. Here we link the C:N:P stoichiometry from foliar plant tissues, through senescent litters to peat, and determine C, N and P accumulation rates at Mer Bleue Bog, eastern Canada. Average C:N:P ratios changed from 794:17:1 in the foliar tissues to 911:10:1 in litter and 1285:32:1 in acrotelm peat. The increase in C:N and C:P ratios from mature to senescent tissues is related to nutrient resorption. The increase in C:P and N:P ratios in peat, which was contrary to that observed in Canadian forest soils, may be related to plant/mycorrhizae uptake of P. The long-term apparent rates of C, N and P accumulation were 29.5 ± 2.1 (SE) g C, 0.87 ± 0.01 g N and 0.017 ± 0.002 g P m-2 yr-1, respectively. The significant correlation between the accumulation rates of N and P and that of C suggests more attention be placed on C:N:P stoichiometry in peatland biogeochemistry, in particular in understanding why C:P ratios are so large in the lower parts of the profile.

  9. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields

    Science.gov (United States)

    Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao

    2016-10-01

    Maintaining good soil productivity in rice paddies is important for global food security. Numerous methods have been developed to evaluate paddy soil productivity (PSP), most based on soil physiochemical properties and relatively few on biological indices. Here, we used a long-term dataset from experiments on paddy fields at eight county sites and a short-term dataset from a single field experiment in southern China, and aimed at quantifying relationships between PSP and the ratios of carbon (C) to nutrients (N and P) in soil microbial biomass (SMB). In the long-term dataset, SMB variables generally showed stronger correlations with the relative PSP (rPSP) compared to soil chemical properties. Both correlation and variation partitioning analyses suggested that SMB N, P and C:N ratio were good predictors of rPSP. In the short-term dataset, we found a significant, negative correlation of annual rice yield with SMB C:N (r = ‑0.99), confirming SMB C:N as a robust indicator for PSP. In treatments of the short-term experiment, soil amendment with biochar lowered SMB C:N and improved PSP, while incorporation of rice straw increased SMB C:N and reduced PSP. We conclude that SMB C:N ratio does not only indicate PSP but also helps to identify management practices that improve PSP.

  10. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    Science.gov (United States)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean

  11. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  12. Formation, structure, and properties of "welded" h-BN/graphene compounds

    Science.gov (United States)

    Chernozatonskii, L. A.; Demin, V. A.; Artyukh, A. A.

    2016-07-01

    Structures of h-BN/graphene with holes where atoms at the edges are bonded to each other by sp 2 hybridized C-B and C-N bonds and form continuous junctions from layer to layer with topological defects inside holes have been considered. Their formation, as well as the moiré-type stable atomic structure of such compounds (with different rotation angles of graphene with respect to the hexagonal boron nitride monolayer) with closed hexagonal holes in the AA centers of packing of the moiré superlattice, has been studied. The stability, as well as the electronic and mechanical properties, of such bilayer BN/graphene nanomeshes has been analyzed within electron density functional theory. It has been shown that they have semiconducting properties. Their electronic band structures and mechanical characteristics differ from the respective properties of separate monolayer nanomeshes with the same geometry and arrangement of holes.

  13. Microstructure of a Mo-Si-C-N multi-layered anti-oxidation coating on carbon/carbon composites by fused slurry

    Institute of Scientific and Technical Information of China (English)

    LAI Zhonghong; MENG Songhe; ZHU Jingchuan; JEON Jaeho

    2009-01-01

    A Mo-Si-C-N multi-layered anti-oxidation coating was in-situ fabricated by introducing nitrogen atmosphere during the fused sintering of Mo-Si slurry pre-layer on carbon/carbon composites. The phase composition and microstructure of the Mo-Si-C-N coating were character-ized by X-ray diffractometry, optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Mo-Si-C-N coating exhibited a three-layered structure. Besides the MoSi2/Si main-layer and the SiC bonding-layer, a surface layer of about 10 μm in thickness was synthesized on the coating surface. The surface layer mainly consisted of SiC nanowires and contained some Si3N4 and Si phases. SiC nanowires of 10 to 200 nm in diameter presented a terrace and distortion structure. Transmission electron microscopy indicated that the SiC nanowires grew along the preferred direction. Dur-ing oxidation test, SiC nanowires transmuted into Sit2 glass, which can play an important role in improving the oxidation resistance of C/C composites.

  14. VB studies on bonding features of HNC(←→)HCN

    Institute of Scientific and Technical Information of China (English)

    廖新丽; 吴玮; 莫亦荣; 张乾二

    2003-01-01

    Within the bonded tableau unitary group approach (BTUGA), a scheme, combined with Pauling's resonance theory to select the predominant valence bond structures for VB calculations, is proposed. This scheme ensures a reliable and illustrative bonding picture in the description of chemical reactions, as exemplified by the isomerization reaction HNCHCN. The computation results account for important bonding features about this isomerization at the ab initio level and explore the mechanism of phenomena such as (i) HCN is more stable than HNC; (ii) the C-N bond first lengthens and then shortens in the vicinity of the transition state; (iii) only H-atom migration is observed in the isomerization process, without the breaking of the CN bond. Our results demonstrate that only a few bonded tableau functions are sufficient enough to provide a visual and reliable bonding picture.

  15. The Role of Ice Compositions for Snowlines and the C/N/O Ratios in Active Disks

    CERN Document Server

    Piso, Ana-Maria A; Oberg, Karin I

    2016-01-01

    The elemental compositions of planets define their chemistry, and could potentially be used as beacons for their formation location if the elemental gas and grain ratios of planet birth environments, i.e. protoplanetary disks, are well understood. In disks, the ratios of volatile elements, such as C/O and N/O, are regulated by the abundance of the main C, N, O carriers, their ice binding environment, and the presence of snowlines of major volatiles at different distances from the central star. We explore the effects of disk dynamical processes, molecular compositions and abundances, and ice compositions on the snowline locations of the main C, O and N carriers, and the C/N/O ratios in gas and dust throughout the disk. The gas-phase N/O ratio enhancement in the outer disk (exterior to the H2O snowline) exceeds the C/O ratio enhancement for all reasonable volatile compositions. Ice compositions and disk dynamics individually change the snowline location of N2, the main nitrogen carrier, by a factor of 2-3, and ...

  16. Theoretical study of the nitroalkane thermolysis. 1. Computation of the formation enthalpy of the nitroalkanes, their isomers and radical products.

    Science.gov (United States)

    Kiselev, Vitaly G; Gritsan, Nina P

    2008-05-15

    The gas phase enthalpies of formation of mono-, di-, tri-, tetranitromethane and nitroethane, as well as of their nitrite and aci-form isomers were calculated using different multilevel (G2, G3, G2M(CC5)) and density functional theory (DFT)-based (B3LYP, MPW1B95 and MPWB1K) techniques. The enthalpies of the C-N bond dissociation and isomerization of these nitroalkanes were also calculated. The calculated values of the formation and reaction enthalpies were compared with the experimental data when these data were available. It was found that only the G3 procedure gave accurate (within 1 kcal/mol) results for the formation enthalpy of nitroalkanes, their isomers, and radical products. The G3 procedure and two new hybrid meta DFT methods proposed by Truhlar's group (Zhao, Y.; Truhlar, D. J. Phys. Chem. A 2004, 108, 6908) showed good results for the reaction enthalpies of the nitromethane isomerization and the C-N bond dissociation. Our calculation results were used to analyze thermodynamics of the dissociation and isomerization reactions of the poly nitro-substituted methanes.

  17. A first principles analysis of the effect of hydrogen concentration in hydrogenated amorphous silicon on the formation of strained Si-Si bonds and the optical and mobility gaps

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Nolan, Michael, E-mail: Michael.nolan@tyndall.ie; Fagas, Giorgos, E-mail: Georgios.fagas@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork (Ireland)

    2014-05-28

    In this paper, we use a model of hydrogenated amorphous silicon generated from molecular dynamics with density functional theory calculations to examine how the atomic geometry and the optical and mobility gaps are influenced by mild hydrogen oversaturation. The optical and mobility gaps show a volcano curve as the hydrogen content varies from undersaturation to mild oversaturation, with largest gaps obtained at the saturation hydrogen concentration. At the same time, mid-gap states associated with dangling bonds and strained Si-Si bonds disappear at saturation but reappear at mild oversaturation, which is consistent with the evolution of optical gap. The distribution of Si-Si bond distances provides the key to the change in electronic properties. In the undersaturation regime, the new electronic states in the gap arise from the presence of dangling bonds and strained Si-Si bonds, which are longer than the equilibrium Si-Si distance. Increasing hydrogen concentration up to saturation reduces the strained bonds and removes dangling bonds. In the case of mild oversaturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structure shows that the extra hydrogen atoms form a bridge between neighbouring silicon atoms, thus increasing the Si-Si distance and increasing disorder in the sample.

  18. 25 years of N-heterocyclic carbenes: activation of both main-group element-element bonds and NHCs themselves.

    Science.gov (United States)

    Würtemberger-Pietsch, Sabrina; Radius, Udo; Marder, Todd B

    2016-04-14

    N-Heterocyclic carbenes (NHCs) are widely used ligands and reagents in modern inorganic synthesis as well as in homogeneous catalysis and organocatalysis. However, NHCs are not always innocent bystanders. In the last few years, more and more examples were reported of reactions of NHCs with main-group elements which resulted in modification of the NHC. Many of these reactions lead to ring expansion and the formation of six-membered heterocyclic rings involving insertion of the heteroatom into the C-N bond and migration of hydrides, phenyl groups or boron-containing fragments. Furthermore, a few related NHC rearrangements were observed some decades ago. In this Perspective, we summarise the history of NHC ring expansion reactions from the 1960s till the present.

  19. Bonding with Your Baby

    Science.gov (United States)

    ... in infant massage in your area. Breastfeeding and bottle-feeding are both natural times for bonding. Infants respond ... activities include: participating together in labor and delivery feeding ( breast or bottle ); sometimes dad forms a special bond with baby ...

  20. High temperature strength and ductility of the (C+N) strengthening Fe-Cr-Mn(W,V) steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fe-Cr-Mn(W, V) austenite steels used as low radioactive structural materials in fusion reactor have been investigated. The resultsshow that the high temperature strength and the creep fracture life of Fe-Cr-Mn(W, V) steels can be effectively improved through (C+N) complex-strengthening, so can be the high temperature ductility. The strength and ductility of the steels are superior to that of SUS316 steels and JPCAS below 673K. The relationship between strength, ductility andthe formation temperature is related to the evolution of deformation microstructure. The fracture and microstructure observation above 673Kindicates that the main way to further improve ductility at high temperature is the control of carbide coarsening at the grain boundaries.

  1. Structural and Spectral Studies on the Ni(Ⅱ) Complexes of 1,5-Diazacyclooctane (DACO) Bearing Heterocyclic Pendants: Formation of a Two-dimensional Network Via Hydrogen Bonds and π-π Stacking Interactions

    Institute of Scientific and Technical Information of China (English)

    DU,Miao(杜淼); DU,Miao; XU,Qiang(徐强); XU,Qiang; GUO,Ya-Mei (郭亚梅); GUO,Ya-Mei; WENG,Lin-Hong(翁林红); WENG,Lin-Hong; BU,Xian-He (卜显和); BU,Xian-He

    2001-01-01

    A penta-coordinated Ni(II) complex with a 1,5-diazacyclooctane (DACO) ligand functionazed by two imidazole donor pendants, [NiiL1Cl] (ClO4)'HH2O (1) (where L1 = 1,5-bis (imidazol-4-ylmethyl)-1,S-diazacyclooctane) has been synthesized and characterized by X-ray diffraction, infrared spectra, elemental analyses, conductance, thermal analyses and UV-Vis techniques. Complex 1 crystallizes in triclinic crystal system, P-1 space group with a = 0.74782(7), b = 1.15082(10), c = 1.237s1(11) nm, a=82.090(2), β=73.011(2), γ=83.462(2)°, V= 1.00603(16) nn3, Mr = 486.00, Z=2,Dc=1.604 g/cm3, final R=0.0435, and wR=0.1244. The structures of 1 and its related complexes show that in all the three mononuclear complexes, each Ni(Ⅱ) center is penta-coordinated with a near regular square pyranid (RSP) to distorted square-pyramidal (DSP) coordination environment due to the boat/chair configuration of DACO ring in these complexes, and the degree of distortion increases with the augment of the size of the heterocyclic pendants. In addition, the most striking feature of complex 1 resides in the formation of a two-dimensional network structure through hydrogen bonds and stabilized by π-π stacking. The solution behaviors of the Ni(ⅡI) complexes are also discussed in detail.

  2. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  3. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  4. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  5. Does fluorine participate in halogen bonding?

    Science.gov (United States)

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  6. Co-composting of green waste and food waste at low C/N ratio.

    Science.gov (United States)

    Kumar, Mathava; Ou, Yan-Liang; Lin, Jih-Gaw

    2010-04-01

    In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12days. The TVS reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.

  7. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  8. The higher-order C_n dispersion coefficients for hydrogen

    CERN Document Server

    Mitroy, J

    2004-01-01

    The complete set of 2nd, 3rd and 4th order van der Waals coefficients, C_n up to n=32 for the H(1s)-H(1s) dimer are computed using pseudo-states to evaluate the appropriate sum rules. A study of the convergence pattern for n<=16 indicates that all the C_n (n<=16) coefficients are accurate to 13 significant digits. The relative size of the 4th-order C^4_n to the 2nd-order C^2_n coefficients is seen to increase as n increases and at n=32 the 4th-order term is actually larger.

  9. On Levi-fiat hypersurfaces with given boundary in C~n

    Institute of Scientific and Technical Information of China (English)

    Pierre; DOLBEAULT

    2008-01-01

    Let S■C~n be a compact connected 2-codimensional submanifold.If n≥3,essentially local conditions and the assumption:every complex point of S is elliptic imply the existence of a projection in C~n of a Levi-flat(2n-1)-subvariety whose boundary is S(Dolbeault,Tomassini,Zaitsev, 2005).We extend the result when S is homeomorphic to a sphere and has one hyperbolic point. For n=2 many results are known since the 1980’s and a new result with a very technical hypothesis is announced.

  10. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts.

    Science.gov (United States)

    Champeil, Elise; Cheng, Shu-Yuan; Huang, Bik Tzu; Conchero-Guisan, Marta; Martinez, Thibaut; Paz, Manuel M; Sapse, Anne-Marie

    2016-04-01

    Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.

  11. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  12. Hydrogen bonds in PC61BM solids

    Science.gov (United States)

    Sheng, Chun-Qi; Li, Wen-Jie; Du, Ying-Ying; Chen, Guang-Hua; Chen, Zheng; Li, Hai-Yang; Li, Hong-Nian

    2015-09-01

    We have studied the hydrogen bonds in PC61BM solids. Inter-molecular interaction is analyzed theoretically for the well-defined monoclinic (P21/n) structure. The results indicate that PC61BM combines into C-H⋯Od bonded molecular chains, where Od denotes the doubly-bonded O atom of PC61BM. The molecular chains are linked together by C-H⋯Os bonds, where Os denotes the singly-bonded O atom of PC61BM. To reveal the consequences of hydrogen bond formation on the structural properties of PC61BM solids (not limited to the monoclinic structure), we design and perform some experiments for annealed samples with the monoclinic (P21/n) PC61BM as starting material. The experiments include differential scanning calorimetry, X-ray diffraction and infrared absorption measurements. Structural phase transitions are observed below the melting point. The C-H⋯Od bonds seem persisting in the altered structures. The inter-molecular hydrogen bonds can help to understand the phase separation in polymer/PC61BM blends and may be responsible for the existence of liquid PC61BM.

  13. Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated BALB/cN mice

    Institute of Scientific and Technical Information of China (English)

    Robert DOMITROVI(C); Hrvoje JAKOVAC; Vanja VASILJEV MARCHESI; Sanda VLADIMIR-KNE(Z)EVI(C); Olga CVIJANOVI(C); (Z)arko TADI(C); (Z)eljko ROMI(C); Dario RAHELI(C)

    2012-01-01

    Aim:To investigate the mechanisms underlying the protective effects of quercetin-rutinoside (rutin) and its aglycone quercetin against CCl4-induced liver damage in mice.Methods:BALB/cN mice were intraperitoneally administered rutin (10,50,and 150 mg/kg) or quercetin (50 mg/kg) once daily for 5 consecutive days,followed by the intraperitoneal injection of CCl4 in olive oil (2 mL/kg,10% v/v).The animals were sacrificed 24 h later.Blood was collected for measuring the activities of ALT and AST,and the liver was excised for assessing Cu/Zn superoxide dismutase (SOD) activity,GSH and protein concentrations and also for immunoblotting.Portions of the livers were used for histology and immunohistochemistry. Results:Pretreatment with rutin and,to a lesser extent,with quercetin significantly reduced the activity of plasma transaminases and improved the histological signs of acute liver damage in CCl4-intoxicated mice.Quercetin prevented the decrease in Cu/Zn SOD activity in CCl4-intoxicated mice more potently than rutin.However,it was less effective in the suppression of nitrotyrosine formation.Quercetin and,to a lesser extent,rutin attenuated the inflammation in the liver by down-regulating the CCl4-induced activation of nuclear factor-kappa B (NF-κB),tumor necrosis factor-α (TNF-α) and cyclooxygenase (COX-2).The expression of inducible nitric oxide synthase (iNOS) was more potently suppressed by rutin than by quercetin.Treatment with both flavonoids significantly increased NF-E2-related factor 2 (Nrf2) and heme oxygenase (HO-1) expression in injured livers,although quercetin was less effective than rutin at an equivalent dose.Quercetin more potently suppressed the expression of transforming growth factor-β1 (TGF-β1) than rutin.Conclusion:Rutin exerts stronger protection against nitrosative stress and hepatocellular damage but has weaker antioxidant and antiinflammatory activities and antifibrotic potential than quercetin,which may be attributed to the presence of a

  14. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui

    2016-01-01

    there is evidence of bond formation [6]. Hydrogen bonds in the solid state fall into the classification of strong, moderate, and weak hydrogen bonds [7]. In molecular systems like H2O (vs. H2S) or NH3 (vs. PH3), strong hydrogen bonds lead to higher melting points. However, in organic salts, the situation may...

  15. 4d $\\cN$=2 theories with disconnected gauge groups

    CERN Document Server

    Argyres, Philip C

    2016-01-01

    In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $\\cN=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $\\cN=2$ SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the $U(1)_R$, low-energy EM duality group $SL(2,\\Z)$, and the outer automorphism group of the flavor symmetry algebra, Out($F$). The theories that we construct are remarkable in many ways: (i) two of them have exceptional $F_4$ and $G_2$ flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $\\cN=2$ SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $\\cN=3$ SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal centr...

  16. Voltage-Induced Effect on Resistance of C:N/Si Heterojunctions

    Institute of Scientific and Technical Information of China (English)

    GAO Xi-Li; ZHANG Xiao-Zhong; WAN Cai-Hua; WANG Ji-Min

    2012-01-01

    Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated.For reverse applied voltages,a-C:N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages.After the excitation of repeated high reverse applied voltages,the current-voltage curves show obvious hysteresis behaviors at low temperatures.These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.%Nitrogen doped a-C/Silicon (a-C:N/Si) heterojunctions have been fabricated by using the pulsed laser deposition (PLD) technique and their current-voltage characteristics at various temperatures are investigated. For reverse applied voltages, a-C.N/Si heterojunctions exhibit metal-insulator transition characteristics and the transition temperature can be controlled by the applied voltages. After the excitation of repeated high reverse applied voltages, the current-voltage curves show obvious hysteresis behaviors at low temperatures. These hysteresis behaviors are reproducible and the ratio of the high/low resistance can be greater than 104.

  17. Chemical and Biological Evaluation of Maturity of Pig Manure Compost at Different C/N Ratios

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aerobic static pile composting (mechanical turning every 3 days) of pig manure was prepared at 8 m3 windrow heaps. Sawdust was used as the bulking agent to provide additional carbon and to increase the porosity of the substrate. Two treatments at initial C/N ratios of 30 and 15, respectively, were designed in the study. Dissolved organic carbon (DOC), soluble NH4+-N, C/N ratios in solid and aqueous phases, E4/E6 ratios, and seed germination index (GI) were determined to evaluate the maturity of the co-composts. Seed germination index, a biological parameter, was suggested as one of the most reliable maturity indicators for organic compost. The results showed that the treatment at the initial C/N ratio of 30 reached maturity after 49 days of composting; however, the treatment at the initial C/N ratio of 15 should require composting time of longer than 63 days to obtain maturation. Chemical multi-indicator evaluation was necessary, and the GI measurement was the recommended approach for maturity evaluation in the study.

  18. Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems.

    Directory of Open Access Journals (Sweden)

    Bhim B Ghaley

    Full Text Available Land use and management intensity can influence provision of ecosystem services (ES. We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat, a combined food and energy system (CFE and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1 yr(-1 followed by CFE (US$ 800 ha(-1 yr(-1 and Cwheat (US$ 339 ha(-1 yr(-1. The combined economic value was highest in the CFE (US$ 3143 ha(-1 yr(-1 as compared to the Cwheat (US$ 2767 ha(-1 yr(-1 and beech forest (US$ 2365 ha(-1 yr(-1. We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.

  19. Stable isotape ratios of H, C, N an O in Italian citrus juices

    NARCIS (Netherlands)

    Bontempo, L.; Caruso, R.; Fiorillo, M.; Gambino, G.L.; Perini, M.; Simoni, M.; Traulo, P.; Wehrens, H.R.M.J.; Gagliano, G.; Camin, F.

    2014-01-01

    Stable isotope ratios (SIRs) of C, N, H and O have been exensively used in fruit juices quality control (ENV and AOAC methods) to detect added sugar and the watering down of concentrated juice, practices prohibited by European legislation (EU Directive 2012/12). The European Fruit Juice Association

  20. Analisis Parameter Ber Dan C/N Dengan Lnb Combo Pada Teknologi Dvb-S2

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2013-11-01

    Full Text Available Instalasi antena parabola berfungsi untuk memudahkan pada saat pengarahan pointing antena ke satelit yang dituju. Permasalahan yang diketahui yaitu bagaimana perilaku parameter Bit Error Rate (BER dan Carrier to Noise (C/N pada LNB Combo yang menggunakan teknologi DVB-S2. Setelah instalasi antena parabola dilakukan dan sukses, maka langkah selanjutnya yaitu melakukan pointing antena. Pointing antena diarahkan pada posisi satelit yang akan dituju. Satelit yang akan dituju yaitu Palapa D menggunakan frekuensi C-Band sedangkan Ku-Band diarahkan pada satelit NSS 6. Setelah pointing selesai dilakukan maka langkah selanjutnya yaitu menghubungkan dengan Digital Video Broadcasting Satellite Second Generation (DVB-S2. DVB-S2 merupakan receiver. Parameter yang diamati yaitu parameter BER dan C/N. Parameter BER merupakan perbandingan dengan jumlah bit yang diterima secara tidak benar dengan jumlah bit informasi yang ditransmisikan pada selang waktu tertentu. Parameter C/N merupakan perbandingan nilai pada carrier yang diterima dengan nilai sinyal noise yang dihasilkan dalam suatu link. Diperlukan juga Low Noise Block (LNB Combo yang berguna untuk mentransmisikan sinyal ke receiver. LNB yang digunakan merupakan LNB Combo, dimana dua buah frekuensi yakni C-Band dan KU-Band menjadi satu dalam sebuah LNB. Setelah melakukan pengukuran dan melihat hasil pengukuran, dapat disimpulkan bahwa LNB Combo berpengaruh pada sinyal C-Band yang dihasilkan, sinyal C-Band akan mengalami penurunan kualitas, ini dibuktikan dari hasil pengukuran yang telah dilakukan bahwa nilai parameter C/N dan BER pada Ku-Band lebih baik daripada nilai parameter C/N dan BER pada CBand.

  1. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    Science.gov (United States)

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  2. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    Directory of Open Access Journals (Sweden)

    Richard P Laura

    Full Text Available Among the human heme-peroxidase family, myeloperoxidase (MPO has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO after it exits the endoplasmic reticulum (ER. Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  3. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation

    Science.gov (United States)

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  4. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  5. Synthesis and characterization of a new material based on porous silica-Chemically immobilized C,N-pyridylpyrazole for heavy metals adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco)], E-mail: radi_smaail@yahoo.fr; Attayibat, Ahmed [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Lekchiri, Yahya [Laboratoire de Biochimie, Departement de Biologie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Ramdani, Abdelkrim [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Departement de Chimie, Faculte des Sciences, Universite Mohamed 1er, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Laboratoire de Chimie Macromoleculaire, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq (France)

    2008-10-15

    The immobilization of C,N-pyridylpyrazole on the surface of epoxy group containing silica gel phase for the formation of a newly synthesized material based on porous silica-bound C,N-pyridylpyrazole (SGPP) is described. The surface modification was characterized by {sup 13}C NMR of solid sample, elemental analysis and infrared spectra and was studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and BJH pore sizes, respectively. The new material exhibits good thermal stability determined by thermogravimetry curves. The synthesized material was utilised in column and batch methods for separation and trace extraction of (Hg{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, K{sup +}, Na{sup +} and Li{sup +}) and compared to results of classical liquid-liquid extraction with the unbound C,N-pyridylpyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the material exhibits a high selectivity toward Hg(II)

  6. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  7. Theoretical Study of Geometric Structures for Ground-state Al_nC(n=2-7) Clusters%Theoretical Study of Geometric Structures for Ground-state Al_nC(n=2-7) Clusters

    Institute of Scientific and Technical Information of China (English)

    LI Gui-Fa; LU Shi-Qiang; PENG Ping

    2012-01-01

    With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by setting "imaging product".A new high symmetry,supervalence isomer of Al5C cluster,i.e.,D5h-Al5C,at the local minimum in the MEPs is detected.Several parameters,such as binding energy,HOMO-LUMO energy gap,vertical electron detachment energy and electron affinity energy,are calculated to characterize and evaluate the stability of three Al5C configurations,i.e.,D5h-Al5C,Cs-Al5C and C1-Al5C.The results show that the D5h-Al5C cluster is the ground state structure instead of Cs-Al5C.Due to the formation of many central σ bonds after polymerizing for D5h-Al5C,the decrease of the energy for HOMO orbit results in more territory for HOMO electrons of dislocation effect,then the energy difference between HOMO and LUMO is increasing to enhance the stability of molecules to produce such supervalence structure of Al5C cluster.The configuration evolution between D5h-Al5C,Cs-Al5C and C1-Al5C and the synthesis preference in the mode of Al5 + C → Al5C reveals that the Cs-Al5C and C1-Al5C con-figurations are permissive to coexist with D5h-Al5C structure in energetics.

  8. The dissociative bond.

    Science.gov (United States)

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  9. The samurai bond market

    OpenAIRE

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  10. Study on Valent Electron Structure of(Ti、W)(C、N)%(Ti,W)(C,N)的价电子结构研究

    Institute of Scientific and Technical Information of China (English)

    章桥新

    2001-01-01

    The valent electron structute of (Ti、W)(C、N)solid solution hasbeen analyzed according to the classical electron theory of solid and molecule.The result shows that the covalent electron number nA in the strongest bond of (Ti、W)(C、N)solid solution decreases with the increase of W or N.Some properties of (Ti、W)(C、N)has been analyzed based on this result.%根据固体与分子经验电子理论,对(Ti,W)(C,N)固溶体的价电子结构进行了分析,结果表明:(Ti,W)(C,N)固溶体的最强键上的共价电子数nA随W或N的增加而减小,并借此对(Ti,W)(C,N)的一些性能进行了分析。

  11. The 14C(n,γ) cross section between 10 keV and 1 M

    CERN Document Server

    Reifarth, R; Forssén, C; Besserer, U; Couture, A; Dababneh, S; Dörr, L; Görres, J; Haight, R C; Käppeler, F; Mengoni, A; O'Brien, S; Patronis, N; Plag, R; Rundberg, R S; Wiescher, M; Wilhelmy, J B

    2008-01-01

    The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,γ) reaction is also important for the validation of the Coulomb dissociation method, where the (n,γ) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,γ) reaction with neutron energies ranging from 20 to 800 keV.

  12. First direct measurement of 12C(12C,n23Mg at stellar energies

    Directory of Open Access Journals (Sweden)

    Tang X.D.

    2016-01-01

    Full Text Available Neutrons produced by the carbon fusion reaction 12C(12C,n23Mg play an important role in stellar nucleosynthesis. Past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement which extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C(12C,p23Na. The new reaction rate has been determined with a well-defined uncertainty which exceeds the precision required by astrophysics models. Using our constrained rate, we find that 12C(12C,n23Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae.

  13. [Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants].

    Science.gov (United States)

    Hong, Jiang-Tao; Wu, Jian-Bo; Wang, Xiao-Dan

    2013-09-01

    The response patterns of biogeochemical cycle and the adaptation strategies of terrestrial plants under the background of global climate change have received extensive attention. This paper analyzed the effects of climate warming and precipitation change on the plant C:N:P in different ecosystems, the effects of elevated atmospheric CO2 on the plant nutrients in different photosynthetic pathways, and the short-term and long-term effects of the responses of soil-plant nutrients to nitrogen deposition, and explored the possible underlying mechanisms in terms of the plant physiological properties in relation to soil available nutrients, which could provide theoretical bases for studying the nutrients (C, N and P) transmission and regulation mechanisms between soil and plant, the structure and function of terrestrial ecosystems, and the responses of biogeochemical cycle to global climate change. The existing problems and the further research directions in this study area were proposed.

  14. Generation of serine/threonine check points in HN(C)N spectra

    Indian Academy of Sciences (India)

    Dinesh Kumar; Jeetender Chugh; Ramakrishna V Hosur

    2009-11-01

    We describe here a simple modification of the HN(C)N experiment for the generation of serine/threonine check points in the three-dimensional experiment. The various `triplet of residue’ specific peak patterns in the spectra are documented for ease of analysis and sequential backbone resonance assignment. The performance of this experiment, referred to as HN(C)N-ST, is demonstrated using two proteins, one properly folded and the other completely denatured. It is noteworthy that, even in the denatured protein, where spectral dispersions are rather poor, about 90% of the sequential connectivities through the chain could be established from this single experiment. This would have great implications for structural genomics efforts.

  15. Solvent effects on hydrogen bonding between primary alcohols and esters

    Institute of Scientific and Technical Information of China (English)

    DHARMALINGAM K.; RAMACHANDRAN K.; SIVAGURUNATHAN P.

    2006-01-01

    The interaction by hydrogen bond formation of some primary alcohols (1-heptanol, 1-octanol and 1-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane,CCh and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent effect on the hydrogen bond formation is discussed in terms of specific interaction between the solute and solvent.

  16. Effect of Potassium and C/N Ratios on Conversion of NH+4 in Soils

    Institute of Scientific and Technical Information of China (English)

    TANG Yan; WANG Xiao-Zhi; ZHAO Hai-Tao; FENG Ke

    2008-01-01

    Two soils, one consisting of 1:1 clay minerals at pH 4.5 and the other containing 2:1 clay minerals at pH 7.0, were used to estimate the conversion of added NH+4 under different C/N ratios (glucose as the C source) and the addition of potassium. Under lower C/N ratios (0:1 and 5:1), a large part of the added NH+4 in the acid soil was held in the forms of either exchangeable or water soluble NH+4 for a relatively long time and under higher C/N ratio (50:1), a large amount of the added NH+4 was directly immobilized by microorganisms. In the second soil containing appreciable 2:1 type clay minerals a large part of the added NH+4 at first quickly entered the interlayer of the minerals under both lower and higher C/N ratios. In second condition, however, owing to microbial assimilation stimulated by glucose the newly fixed NH+4 could be completely released in further incubation because of a large concentration gradicnt between external NH+4 and fixed NH+4 in the mineral interlayer caused by heterotrophic microorganisms, which imply the fixed NH+4 to be available to plants. The results also showed that if a large amount of K+ with carbon source together was added to soil, the higher K+ concentration of soil solution could impede the release of fixed NH+4, even if there was a lot of carbon source.

  17. Ti(C,N) and (Ti,Al)N hard wear resistant coatings

    OpenAIRE

    K. Gołombek; J. Mikuła; W. Kwaśny; L.W. Żukowska; L.A. Dobrzański

    2010-01-01

    Purpose: Investigation the influence of kind of PVD coatings structure (homogenous or gradient) on properties of deposited tool materials: cemented carbides and cermets.Design/methodology/approach: Analysis of the structure, analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. The Ti(C,N) gradient coating was investigated by XPS method with multifunctional PHI 5700/660 spectrometer. The characteristic of surface region coa...

  18. Optimal C:N ratio for the production of red pigments by Monascus ruber.

    Science.gov (United States)

    Said, Farhan M; Brooks, John; Chisti, Yusuf

    2014-09-01

    The carbon-to-nitrogen (C:N) ratio in the biomass of microfungi tends to be quite different (e.g. 10-15) compared with the C:N ratio in the red pigments (e.g. >20) of the fungus Monascus ruber. Therefore, determining an optimal C:N ratio in the culture medium for maximizing the production of the pigments is important. A culture medium composition is established for maximizing the production of the red pigment by the fungus M. ruber ICMP 15220 in submerged culture. The highest volumetric productivity of the red pigment was 0.023 AU L(-1) h(-1) in a batch culture (30 °C, initial pH of 6.5) with a defined medium of the following composition (g L(-1)): glucose (10), monosodium glutamate (MSG) (10), MgSO4·7H2O (0.5), KH2PO4 (5), K2HPO4 (5), ZnSO4·7H2O (0.01), FeSO4·7H2O (0.01), CaCl2 (0.1), MnSO4·H2O (0.03). This medium formulation had a C:N mole ratio of 9:1. Under these conditions, the specific growth rate of the fungus was 0.043 h(-1) and the peak biomass concentration was 6.7 g L(-1) in a 7-day culture. The biomass specific productivity of the red pigment was 1.06 AU g(-1) h(-1). The best nitrogen source proved to be MSG although four other inorganic nitrogen sources were evaluated.

  19. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells.

    Science.gov (United States)

    Md Khudzari, Jauharah; Tartakovsky, Boris; Raghavan, G S Vijaya

    2016-02-01

    In this work, compost Microbial Fuel Cells (cMFCs) were used to generate electricity from a mix of fruit and vegetable wastes, and soil with different C/N ratios and salinities. Experiments were carried out in 500mL cMFCs equipped with carbon felt anodes and manganese dioxide cathodes. The cMFCs were loaded with fresh compost and operated at 20-23°C for up to 97days. The low C/N ratio (C/N 24) had a greater power production with a maximum power density of 5.29mW/m(2) (71.43mW/m(3)), indicating a more favorable condition for microbial growth. High-saline cMFCs produced lower power, suggesting that their level of salinity (10g/L of NaCl) inhibited electricigenic microorganisms. The closed-circuit cMFC showed an improved degradation of organic matter by 6% to 8% compared to the control MFC operated in an open circuit mode (no external resistor attached).

  20. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N

    Science.gov (United States)

    Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.

    2012-08-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  1. Flexible C : N ratio enhances metabolism of large phytoplankton when resource supply is intermittent

    Directory of Open Access Journals (Sweden)

    D. Talmy

    2014-04-01

    Full Text Available Phytoplankton cell size influences particle sinking rate, food web interactions and biogeographical distributions. We present a model in which the uptake, storage and assimilation of nitrogen and carbon are explicitly resolved in different sized phytoplankton cells. In the model, metabolism and cellular C : N ratio are influenced by accumulation of carbon polymers such as carbohydrate and lipid, which is greatest when cells are nutrient starved, or exposed to high light. Allometric relations and empirical datasets are used to constrain the range of possible C : N, and indicate larger cells can accumulate significantly more carbon storage compounds than smaller cells. When forced with extended periods of darkness combined with brief exposure to saturating irradiance, the model predicts organisms large enough to accumulate significant carbon reserves may on average synthesize protein and other functional apparatus up to five times faster than smaller organisms. The advantage of storage in terms of average daily protein synthesis rate is greatest when modeled organisms were previously nutrient starved, and carbon storage reservoirs saturated. Small organisms may therefore be at a disadvantage in terms of average daily growth rate in environments that involve prolonged periods of darkness and intermittent nutrient limitation. We suggest this mechanism is a significant constraint on phytoplankton C : N variability and cell size distribution in different oceanic regimes.

  2. Flexible C : N ratio enhances metabolism of large phytoplankton when resource supply is intermittent

    Directory of Open Access Journals (Sweden)

    D. Talmy

    2014-09-01

    Full Text Available Phytoplankton cell size influences particle sinking rate, food web interactions and biogeographical distributions. We present a model in which the uptake, storage and assimilation of nitrogen and carbon are explicitly resolved in different-sized phytoplankton cells. In the model, metabolism and cellular C : N ratio are influenced by the accumulation of carbon polymers such as carbohydrate and lipid, which is greatest when cells are nutrient starved, or exposed to high light. Allometric relations and empirical data sets are used to constrain the range of possible C : N, and indicate that larger cells can accumulate significantly more carbon storage compounds than smaller cells. When forced with extended periods of darkness combined with brief exposure to saturating irradiance, the model predicts organisms large enough to accumulate significant carbon reserves may on average synthesize protein and other functional apparatus up to five times faster than smaller organisms. The advantage of storage in terms of average daily protein synthesis rate is greatest when modeled organisms were previously nutrient starved, and carbon storage reservoirs saturated. Small organisms may therefore be at a disadvantage in terms of average daily growth rate in environments that involve prolonged periods of darkness and intermittent nutrient limitation. We suggest this mechanism is a significant constraint on phytoplankton C : N variability and cell size distribution in different oceanic regimes.

  3. Effect of Various Carbides on the Wettability in Ni/Ti( C, N) System

    Institute of Scientific and Technical Information of China (English)

    LIU Ning; CHEN Minghai; XU Yudong; ZHOU Jie; SHI Min

    2005-01-01

    The wettability in Ni / Ti ( C, N) systems with various carbides additions was investigated by the sessile drop technique. The substrates prepared by HP at 2073 K for lh before and after wetting were characterized by XRD. The microstructure at metal/ceramics interfaces was observed via SEM in a back scattered mode. Furthermore, an X-ray energy-dispersive spectrometer (EDS) attached to SEM was used to study the element diffusion in interracial regions. The results reveal that reactive wetting takes place in the system in high temperature wetting procedure, which is controlled by diffusion and dissolution mechanism. Results also show that the contact angles decrease with various carbides aditions, including WC, Mo2 C, TaC, NbC and VC, and decrease continuously with the increasing of additions. The order of the contact angles in Ni/Ti(C,N) systems with 10 wt% carbides additions is Mo2 C < TaC < WC < VC < NbC. The enhancement of the wettability is due to an alloying procedure during high temperature wetting when metallic atoms diffuse into Ni phase, which decreases the interfacial energy of Ni/Ti(C,N) systems.

  4. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis.

    Science.gov (United States)

    Schaller, J; Brackhage, C; Gessner, M O; Bäuker, E; Gert Dudel, E

    2012-03-01

    Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.

  5. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).

    Science.gov (United States)

    Lau, Kai-Chung; Chang, Yih Chung; Shi, Xiaoyu; Ng, C Y

    2010-09-21

    The ionization energy (IE) of NiC and the 0 K bond dissociation energies (D(0)) and heats of formation at 0 K (ΔH(o)(f0)) and 298 K (ΔH(o)(f298)) for NiC and NiC(+) are predicted by the wavefunction based CCSDTQ(Full)/CBS approach and the multireference configuration interaction (MRCI) method with Davidson correction (MRCI+Q). The CCSDTQ(Full)/CBS calculations presented here involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation, core-valence electronic (CV), spin-orbit coupling (SO), and scalar relativistic effect (SR) corrections. The present calculations provide the correct symmetry predictions for the ground states of NiC and NiC(+) to be (1)∑(+) and (2)∑(+), respectively. The CCSDTQ(Full)/CBS IE(NiC)=8.356 eV is found to compare favorably with the experimental IE value of 8.372 05±0.000 06 eV. The predicted IE(NiC) value at the MRCI+Q/cc-pwCV5Z level, including the ZPVE, SO, and SR effects is 8.00 eV, which is 0.37 eV lower than the experimental value. This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ(Full)/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC and NiC. Furthermore, the CCSDTQ(Full)/CBS calculations give the prediction of D(0)(Ni-C)-D(0)(Ni(+)-C)=0.688 eV, which is also consistent with the experimental determination of 0.732 21±0.000 06 eV, whereas the MRCI+Q calculations (with relativistic and CV effects) predict a significantly lower value of 0.39 eV for D(0)(Ni-C)-D(0)(Ni(+)-C). The analysis of the correction terms shows that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of NiC/NiC(+). For the experimental D(0) and ΔH(o)(f0) values of

  6. Effects of Soil C/N Ratio on Apple Growth and Nitrogen Utilization,Residue and Loss

    Institute of Scientific and Technical Information of China (English)

    Shunfeng; GE; Yihua; REN; Ling; PENG; Haigang; XU; Mengmeng; JI; Shaochong; WEI; Yuanmao; JIANG

    2014-01-01

    Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji’/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20,25,30,35 and 40]on apple growth and nitrogen utilization and loss by using15N trace technique. The results showed that,with the increasing of soil C/N ratio,apple shoot length and fresh weight increased at first,and then decreased; the higher apple shoot length and fresh weight appeared in C/N = 15,20 and 25 treatments,and there were no significant differences among these three treatments,but significantly higher than the other treatments. Statistical analysis revealed that there was significant difference in nitrogen utilization rate between the different treatments,the highest N utilization rate was occurred in soil C/N = 25 treatment which value was 22. 87%,and there was no significant difference between soil C/N = 25 and C/N = 20 treatments,but both the two treatments were significantly higher than the other treatments; Soil C/N = 40 had the lowest N utilization rate which value was 15. 43%,and this value was less than CK( 16. 65%). The proportion of plant absorption nitrogen from fertilizer was much higher when the value of soil C/N ratio in the range of 15- 25,but the percentage of plant absorption nitrogen from soil was much higher when the soil C/N ratio was too low( < 15) or high( < 25). Amount of residual nitrogen in soil increased gradually with the soil C/N ratio increasing,the amount of residual nitrogen in C/N = 40 treatment was 1. 32 times than that in CK. With the increasing of soil C/N ratio,fertilizer nitrogen loss decreased at first,and then increased,fertilizer nitrogen loss was the minimum in C/N = 25 treatments( 49. 87%) and the maximum were occurred in CK( 61. 54%). Therefore,regarding the apple growth and nitrogen balance situation,the value of soil C/N ratio in the range of 15- 25 would be favorable for apple growth and could

  7. Binding of reactive organophosphate by oximes via hydrogen bond

    Indian Academy of Sciences (India)

    Andrea Pappalardo; Maria E Amato; Francesco P Ballistreri; Valentina La Paglia Fragola; Gaetano A Tomaselli; Rosa Maria Toscano; Giuseppe Trusso Sfrazzetto

    2013-07-01

    In this contribution, the ability of simple oximes to bind a well-known nerve agent simulant (dimethylmethylphosphonate, DMMP) via hydrogen bond is reported. UV/Vis measurements indicate the formation of 1:1 complexes. 1H-, 31P-NMR titrations and T-ROESY experiments confirm that oximes bind the organophosphate via hydrogen bond.

  8. Experimental Investigation of Second Interface Cement Bond Evaluation

    Institute of Scientific and Technical Information of China (English)

    Che Xiaohua; Qiao Wenxiao

    2007-01-01

    Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation).Experimental simulation on cement bond logging was carried out with these model wells.The correlation of acoustic waveforms,casing wave energy and free casing area before and after cement bonding of the second interface was established.The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface,but the amplitude of the casing head wave decreased obviously after the second interface was bonded.So,cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals.Strong cement annulus waves with early arrivals were observed before the second interface was bonded,while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.

  9. Effect of ultrasonic power and bonding force on the bonding strength of copper ball bonds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the efficient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.

  10. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  11. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds

    NARCIS (Netherlands)

    Asaduzzaman, M.; Wahab, M.A.; Verdegem, M.C.J.; Huque, S.; Salam, M.A.; Azim, M.E.

    2008-01-01

    The present research investigated the effect of carbon/nitrogen ratio (C/N ratio) control in ponds with or without substrate addition for periphyton development on production of giant freshwater prawn. C/N ratios of 10, 15 and 20 were investigated in 40 m¿ 2 ponds stocked with 2 prawn juveniles (5.0

  12. 77 FR 62510 - C.N. Brown Electricity, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-10-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission C.N. Brown Electricity, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of C.N. Brown Electricity, LLC's application for market-based...

  13. Biomass allocation and C-N-P stoichiometry in C3 and C4 crops under abiotic stress

    Science.gov (United States)

    Biomass allocation to structural, metabolic and reproductive organs as well as their carbon, nitrogen and phosphorus (C-N-P) profiles and ratios (C:N, C:P, and N:P) were estimated in C3 and C4 crop plants subjected to multiple abiotic stresses (i.e., combination of temperature and water stress level...

  14. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    Science.gov (United States)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  15. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  16. Reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)₂Li(THF)₂] (BIPM(TMS) = {C(PPh₂NSiMe₃)₂}) towards carbonyl and heteroallene substrates: metallo-Wittig, adduct formation, C-F bond activation, and [2 + 2]-cycloaddition reactions.

    Science.gov (United States)

    Cooper, Oliver J; Mills, David P; Lewis, William; Blake, Alexander J; Liddle, Stephen T

    2014-10-14

    The reactivity of the uranium(IV) carbene complex [U(BIPM(TMS))(Cl)(μ-Cl)2Li(THF)2] (1, BIPM(TMS) = {C(PPh2NSiMe3)2}) towards carbonyl and heteroallene substrates is reported. Reaction of 1 with benzophenone proceeds to give the metallo-Wittig terminal alkene product Ph2C=C(PPh2NSiMe3)2 (2); the likely "UOCl2" byproduct could not be isolated. Addition of the bulky ketone PhCOBu(t) to 1 resulted in loss of LiCl, coordination of the ketone, and dimerisation to give [U(BIPM(TMS))(Cl)(μ-Cl){OC(Ph)(Bu(t))}]2 (3). The reaction of 1 with coumarin resulted in ring opening of the cyclic ester and a metallo-Wittig-type reaction to afford [U{BIPM(TMS)[C(O)(CHCHC6H4O-2)]-κ(3)-N,O,O'}(Cl)2(THF)] (4) where the enolate product remains coordinated to uranium. The reaction of PhCOF with 1 resulted in C-F bond activation and oxidation resulting in isolation of [U(O)2(Cl)2(μ-Cl)2{(μ-LiDME)OC(Ph)=C(PPh2NSiMe3)(PPh2NHSiMe3)}2] (5) along with [U(Cl)2(F)2(py)4] (6). The reactions of 1 with tert-butylisocyanate or dicyclohexylcarbodiimide resulted in the isolation of the [2 + 2]-cycloaddition products [U{BIPM(TMS)[C(NBu(t)){OLi(THF)2(μ-Cl)Li(THF)3}]-κ(4)-C,N,N',N''}(Cl)3] (7) and [U{BIPM(TMS)[C(NCy)2]-κ(4)-C,N,N',N''}(Cl)(μ-Cl)2Li(THF)2] (8). Complexes 2-8 have been variously characterised by single crystal X-ray diffraction, multi-nuclear NMR and FTIR spectroscopies, Evans method solution magnetic moments, variable temperature SQUID magnetometry, and elemental analyses.

  17. Diffusion bonding of titanium alloy to tin-bronze

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 刘会杰

    2002-01-01

    The vacuum diffusion bonding of titanium alloy to tin-bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is bonded joint has been observed by SEM, X-ray and EPMA, and the main factors affecting diffusion bonding have been analyzed. The intermetallic compounds Ti2Cu and TiCu were formed near the interface. The width and quantity of the intermetallic compound increases with the increase of the bonding time. The formation of the intermetallic compounds results in embrittlement of the joint and the poor joint properties.

  18. Effect of C/N on composting of pig manure with sawdust.

    Science.gov (United States)

    Huang, G F; Wong, J W C; Wu, Q T; Nagar, B B

    2004-01-01

    The aim of this composting trial was to evaluate the effect of C/N on the composting process of pig manure with the purpose of reducing the amount of sawdust normally used as co-composting materials. Two aerobic static piles were prepared consisting of pig manure mixed with sawdust at an initial C/N of 30 (pile A) and 15 (pile B), respectively. Pile B containing larger amount of pig manure showed a slower rise in temperature, lower maximum temperature, and shorter thermophilic phase than pile A. It also resulted in higher pH and electrical conductivity (EC) values, and even higher contents of soluble NH4-N and volatile solids throughout the composting period. Chemical and biological parameters including dissolved organic carbon (DOC) (4932 mg kg(-1)), soluble NH4-N (371 mg kg(-1)), C/Nsolid (18.3), C/Naquoeus (5.8) and seed germination index (GI) (66.5%) indicated that pile A achieved maturity after 49 days of composting. After 63 days of composting, pile B contained 5352 and 912 mg kg(-1) of DOC and soluble NH4-N content, respectively, which was much higher than the criterion of 5% and 400 mg kg(-1), indicating its immature nature. Pile B showed a relatively low GI value of 46%, which may be due to its high indigenous EC value as a result of larger amount of pig manure. Therefore, co-composting of pig manure with sawdust at a low initial C/N would require a composting longer than 63 days, and, the high salinity due to the large amount of pig manure would pose a potential inhibition on plant growth.

  19. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  20. Minimal model for dynamic bonding in colloidal transient networks

    Science.gov (United States)

    Krinninger, Philip; Fortini, Andrea; Schmidt, Matthias

    2016-04-01

    We investigate a model for colloidal network formation using Brownian dynamics computer simulations. Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other. We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network formation, to arrested quasistatic network behavior.

  1. Effect of Ti(C, N) on Properties of Low-carbon MgO-C Bricks

    Institute of Scientific and Technical Information of China (English)

    QIN Xianpeng; LI Yuanbing; YANG Zhenghong; LI Yawei

    2008-01-01

    The effect of Ti(C, N) on properties of low-carbon MgO-C bricks was investigated. The phase composition and the microstructure of the matrix of low-carbon MgO-C brick containing Ti(C, N) were studied by XRD and SEM analysis together with EDS. The results showed that Ti(C, N) distributed in the matrix of lowcarbon MgO-C brick uniformly after being treated at 1600℃ for 3h in coke powder bed, and Ti(C, N) and MgO formed a solid solution. After the treatment at 1600℃ for 3h in coke powder bed, the bulk density and cold crushing strength of low-carbon MgO-C brick with Ti(C, N) decreased, and the apparent porosity and linear change rate of specimens increased. The oxidation resistance of low-carbon MgO-C brick with Ti(C, N) was superior to that of low-carbon MgO-C brick with no additives, but inferior to that of low-carbon MgO-C brick with Al powder. The slag resistance of the specimen with Ti(C, N) was excellent as well.

  2. Crystal structure, ferromagnetostructural behavior and evidence of cooperative Jahn-Teller interactions of the complex [CuL]Cl·H 2O (L= N-glycyl-2(aminomethyl)benzimidazol), synthesized by a novel simple method of peptide bond formation.

    Science.gov (United States)

    García-Orozco, Ivan; Tapia-Benavides, Antonio Rafael; Alvarez-Toledano, Cecilio; Toscano, Ruben A.; Ramírez-Rosales, Daniel; Zamorano-Ulloa, Rafael; Reyes-Ortega, Yasmi

    2002-01-01

    [CuL]Cl·H 2O 1 (L= N-glycyl-2(aminomethyl)benzimidazol) compound crystallizes in the orthorhombic space group Pna2 1 with unit cell parameters a=7.140(5) Å, b=17.621(5) Å, c=9.941(5) Å. Its structure shows that the copper(II) ion is tetra coordinated with a square planar geometry. The ligand acts as a tridentate and the chloride ion is the fourth ligand. Symmetry related units stack into helicoidal columns along the ā direction producing weakly bonded strips with dihedral angles of 2.6° between two consecutive molecular planes. UV/VIS spectrum of 1 shows one broad and weak band at 622 nm, characteristic of d-d transitions, indicative of low local Cu(II) symmetry. X band ESR spectra of 1 at 300 and 77 K are axial exchange narrow lines with g∥=2.135 and g⊥=2.028. However, the axial spectrum at 6.4 K shows an increment Δ g∥=0.076(6) and Δ g⊥=0.028(4) which suggests a cooperative Jahn-Teller interactions between complexes via the hydrogen-bonding network. Magnetic susceptibility data at 18-300 K and fitted to the modified Bleany-Bowers equation indicate a weak ferromagnetic coupling with 2J≅+17 cm-1, which is compatible with the helium temperature ESR results and with the helicoidal stacking into columns of the molecules along the a-axis with 78.9° Cu'-Cl'-Cu and 81.2° Cu'-N( 1)-Cu bonds angles. The synthesis is a novel, simple and efficient method: in aqueous conditions and heterogeneous phase with basic copper(II) carbonate, which carries out the formation of the stable peptide bond.

  3. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  4. Modelling longevity bonds: Analysing the Swiss Re Kortis bond

    OpenAIRE

    2015-01-01

    A key contribution to the development of the traded market for longevity risk was the issuance of the Kortis bond, the world's first longevity trend bond, by Swiss Re in 2010. We analyse the design of the Kortis bond, develop suitable mortality models to analyse its payoff and discuss the key risk factors for the bond. We also investigate how the design of the Kortis bond can be adapted and extended to further develop the market for longevity risk.

  5. Formación de enlaces C-C, C-N y N-N con catalizadores de óxido de cerio y de oro/óxido de cerio.

    OpenAIRE

    Cómbita Merchán, Diego Fernando

    2016-01-01

    [EN] Heterogeneous catalysis is one of the most important tools in the advancement of green chemistry, understood it as one that efficiently uses (preferably renewable) raw materials, eliminate waste and avoids the use of toxic and/or dangerous reagents and solvents in chemicals production and application. In this thesis we have investigated the reaction mechanisms and the nature of the active centers in C-C, C-N and N-N bond forming reactions over cerium oxide and over gold nanoparticles...

  6. The reactivity of [PhP(Se)(mu-Se)]2 and (PhP)3Se2 towards acetylenes and cyanamides: X-ray crystal structures of some P-Se-C and P-Se-C-N heterocycles.

    Science.gov (United States)

    Bhattacharyya, Pravat; Slawin, Alexandra M Z; Woollins, J Derek

    2002-06-17

    Several unusual P-Se-C and P-Se-C-N heterocycles are formed by the reaction of [PhP(Se)(mu-Se)]2 or (PhP)3Se2 with alkynes or cyanamides, generated by the fragmentation of the organophosphorus-selenium compound and addition across the C identical to C or C identical to N triple bond of the organic substrate. X-ray crystallographic analysis reveals an unexpected diversity of structural motifs within these heterocyclic systems, including P2SeCN, P2C2Se and PC2Se2 rings.

  7. Formation of a ruthenium(IV)-oxo complex by electron-transfer oxidation of a coordinatively saturated ruthenium(II) complex and detection of oxygen-rebound intermediates in C-H bond oxygenation.

    Science.gov (United States)

    Kojima, Takahiko; Nakayama, Kazuya; Ikemura, Kenichiro; Ogura, Takashi; Fukuzumi, Shunichi

    2011-08-03

    A coordinatively saturated ruthenium(II) complex having tetradentate tris(2-pyridylmethyl)amine (TPA) and bidentate 2,2'-bipyridine (bpy), [Ru(TPA)(bpy)](2+) (1), was oxidized by a Ce(IV) ion in H(2)O to afford a Ru(IV)-oxo complex, [Ru(O)(H(+)TPA)(bpy)](3+) (2). The crystal structure of the Ru(IV)-oxo complex 2 was determined by X-ray crystallography. In 2, the TPA ligand partially dissociates to be in a facial tridentate fashion and the uncoordinated pyridine moiety is protonated. The spin state of 2, which showed paramagnetically shifted NMR signals in the range of 60 to -20 ppm, was determined to be an intermediate spin (S = 1) by the Evans' method with (1)H NMR spectroscopy in acetone-d(6). The reaction of 2 with various oraganic substrates in acetonitrile at room temperature afforded oxidized and oxygenated products and a solvent-bound complex, [Ru(H(+)TPA)(bpy)(CH(3)CN)], which is intact in the presence of alcohols. The oxygenation reaction of saturated C-H bonds with 2 proceeds by two-step processes: the hydrogen abstraction with 2, followed by the dissociation of the alcohol products from the oxygen-rebound complexes, Ru(III)-alkoxo complexes, which were successfully detected by ESI-MS spectrometry. The kinetic isotope effects in the first step for the reaction of dihydroanthrathene (DHA) and cumene with 2 were determined to be 49 and 12, respectively. The second-order rate constants of C-H oxygenation in the first step exhibited a linear correlation with bond dissociation energies of the C-H bond cleavage.

  8. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics.

    Science.gov (United States)

    Bhagan, Salome; Wayland, Bradford B

    2011-11-01

    Aqueous solutions of group nine metal(III) (M = Co, Rh, Ir) complexes of tetra(3,5-disulfonatomesityl)porphyrin [(TMPS)M(III)] form an equilibrium distribution of aquo and hydroxo complexes ([(TMPS)M(III)(D(2)O)(2-n)(OD)(n)]((7+n)-)). Evaluation of acid dissociation constants for coordinated water show that the extent of proton dissociation from water increases regularly on moving down the group from cobalt to iridium, which is consistent with the expected order of increasing metal-ligand bond strengths. Aqueous (D(2)O) solutions of [(TMPS)Ir(III)(D(2)O)(2)](7-) react with dihydrogen to form an iridium hydride complex ([(TMPS)Ir-D(D(2)O)](8-)) with an acid dissociation constant of 1.8(0.5) × 10(-12) (298 K), which is much smaller than the Rh-D derivative (4.3 (0.4) × 10(-8)), reflecting a stronger Ir-D bond. The iridium hydride complex adds with ethene and acetaldehyde to form organometallic derivatives [(TMPS)Ir-CH(2)CH(2)D(D(2)O)](8-) and [(TMPS)Ir-CH(OD)CH(3)(D(2)O)](8-). Only a six-coordinate carbonyl complex [(TMPS)Ir-D(CO)](8-) is observed for reaction of the Ir-D with CO (P(CO) = 0.2-2.0 atm), which contrasts with the (TMPS)Rh-D analog which reacts with CO to produce an equilibrium with a rhodium formyl complex ([(TMPS)Rh-CDO(D(2)O)](8-)). Reactivity studies and equilibrium thermodynamic measurements were used to discuss the relative M-X bond energetics (M = Rh, Ir; X = H, OH, and CH(2)-) and the thermodynamically favorable oxidative addition of water with the (TMPS)Ir(II) derivatives.

  9. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    Science.gov (United States)

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.

  10. Pasarela metálica sobre la C. N. III, Madrid-Valencia

    Directory of Open Access Journals (Sweden)

    Rodríguez-Borlado Olavarrieta, Ramiro

    1967-03-01

    Full Text Available The footbridge over the C. N. Ill , Madrid-Valencia road, near Madrid, enables pedestrians to cross the motor road where the latter runs between Moratalaz and Vallecas, without impeding the road traffic. The adoption of an elevated pass is convenient, since at this section the road runs along a deep trench. The structure of the footpath is a continuous metallic box girder, resting on five rectangular metal supports, and two end concrete abutments. The total length of the bridge is 100 m, and the width of the platform is 2.40 m. The project took one month to complete.La pasarela sobre la C. N. III, Madrid-Valencia, en la autopista de acceso a Madrid, permite el paso de peatones entre los barrios de Moratalaz y Vallecas sin interferir el tráfico rodado. La solución de paso superior resulta conveniente, ya que la autopista discurre en trinchera en el lugar de ubicación de esta obra. La estructura está formada por una viga metálica continua de sección en cajón, apoyada sobre cinco soportes rectangulares metálicos y dos estribos de hormigón armado. La obra tiene una longitud total de aproximadamente 100 m y el ancho de la plataforma es de 2,40 metros. El plazo de realización de la obra ha sido de un mes aproximadamente.

  11. Growth of marine bacteria and ammonium regeneration from substrates in different C:N ratios

    Institute of Scientific and Technical Information of China (English)

    WANG Jiangtao; YIN Xiaonan

    2009-01-01

    Natural assemblages of marine bacteria were chosen in a batch culture experiments. The impact of varying nitrogen substrate concentrations and the substrate C:N ratios (C:Ns) on the bacterial C:N ratio (C:NB), the bacterial growth efficiency (BGE) and ammonium regeneration was mainly examined. The C:Ns ratios varied from 5:1 (carbon limitation) to 40:1 (nitrogen limitation) with varying combinations of glucose and NO3. The C:NB ratio had positive relationship with the C:Ns ratio (r=0.93, n=8), whose value was 3.77 when the C:Ns ratio was 5:1 but increased to 6.47 when the C:Ns ratio was 40:1. These results indicate that the C:NB ratio is a potential diagnostic tool for determining the bacterial growth in natural waters controlled by either, carbon or nitrogen. BGE decreased with the declining nitrate concentration and negatively related to C:Ns (r=-0.51,n=8). The average value of BGE was 0.20. This value was a little lower than other reports, which could be induced by the nitrogen source used in our experiments. Finally, regeneration time of ammonium delayed with the increasing C:Ns ratio, which indicates that there were different metabolism mechanisms when bacterial growth was limited by carbon source and nitrogen source.

  12. The first direct measurement of 12C(12C,n)23Mg at stellar energies

    CERN Document Server

    Bucher, B; Fang, X; Heger, A; Almaraz-Calderon, S; Alongi, A; Ayangeakaa, A D; Beard, M; Best, A; Browne, J; Cahillane, C; Couder, M; deBoer, R J; Kontos, A; Lamm, L; Li, Y J; Long, A; Lu, W; Lyons, S; Notani, M; Patel, D; Paul, N; Pignatari, M; Roberts, A; Robertson, D; Smith, K; Stech, E; Talwar, R; Tan, W P; Wiescher, M; Woosley, S E

    2015-01-01

    Neutrons produced by the carbon fusion reaction 12C(12C,n)23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C(12C,p)23Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that 12C(12C,n)23Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galactic gamma-ray emitter 60Fe.

  13. Rotational spectra and properties of complexes B···ICF3 (B = Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation.

    Science.gov (United States)

    Stephens, Susanna L; Walker, Nicholas R; Legon, Anthony C

    2011-12-14

    The ground-state rotational spectra of two weakly bound complexes B···ICF(3) (B = Kr or CO) formed by trifluoroiodomethane have been observed in pulsed jets by using two types of Fourier-transform microwave spectroscopy (chirped-pulse and Fabry-Perot cavity). Both complexes exhibit symmetric-top type spectra, thus indicating that the Kr atom in Kr···ICF(3) and both the C and O atoms in OC···ICF(3) lie along the C(3) axis of ICF(3). The rotational constant B(0), the centrifugal distortion constants D(J) and D(JK), and the iodine nuclear quadrupole coupling constant χ(aa)(I) were determined for each of the isotopologues (84)Kr···ICF(3), (86)Kr···ICF(3), (16)O(12)C···ICF(3), (16)O(13)C···ICF(3), and (18)O(12)C···ICF(3). Interpretation of the spectroscopic constants reveals that the carbon atom of CO is adjacent to I and participates in the weak bond in OC···ICF(3). Simple models based on unperturbed component geometries lead to the distances r(Kr···I) = 3.830(1) Å and r(C···I) = 3.428(1) Å in Kr···ICF(3) and OC···ICF(3), respectively, and to the quadratic force constants for stretching of the weak bond k(σ) = 2.80 N m(-1) and 3.96 N m(-1), respectively. The distances r(Z···I) (Z is the acceptor atom in B), the k(σ) values, and the angular geometries of the pair of complexes B···ICF(3) and B···ICl for a given B are compared when B = Kr, CO, H(2)O, H(2)S, or NH(3). The comparison reveals that the iodine bond in B···ICF(3) is systematically longer and weaker than that of B···ICl, while the angular geometry of the B···I moiety is isomorphic in B···ICF(3) and B···ICl for a given B. It is concluded that -CF(3) is less effective than -Cl as an electron-withdrawing group when attached to an I atom and that the angular geometries of the B···ICF(3) can be predicted by means of a simple rule that holds for many hydrogen- and halogen-bonded complexes.

  14. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  15. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  16. EFFECT OF TITANIUM CARBIDE ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA-FINE Ti(C, N)-Ni CERMET%添加碳化钛对超细Ti(C,N)-Ni金属陶瓷显微结构和力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    陈文琳; 刘宁; 晁盛

    2007-01-01

    用传统粉末冶金法制备了添加碳化钛(TiC)的Ti(C,N)基金属陶瓷.为了得到超细晶粒的显微结构,主要硬质相[Ti(C,N),TiC和TiN]的初始粉末粒度为纳米、亚微米级.通过扫描电子显微镜观察,发现了一种新的白芯/灰壳结构,揭示了其形成机制.此外,通过能谱仪分析,获得了各相的化学成分.用X射线衍射仪并通过计算得出了各相的点阵参数.对室温下该材料的力学性能进行了测试,并尝试把它们与金属陶瓷的原始成分和显微结构的特点联系起来.%A Ti(C, N)-based cermet with titanium carbide (TiC) additive was fabricated by the conventional powder metallurgy technique. The initial powder particle sizes of the main hard phase components [Ti(C, N), TiC and TiN] were nano/submicron-sized, in order to achieve an ultra-fine grain sizes microstructure. Through scanning electron microscopy observation, a new kind of bright core and grayish rim structure was detected, and its formation mechanism was proposed. In addition, quantitative information about the chemical composition of various phases was obtained by energy dispersive X-ray analysis. Phase identification was carried out by X-ray diffraction and the lattice parameter of each phase was calculated. The mechanical properties at room temperature were also tested, in order to correlate them with the cermet's starting composition and microstructural features.

  17. Time-dependent density functional theory study on the electronic excited-state geometric structure, infrared spectra, and hydrogen bonding of a doubly hydrogen-bonded complex.

    Science.gov (United States)

    Liu, Yufang; Ding, Junxia; Liu, Ruiqiong; Shi, Deheng; Sun, Jinfeng

    2009-12-01

    The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen-bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S(1) state of this doubly hydrogen-bonded FN-2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen-bonded FN-2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm(-1) observed in the IR spectra should be assigned as the doubly hydrogen-bonded FN-2MeOH complex from our calculated results. The electronic excited-state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S(1) state of the doubly hydrogen-bonded FN-2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen-bonded FN-MeOH complex and play important role on the photophysics of fluorenone in solutions.

  18. The influence of Mo Content on the Microstructure and Properties of Ti(C,N)-based Ceramets%Mo含量对Ti(C,N)基金属陶瓷组织和性能的影响

    Institute of Scientific and Technical Information of China (English)

    章晓波; 刘宁

    2006-01-01

    Ti(C,N)基金属陶瓷是一种新型工具材料,在高速切削刀具中得到广泛应用.本文介绍了金属陶瓷中Mo或Mo2C的作用,并综述了国内外关于Mo或Mo2C对Ti(C,N)基金属陶瓷显微组织和性能的影响.

  19. DFT investigation on dihydrogen-bonded amine-borane complexes.

    Science.gov (United States)

    Yan, Shihai; Zou, Hongmei; Kang, Wukui; Sun, Lixiang

    2016-01-01

    The DFT method has been employed in the exploration on dihydrogen-bonded amine-borane complexes, with a special emphasis on the dimerization and substituent group effect. Stable dihydrogen bonded complexes can be generated from these amine-borane monomers with the appearance of NH(δ+)…H(δ-)B interactions. The binding energy decreases gradually with the increase of the steric effect of the substituents. The substituent group number mainly varies the C-N bond length. The dimerization generates close H…H and influences predominantly the N-B distance. The effect of dimerization on IR and vibrational circular dichroism (VCD) spectra is stronger than that of the number of substituent groups, which leads to distinct NBO charge variation on α-C. Both the substituent group number and dimerization enhance the chemical shift difference between hydrogen atoms covalently bonded to N and B, Δδ H-H, which can be hired as an index for structural determination. It is proposed that amine-borane complexes with more substituent groups in higher degree of polymerization are potentially interesting materials for hydrogen storage. Graphical Abstract Both the number of substituent group and dimerization enhance the chemical shift difference of hydrogen atoms covalently bonded on N and B, Δδ H-H, which can be employed as an index for the structural determination.

  20. Search for Theta(1540)^+ in exclusive proton-induced reaction p+C(N) \\to Theta^+ \\bar{K}^0 + C(N) at the energy of 70 GeV

    CERN Document Server

    Antipov, Y M; Batarin, V A; Eroshin, O V; Kolganov, V Z; Konstantinov, A S; Kozhevnikov, A P; Kurshetsov, V F; Kushnirenko, A E; Landsberg, L G; Leontiev, V M; Lomkatsi, G S; Mukhin, V A; Molchanov, V V; Nilov, A P; Patalakha, D I; Petrenko, S V; Petrukhin, A I; Smolyankin, V T; Vavilov, D V; Victorov, V A; Antipov, Yu. M.

    2004-01-01

    A search for narrow Theta(1540)^+, a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction p+C(N) \\to Theta^+ \\bar{K}^0 + C(N) on carbon nuclei or quasifree nucleons at E_{beam}=70 GeV (sqrt{s} = 11.5 GeV) studying nK^+, pK_S and pK_L decay channels of Theta(1540)^+ in four different final states of the Theta^+ \\bar{K}^0 system. In order to assess the quality of the identification of the final states with neutron or K_L we reconstructed Lambda(1520)\\to nK_S and phi\\to K_LK_S decays in the calibration reactions p+C(N)\\to Lambda(1520)K^+ + C(N) and p+C(N)\\to p\\phi + C(N). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the Theta^+ \\bar{K^0} system are not drastically different from those of the Lambda(1520)K^+ and p\\phi systems, we established upper limits on the cross section ratios sigma(Theta^+\\bar{K}^0)/sigma(Lambda(1520)K^+) < 0.02 and sig...

  1. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  2. The Trouble With Bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In early June,global financial markets gyrated downwards in the wake of central banks'tough language on inflation.At one point bond prices reflected expectations of four rate hikes by the US Federal Reserve (Fed) in the next 12 months.As a result,the dollar firmed,oil prices stabilized,and yield curves flattened around the world.If all these inflation-fighting measures are real,the situation bodes well for bonds.But,I think otherwise.

  3. Cooperativity in beryllium bonds.

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  4. Microstructure and wear behavior of laser cladding Ni-based alloy composite coating reinforced by Ti(C,N) particulates

    Institute of Scientific and Technical Information of China (English)

    Qi Yongtian; Shi Hanchao; Zou Zengda; Hu Liping

    2008-01-01

    In this paper, Ni-based alloy composite coating reinforced by Ti (C,N) particles was fabricated on the mild steel through laser cladding technology. The microstructure of laser cladding layer was analyzed by means of optical microscopy (OM),X-ray diffraction (XRD) and scanning electron microscopy (SEM).The wear resistance test of the coating was evaluated using an M-2000 tester. The results showed that the Ni-based composite coating had an ability of rapid solidification to form dendritic crystals microstructure consisting of Ti (C,N) particulates uniformly distributed in the matrix. It was found that some Ti(C,N) particles are similar to be round in shape, and the others are irregular. Laser cladding layer reinforced by Ti(C,N) particulates was found to possess good wear resistance property.

  5. Effects of wildfires on ash Carbon, Nitrogen and C/N ratio in Mediterranean forests

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Carbon (C) and Nitrogen(N) are key nutrients in ecosystems health and the more affected by fire temperatures, because of their low temperatures of volatilization. After a wildfire, due higher temperatures reached, a great amount of C and N can be evacuated from the ecosystems and the percentage of C and N not vaporized is concentrated in ashes. Hence, the study of ash C and N is of major importance because will be linked with the capacity of ecosystem recuperation. The aim of this work is study the C, and C/N of three wildfires occurred in Mediterranean forests dominated by Quercus suber and Pinus pinea in Portugal. In the first wildfire, named "Quinta do Conde", we collected 30 samples, in the second, "Quinta da Areia", 32 samples and the third, "Casal do Sapo" 40 samples To estimate the consequences of wildfires in the parameters in study, we collected several samples of unburned litter near burned areas, composed by the same vegetation. The results showed that wildfires induced in % of Total Carbon (%TC) ashes content a non significantly reduction in Quinta do Conde plot (at a pQuercus suber samples and a rise until the 300°C in Pinus pinaster samples decreasing thereafter especially after the 400°C. In %TN we identified a rise in both species reducing abruptly at 450°C. C/N ratio decrease importantly after the 150°C. Theses results showed us that wildfires can have different effects C and N litter resources, depending on the severity and temperature reached. Crossing the results obtained in laboratory simulations with the samples collected in wildfires we will have an idea about the severity and temperature occurred in each wildfire. Overall, the lower severity were observed in Quinta do Conde plot and the higher in Casal do Sapo plot, being Quinta da Areia in a middle position. The C and N levels after a wildfire will determine the capacity of landscape recuperation and according the data obtained this will be higher in Quinta do Conde plot and lesser in

  6. High-frequency fire alters C : N : P stoichiometry in forest litter.

    Science.gov (United States)

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  7. Intramolecular hydrogen bonding in medicinal chemistry.

    Science.gov (United States)

    Kuhn, Bernd; Mohr, Peter; Stahl, Martin

    2010-03-25

    The formation of intramolecular hydrogen bonds has a very pronounced effect on molecular structure and properties. We study both aspects in detail with the aim of enabling a more rational use of this class of interactions in medicinal chemistry. On the basis of exhaustive searches in crystal structure databases, we derive propensities for intramolecular hydrogen bond formation of five- to eight-membered ring systems of relevance in drug discovery. A number of motifs, several of which are clearly underutilized in drug discovery, are analyzed in more detail by comparing small molecule and protein-ligand X-ray structures. To investigate effects on physicochemical properties, sets of closely related structures with and without the ability to form intramolecular hydrogen bonds were designed, synthesized, and characterized with respect to membrane permeability, water solubility, and lipophilicity. We find that changes in these properties depend on a subtle balance between the strength of the hydrogen bond interaction, geometry of the newly formed ring system, and the relative energies of the open and closed conformations in polar and unpolar environments. A number of general guidelines for medicinal chemists emerge from this study.

  8. The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor.

    Science.gov (United States)

    Ballinger, S J; Head, I M; Curtis, T P; Godley, A R

    2002-01-01

    A laboratory scale reactor operated as a single sludge, denitrification-nitrification bioreactor (DNB), was fed a synthetic wastewater. The effect of the C/N ratio of the influent on the structure of beta-proteobacterial autotrophic ammonia-oxidizing bacterial (AOB) communities was determined by DGGE analysis of 16S rRNA gene fragments amplified using a range of AOB-selective primers. Fluorescence in situ hybridisation (FISH) was used to determine quantitative changes in the AOB communities. When operated at a C/N ratio of 2 the DNB was effective in nitrogen removal and nitrification was measured at approximately 1.0 mg NH4+-N/g dry wt/h. Altering the C/N ratio to 5 resulted in a 50% reduction in nitrification rates. Nitrification was restored to its original level when the C/N ratio was returned to 2. AOB were detected by DGGE analysis of samples from the DNB under all operating conditions but the changes in C/N ratio and nitrification rates were accompanied by changes in the community structure of the AOB. However, quantitative FISH analysis indicated that beta-proteobacterial AOB were only present in high numbers (ca. 10(8) cells/ml) under the original operating conditions with a C/N ratio of 2. Beta-proteobacterial AOB could not be detected by FISH when the C/N ratio was 5. When nitrification activity was restored by returning the C/N ratio to 2, beta-proteobacterial AOB were still not detected and it is likely that either beta-proteobacterial AOB were not responsible for ammonia oxidation or that beta-proteobacterial AOB that did not contain the target sites for the range of 4 AOB selective probes used, were present in the reactor.

  9. Nature of large (Ti, Nb)(C, N) particles precipitated during the solidification of Ti, Nb HSLA steel

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Zhuo; Xinhua Wang; Wanjun Wang; Hae-Geon Lee

    2007-01-01

    To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. The samples of Ti, Nb-addition steels after unidirectional solidification were examined using field emission scanning electron microscope (FE-SEM) and electron probe X-ray microanalyzer (EPMA). In such specimens, dendrite structure and mushy zone can be detected along the solidification direction. It shows that the addition of titanium, niobium to high-strength low-alloyed (HSLA) steel results in undesirable (Ti, Nb)(C, N) precipitation because of microsegregation. The effect of cooling rate on (Ti, Nb)(C, N) precipitation was investigated. The composition of large precipitates was determined using FE-SEM with EDS. Large (Ti, Nb)(C, N) precipitates could be divided into three kinds according to the composition and morphology. With the cooling rate increasing, Ti-rich (Ti, Nb)(C, N) precipitates are transformed to Nb-rich (Ti, Nb)(C, N) precipitates.

  10. Imbalanced C/N - controlled, periphyton-based system has hampered tilapia growth in stagnant experimental tanks

    Directory of Open Access Journals (Sweden)

    Rafael Barroso Martins

    2014-04-01

    Full Text Available The simultaneous use of periphyton and controlled C/N ratio of water may improve water quality and fish growth. The current assay investigated the interaction between periphyton and C/N ratio of water in rearing tanks with Niletilapia juveniles. The study was carried out in 20 outdoor stagnant 250-L tanks. A wooden structure for periphyton development was submerged in five of the tanks. A completely randomized 2 x 2 factorial mode design was employed to evaluate the following factors: (1 substrate for periphyton and (2 the C/N ratio of water. Dry molasses were applied weekly in the tanks to raise C/N ratio of water to 20:1. The addition of molasses to the culture water significantly lowered DO2 and pH levels of water, and raised nitrite concentration. Fish stocked in the control tanks (no periphyton, no C/N ratio balance attained a final body weight significantly higher than those observed for other treatments after 6 weeks of culture. In spite of the correction of C/N ratio of water to 20: 1, low DO2 concentrations avoided the suitable development of bioflocs.

  11. Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone

    Energy Technology Data Exchange (ETDEWEB)

    Muhr, C.; Bergstroem, M.L.; Lundberg, P.O.; Bergstroem, K.H.; Hartvig, P.; Lundqvist, H.; Antoni, G.; Langstroem B2

    1986-03-01

    Two patients with pituitary tumors were examined with positron emission tomography (PET) after intravenous administration of 11C-N-methylspiperone. In repeat studies the patients were given 1 mg of intravenous haloperidol prior to the administration of the radioligand to block the dopamine receptors. High uptakes of the radiolabeled ligand were seen in one of the tumors. With haloperidol pretreatment the uptake was lower, probably mainly showing the remaining unspecific binding. The most marked uptake and the largest effect of haloperidol pretreatment was seen in a patient with a hormonally active prolactinoma. Dopamine receptor binding in pituitary tumors can be demonstrated in vivo with PET, and quantification of this binding is possible using a compartmental model. This technique may be useful in improving our understanding of the variable response to medical treatment of prolactinomas with dopamine agonists as well as in the prediction of the effect of such treatment.

  12. Effects of three global change drivers on terrestrial C:N:P stoichiometry

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    Over the last few decades there has been an increasing number of controlled-manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers (i.e. nitrogen (N) deposition, warming, ...... multifactor effects on plants and soils are urgently required across different world regions. This article is protected by copyright. All rights reserved........ Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long-term ecosystem-scale studies testing...

  13. UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    CERN Document Server

    Steglich, Mathias; Johnson, Anatoly; Maier, John P

    2015-01-01

    Electronic transitions of jet-cooled FeC$_n$ clusters ($n = 3 - 6$) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC$_3$. The FeC$_4$ data indicate a shorter distance between the Fe atom and the bent C$_4$ unit of the fan. The transitions are suggested to be $^{3}$A$_{2} \\leftarrow ^{3}$B$_{1}$ for FeC$_3$ and $^{5}$A$_{1} \\leftarrow ^{5}$A$_{1}$ for FeC$_4$. In contrast to the predicted C$_{\\infty \\text{v}}$ geometry, non-linear FeC$_5$ is apparently observed. Line width broadening prevents analysis of the FeC$_6$ spectrum.

  14. Structures and stability of isomers of [C,N,N,P] system

    Institute of Scientific and Technical Information of China (English)

    KAN Wei; ZHONG Hua; YU Haitao; FU Honggang; SUN Jiazhong

    2005-01-01

    Nine isomers, twenty transition states, and some relative dissociation fragments of [C,N,N,P] system were located at the B3LYP/6-311G(d) and QCISD(t)/6-311+G(2df) (single-point) levels of theory, and the isomerization, structures, and stability of these obtained isomers were suggested. The results indicate that four nonlinear chainlike isomers NCNP, NCPN, CNPN, and CNNP with 2A′ electronic state are kinetically stable. Other isomers are kinetically unstable towards isomerization or dissociation because of the corresponding smaller reaction barriers. Furthermore, calculated vibrational frequencies, rotational constants, dipole moments, the first adiabatic ionization energies, and adiabatic electron affinities of the four isomers may provide some theoretical information that is helpful for identifying their existence in future laboratory and interstellar investigations. The results are also compared with [Si,N,N,P] system.

  15. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  16. Bonding in cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Mindess, S. (British Columbia Univ., Vancouver, BC (Canada)) Shah, S.P. (Northwestern Univ., Evanston, IL (USA))

    1988-01-01

    These proceedings discuss the papers presented at the symposium on the subject of high performance cement composites. Some of the topics discussed were; calcium hydroxides treated ceramics microspheres and mechanical properties of high temperature light weight cements; microstructure and chemical variations of class F fly ash; microstructure and bond strength of cement and crack propagation as detected by laser holography and acoustic emission.

  17. Thermal Bond System.

    Science.gov (United States)

    1995-10-31

    a twill weave, a crowfoot weave, a satin weave (FIG. 2), and a leno weave. Descriptions of the various weave types can be found in " Composite ...together to define a fabric mesh having first and second opposing woven surfaces. An adhesive bond that is flowable prior to drying is used to wet and

  18. Land-use induced dynamics of C, N and P in mountain soils of South Ecuador

    Science.gov (United States)

    Hamer, U.; Potthast, K.; Makeschin, F.

    2009-04-01

    The mountain rainforest region in South Ecuador is characterised by sites subjected to forest clearing by slash burn for pasture production. Repeated burning of pastures is a common management practice in South Ecuador. With ongoing pasture age bracken (Pteridium arachnoideum) outcompetes the pasture grass (Setaria sphacelata), pastures are abandoned and a vegetation succession develops. Along a land-use gradient (natural forest, young and old pasture, abandoned pasture with successional vegetation) the dynamics of C, N and P in the mountain soils were investigated. The study sites were located close to the "Estacion Científica San Francisco", about halfway between the province capitals Loja and Zamora, in the Cordillera Real, an eastern range of the South Ecuadorian Andes at about 2000 m above sea level. The mean annual air temperature is 15.3°C with an average annual rainfall of 2176 mm. The land-use change induced an increase of total P in the top soil (0-30 cm) of young and old pastures. An increase in SOC stocks in the top soil of the old pasture was combined with an increase in the proportion of NaOH extractable organic P. In the young pasture soil the mineralization of SOC and the amounts of microbial biomass C, N and P were highest. In 0-5 cm depth gross N mineralization and gross NH4 consumption rates were significantly higher in the young pasture compared to forest and abandoned pasture. Thus, the initial increase in microbial activity after forest to pasture conversion seems to slow down with increasing pasture age. Burning on the abandoned pasture site induced a short-term and short-lived increase in gross N mineralization rates. First results indicate that the land-use induced changes in mineralization rates were connected with changes in the microbial community structure.

  19. Oxytocin and mutual communication in mother-infant bonding

    Directory of Open Access Journals (Sweden)

    Miho eNagasawa

    2012-02-01

    Full Text Available Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a non-genomic transmission of maternal environment, even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.

  20. [C, N, P, K Stoichiometric Characteristic of Leaves, Root and Soil in Different Abandoned Years in Loess Plateau].

    Science.gov (United States)

    Zhang, Hai-dong; Ru, Hai-li; Jiao, Feng; Xue, Chao-yu; Guo, Mei-li

    2016-03-15

    The research of plant ecological stoichiometry characteristics, nutrients distribution and their changes is of great significance to explain the response and adaptation of plants to environmental change. Leaves, root and soil from eight different abandoned years in Yanhe River basin were selected to study the content, characteristic ratio and distribution of carbon ( C) , nitrogen (N) , phosphorus (P), potassium (K). The results showed that the C, N, P, K contents of plant leaves were 444.21, 22.34, 1.49, 14.66 mg · g⁻¹ respectively, the C/N, C/P, C/K, N/P ratios of plant leaves were 21.86, 424.72, 39.82, 20.27 respectively; the C, N, P, K contents of root were 285.16, 5.79, 0.27, 6.07 mg · g⁻¹ respectively, the C/N, C/P, C/K, N/P ratios of root were .60. 56, 1019.33, 46.55, 21.36 respectively; the C, N, P, K contents of soil were 2.28, 0.18, 0.28, 4.33 mg · g⁻¹ respectively, the C/N, C/P, C/K, N/P ratios of soil were 16.43, 8.40, 0.54, 0.66 respectively. During the abandoned year of 1-35, C content of leaves increased, N content increased and then declined, P content declined overall, K content declined and then increased. The C/N, C/P, C/K, N/P ratios of plant leaves showed a rising trend overall. The changing pattern of root was different from that of leaves. Along with the increasing rehabilitation age, C and N contents of soil increased, P content changed as arc-sin function, K content changed as parabola, C/N decreased, C/P, C/K, N/P increased. With the increase of Abandoned Years, the ratio of C, P, K contents in leaves and root decreased, the ratio of C, N, P contents in leaves and soil decreased, the ratio of C, N contents in root and soil decreased. Corresponding relationship and its intension between different abandoned years and plant nutrient limit status and its allocation pattern were different.

  1. Functionalization of methyl (R)-phenylglycinate through orthopalladation: C-Hal, C-O, C-N, and C-C bond coupling.

    Science.gov (United States)

    Nieto, Sonia; Arnau, Palmira; Serrano, Elena; Navarro, Rafael; Soler, Tatiana; Cativiela, Carlos; Urriolabeitia, Esteban P

    2009-12-21

    The ortho functionalization of methyl R-phenylglycinate has been easily achieved using the known orthopalladated complex [Pd(mu-Cl){R-C(6)H(4)(CH(CO(2)Me)NH(2))-2}](2) (1) as synthetic tool. Different functional groups have been introduced at the ortho position of the aryl ring. The reaction of (R)-1 with X(2) or PhI(OAc)(2) gives XC(6)H(4)(CH(CO(2)Me)NH(2))-2 (X = I, Br, OMe, OEt) through oxidative coupling, while the reaction with CO gives an isoindolone. (R)-1 also reacts with one, two, or three alkyne molecules to give different metal-containing or metal-free heterocycles. The resulting functionalized amino esters or heterocycles retain the chirality of (R)-1, according with the values of the optical rotation and the obtained ee values ranging from 22%-87%. The X-ray structures of six representative compounds have also been determined.

  2. Trading in Treasury Bond Futures Contracts and Bonds in Australia

    OpenAIRE

    Belinda Cheung

    2014-01-01

    Treasury bond futures are a key financial product in Australia, with turnover in Treasury bond futures contracts significantly larger than turnover in the market for Commonwealth Government securities (CGS). Treasury bond futures contracts provide a wide variety of market participants with the ability to hedge against, or gain exposure to, interest rate risk. This article discusses some of the features of the Treasury bond futures contract, and how the contract is used to facilitate hedging a...

  3. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    Science.gov (United States)

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  4. Localized CO2 laser bonding process for MEMS packaging

    Institute of Scientific and Technical Information of China (English)

    SUN Li; A. P. MALSHE; S. CUNNINGHAM; A. MORRIS

    2006-01-01

    The packaging poses a critical challenge for commercialization of MEMS products. Major problems with the packaging process include degraded reliability caused by the excess stress due to thermal mismatch and altered performance of the MEMS device after packaging caused by thermal exposure. The localized laser bonding technique for ceramic MEMS packaging to address above-mentioned challenges was investigated. A continuous wave CO2 laser was used to locally heat sealing material for ceramic MEMS package lid to substrate bonding. To determine the laser power density and scanning speed,finite element analysis thermal models were constructed to simulate the localized laser bonding process. Further,the effect of external pressure at sealing ring on the bonding formation was studied. Pull testing results show that the scanning speed and external pressure have significant influence on the pull strength at the bonding interface. Cross-sectional microscopy of the bonding interface indicates that the packages bonded with relatively low scanning speed and external pressure conditions have higher bonding quality. This research demonstrates the potential of localized laser bonding process for ceramic MEMS packaging.

  5. Indirect bonding technique in orthodontics

    Directory of Open Access Journals (Sweden)

    Kübra Yıldırım

    2016-08-01

    Full Text Available ‘Direct Bonding Technique’ which allows the fixed orthodontic appliances to be directly bonded to teeth without using bands decreased the clinic time for bracket bonding and increased esthetics and oral hygiene during orthodontic treatment. However, mistakes in bracket positioning were observed due to decreased direct visual sight and access to posterior teeth. ‘Indirect Bonding Technique’ was developed for eliminating these problems. Initially, decreased bond strength, higher bond failure rate, periodontal tissue irritation, compromised oral hygiene and increased laboratory time were the main disadvantages of this technique when compared to direct bonding. The newly developed materials and modified techniques help to eliminate these negative consequences. Today, the brackets bonded with indirect technique have similar bond strength with brackets bonded directly. Moreover, indirect and direct bonding techniques have similar effects on periodontal tissues. However, indirect bonding technique requires more attention and precision in laboratory and clinical stage, and has higher cost. Orthodontist's preference between these two bonding techniques may differ according to time spent in laboratory and clinic, cost, patient comfort and personal opinion.

  6. The mechanism of the formation of the hemiaminal and Schiff base from the benzaldehyde and triazole studied by means of the topological analysis of electron localisation function and catastrophe theory

    Science.gov (United States)

    Berski, Slawomir; Zbigniew Ciunik, Leszek

    2015-04-01

    The mechanisms of reaction of benzaldehyde (ald) with 4-amine-4H-1,2,4-triazole (4at), leading to Schiff base (Sch) and water, were investigated using topological analysis of the electron localisation function and catastrophe theory. Two reactions (synthesis of hemiaminal and synthesis of Schiff base) are represented by one catastrophe sequence: ald+4at: 1-14-[FF†F†FFTS1FF†F†FF†F†CF†]-2-9-[C†FFTS3F†F†FFF]-0:Sch+H2O with only fold (F) and cusp (C) catastrophes. The first reaction, in which a molecule of the hemiaminal is formed, consists of 14 steps separated by 13 catastrophes. The mechanism is non-concerted. The covalent bond C-N is formed after the formation of the O-H bond is terminated. The Schiff base formation through the water molecule elimination in the second reaction requires nine steps with eight catastrophes. The mechanism is non-concerted because first the C-O bond is broken and then the proton transfer occurs that results in the O-H bond creation.

  7. Changes in organic matter (C, N and P) of soils under subsistence agriculture; Mudancas na materia organica (C, N e P) de solos sob agricultura de subsistencia

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Vania da Silva

    2002-10-01

    Productivities under low input or subsistence agriculture are strongly dependent on nutrient supply from soil organic matter mineralization (SOM). Few results are available and they indicate declines in soil fertility under this agricultural system, particularly in SOM levels. In an attempt to understand the nature and extent of these declines we selected ten sites having cultivated areas adjacent with areas under native vegetation at the same slope position, in the states of Pernambuco and Paraiba. Based on the management history, in situ observations and {sup 137} Cs concentrations to evaluate soil erosion, the areas were divided in four groups having different levels of soil use intensity: Undisturbed Dry Forest (UDF), Disturbed Dry Forest (DDF), Preserved-Cultivated (PC) and Degraded-Cultivated (DC). In the first part of this work we quantified total organic C, N and P, in addition to {sup 137} Cs concentrations, under the assumption that changes in organic nutrient contents among land use groups would be greater than the within group variability, thus enabling inferences at a regional scale. Concentrations of C and N in DC were 50% smaller (P<0.05) than those in UDF. Of these losses, 43% were attributed to erosion processes while 57% were related to SOM mineralization. The Po/Pi ratio under UDF was 1.47 and decreased to o.82 in PC and DC (P<0.05). The effects of changes in land use were greater when considering the 0-7.5 cm layer rather than the 0-15 cm layer. Interrelationships between C and P in the dry forest areas suggested that P availability and water controlled C accumulation in these soils. In the second part of this work two experiments were conducted. The first one included a preliminary phase, comparing four methods in their capacity to detect changes in soil organic matter quality. Eighty samples that maximized the variability in C content of the whole set (n=160), were analyzed for: C in the light SOM fraction (density < 1 kg dm{sup -3}) (C-lf); C

  8. New results for the formation of a muoniated radical in the Mu + Br2 system: a van der Waals complex or evidence for vibrational bonding in Br-Mu-Br?

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Macrae, Roderick M

    2012-08-21

    New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ∼3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.

  9. Metallic Re-Re bond formation in different MRe 2O 6 ( Mdbnd Fe, Co, Ni) rutile-like polymorphs: The role of temperature in high-pressure synthesis

    Science.gov (United States)

    Mikhailova, D.; Ehrenberg, H.; Oswald, S.; Trots, D.; Brey, G.; Fuess, H.

    2009-02-01

    Different polymorphs of MRe 2O 6 ( Mdbnd Fe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ˜1573 K, tetragonal rutile-type structures ( P4 2/ mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re 2O 10-pairs were found for CoRe 2O 6 and NiRe 2O 6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re +4/Re +6 and M2+/ M3+ is present in both structural modifications of CoRe 2O 6 and NiRe 2O 6. The low-temperature forms contain more Re +4 and M 3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe 2O 6 order with a ferromagnetic component at ˜24 K, whereas tetragonal and orthorhombic CoRe 2O 6 show two magnetic transitions: below ˜17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe 2O 6 is antiferromagnetic below 123 K.

  10. China-Russia Bond

    Institute of Scientific and Technical Information of China (English)

    Ji Zhiye; Ma Zongshi

    2007-01-01

    @@ Thanks to China's successful launching of the Year of Russia, 2006 will surely go down as a milestone in the history of the China-Russia bond. Furthermore, a still-warmer climate will continue to prevail in 2007 when Moscow, in its turn, hosts the Year of China, trying to outshine its next-door neighbor in this regard, as Russian President Vladimir Putin promised in the exchange of new year greetings with his Chinese counterpart, President Hu Jintao.

  11. Direct bonded space maintainers.

    Science.gov (United States)

    Santos, V L; Almeida, M A; Mello, H S; Keith, O

    1993-01-01

    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  12. Changes in the Coupling of C, N and P Cycles During River Transport from Source to Sea.

    Science.gov (United States)

    Cosby, B. J., Jr.; Withers, P.; Thompson, J.; Evans, C.; Fovet, O.; Bowes, M.; Gozzard, E.; Demars, B.; Stutter, M.

    2015-12-01

    The UK Turf2Surf project asks when, where and how coupling between C, N & P cycles occurs within terrestrial, freshwater and estuarine ecosystems. C-N-P cycling and fluxes are followed through two UK catchments, the Conwy and Ribble, which are Centre for Ecology and Hydrology catchment observatories for landscape scale research from source to sea. The Conwy is typical of non-industrialised areas with few discrete agricultural and industrial sources while the Ribble has a mixed urban and agricultural landscape. Both have areas of upland and moor with peats in the Conwy. Field and laboratory experiments track the incorporation of terrestrial C, N & P into the riverine ecosystems of the catchments and measure changes in C-N-P stoichiometry and cycling along the stream networks from uplands to the river-estuary transition zone (RETZ). We present results focussed on the riverine systems. Flume mesocosms at 18 sites investigated in-stream nutrient processing and algal response to increased C, N & P concentrations (singly and combined). River reach experiments at 14 sites across land use and DOC gradients examined whole ecosystem metabolic response to C, N & P additions. Pore-water sampling with DET (diffusive equilibrium in thin films) gel probes at 5 sites quantified N & P fluxes and distributions across the sediment-water interface. Laboratory mesocosm experiments with streamwater from a variety of land uses (and DOC levels) studied the fate and cycling of stream organic matter subjected to controlled light/dark treatments, and the addition of N & P and a biocide. Results indicate that the study streams are N limited in the headwaters, but become progressively N & P co-limited near the RETZ. DOC processing in streams transitions from primarily photochemical degradation in headwaters (releasing N & P) to biotic aquatic DOC production (consuming N & P) downstream. Increasing C supply leads to increasing average ecosystem respiration irrespective of N & P status

  13. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  14. [The Consiglio Nazionale delle Ricerche (National Research Council - C. N. R.) and the Italian medicine during fascism].

    Science.gov (United States)

    Canali, S

    2001-01-01

    The foundation of C. N. R. in 1923 created in Italy a new public system of research, different from the university one. During fascism, the contribution of C. N. R. to the development of medical research in Italy was very poor. This was mainly due to insufficient means: structures and money. Moreover, the scientists who carried on medical research within the C. N. R. were the same who already held strong university positions, which mean a complete dependence on the academic system. The ideology of fascism also contribute to the weakness of the Italian medical research promoted by the C. N. R.. According to fascist view, science, and for its nature and aims above all medicine, had to addressed to technical, practical, or much better, social achievements. Consequently, the policy of medical research at the C.N.R. was to improve social or political medicine, mainly hygiene. This was in harmony with the demographic policy, which means the policy of reinforcement of "Italian race", and positive eugenics that fascism tried to pursue.

  15. Effects of Different Carbon Sources and NaBr-KCI on Synthesis of Ti(C,N)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ti(C,N) was synthesized with the starting materi-als of 76.9% titania white and 23.1% carbon black (graphite or activated carbon),or 40% titania white and 60% amylum,with or without 10% NaBr-KCI,dry moulding and carbon embedded firing at 1 300 ℃ and 1 400 ℃ for 3 h,respectively.Phase composition and microstructure of the synthesized Ti (C,N) were analyzed by XRD,SEM and EPMA.Effects of different carbon sources and NaBr-KCl on the synthesis of Ti (C,N) were investigated.The results show that:(1) Ti (C,N) can be synthesized by using carbon black,graphite,activated carbon or amylum as carbon source separately;(2) Additive NaBr-KCI is more fa-vorable for accelerating the carbothdrmal reduction reac-tion using carbon black or amylum as carbon source;(3) In the presence of NaBr-KCl,particle size of the synthesized Ti (C,N) is 5-8 μm using carbon black as carbon source fired at 1 300 ℃ for 3 h,while that is only 1-3 μm using graphite,activated carbon or amy-lum fired at 1 400 ℃ for 3 h.

  16. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...

  17. Coulombic Models in Chemical Bonding.

    Science.gov (United States)

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  18. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol

    Science.gov (United States)

    Zheng, Xuebo; Fan, Jianbo; Xu, Lei; Zhou, Jing

    2017-01-01

    Unreasonable use of chemical fertilizer (CF) on agricultural soil leads to massive losses of soil organic carbon (SOC) and total nitrogen (TN) in tropical and subtropical areas, where soil conditions are unfavorable for aggregate formation. This study evaluated the effects of combined application of biogas slurry (BS) plus CF on soil aggregation and aggregate—associated C/N concentration and storage in an Ultisol. Six treatments included: no fertilizer (T1), CF only (T2), partial (15% (T3), 30% (T4) and 45% (T5)) substitution of TN with BS and BS only (T6). Soil mechanical—stable aggregates (MSAs) formation and stability as well as MSAs—associated C/N concentration and storage were observed in different aggregate sizes (>5, 5–2, 2–1, 1.0–0.5, 0.50–0.25 and 5 mm significantly increased with BS substitution (T5), while the proportions of MSAs 1.0–0.5 mm, MSAs 0.50–0.25 mm and MSAs 0.5 mm that constituted 72–82% of MSAs. Stepwise regression analysis showed that MSAs >5 mm, SOC in MSAs >5 mm and TN in MSAs >5 mm were the dominant variables affecting aggregate stability. Meanwhile SOC in MSAs <0.25 mm and TN in MSAs 2–1 mm were independent variables affecting SOC and TN concentrations in bulk soils. Therefore, certain rate of combined application of BS plus CF is an effective, eco—friendly way to improve soil quality in an Ultisol. PMID:28125647

  19. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  20. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  1. The higher order C_n dispersion coefficients for the alkali atoms

    CERN Document Server

    Mitroy, J

    2004-01-01

    The van der Waals coefficients, from C_11 through to C_16 resulting from 2nd, 3rd and 4th order perturbation theory are estimated for the alkali (Li, Na, K and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali atoms and hydrogen. The parameters are determined from sum-rules after diagonalizing the fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C_n/r^n potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C_10/r^10 results in a dispersion interaction that is accurate to better than 1 percent whenever the inter-nuclear spacing is larger than 20 a_0. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C_11, C_13, C_15) and attractive (C_12, C_14, C_16) dispersion forces.

  2. C, N and P Behavior in Bhitarkanika Mangroves, East coast of India

    Science.gov (United States)

    Alagappan, Dr

    2009-04-01

    In the east coast of India is relatively rich in mangroves has varied physiography and fluctuating freshwater input which modify their nutrient dynamics within this ecosystem The Bhitarkanika mangrove ecosystem is fed by two main rivers and are undergoing anthropogenic stress due to agriculture and as prawn culture and petrol boats from a fishing harbor . Hence the biogeochemistry of this pristine ecosystem is being altered significantly. . An attempt has here been made to elucidate the existing variation and role of anthropogenic variability on the nutrient variations and enrichment from mangroves. The flux estimates C, N and P have been quantified from Bhitarkanika mangrove accounting for spatial and temporal (seasonal) variation. The annual rates were estimated and compared with other mangroves in india and other parts of the world. The influence of elevated nutrient inputs through anthropogenic influence enhances their fluxes. The flux data were analyzed for net biogeochemical performance using LOICZ approach as well. The surface water samples were collected in pre-monsoon, monsoon and post monsoon season and were quantified for dissolve nutrients. The residence time of the water was found to be low with positive salinity. An attempt has also been made to distinguish the natural and anthropogenic fluxes. Overall, the mangrove ecosystem act as a source for N and P during the pre-monsoon and post-monsoon season while in monsoon it acts as sink for these nutrients.

  3. Development of Ti-C-N coatings with improved tribological behavior and antibacterial properties.

    Science.gov (United States)

    Sáenz de Viteri, Virginia; Barandika, Gotzone; Bayón, Raquel; Fernández, Xana; Ciarsolo, Iñigo; Igartua, Amaya; Pérez Tanoira, Ramón; Moreno, Jaime Esteban; Peremarch, Conchita Pérez-Jorge

    2015-03-01

    In artificial metallic joint implants, the failure is provoked by two effects in most of the cases: mass loss and wear debris removed due to tribological-corrosive effects on the implant alloy, and infections due to the presence of bacteria. In this work, several Ti-C-N corrosion and wear protective coatings were developed by Physical Vapour Deposition technology, and deposited on Ti6Al4V alloy. In order to provide the implant antibacterial properties, an additional silver top coating has been deposited. Tribological behavior was characterized through tribocorrosion and fretting tests. On the other hand, wettability tests were performed to study the grade of hydrophilicity/hydrophobia. Additionally, antibacterial properties were evaluated by means of bacterial adhesion tests. As a result of these characterization studies, the coating with the best performance was selected. The as-coated material includes excellent protection against tribocorrosion and fretting effects (in relation to the uncoated one) and the silver layer has been confirmed to exhibit antibacterial properties.

  4. Patterning Graphitic C-N Sheets into a Kagome Lattice for Magnetic Materials.

    Science.gov (United States)

    Li, Xiaowei; Zhou, Jian; Wang, Qian; Kawazoe, Yushiyuki; Jena, Puru

    2013-01-17

    We propose porous C-N-based structures for biocompatible magnetic materials that do not contain even a single metal ion. Using first-principles calculations based on density functional theory, we show that when patterned in the form of a kagome lattice, nonmagnetic g-C3N4 not only becomes ferromagnetic but also its magnetic properties can be further enhanced by applying external strain. Similarly, the magnetic moment per atom in ferromagnetic g-C4N3 is increased three fold when patterned into a kagome lattice. The Curie temperature of g-C3N4 kagome lattice is 100 K, while that of g-C4N3 kagome lattice is much higher, namely, 520 K. To date, all of the synthesized two- and three-dimensional magnetic kagome structures contain metal ions and are toxic. The objective of our work is to stimulate an experimental effort to develop nanopatterning techniques for the synthesis of g-C3N4- and g-C4N3-based kagome lattices.

  5. Conference on Yang-Mills Gauge Field Theories : C. N. Yang's Contributions to Physics

    CERN Document Server

    Phua, K K

    2016-01-01

    During the last six decades, Yang–Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang–Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volum...

  6. C, N, O Abundances in the Most Metal-Poor Damped Lyman alpha Systems

    CERN Document Server

    Pettini, Max; Steidel, Charles C; Chaffee, Fred H

    2007-01-01

    This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted ...

  7. Ionic interaction of [11C]-N,alpha-dimethylbenzylamine (DMBA) in rodent brain.

    Science.gov (United States)

    Inoue, Osamu; Hosoi, Rie; Momosaki, Sotaro; Kobayashi, Kaoru; Kida, Takayo; Suzuki, Kazutoshi; Gee, Antony

    2003-09-01

    The [S] enantiomer of [11C]-N,alpha-dimethylbenzylamine (DMBA) was synthesized by N-methylation of [S]-alpha-methylbenzylamine, and its biodistribution in mice was measured. [11C]-[S]-DMBA was rapidly distributed into the brain, heart and lungs, and considerable long-term retention in the brain was observed. The radioactive metabolites in the plasma were analyzed by liquid chromatography. Kinetic analysis using unmetabolized [11C]DMBA in the plasma as the input function was performed employing a simplified two-compartment model. The estimated distribution volumes (DV) of [11C]DMBA in the brain and heart were 6.05 and 3.95, respectively. The right striatum of the rat brain was lesioned with ibotenic acid 2 weeks before the tracer experiment. Both in vitro and in vivo autoragiographic studies were performed, and revealed significant reduction of the radioactivity levels in the lesioned striatum. On the other hand, the regional cerebral blood flow, as measured by [14C]iodoantipyrine, was not significantly altered in the lesioned striatum. These results indicate that the ionic binding component for DMBA exists mainly in neural cells rather than in glial cells. [11C]DMBA might be a useful radiotracer for detection of neural cell loss in the brain.

  8. FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: formation of H-bonded adducts and protonated clusters.

    Science.gov (United States)

    Bordiga, Silvia; Regli, Laura; Lamberti, Carlo; Zecchina, Adriano; Bjørgen, Morten; Lillerud, Karl Petter

    2005-04-28

    The acidity of the isostructural H-SSZ-13 and H-SAPO-34 has been investigated by transmission FTIR spectroscopy using H2O and CH3OH as molecular probes. Interactions between the zeolitic samples and the probe molecules led to perturbations and proton transfers directly related to the acidity of the materials. The entire set of acidic sites in H-SSZ-13 interacts with H2O and CH3OH to give H-bonded adducts or protonated species. H3O+ is not formed in appreciable amounts upon H2O adsorption on H-SSZ-13, but at high coverages H2O generates clusters that have a proton affinity sufficiently high to abstract protons from the zeolite framework. Parallel experiments carried out for H-SAPO-34 showed that the H2O clusters abstract protons from Brønsted sites only to a minor extent. Moving to CH3OH, even if it has a higher proton affinity than H2O and should expectingly experience an easier protonation, proton transfer is totally absent in H-SAPO-34 under our set of conditions. The clear evidence of methanol protonation in H-SSZ-13 definitely states the strong acidic character of this material. When irreversibly adsorbed CH3OH is present in H-SSZ-13, an appreciable amount of (CH3)2O is formed upon heating to 573 K. Compared to its SAPO analogue, the present set of data indisputably points to H-SSZ-13 as the strongest Brønsted acidic material.

  9. Effect of ZnO on the interfacial bonding between Na 2O-B 2O 3-SiO 2 vitrified bond and diamond

    Science.gov (United States)

    Wang, P. F.; Li, Zh. H.; Li, J.; Zhu, Y. M.

    2009-08-01

    Diamond composites were prepared by sintering diamond grains with low melting Na 2O-B 2O 3-SiO 2 vitrified bonds in air. The influence of ZnO on the wettability and flowing ability of Na 2O-B 2O 3-SiO 2 vitrified bonds was characterized by wetting angle, the interfacial bonding states between diamond grains and the vitrified bonds were observed by scanning electron microscope (SEM), and the micro-scale bonding mechanism in the interfaces was investigated by means of energy-dispersive spectrometer (EDS), Fourier transform infrared (FTIR) spectrometer and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ZnO facilitated the dissociation of boron/silicon-oxygen polyhedra and the formation of larger amount of non-bridging oxygen in the glass network, which resulted in the increase of the vitrified bonds' wettability and the formation of -C dbnd O, -O-H and -C-H bonds on the surface of diamond grains. B and Si diffused from the vitrified bonds to the interface, and C-C, C-O, C dbnd O and C-B bond formed on the surface of sintered diamond grains during sintering process, by which the interfacial bonding between diamond grains and the vitrified bonds was strengthened.

  10. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals

    Directory of Open Access Journals (Sweden)

    Masae Takahashi

    2014-03-01

    Full Text Available The development of terahertz technology in the last few decades has made it possible to obtain a clear terahertz (THz spectrum. THz vibrations clearly show the formation of weak bonds in crystals. The simultaneous progress in the code of first-principles calculations treating noncovalent interactions has established the position of THz spectroscopy as a powerful tool for detecting the weak bonding in crystals. In this review, we are going to introduce, briefly, the contribution of weak bonds in the construction of molecular crystals first, and then, we will review THz spectroscopy as a powerful tool for detecting the formation of weak bonds and will show the significant contribution of advanced computational codes in treating noncovalent interactions. From the second section, following the Introduction, to the seventh section, before the conclusions, we describe: (1 the crystal packing forces, the hydrogen-bonded networks and their contribution to the construction of organic crystals; (2 the THz vibrations observed in hydrogen-bonded molecules; (3 the computational methods for analyzing the THz vibrations of hydrogen-bonded molecules; (4 the dispersion correction and anharmonicity incorporated into the first-principles calculations and their effect on the peak assignment of the THz spectrum (5 the temperature dependence; and (6 the polarization dependence of the THz spectrum.

  11. Nursery Culture Performance of Litopenaeus vannamei with Probiotics Addition and Different C/N Ratio Under Laboratory Condition

    Directory of Open Access Journals (Sweden)

    WIDANARNI

    2010-09-01

    Full Text Available Application of bioflocs technology and probiotics has improved water quality and production of Pacific white shrimp (Litopenaeus vannamei culture. This experiment was to verify the effect of probiotic bacteria addition and different carbon:nitrogen (C:N ratio on water quality and performance of Pacific white shrimp nursery culture. Nursery culture was carried out for 25 days in an aquarium under laboratory condition with stock density of one Post-Larvae (PL (poslarval per liter (24 PL/aquarium of PL16 shrimp. Different C:N ratio resulted a significant difference on shrimp production performance. Treatment of 10 C:N ratio demonstrated the best shrimp growth (20.37 + 0.48% per day in weight and 6.05 + 0.41% per day in length, harvesting yield (1180 + 62 g/m3 and feed efficiency (121 + 6%. There was however no significant difference observed between treatments in water quality.

  12. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    -chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  13. Synthesis and enhanced visible-light responsive of C,N,S-tridoped TiO2 hollow spheres.

    Science.gov (United States)

    Lin, Xiaoxia; Fu, Degang; Hao, Lingyun; Ding, Zhen

    2013-10-01

    C,N,S-tridoped TiO2 hollow spheres (labeled as C,N,S-THs) were synthesized using carbon spheres as template and C,N,S-tridoped TiO2 nanoparticles as building blocks. The structure and physicochemical properties of the catalysts were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectrum (DRS), N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS) and Photoluminescence emission spectroscopy (PL). The results showed that the hollow spheres had average diameter of about 200 nm and the shell thickness was about 20 nm. The tridoped TiO2 hollow spheres exhibited strong absorption in the visible-light region. C,N,S-tridoped could narrow the band gap of the THs by mixing the orbit O 2p with C 2p, N 2p and S 3p orbits and shift its optical response from ultraviolet (UV) to the visible-light region. PL analysis indicated that the electron-hole recombination rate of TiO2 hollow spheres had been effectively inhibited when doped with C, N and S elements. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. Reactive Red 2) aqueous solution under visible-light (lambda > 420 nm) irradiation. It was found that the C,N,S-tridoped TiO2 hollow spheres indicated higher photocatalytic activity than commercial P25 and the undoped counterpart photocatalyst.

  14. Long-Term Impact of Soil Management on Microbial Biomass C, N and P in Rice-Based Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertilization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplication of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease

  15. Bond strength of direct and indirect bonded brackets after thermocycling.

    Science.gov (United States)

    Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard

    2006-03-01

    Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P bond failures at the resin/enamel interface.

  16. Infrared Spectra and Hydrogen Bonds of Biologically Active Benzaldehydes

    Science.gov (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shimko, A. N.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2013-09-01

    IR-Fourier spectra of solutions and crystals of biologically active benzaldehyde derivatives were studied. Specific features of the formation of intra- and intermolecular hydrogen bonds were analyzed. Spectral signatures that characterized participation of the hydroxyl OH group and also the OCH3 and C=O groups in the formation of intramolecular hydrogen bonds of the three different types O-H···O-H, O-H···O-CH3, and O-H···O=C were revealed. Intramolecular hydrogen bonds of the types O-H···O-H and O-H···O-CH3 were absent for benzaldehyde derivatives in the crystal phase. Only hydroxyl and carbonyl groups participated in intermolecular interactions. This resulted in the formation of linear intermolecular dimers. Seven various configurations of the linear dimers were identified in solutions and crystals.

  17. Hydrogen bonds in PC{sub 61}BM solids

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Chun-Qi [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121 (China); Li, Wen-Jie; Du, Ying-Ying; Chen, Guang-Hua; Chen, Zheng; Li, Hai-Yang; Li, Hong-Nian, E-mail: phylihn@mail.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2015-09-15

    We have studied the hydrogen bonds in PC{sub 61}BM solids. Inter-molecular interaction is analyzed theoretically for the well-defined monoclinic (P2{sub 1}/n) structure. The results indicate that PC{sub 61}BM combines into C–H⋯O{sub d} bonded molecular chains, where O{sub d} denotes the doubly-bonded O atom of PC{sub 61}BM. The molecular chains are linked together by C–H⋯O{sub s} bonds, where O{sub s} denotes the singly-bonded O atom of PC{sub 61}BM. To reveal the consequences of hydrogen bond formation on the structural properties of PC{sub 61}BM solids (not limited to the monoclinic structure), we design and perform some experiments for annealed samples with the monoclinic (P2{sub 1}/n) PC{sub 61}BM as starting material. The experiments include differential scanning calorimetry, X-ray diffraction and infrared absorption measurements. Structural phase transitions are observed below the melting point. The C–H⋯O{sub d} bonds seem persisting in the altered structures. The inter-molecular hydrogen bonds can help to understand the phase separation in polymer/PC{sub 61}BM blends and may be responsible for the existence of liquid PC{sub 61}BM.

  18. Integrated survey of elemental stoichiometry (C, N, P from the Western to Eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    M. Pujo-Pay

    2010-10-01

    Full Text Available This paper provides an extensive vertical and longitudinal description of the biogeochemistry in the whole Mediterranean Sea during the summer 2008. During this strong stratified period, the distribution of nutrients, particulate and dissolved organic carbon (DOC, nitrogen (DON and phosphorus (DOP were investigated along a 3000 km transect (BOUM cruise crossing the Western and Eastern Mediterranean basins. The partitioning of chemical C, N and P species among all these mineral and organic pools has been analysed to produce a detailed spatial and vertical extended examination of the elemental stoichiometry. Surface Mediterranean waters were depleted in nutrients and the thickness of this depleted layer increased towards the East from about 10 m in the Gulf of Lion to more than 100 m in the Levantine basin, concomitantly to the gradual deepening of the thermocline and nutriclines. We used threshold in oxygen concentration to discriminate the water column in three layers; surface (Biogenic Layer BL, intermediate (Mineralization Layer ML, and deep layer (DL and to propose a schematic representation of biogeochemical fluxes between the different compartments and to compare the functioning of the two basins. The stoichiometry revealed a clear longitudinal and vertical gradient in the mineral fraction with a P-depletion evidenced on both dimension. As a consequence of the severe deficiency in phosphorus, the C:N:P ratios in all pools within the BL largely exceed the Redfield ratios. Despite these gradients, the deep estimated fluxes in the mineral compartment tend towards the canonical Redfield values in both basins. A change in particulate matter composition has been evidenced by a C increase relative to N and P along the whole water column in the western basin and between BL and ML in the eastern one. More surprisingly, a decrease in N relative to P with depth was encountered in the whole Mediterranean Sea. We suggest that there was a more rapid

  19. Activation Strain Analysis of SN2 Reactions at C, N, O, and F Centers.

    Science.gov (United States)

    Kubelka, Jan; Bickelhaupt, F Matthias

    2017-02-02

    Fundamental principles that determine chemical reactivity and reaction mechanisms are the very foundation of chemistry and many related fields of science. Bimolecular nucleophilic substitutions (SN2) are among the most common and therefore most important reaction types. In this report, we examine the trends in the SN2 reactions with respect to increasing electronegativity of the reaction center by comparing the well-studied backside SN2 Cl(-) + CH3Cl with similar Cl(-) substitutions on the isoelectronic series with the second period elements N, O, and F in place of C. Relativistic (ZORA) DFT calculations are used to construct the gas phase reaction potential energy surfaces (PES), and activation strain analysis, which allows decomposition of the PES into the geometrical strain and interaction energy, is employed to analyze the observed trends. We find that SN2@N and SN2@O have similar PES to the prototypical SN2@C, with the well-defined reaction complex (RC) local minima and a central barrier, but all stationary points are, respectively, increasingly stable in energy. The SN2@F, by contrast, exhibits only a single-well PES with no barrier. Using the activation strain model, we show that the trends are due to the interaction energy and originate mainly from the decreasing energy of the empty acceptor orbital (σ*A-Cl) on the reaction center A in the order of C, N, O, and F. The decreasing steric congestion around the central atom is also a likely contributor to this trend. Additional decomposition of the interaction energy using Kohn-Sham molecular orbital (KS-MO) theory provides further support for this explanation, as well as suggesting electrostatic energy as the primary reason for the distinct single-well PES profile for the FCl reaction.

  20. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)

    J.S.SINGH; D.P.SINGH; A.K.KASHYAP

    2010-01-01

    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  1. Effects of Land Use Change on C-N cycling: Microbes Matter.

    Science.gov (United States)

    Hofmockel, K.

    2012-12-01

    Large swaths of the terrestrial landscape have been altered by human actions on Earth's biophysical systems, resulting in the homogenization of Earth's biota, while simultaneously increasing greenhouse gases and reactive nitrogen (N). This is especially poignant in grasslands that have been largely replaced by managed agricultural systems with substantial N inputs, or by unmanaged grasslands that are dominated by exotic species. Impacted ecosystems may be important for global C models, because they comprise a major portion of the global land area, terrestrial NPP and the world's soil C stocks. This research investigates how anthropogenic changes in plant community composition and agricultural management systems influence the composition and function of microbial communities that mediate key aspects of belowground C and N cycling and storage. Data from agroecology and grassland climate change experiments are used to illustrate how microbial responses can have important implications for large scale coupling of C and N cycles. In this study exotic plant species significantly decreased root inputs, causing shifts in microbial community composition, including both specific taxa and functional guilds of bacteria. By contrast, climate change (precipitation manipulation) caused functional responses (increased carbon and phosphorus cycling) that were not detected in the microbial community composition. Mycorrhizal fungi in managed systems were responsive to both root biomass and nitrogen inputs, significantly altering hydrolytic enzyme activity and aggregate turnover. Collectively small-scale processes can alter the ecosystem biogeochemical cycles. Together theses results suggest that linking microbial communities to coupled C-N cycles may have important implications for terrestrial C cycling feedbacks that are an integral part of the anthropocene era.

  2. Mo2C对Ti(C,N)基金属陶瓷腐蚀性能的影响%Effect of Mo2C on Corrosion Behavior of Ti(C,N)-based Cermets

    Institute of Scientific and Technical Information of China (English)

    董广彪; 熊计; 郭智兴; 万维财; 易成红

    2012-01-01

    通过静态浸泡腐蚀和动电位极化两种方法,研究了Mo2C对Ti(C,N)基金属陶瓷在NaOH溶液中腐蚀性能的影响.实验结果表明:Ti(C,N)基金属陶瓷的耐蚀性明显优于WC-Co硬质合金;添加Mo2C可以大幅度提高Ti(C,N)基金属陶瓷的机械性能,硬度从91.2到94.0 HRA和抗弯强度从930到1350 MPa,但会降低金属陶瓷的耐蚀性能;由于Mo2C的加入,会使金属陶瓷的动电位极化曲线出现两个钝化区,但是两个钝化区域的电流均未达到真正的钝化电流(10-5 A/cm2),因而这些钝化现象均为伪钝化;在经动电位极化后的试样表面,粘结相Ni和白色的内环相均会被腐蚀,其中内环相为富Mo的(Mo,Ti)(C,N)固溶体,其耐腐蚀性较未溶的Ti(C,N)芯更差.随着Mo2C添加量的提高,内环形相的厚度随之会增加,从而降低了Ti(C,N)基金属陶瓷的耐蚀性能.%The effect of M02C on corrosion behavior of Ti (C,N)-based cermets in NaOH alkali solution was studied by static corrosion and electrochemical corrosion. The results show that the corrosion resistance of Ti(C,N)-based cermets is obviously better than that of cemented carbides. The M02C addition could improve mechanical properties of cermets greatly, as the hardness increases from 91.2 to 94.0 HRA and transverse rupture strength increases from 930 to 1 350 MPa, but it also decreases the corrosion resistance of cermets. As the MojC addition added, there are two passive regions for the polarization curves. But those passive regions are all pseudopassivation which could not reach the real passivation current(10-5 A/cm2). It could be found on electrochemical corrosion surface that the binder Ni and the inner rims are all corroded. The inner rims is (Mo,Ti)(C,N) solid solution which is poor in corrosion resistance. With the increase of Mo2C addition, the thickness of inner rims increases. So the corrosion resistance of Ti(C,N)-based cermets decreases with the Mo2C addition.

  3. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    Science.gov (United States)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  4. Characterization of dentin-bonding-amalgam interfaces.

    Science.gov (United States)

    Geiger, S B; Mazor, Y; Klein, E; Judes, H

    2001-01-01

    Applying a bonding agent and a resinous adhesive layer before amalgam condensation has become a common clinical procedure. However, interactions between the different interfaces formed, and the extent of sealing obtained, have not been extensively studied. This study characterized the interfaces formed in the bonded amalgam restoration. Specifically, the individual contributions of the bonding agent (One-Step) and the adhesive resin (Resinomer) were examined, along with their mode of application on the prevention of microleakage and the formation of a tight, continuous adhesion to amalgam. To this end, a dye penetration assay and scanning electron microscopy (SEM) were used, including high resolution elemental analysis, for the characterization of the sealing properties and the interface structure obtained following various procedures of applying amalgam adhesives. Results indicated that placing bonding material under the amalgam restoration is essential to preventing microleakage. When condensed against uncured or cured adhesive material, the adhesive resinous glass layer creates a thick interface with protrusions and inclusions in the amalgam, though microleakage studies indicate that condensation over the uncured adhesive results in a better seal than that of the cured adhesive. SEM combined with elemental analysis indicates that the adhesion between amalgam and adhesive material is mainly of mechanical character and is formed by interdigitations of the adhesive material protruding into the amalgam. Gaps formed at the various interfaces in the different modalities could be localized. In addition, resinous glass composite alone, without bonding, was found to provide an unacceptable degree of sealing between the tooth and amalgam. The clinical significance of these findings is further discussed.

  5. 27 CFR 28.66 - Strengthening bonds.

    Science.gov (United States)

    2010-04-01

    ... bonds. In all cases where the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new bond to... of any bond to less than its full penal sum. Strengthening bonds shall show the current date...

  6. Effects of C/N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors

    Directory of Open Access Journals (Sweden)

    Md. Rezoanul Haque

    2014-08-01

    Full Text Available The effects of C:N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors were investigated. The experiment had two treatments: T1 and T2 each with three replications. Stocking density was maintained at 20,000 juveniles ha-1. In T1, only commercially available prawn feed was applied and in T2, a locally formulated and prepared feed containing 24% crude protein with C:N ratio close to 20 was used, and maize flour and bamboo side shoots were provided for maintaining C:N ratio 20.Mean values of water quality parameters did not vary significantly (P>0.05 between treatments. Periphytic biomass in terms of dry matter, ash free dry matter (AFDM and chlorophyll a showed significant difference (P<0.05 among different sampling months. Individual harvesting weight, individual weight gain, specific growth rates, gross and net yields of prawn were significantly higher (P<0.05 in T2 than T1. Therefore, it was concluded that freshwater prawn might consume periphyton biomass in C:N controlled periphyton based organic farming practices resulted a significantly (P<0.05 higher production of freshwater prawn than traditional farming.

  7. Characterization of phase transformation and microstructure of nano hard phase Ti(C,N)-based cermet by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    丰平; 熊惟皓; 李鹏; 余新; 夏阳华

    2004-01-01

    By means of optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick.When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90 - 500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2.Graphite exists in band-like shape.

  8. DEGRADATION OF PETROLEUM REFINERY WASTE BY A CONSORTIUM OF HYDROCARBONOCLASTIC BACTERIA ON SEVERAL C:N:P RATIO

    Directory of Open Access Journals (Sweden)

    Syukria I Zam

    2012-01-01

    Full Text Available Bioremediation is an alternative method to treat petroleum waste using microorganism into nontoxic end product. The method is relatively cheap, effective, and environmental friendly. A key factor influencing bioremediation process for petroleum refinery waste treatment is C:N:P ratio of bacterial growth medium. The objective of this research was to obtain C:N:P ratio of Stone Mineral Salt Solution (SMSS medium that allow optimal degradation of petroleum refinery waste by consortium of hydrocarbonoclastic bacteria. C:N:P ratio of SMSS medium was adjusted to ratio of 100:10:1, 100:10:0.5, 100:5:1, and 100:5:0.5. We demonstrate that optimal degradation of petroleum refinery waste by a consortium of hydrocarbonoclastic bacteria was achieved in SMSS medium with C:N:P ratio of 100:5:1. It allowed 66.55% degradation of total petroleum hydrocarbon (TPH and 85.18 % decrease of chemical oxygen demand (COD value.

  9. 13C-n.m.r. spectra of acrylophenone (1-phenylprop-2-en-1-one) and ring-substituted acrylophenones

    NARCIS (Netherlands)

    Visser, R.; Dahmen, E.A.M.F.

    1978-01-01

    13C-n.m.r. chemical shifts of 10 acrylophenones (1-substituted phenylprop-2-en-1-ones) are reported. The additivity parameters for the substituent effect of the acryloyl group in the aromatic ring and of the benzoyl group in ethylene were calculated. Comparison of ethene chemical shifts in chalcones

  10. C/N-controlled periphyton-based freshwater prawn farming system: a sustainable approach to increase pond productivity

    NARCIS (Netherlands)

    Asaduzzaman, M.

    2012-01-01

    Three technologies showed to improve productivity and sustainability of pond production: (1) C/N ratio control, (2) providing substrates for periphyton development, and (3) fish driven re-suspension. The novelty of this PhD research is to combine these technologies, with the goal to raise pond produ

  11. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds

    NARCIS (Netherlands)

    Asaduzzaman, M.; Rahman, M.M.; Azim, M.E.; Islam, M.A.; Wahab, M.A.; Verdegem, M.C.J.; Verreth, J.A.J.

    2010-01-01

    An on-station trial was conducted to investigate the effects of three C/N ratios (10/1, 15/1 and 20/1) along with substrate presence or absence on natural food communities in freshwater prawn culture ponds. An experiment was carried out in 40 m2 ponds stocked with a stocking density of 2 prawn juven

  12. Analyses of antibacterial activity and cell compatibility of titanium coated with a Zr-C-N film.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available OBJECTIVE: The purpose of this study was to verify the antibacterial performance and cell proliferation activity of zirconium (Zr-carbon (C-nitride (N coatings on commercially pure titanium (Ti with different C contents. MATERIALS AND METHODS: Reactive nitrogen gas (N(2 with and without acetylene (C(2H(2 was activated by Zr plasma in a cathodic-arc evaporation system to deposit either a zirconium nitride (ZrN or a Zr-C-N coating onto Ti plates. The bacterial activity of the coatings was evaluated against Staphylococcus aureus with the aid of SYTO9 nucleic acid staining and scanning electron microscopy (SEM. Cell compatibility, mRNA expression, and morphology related to human gingival fibroblasts (HGFs on the coated samples were also determined by using the MTT assay, reverse transcriptase-polymerase chain reaction, and SEM. RESULTS: The Zr-C-N coating with the highest C content (21.7 at% exhibited the lowest bacterial preservation (P<0.001. Biological responses including proliferation, gene expression, and attachment of HGF cells to ZrN and Zr-C-N coatings were comparable to those of the uncoated Ti plate. CONCLUSIONS: High-C-content Zr-C-N coatings not only provide short-term antibacterial activity against S. aureus but are also biocompatible with HGF cells.

  13. Synthesis of indazoles and azaindazoles by intramolecular aerobic oxidative C-N coupling under transition-metal-free conditions.

    Science.gov (United States)

    Hu, Jiantao; Xu, Huacheng; Nie, Pengju; Xie, Xiaobo; Nie, Zongxiu; Rao, Yu

    2014-04-01

    A transition-metal-free oxidative C-N coupling method has been developed for the synthesis of 1H-azaindazoles and 1H-indazoles from easily accessible hydrazones. The procedure uses TEMPO, a basic additive, and dioxygen gas as the terminal oxidant. This reaction demonstrates better reactivity, functional group tolerance, and broader scope than comparable metal catalyzed reactions.

  14. C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Singh

    2015-06-01

    Full Text Available Nitrogen (N and phosphorus (P availability determine the strength of the ocean's carbon (C uptake, and variation in the N : P ratio in inorganic nutrients is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested that biological processes in the surface ocean controlled deep ocean chemistry. Recent studies have emphasized the role of inorganic N : P ratios in governing biogeochemical processes, particularly the C : N : P ratio in suspended particulate organic matter (POM, with somewhat less attention given to exported POM and dissolved organic matter (DOM. Herein, we extend the discussion on ecosystem C : N : P stoichiometry but also examine temporal variation of stoichiometric relationships. We have analysed elemental stoichiometry in the suspended POM and total (POM + DOM organic matter (TOM pools in the upper 100 m, and in the exported POM and sub-euphotic zone (100–500 m inorganic nutrient pools from the monthly data collected at the Bermuda Atlantic Time-series Study (BATS site located in the western part of the North Atlantic Ocean. C : N : P ratios in the TOM pool were more than twice that in the POM pool. Observed C : N ratios in suspended POM were approximately equal to the canonical Redfield Ratio (C : N : P = 106 : 16 : 1, while N : P and C : P ratios in the same pool were more than twice the Redfield Ratio. Average N : P ratios in the subsurface inorganic nutrient pool were ~ 26 : 1, squarely between the suspended POM ratio and the Redfield ratio. We have further linked variation in elemental stoichiometry with that of phytoplankton cell abundance observed at the BATS site. Findings from this study suggest that the variation elemental ratios with depth in the euphotic zone was mainly due to different growth rates of cyanobacterial cells. These time-series data have also allowed us to examine the

  15. C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean

    Science.gov (United States)

    Singh, A.; Baer, S. E.; Riebesell, U.; Martiny, A. C.; Lomas, M. W.

    2015-11-01

    Nitrogen (N) and phosphorus (P) availability, in addition to other macro- and micronutrients, determine the strength of the ocean's carbon (C) uptake, and variation in the N : P ratio of inorganic nutrient pools is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested that biological processes in the surface ocean controlled deep-ocean chemistry. Recent studies have emphasized the role of inorganic N : P ratios in governing biogeochemical processes, particularly the C : N : P ratio in suspended particulate organic matter (POM), with somewhat less attention given to exported POM and dissolved organic matter (DOM). Herein, we extend the discussion on ecosystem C : N : P stoichiometry but also examine temporal variation in stoichiometric relationships. We have analyzed elemental stoichiometry in the suspended POM and total (POM + DOM) organic-matter (TOM) pools in the upper 100 m and in the exported POM and subeuphotic zone (100-500 m) inorganic nutrient pools from the monthly data collected at the Bermuda Atlantic Time-series Study (BATS) site located in the western part of the North Atlantic Ocean. C : N and N : P ratios in TOM were at least twice those in the POM, while C : P ratios were up to 5 times higher in TOM compared to those in the POM. Observed C : N ratios in suspended POM were approximately equal to the canonical Redfield ratio (C : N : P = 106 : 16 : 1), while N : P and C : P ratios in the same pool were more than twice the Redfield ratio. Average N : P ratios in the subsurface inorganic nutrient pool were ~ 26 : 1, squarely between the suspended POM ratio and the Redfield ratio. We have further linked variation in elemental stoichiometry to that of phytoplankton cell abundance observed at the BATS site. Findings from this study suggest that elemental ratios vary with depth in the euphotic zone, mainly due to different

  16. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  17. EFFECT OF Mo AND Mo2C ON THE MICROSTRUCTURE AND PROPERTIES OF THE CERMETS BASED ON Ti(C,N)

    Institute of Scientific and Technical Information of China (English)

    S.Q.Zhou; W.Zhao; W.H.Xiong; Y.N.Zhou

    2008-01-01

    Effect of Mo and Mo2 C on the microstructure and properties of Ti(C,N)-based cermets was investigated in this article. The results have indicated that the weight percentage of Mo from 5 to 10 can reduce Ti(C,N) grain diameter and thickness of the rim,and Ti(C,N) grain can be wetted by Ni-Cu-Mo liquid so as to get small contiguity of Ti(C,N) grain. In that way, the transverse rupture strength of Ti(C,N)-based cermets has reached 1800-1900 MPa; the fracture toughness has been due to 16-18 MPa.m1/2.But 15 wt pct Mo was not more effective on Ti(C,N)-based cermets, because the thickness of the rim becomes larger. In the circumstance of Mo2C, 5 wt pct Mo2C was good for microstructure and properties of Ti(C,N)-based cermets, but 11 wt pct Mo2C has resulted in larger contiguity of Ti(C,N) grain and big Ti(C,N) grain diameter so as to reduce transverse rupture strength and fracture toughness. So that, the effect of Mo on Ti(C,N)-based cermets is better than Mo2C.

  18. Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ.

    Science.gov (United States)

    Zhan, Jingjing; Hong, Yu; Hu, Hongying

    2016-07-28

    Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/ 25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

  19. Microhardness study of Ti(C, N films deposited on stainless steel 316 by the hallow cathode discharge gun

    Directory of Open Access Journals (Sweden)

    A.J. Novinrooz

    2005-12-01

    Full Text Available Purpose: The micro hardness properties of Titanium Carbonitride composite coated on SS-316 substrates were studied to achieve a desired harden surfaces.Design/methodology/approach: Hollow Cathode Discharge gun (HCD–gun was employed for deposition of the Ti(C, N on SS-316. The evaporated and ionized metal (Ti was coated as an under layer with 0.5 ampere beam current and 100 volt bias voltage. The reactant nitrogen and methane gasses were fed through inlet in to the chamber containing Ti element to form Ti (C, N matrix with an optimized ratio.Findings: In this work, Glow Discharge Optical emission Spectroscopy (GDOS used for compositional analysis of the content elements. On the bases of this operation it was revealed the existence of Ti, C, N elements, X-ray diffraction (XRD technique was utilized to investigate films crystalline structure. The investigation showed that samples with different stoichiometry have a fcc structure with (111 plan of reflection. The atomic ratio of carbon and nitrogen were measured using energy dispersive X-ray (EDX analysis. The optimized value was funned to be TiC0.87 N0.13. The atomic force microscopy (AFM and scanning electron microscopy (SEM were employed to study the films microstructure. A hardness of 3250 HV was obtained in the carbon content C/C+ N atomic ratio of 9 to 1 using a Vickers microhardness tester.Research limitations/implications: As the study was carried out on a limited surfaces, we shall endeavor further attempt on large area deposition.Practical implications: The tools coated in titanium accompanied by nitride and carbide has shown significant improvement. Good compatibility of Ti (C, N compound makes these composite suitable in various technical and industrial applications.Originality/value: It may be remarked that, the hardness obtained in this work is very encouraging and therefore, it is convenient to regard this as a privileged step taken in tool manufacturing aspect.

  20. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  1. Photoinduced hydrogen-bonding dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water.

  2. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  3. Characterization of Dentine to Assess Bond Strength of Dental Composites

    Directory of Open Access Journals (Sweden)

    Saad Liaqat

    2015-04-01

    Full Text Available This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  4. Reactive Bonding Film for Bonding Carbon Foam Through Metal Extrusion

    CERN Document Server

    Chertok, Maxwell; Irving, Michael; Neher, Christian; Tripathi, Mani; Wang, Ruby; Zheng, Gayle

    2016-01-01

    Future tracking detectors, such as those under development for the High Luminosity LHC, will require mechanical structures employing novel materials to reduce mass while providing excellent strength, thermal conductivity, and radiation tolerance. Adhesion methods for such materials are under study at present. This paper demonstrates the use of reactive bonding film as an adhesion method for bonding carbon foam.

  5. Digital Control of Bonding Force for Gold Wire Bonding Machine

    Directory of Open Access Journals (Sweden)

    Xiaochu Wang

    2013-01-01

    Full Text Available In order to digitally control the bonding force of a wire bonder precisely, this paper uses a DC solenoid as a force source, and by controlling the solenoid’s current, which causes the electromagnetic force, we can control the bonding force that capillary applies. The bonding force control system in this paper is composed of PC (Personal Computer and hypogyny MCU (Micro Controller Unit, which communicate using a RS485 interface. The digital value of a given bonding force is given by the PC to the MCU. By comparing the sampling current of the solenoid, and through PID regulation, D/A converter of the digital potentiometer and the solenoid driver circuit, the half-closed loop control system of bonding force is accomplished. Tuning of the PID parameters is accomplished with fuzzy adaptive control theory and simulated by Matlab simulink. The control system is tested by comparing the desired bonding force and the force actually applied and examming the relationship between bonding quality and bonding force.

  6. 29 CFR 2580.412-19 - Term of the bond, discovery period, other bond clauses.

    Science.gov (United States)

    2010-07-01

    ... SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-19 Term of the bond, discovery... 29 Labor 9 2010-07-01 2010-07-01 false Term of the bond, discovery period, other bond clauses... new bond must be obtained each year. There is nothing in the Act that prohibits a bond for a...

  7. Plasmachemical Synthesis of Nanopowders in the System Ti(O,C,N for Material Structure Modification

    Directory of Open Access Journals (Sweden)

    Michael Filkov

    2016-01-01

    Full Text Available Refractory nanoparticles are finding broad application in manufacturing of materials with enhanced physical properties. Production of carbide, nitride, and carbonitride nanopowders in high volumes is possible in the multijet plasmachemical reactor, where temperature and velocity distributions in reaction zone can be controlled by plasma jet collision angle and mixing chamber geometry. A chemical reactor with three Direct Current (DC arc plasma jets intersecting at one point was applied for titanium carbonitride synthesis from titanium dioxide, propane-butane mixture, and nitrogen. The influence of process operational parameters on the product chemical and phase composition was investigated. Mixing conditions in the plasma jet collision zone, particles residence time, and temperatures were evaluated with the help of Computational Fluid Dynamics (CFD simulations. The synthesized nanoparticles have predominantly cubic shape and dimensions in the range 10–200 nm. Phase compositions were represented by oxycarbonitride phases. The amount of free (not chemically bonded carbon in the product varied in the range 3–12% mass, depending on synthesis conditions.

  8. Single-electron aerogen bonds: Do they exist?

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba; Solimannejad, Mohammad

    2016-08-01

    A novel type of σ-hole interaction is characterized between some noble gas containing molecules (KrOF2, KrO3, XeOF2 and XeO3) and methyl (CH3) or ethyl (C2H5) radical by means of ab initio calculations. This interaction is named as single-electron aerogen bond (SEAB), in view of the concepts of aerogen bond and single-electron bond interactions. The properties of SEABs are studied by molecular electrostatic potential, quantum theory of atom in molecules, natural bonding orbital and noncovalent interaction index analyses. The formation of an O⋯H interaction tends to increase the strength of the SEAB, when they coexist in a ternary complex.

  9. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    Science.gov (United States)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  10. Pauling bond strength, bond length and electron density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  11. Interstellar SiC: Extended Studies of C, N, and SI Isotopes in Small Single Grains

    Science.gov (United States)

    Hoppe, P.; Strebel, R.; Eberhardt, P.; Amari, S.; Lewis, R. S.

    1993-07-01

    In search of grain-size dependent characteristics of interstellar SiC, we have measured the C, N, and Si isotopes in 596 single grains from Murchison separate KJE (average size 1.14 micrometers) [1]. So far, extended studies of single SiC grains from the Murchison K-series were made on separates KJG (average size 3.02 micrometers) and KJH (average size 4.57 micrometers) [2] and a limited dataset was also obtained for separate KJF (average size 1.86 micrometers) [2,3]. As it is the case for the larger grains, most grains from KJE have heavy carbon and light nitrogen. ^12C/^13C ratios vary between 2.3 and 270. The distribution of ^12C/^13C ratios is almost identical to those observed for the larger-grain separates, with most grains having ^12C/^13C ~40-100 (Fig. 1a-c). ^14N/^15N ratios vary between 48 and >10,000. The distribution of ^14N/^15N ratios clearly differs from those observed for the larger-grain separates (Fig. 1d-f). Grains from separate KJE, on the average, have much higher ^14N/^15N ratios. The median value is 2800 compared to 1250 for KJG and 550 for KJH [2]. As is evident from these numbers, there is a clear trend with the typical ^14N/^15N ratio increasing with decreasing grain size. In close agreement with the larger grains, most grains from KJE have delta^29Si ~ -50 to 200 per mil and delta^30Si ~ 0 to 160 per mil, in a three-isotope-plot lying along a line with slope ~1.1. However, there are 12 grains clearly off this line with 10 of them being depleted in ^29Si and enriched in ^30Si. Nine grains were identified as grains X [4], being charaterized by light C, heavy N, and light Si. Five of them, in addition, show a very high nitrogen content, ~5x higher than that of a typical grain from KJE. Furthermore, one grain has the Si-isotopic signature of grains X, but heavy C. While the observed C-isotopic ratios for the majority of the grains can be explained by standard stellar evolution models for AGB-stars [5], the ^14N/^15N ratios > ~2000, as it is

  12. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    2012-01-01

    of the article is to provide possible explanations for the puzzle of why small retail investors hold structured bonds. The investment universe consists of a stock index, a risk-free bank account, and a structured bond containing an option written on another index. We apply expected utility maximization...

  13. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  14. Prof C. N. Yang (Physics Nobel Prize 1957) from Tsinghua University (Beijing) during his CERN Colloquium: "Thematic Melodies of Twentieth Century Theoretical Physics: Quantization, Symmetry and Phase Factor".

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Prof C. N. Yang (Physics Nobel Prize 1957) from Tsinghua University (Beijing) during his CERN Colloquium: "Thematic Melodies of Twentieth Century Theoretical Physics: Quantization, Symmetry and Phase Factor".

  15. Alkali metal mediated C-C bond coupling reaction.

    Science.gov (United States)

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  16. The Significance of Multivalent Bonding Motifs and “Bond Order” in DNA-Directed Nanoparticle Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Thaner, Ryan V.; Eryazici, Ibrahim; Macfarlane, Robert J.; Brown, Keith A.; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2016-05-18

    Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of "bond strength" between particles and therefore modulate the effective "bond order." In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice.

  17. C, N co-doped TiO2/TiC0.7N0.3 composite coatings prepared from TiC0.7N0.3 powder using ball milling followed by oxidation

    Science.gov (United States)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO2 coatings on the surfaces of Al2O3 balls from TiC0.7N0.3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV-vis). The results show that continuous TiC0.7N0.3 coatings were formed after ball milling. C, N co-doped TiO2/TiC0.7N0.3 composite coatings were prepared after the direct oxidization of TiC0.7N0.3 coatings in the atmosphere. However, TiO2 was hardly formed in the surface layer of TiC0.7N0.3 coatings within a depth less than 10 nm during the heat oxidation of TiC0.7N0.3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO2/TiC0.7N0.3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO2/TiC0.7N0.3 composite microstructure.

  18. Room temperature ring expansion of N-heterocyclic carbenes and B-B bond cleavage of diboron(4) compounds.

    Science.gov (United States)

    Pietsch, Sabrina; Paul, Ursula; Cade, Ian A; Ingleson, Michael J; Radius, Udo; Marder, Todd B

    2015-06-15

    We report the isolation and detailed structural characterization, by solid-state and solution NMR spectroscopy, of the neutral mono- and bis-NHC adducts of bis(catecholato)diboron (B2 cat2 ). The bis-NHC adduct undergoes thermally induced rearrangement, forming a six-membered -B-C=N-C=C-N-heterocyclic ring via C-N bond cleavage and ring expansion of the NHC, whereas the mono-NHC adduct is stable. Bis(neopentylglycolato)diboron (B2 neop2 ) is much more reactive than B2 cat2 giving a ring expanded product at room temperature, demonstrating that ring expansion of NHCs can be a very facile process with significant implications for their use in catalysis.

  19. Laboratoire de Chimie Bactérienne C.N.R.S., Marsielle, France.

    Science.gov (United States)

    Chippaux, M; Giudici, D; Abou-Jaoudé, A; Casse, F; Pascal, M C

    1978-04-06

    Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome C552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.

  20. Effect of density of hydrogen-bonding donor on hydrogen-bonded multilayer buildup

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongyu; MA Ning; WANG Zhiqiang

    2005-01-01

    The effect of density of hydrogen-bonding donor (HBD) on the formation of layer-by-layer assemblies of poly(4-vinylpyridine) and poly(4-vinylphenol) was investigated. For this purpose, a series of ethyl-substituted poly(4-vinylphenol) (EsPVPhf) with variable ethyl substitute percentage was synthesized by grafting the phenol moiety along the poly(4-vinylphenol) backbone with 1-bromoethane. UV-vis spectroscopy revealed a uniform deposition process of the hydrogen-bonded multilayer consisting of poly(4- vinylpyridine) (PVPy) and EsPVPhf with variable density of HBD. Notably, it was found that increasing the HBD density of EsPVPhf resulted in a marked decrease of both amount of polymers adsorbed and film thickness, which should be related to the EsPVPhf conformation change from coiled state to extended conformation in ethanol solution. Compared with the effect of charge density in polyelectrolyte multilayer, however, there does not exist a critical density of HBD in our case of hydrogen-bonded multilayer assembly. In addition, surface structures of PVPy/EsPVPhf multilayer films also can be tailored controllably by adjusting HBD density of EsPVPhf. As a result, a new method for tuning the structure of hydrogen-bonding-directed multilayer films was developed.