WorldWideScience

Sample records for c-myc ccnd1 gene

  1. Discovery and characterization of a novel CCND1/MRCK gene fusion in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Chioniso Patience Masamha

    2016-03-01

    Full Text Available Abstract The t(11;14 translocation resulting in constitutive cyclin D1 expression is an early event in mantle cell lymphoma (MCL transformation. Patients with a highly proliferative phenotype produce cyclin D1 transcripts with truncated 3′UTRs that evade miRNA regulation. Here, we report the recurrence of a novel gene fusion in MCL cell lines and MCL patient isolates that consists of the full protein coding region of cyclin D1 (CCND1 and a 3′UTR consisting of sequences from both the CCND1 3′UTR and myotonic dystrophy kinase-related Cdc42-binding kinase's (MRCK intron one. The resulting CCND1/MRCK mRNA is resistant to CCND1-targeted miRNA regulation, and targeting the MRCK region of the chimeric 3′UTR with siRNA results in decreased CCND1 levels.

  2. [Correlation analysis of G870A CCND1 gene polymorphism with digestive system tumors].

    Science.gov (United States)

    Yang, Shu-Min; Shi, Ya-Lin

    2016-11-20

    To study the correlation of G870A CCND1 gene polymorphism and digestive system tumors. From August 2010 to August 2014, 164 digestive system cancer patients (including 82 patients with gastric cancer and 82 with colorectal cancer) and 82 healthy subjects (control group) were examined with PCR-restriction fragment length polymorphism (PCR-RFLP). The distribution of CCND1 gene G870A frequency in the 3 groups and its association with tumor staging and grading were analyzed. The frequencies of the GG, GA and AA genotypes in G870A CCND1 gene loci in patients with gastric cancer and colorectal cancer differed significantly from those in the control group (Pdigestive system tumors (Pdigestive system cancer risk than the GG genotype (Pdigestive system tumors. The allele A is associated with an increased risk of digestive system tumors and correlated with the tumor differentiation and staging of the tumor.

  3. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    International Nuclear Information System (INIS)

    Chen, Yinghua; Xu, Jinhua; Borowicz, Stanley; Collins, Cindy; Huo, Dezheng; Olopade, Olufunmilayo I

    2011-01-01

    The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. The distal BRCA1 promoter region is associated with c-Myc

  4. Aberrant immunoglobulin and c-myc gene rearrangements in patients with nonmalignant monoclonal cryoglobulinemia

    International Nuclear Information System (INIS)

    Perl, A.; Wang, N.; Williams, J.M.; Hunt, M.J.; Rosenfeld, S.I.; Condemi, J.J.; Packman, C.H.; Abraham, G.N.

    1987-01-01

    The status of the immunoglobulin (Ig) genes was investigated in patients with idiopathic nonmalignant monoclonal IgG cryoglobulinemia (NCG). In NCG, monoclonal antibodies are synthesized at an accelerated rate by nonmalignant B lymphocytes. In order to determine whether this high production rate is related to a clonal B cell expansion, the rearrangement of the Ig genes was investigated by Southern blot analysis of genomic, 32 P-labelled, DNA extracted from the peripheral blood lymphocytes of four NCG patients. In three of four (VI, BR, and CH) clonal expansion of B cells was detected using probes specific for the genes. BamHI digestion of DNA from VI and BR produced three rearranged fragments which cohybridized with two of the probes. This finding suggested the presence of additional nonsecretory B cell clones and/or disruption of the gene segments spanned by and detected with the probes. In addition, the possibility of aberrant gene rearrangements was supported by noting the alteration of the c-myc gene locus in genomic DNA from peripheral blood leukocytes of VI and CH. Northern blot analysis of RNA isolated from peripheral blood B cells of VI and CH demonstrated aberrant transcripts of the c-myc gene, showing an active role of the altered c-myc locus. Detection of c-myc rearrangement in NCG patients clearly shows that this event may not be a final step in malignant B cell transformation

  5. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-03-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 /alpha/-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author).

  6. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.

    Science.gov (United States)

    Barfeld, Stefan J; Urbanucci, Alfonso; Itkonen, Harri M; Fazli, Ladan; Hicks, Jessica L; Thiede, Bernd; Rennie, Paul S; Yegnasubramanian, Srinivasan; DeMarzo, Angelo M; Mills, Ian G

    2017-04-01

    Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks

    Directory of Open Access Journals (Sweden)

    Stefan J. Barfeld

    2017-04-01

    Full Text Available Prostate cancer (PCa is the most common non-cutaneous cancer in men. The androgen receptor (AR, a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen, and Glycine N-Methyltransferase (GNMT, in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.

  8. Transformation of follicular lymphoma to plasmablastic lymphoma with c-myc gene rearrangement.

    Science.gov (United States)

    Ouansafi, Ihsane; He, Bing; Fraser, Cory; Nie, Kui; Mathew, Susan; Bhanji, Rumina; Hoda, Rana; Arabadjief, Melissa; Knowles, Daniel; Cerutti, Andrea; Orazi, Attilio; Tam, Wayne

    2010-12-01

    Follicular lymphoma (FL) is an indolent lymphoma that transforms to high-grade lymphoma, mostly diffuse large B-cell lymphoma, in about a third of patients. We present the first report of a case of FL that transformed to plasmablastic lymphoma (PBL). Clonal transformation of the FL to PBL was evidenced by identical IGH/BCL2 gene rearrangements and VDJ gene usage in rearranged IGH genes. IGH/ BCL2 translocation was retained in the PBL, which also acquired c-myc gene rearrangement. Genealogic analysis based on somatic hypermutation of the rearranged IGH genes of both FL and PBL suggests that transformation of the FL to PBL occurred most likely by divergent evolution from a common progenitor cell rather than direct evolution from the FL clone. Our study of this unusual case expands the histologic spectrum of FL transformation and increases our understanding of the pathogenetic mechanisms of transformation of indolent lymphomas to aggressive lymphomas.

  9. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  10. Cooverexpression of EpCAM and c-myc genes in malignant breast

    Indian Academy of Sciences (India)

    oncogene, affects progression, treatment, and diagnosis of many adenocarcinomas. C-myc has been shown to be a downstream target of EpCAM and is also one of the most important proto-oncogenes routinely overexpressed in breast cancer.

  11. Insertion of the LINE-1 element in the C-MYC gene and immunoreactivity of C-MYC, p53, p21 and p27 proteins in different morphological patterns of the canine TVT

    Directory of Open Access Journals (Sweden)

    C.R.O. Lima

    2016-06-01

    Full Text Available ABSTRACT The canine transmissible venereal tumor (TVT affects the external genitalia of dogs by the natural transplant of viable tumor cells. Thus, this research aimed to diagnose and characterize TVT morphological patterns, identify the insertion of the LINE-1 element in C-MYC gene, by means of the polymerase chain reaction (PCR, and evaluate the immunohistochemical expression of C-MYC, p53, p21 and p27 proteins. The relationship between C-MYC and p53 proteins and their interference on the expression of p21 and p27 were also studied. For that, 20 samples of naturally occurring TVT were used, subjected to cytopathological, histopathological and immunohistochemical analysis, and to molecular diagnosis of neoplasia. The increased tissue expression and the correlation among C-MYC, p53, p21 and p27 proteins indicate reduction and/or loss of their functionality in the TVT microenvironment, with consequent apoptotic suppression, maintenance of cell growth and progression of neoplasia.

  12. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice

    Directory of Open Access Journals (Sweden)

    Liao Dezhong J

    2008-01-01

    Full Text Available Abstract Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT and liver metastatic lesions (LM compared to normal pancreas (NP. In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1 and Serine proteinase inhibitor A1 (Serpina1, and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  13. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice.

    Science.gov (United States)

    Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J

    2008-01-24

    Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  14. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1

    International Nuclear Information System (INIS)

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-01-01

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III 1 region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III 1 region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III 1 and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III 1 in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg 88 to Ala 88 (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III 1 region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  15. Relationship of Amplification and Expression of the C-MYC Gene with Survival among Gastric Cancer Patients.

    Science.gov (United States)

    Khaleghian, Malihea; Shakoori, Abbas; Razavi, Amirnader Emami; Azimi, Cyrus

    2015-01-01

    During the past decades, the incidence and mortality rate of stomach cancer has demonstrated a great decrease in the world, but it is still one of the most common and fatal cancers especially among men worldwide, including Iran. The MYC proto-oncogene, which is located at 8q24.1, regulates 15% of genes and is activated in 20% of all human tumors. MYC amplification and overexpression of its protein product has been reported in 15-30% of gastric neoplasias. The aim of this investigation was to find the relative efficacy of CISH (chromogenic in situ hybridization) or IHC (immunohistochemistry) in diagnosis and prognosis of gastric cancer, as well as the relationship of amplification and expression of C-MYC gene with patient survival. In this cross-sectional study, 102 samples of gastric cancer were collected from patients who had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences, from July 2009 to March 2014. All samples were randomly selected from those who were diagnosed with gastric adenocarcinomas. CISH and IHC methods were performed on all of them. Patients were classified into two groups. The first consisted of stage I and II cases, and the second of stage III and IV. Survival tests for both groups was carried out with referrnce to CISH test reults. Group II (stage III and IV) with CISH+ featured lower survival than those with CISH- (p=0.233), but group I (stage I and II) patients demonstrated no significant variation with CISH+ or CISH- (p=0.630). Kaplan-Meier for both groups was carried out with IHC test findings and showed similar results. This data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in men than women. Our data also showed that CISH+ patients (43%) were more frequent in comparison with IHC+ patients (14.7%). For planning treatment of gastric cancer patients, by focusing on expanding tumors, which is the greatest concern of the surgeons and

  16. The c-myc oncoprotein forms a specific complex with the product of the retinoblastoma gene

    NARCIS (Netherlands)

    Bernards, R.A.; Rustgi, A.K.; Dyson, N.; Hill, D.

    1991-01-01

    Myc proteins are involved in the regulation of cell proliferation and differentiation. Deregulated expression of myc family genes has been implicated in the genesis of a variety of cancers. Myc proteins share significant sequence homology in the carboxyl terminus with a number of

  17. Association Between Amplification and Expression of C-MYC Gene and Clinicopathological Characteristics of Stomach Cancer.

    Science.gov (United States)

    Khaleghian, Malihea; Jahanzad, Issa; Shakoori, Abbas; Emami Razavi, Amirnader; Azimi, Cyrus

    2016-02-01

    The incidence rate of gastric cancer in western countries has shown a remarkable decline in the recent years while it is still the most common cancer among males in Iran. The proto-oncogene MYC, located at 8q24.1, regulates almost 15% of human genes and is activated in 20% of all tumors. The amplification of MYC and overexpression of its protein product are observed in 15 - 30% of gastric neoplasias. The objective of this study was to find the preferences of Chromogenic In Situ Hybridization (CISH) and Immunohistochemistry (IHC) in diagnosis and prognosis of gastric cancer. We studied 102 samples of gastric cancer in Iran and all the patients had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences. The CISH and IHC techniques were applied for all our samples. All of the samples had adenocarcinoma gastric cancer and were selected randomly. Also, the type of study was cross sectional. The sample size was 100 patients. Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in males than females. Our results showed that there was an indication of some correlation between grades and CISH, although the difference was not significant. Our data also showed that CISH positive patients (43%) were more frequent compared to IHC positive patients (14.7%). There was a correlation between CISH and IHC. These results revealed that there was a significant difference between grades and IHC. There was also no statistical difference between CISH amplification in diffuse and intestinal types. From the results, it could be concluded that for administration of the treatment of stomach cancer, and progress and prognosis of tumor, which is important for patients and clinicians, the CISH is a better and more feasible test than IHC, in regards to sensitivity and specificity.

  18. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  19. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  20. c-myc overexpression causes anaplasia in medulloblastoma.

    Science.gov (United States)

    Stearns, Duncan; Chaudhry, Aneeka; Abel, Ty W; Burger, Peter C; Dang, Chi V; Eberhart, Charles G

    2006-01-15

    Both anaplasia and increased c-myc gene expression have been shown to be negative prognostic indicators for survival in medulloblastoma patients. myc gene amplification has been identified in many large cell/anaplastic medulloblastoma, but no causative link between c-myc and anaplastic changes has been established. To address this, we stably overexpressed c-myc in two medulloblastoma cell lines, DAOY and UW228, and examined the changes in growth characteristics. When analyzed in vitro, cell lines with increased levels of c-myc had higher rates of growth and apoptosis as well as significantly improved ability to form colonies in soft agar compared with control. When injected s.c. into nu/nu mice, flank xenograft tumors with high levels of c-myc in DAOY cell line background were 75% larger than those derived from control. Overexpression of c-myc was required for tumor formation by UW228 cells. Most remarkably, the histopathology of the Myc tumors was severely anaplastic, with large areas of necrosis/apoptosis, increased nuclear size, and macronucleoli. Indices of proliferation and apoptosis were also significantly higher in Myc xenografts. Thus, c-myc seems to play a causal role in inducing anaplasia in medulloblastoma. Because anaplastic changes are often observed in recurrent medulloblastoma, we propose that c-myc dysregulation is involved in the progression of these malignant embryonal neoplasms.

  1. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  2. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  4. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  5. The human thyroglobulin gene: a polymorphic marker localized distal to C-MYC on chromosome 8 band q24

    NARCIS (Netherlands)

    Baas, F.; Bikker, H.; Geurts van Kessel, A.; Melsert, R.; Pearson, P. L.; de Vijlder, J. J.; van Ommen, G. J.

    1985-01-01

    The human thyroglobulin (Tg) gene is localized to chromosome 8 and regionally to band q24 as shown independently by both in situ hybridization techniques and Southern blot analysis of human-rodent somatic cell hybrids. Analysis of hybrids derived from a Burkitt lymphoma, with a translocation

  6. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    Science.gov (United States)

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both

  7. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States); Ratner, Lee [Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lairmore, Michael D. [University of California-Davis, School of Veterinary Medicine, One Shields Avenue, Davis, CA 95618 (United States); Martinez, Ernest [Department of Biochemistry, University of California, Riverside, CA 92521 (United States); Lüscher, Bernhard [Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen (Germany); Robson, Craig N. [Northern Institute for Cancer Research, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH (United Kingdom); Henriksson, Marie [Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm (Sweden); Harrod, Robert, E-mail: rharrod@smu.edu [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States)

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  8. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Chen Shaomin

    2012-04-01

    Full Text Available Abstract Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH using chromosome probes to TERC (3q26 and C-MYC (8q24. All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1, grade 2 (CIN2, grade 3 (CIN3 and squamous cervical cancer (SCC cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC cases than in the normal and CIN1 cases (p p p > 0.05. Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913.

  9. Cell Cycle Regulation by Alternative Polyadenylation of CCND1.

    Science.gov (United States)

    Wang, Qiong; He, Guopei; Hou, Mengmeng; Chen, Liutao; Chen, Shangwu; Xu, Anlong; Fu, Yonggui

    2018-05-01

    Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.

  10. AP-2α Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Lei Yu

    2009-01-01

    AP-2 may have a direct effect on the c-myc gene. Chromatin immunoprecipitation assays demonstrated that AP-2 proteins bound to a cluster of AP-2 binding sites located within a 2 kb upstream regulatory region of c-myc These results suggest that the negative regulation of AP-2 on c-MYC activity was achieved through binding of AP-2 protein to the c-myc gene. The effects of AP-2 on c-MYC induced ROS accumulation and apoptosis in epidermal keratinocytes are likely to play an important role in cell growth, differentiation and carcinogenesis of the skin.

  11. c-myc Amplification Is Frequent in Esophageal Adenocarcinoma and Correlated with the Upregulation of VEGF-A Expression

    Directory of Open Access Journals (Sweden)

    Burkhard H.A. von Rahden

    2006-09-01

    Full Text Available BACKGROUND: Deregulation of c-myc plays a major role in the carcinogenesis of human malignancies. We investigated the amplification of the c-myc gene in a surgical series of Barrett cancers. METHODS: Primary resected esophageal (Barrett adenocarcinomas (n = 84 were investigated for c-myc amplification using chromogene in situ hybridization. Tumor samples were assembled in a tissue microarray. c-myc gene dosage was correlated with clinicopathologic parameters, including the survival and gene expression of cyclooxygenases (COX-1 and COX-2 and proangiogenic growth factors (VEGF-A and VEGF-C. RESULTS: The majority (70 of 84; 83.3% exhibited amplification of the c-myc gene. There were low-level amplifications in 63 (75.0% cases and high-level amplifications in 7 (8.3% cases. No amplification was found in 14 (16.7% cases. Tumors without c-myc amplification had lower VEGF-A, VEGF-C, and COX-2 expression levels than tumors with low-level and high-level c-myc amplification (statistically significant for VEGF-A; P = .0348. c-myc amplification was not correlated with clinicopathological parameters or survival. Only diffuse and mixed-type tumors, according to Lauren classification, exhibited c-myc amplifications more frequently (P = .0466. CONCLUSIONS: Amplifications of the c-myc gene are frequent in Barrett cancer. c-myc may be involved in the regulation of angiogenesis.

  12. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogenous c-myc gene

    International Nuclear Information System (INIS)

    Sorrentino, V.; Drozdoff, V.; Zeitz, L.; Fleissner, E.

    1987-01-01

    C3H/10T 1/2 cells were infected with a retroviral vector expressing a mouse c-myc oncogene and a drug-selection marker. The resulting cells, morphologically indistinguishable from C3H/10T l/1, displayed a greatly enhanced sensitivity to neoplastic transformation by ionizing radiation or by a chemical carcinogen. Constitutive expression of myc therefore appears to synergize with an initial carcinogenic event, providing a function analogous to a subsequent event that apparently is required for the neoplastic transformation of these cells. This cell system should prove useful in exploring early stages in radiation-induced transformation

  13. Mechanism of estrogen activation of c-myc oncogene expression.

    Science.gov (United States)

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  14. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma

    Science.gov (United States)

    Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Seabra, Aline Damaceno; Khayat, André Salim; Chen, Elizabeth Suchi; Demachki, Samia; Assumpção, Paulo Pimentel; Faria, Mario Henrique Girão; Rabenhorst, Silvia Helena Barem; Ferreira, Márcia Valéria Pitombeira; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodríguez

    2006-01-01

    AIM: To investigate chromosome 8 numerical aberrations, C-MYC oncogene alterations and its expression in gastric cancer and to correlate these findings with histopathological characteristics of gastric tumors. METHODS: Specimens were collected surgically from seven patients with gastric adenocarcinomas. Immunostaining for C-MYC and dual-color fluorescence in situ hybridization (FISH) for C-MYC gene and chromosome 8 centromere were performed. RESULTS: All the cases showed chromosome 8 aneuploidy and C-MYC amplification, in both the diffuse and intestinal histopathological types of Lauren. No significant difference (P < 0.05) was observed between the level of chromosome 8 ploidy and the site, stage or histological type of the adenocarcinomas. C-MYC high amplification, like homogeneously stained regions (HSRs) and double minutes (DMs), was observed only in the intestinal-type. Structural rearrangement of C-MYC, like translocation, was observed only in the diffuse type. Regarding C-MYC gene, a significant difference (P < 0.05) was observed between the two histological types. The C-MYC protein was expressed in all the studied cases. In the intestinal-type the C-MYC immunoreactivity was localized only in the nucleus and in the diffuse type in the nucleus and cytoplasm. CONCLUSION: Distinct patterns of alterations between intestinal and diffuse types of gastric tumors support the hypothesis that these types follow different genetic pathways. PMID:17036397

  15. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  16. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  17. Evaluation of Molecular Inhibitors of the c-Myc Oncoprotein

    National Research Council Canada - National Science Library

    Prochownik, Edward V

    2005-01-01

    .... All of these functions require that C-Myc physically associate with another protein. Max. Example of diseases in which c-Myc deregulation occurs include breast cancer (approx. 30% of cases), colon cancer (>85...

  18. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  19. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    International Nuclear Information System (INIS)

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene

  20. Peripheral position of CCND1 and HER-2/neu oncogenes within chromosome territories in esophageal and gastric cancers non-related to amplification and overexpression

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2009-01-01

    Full Text Available Interphase chromosomes have been shown to occupy discrete regions of the nucleus denominated chromosome territories (CTs, their active genes being preferentially positioned on the surfaces of these CTs, where they are accessible to transcriptional machinery. By means of FISH (Fluorescence in situ Hybridization, we analyzed the CCND1 and HER-2/neu gene positions within the CTs and their relationship with gene amplification and protein over-expression in esophageal and gastric cancers. The CCND1 and HER-2/Neu genes were more often positioned at the periphery (mean frequency of 60%-83% of the CTs in tumor tissues of the esophagus and stomach. Moreover, this positioning revealed no association with either gene amplification or the protein over-expression status of these genes, although, in esophageal carcinoma, Kappa statistics showed a moderate agreement between amplification of the CCND1 gene (Kappa = 0.400 and its location within the CT, as well as with over-expression of the corresponding protein (Kappa = 0.444. Thus, our results suggest that gene positioning in interphase chromosomes does not follow a definitive pattern neither does it depend only on gene transcriptional activity. Apparently, this positioning could be both gene- and tissue-specific, and depends on other factors acting together, such as dense-gene, chromosome size, chromatin structure, and the level and stability of its expression.

  1. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Cao, Lu; Wu, Mengchao; Zhang, Ying; Su, Changqing; Li, Chunguang; Shen, Shuwen; Yan, Yan; Ji, Weidan; Wang, Jinghan; Qian, Haihua; Jiang, Xiaoqing; Li, Zhigang

    2013-01-01

    OCT4 and BIRC5 are preferentially expressed in human cancer cells and mediate cancer cell survival and tumor maintenance. However, the molecular mechanism that regulates OCT4 and BIRC5 expression is not well characterized. By manipulating OCT4 and BIRC5 expression in hepatocellular carcinoma (HCC) cell lines, the regulatory mechanism of OCT4 on BIRC5 and CCND1 were investigated. Increasing or decreasing OCT4 expression could enhance or suppress BIRC5 expression, respectively, by regulating the activity of BIRC5 promoter. Because there is no binding site for OCT4 within BIRC5 promoter, the effect of OCT4 on BIRC5 promoter is indirect. An octamer motif for OCT4 in the CCND1 promoter has directly and partly participated in the regulation of CCND1 promoter activity, suggesting that OCT4 also could upregulated the expression of CCND1. Co-suppression of OCT4 and BIRC5 induced cancer cell apoptosis and cell cycle arrest, thereby efficiently inhibiting the proliferative activity of cancer cells and suppressing the growth of HCC xenogrfts in nude mice. OCT4 can upregulate BIRC5 and CCND1 expression by increasing their promoter activity. These factors collusively promotes HCC cell proliferation, and co-suppression of OCT4 and BIRC5 is potentially beneficial for HCC treatment

  2. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Habel, Marie-Eve; Jung, Daniel

    2006-01-01

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  3. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  4. Fluorescent Dansyl-Guanosine Conjugates that Bind c-MYC Promoter G-Quadruplex and Downregulate c-MYC Expression.

    Science.gov (United States)

    Pavan Kumar, Y; Saha, Puja; Saha, Dhurjhoti; Bessi, Irene; Schwalbe, Harald; Chowdhury, Shantanu; Dash, Jyotirmayee

    2016-03-02

    The four-stranded G-quadruplex present in the c-MYC P1 promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Small-molecule compounds capable of inhibiting the c-MYC promoter activity by stabilising the c-MYC G-quadruplex could potentially be used as anticancer agents. In this context, here we report the synthesis of dansyl-guanosine conjugates through one-pot modular click reactions. The dansyl-guanosine conjugates can selectively detect c-MYC G-quadruplex over other biologically relevant quadruplexes and duplex DNA and can be useful as staining reagents for selective visualisation of c-MYC G-quadruplex over duplex DNA by gel electrophoresis. NMR spectroscopic titrations revealed the preferential binding sites of these dansyl ligands to the c-MYC G-quadruplex. A dual luciferase assay and qRT-PCR revealed that a dansyl-bisguanosine ligand represses the c-MYC expression, possibly by stabilising the c-MYC G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women.

    Science.gov (United States)

    Khan, Farhan; Ricks-Santi, Luisel J; Zafar, Rabia; Kanaan, Yasmine; Naab, Tammey

    2018-06-01

    Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.

    Science.gov (United States)

    Ciccarelli, Carmela; Di Rocco, Agnese; Gravina, Giovanni Luca; Mauro, Annunziata; Festuccia, Claudio; Del Fattore, Andrea; Berardinelli, Paolo; De Felice, Francesca; Musio, Daniela; Bouché, Marina; Tombolini, Vincenzo; Zani, Bianca Maria; Marampon, Francesco

    2018-06-29

    Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.

  7. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    Science.gov (United States)

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  8. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.

    Science.gov (United States)

    Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-03-29

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.

  9. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, Jingyuan; Liu, Zhentao; Wang, Ziqi; Wang, Shubin; Chen, Zuhua; Li, Zhongwu; Zhang, Mengqi; Zou, Jianling; Dong, Bin; Gao, Jing; Shen, Lin

    2018-04-10

    c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    International Nuclear Information System (INIS)

    Han, Yu; Zhong, Cuiping; Hong, Liu; Wang, Ye; Qiao, Li; Qiu, Jianhua

    2009-01-01

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  11. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu; Zhong, Cuiping [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Hong, Liu [First Division of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Wang, Ye; Qiao, Li [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Qiu, Jianhua, E-mail: qiujh@fmmu.edu.cn [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China)

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  12. Transcriptional regulation of BRD7 expression by Sp1 and c-Myc

    Directory of Open Access Journals (Sweden)

    Li Shufang

    2008-12-01

    Full Text Available Abstract Background Bromodomain is an evolutionally conserved domain that is found in proteins strongly implicated in signal-dependent transcriptional regulation. Genetic alterations of bromodomain genes contributed to the development of many human cancers and other disorders. BRD7 is a recently identified bromodomain gene. It plays a critical role in cellular growth, cell cycle progression, and signal-dependent gene expression. Previous studies showed that BRD7 gene exhibited much higher-level of mRNA expression in normal nasopharyngeal epithelia than in nasopharyngeal carcinoma (NPC biopsies and cell lines. However, little is known about its transcriptional regulation. In this study, we explored the transcriptional regulation of BRD7 gene. Method Potential binding sites of transcription factors within the promoter region of BRD7 gene were predicted with MatInspector Professional http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl. Mutation construct methods and luciferase assays were performed to define the minimal promoter of BRD7 gene. RT-PCR and western blot assays were used to detect the endogenous expression of transcription factor Sp1, c-Myc and E2F6 in all cell lines used in this study. Electrophoretic mobility shift assays (EMSA and Chromatin immunoprecipitation (ChIP were used to detect the direct transcription factors that are responsible for the promoter activity of BRD7 gene. DNA vector-based siRNA technology and cell transfection methods were employed to establish clone pools that stably expresses SiRNA against c-Myc expression in nasopharyngeal carcinoma 5-8F cells. Real-time PCR was used to detect mRNA expression of BRD7 gene in 5-8F/Si-c-Myc cells. Results We defined the minimal promoter of BRD7 gene in a 55-bp region (from -266 to -212bp, and identified that its promoter activity is inversely related to c-Myc expression. Sp1 binds to the Sp1/Myc-Max overlapping site of BRD7 minimal promoter, and slightly positively

  13. Melatonin disturbs SUMOylation mediated crosstalk between c-Myc and Nestin via MT1 activation and promotes the sensitivity of Paclitaxel in brain cancer stem cells.

    Science.gov (United States)

    Lee, Hyemin; Lee, Hyo-Jung; Jung, Ji Hoon; Shin, Eun Ah; Kim, Sung-Hoon

    2018-04-14

    Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of Paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing Nestin, CD133, CXCR4 and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of Nestin, while overexpression of Nestin enhanced c-Myc through crosstalk despite different locations, nucleus and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of Nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and Chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor Luzindole blocked the ability of melatonin to decrease the expression of Nestin, p-c-Myc(S62) and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub G1 accumulation and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, Nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. The Max b-HLH-LZ can transduce into cells and inhibit c-Myc transcriptional activities.

    Directory of Open Access Journals (Sweden)

    Martin Montagne

    Full Text Available The inhibition of the functions of c-Myc (endogenous and oncogenic was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max* behaves as a bona fide protein transduction domain (PTD that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs.

  15. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  16. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    Science.gov (United States)

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  17. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Xeroderma pigmentosum group C (XPC, essential component of multisubunit stem cell coactivator complex (SCC, functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  18. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  19. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the re...

  20. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  1. Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death

    International Nuclear Information System (INIS)

    Arnaud-Dabernat, Sandrine; Masse, Karine; Smani, Moneim; Peuchant, Evelyne; Landry, Marc; Bourbon, Pierre-Marie; Le Floch, Renaud; Daniel, Jean-Yves; Larou, Monique

    2004-01-01

    The nm23 gene family encodes nucleoside diphosphate kinases (NDPKs) which supply the cell with (d)NTPs. The human NDPKB, also known as the PuF protein, binds the c-myc promoter and transactivates the c-myc protooncogene. We have now studied the effects of mouse NDPKA and NDPKB overexpression on endogenous c-myc transactivation in the mouse BAF3 and the rat PC12 cell lines. c-myc transcripts were found to be up-regulated by NDPKB only in the BAF3 line. This suggests that c-myc transcriptional control via NDPKB depends on the presence of cell-specific co-factors. Unexpectedly, NDPKB also induced NDPKA expression. This new effect was found in both cell lines, suggesting that NDPKB-dependent nm23-M1 gene transactivation requires cis and/or trans elements different from those involved in c-myc transactivation. Moreover, the BAF3 cell proliferation capacities were found to be independent of NDPKA or B cell contents. Interestingly, cell death induced by c-myc overexpression or H 2 O 2 exposure was decreased in nm23-transfected compared to control BAF3 cells. These data collectively suggest that NDPKs might improve cell survival by a mechanism coupling DNA repair and transcriptional regulation of genes involved in DNA damage response

  2. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    NARCIS (Netherlands)

    Phesse, T. J.; Myant, K. B.; Cole, A. M.; Ridgway, R. A.; Pearson, H.; Muncan, V.; van den Brink, G. R.; Vousden, K. H.; Sears, R.; Vassilev, L. T.; Clarke, A. R.; Sansom, O. J.

    2014-01-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC

  3. Mechanisms of c-myc degradation by nickel compounds and hypoxia.

    Directory of Open Access Journals (Sweden)

    Qin Li

    2009-12-01

    Full Text Available Nickel (Ni compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474. The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1alpha and HIF-2alpha attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1alpha and HIF-2alpha was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation.

  4. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  5. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  6. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  7. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    International Nuclear Information System (INIS)

    Hong Jie; Zhao Yingchun; Huang Weida

    2006-01-01

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma

  8. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress.

    Science.gov (United States)

    Kfoury, Alain; Armaro, Marzia; Collodet, Caterina; Sordet-Dessimoz, Jessica; Giner, Maria Pilar; Christen, Stefan; Moco, Sofia; Leleu, Marion; de Leval, Laurence; Koch, Ute; Trumpp, Andreas; Sakamoto, Kei; Beermann, Friedrich; Radtke, Freddy

    2018-03-01

    Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the Nras Q61K INK4a -/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease. © 2018 The Authors.

  9. DNA repair in the c-myc proto-oncogene locus: Possible involvement in susceptibility or resistance to plasmacytoma induction in BALB/c mice

    International Nuclear Information System (INIS)

    Beecham, E.J.; Mushinski, J.F.; Shacter, E.; Potter, M.; Bohr, V.A.

    1991-01-01

    This report describes an unexpected difference in the efficiency of removal of UV-induced DNA damage in the c-myc locus in splenic B lymphoblasts from two inbred strains of mice. In cells from plasmacytoma-resistant DBA/2N mice, 35% of UV-induced damage in the regulatory and 5' flank of c-myc is removed by 12 h. However, in cells from plasmacytoma-susceptible BALB/cAn mice, damage is not removed from this region. In the protein-encoding region and 3' flank of c-myc as well as in two dihydrofolate reductase gene fragments, UV damage is repaired with similar efficiency in B lymphoblasts from both strains of mice. Furthermore, in the protein-encoding portion and 3' flank of c-myc, damage is selectively removed from only the transcribed strand. No repair is detected in the nontranscribed strand. In contrast, DNA repair in the 5' flank of c-myc is not strand specific; in DNA from DBA/2N cells, UV damage is rapidly removed from both the transcribed and nontranscribed strands. In BALB/cAn cells no repair was detected in either strand in the 5'flank, consistent with the results with double-stranded, nick-translated probes to this region of c-myc. In addition to the repair studies, we have detected post-UV-damage formation: in most of the genes studied, we find that additional T4 endonuclease-sensitive sites are formed in the DNA 2 h after irradiation. Our findings provide new insights into the details of gene-specific and strand-specific DNA repair and suggest that there may be close links between DNA repair and B-cell neoplastic development

  10. MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis

    Science.gov (United States)

    Fu, Shuang; Guo, Yan; Chen, Hong; Xu, Zhen-Ming; Qiu, Guang-Bin; Zhong, Ming; Sun, Kai-Lai; Fu, Wei-Neng

    2011-01-01

    Background MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. Methodology/Principal Findings Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within −886 to −655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. Conclusions/Significance Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function. PMID:21998677

  11. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  12. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  13. Clinicopathological significance of c-MYC in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Lian, Yu; Niu, Xiangdong; Cai, Hui; Yang, Xiaojun; Ma, Haizhong; Ma, Shixun; Zhang, Yupeng; Chen, Yifeng

    2017-07-01

    Esophageal squamous cell carcinoma is one of the most common malignant tumors. The oncogene c-MYC is thought to be important in the initiation, promotion, and therapy resistance of cancer. In this study, we aim to investigate the clinicopathologic roles of c-MYC in esophageal squamous cell carcinoma tissue. This study is aimed at discovering and analyzing c-MYC expression in a series of human esophageal tissues. A total of 95 esophageal squamous cell carcinoma samples were analyzed by the western blotting and immunohistochemistry techniques. Then, correlation of c-MYC expression with clinicopathological features of esophageal squamous cell carcinoma patients was statistically analyzed. In most esophageal squamous cell carcinoma cases, the c-MYC expression was positive in tumor tissues. The positive rate of c-MYC expression in tumor tissues was 61.05%, obviously higher than the adjacent normal tissues (8.42%, 8/92) and atypical hyperplasia tissues (19.75%, 16/95). There was a statistical difference among adjacent normal tissues, atypical hyperplasia tissues, and tumor tissues. Overexpression of the c-MYC was detected in 61.05% (58/95) esophageal squamous cell carcinomas, which was significantly correlated with the degree of differentiation (p = 0.004). The positive rate of c-MYC expression was 40.0% in well-differentiated esophageal tissues, with a significantly statistical difference (p = 0.004). The positive rate of c-MYC was 41.5% in T1 + T2 esophageal tissues and 74.1% in T3 + T4 esophageal tissues, with a significantly statistical difference (p = 0.001). The positive rate of c-MYC was 45.0% in I + II esophageal tissues and 72.2% in III + IV esophageal tissues, with a significantly statistical difference (p = 0.011). The c-MYC expression strongly correlated with clinical staging (p = 0.011), differentiation degree (p = 0.004), lymph node metastasis (p = 0.003), and invasion depth (p = 0.001) of patients with esophageal squamous cell carcinoma. The c-MYC was

  14. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia

    2015-07-27

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.

  15. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    Science.gov (United States)

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  16. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis.

    Science.gov (United States)

    Ji, Ping; Zhou, Xinhui; Liu, Qun; Fuller, Gregory N; Phillips, Lynette M; Zhang, Wei

    2016-04-26

    Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.

  17. c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection.

    Science.gov (United States)

    Price, Alexander M; Messinger, Joshua E; Luftig, Micah A

    2018-01-15

    Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription. IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us

  18. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  19. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  20. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  1. Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc.

    Science.gov (United States)

    Gou, Qiheng; Wu, Ke; Zhou, Jian-Kang; Xie, Yuxin; Liu, Lunxu; Peng, Yong

    2017-09-22

    The c-Myc transcription factor is involved in cell proliferation, cell cycle and apoptosis by activating or repressing transcription of multiple genes. Circular RNAs (circRNAs) are widely expressed non-coding RNAs participating in the regulation of gene expression. Using a high-throughput microarray assay, we showed that Myc regulates the expression of certain circRNAs. A total of 309 up- and 252 down-regulated circRNAs were identified. Among them, randomly selected 8 circRNAs were confirmed by real-time PCR. Subsequently, Myc-binding sites were found to generally exist in the promoter regions of differentially expressed circRNAs. Based on miRNA sponge mechanism, we constructed circRNAs/miRNAs network regulated by Myc, suggesting that circRNAs may widely regulate protein expression through miRNA sponge mechanism. Lastly, we took advantage of Gene Ontology and KEGG analyses to point out that Myc-regulated circRNAs could impact cell proliferation through affecting Ras signaling pathway and pathways in cancer. Our study for the first time demonstrated that Myc transcription factor regulates the expression of circRNAs, adding a novel component of the Myc tumorigenic program and opening a window to investigate the function of certain circRNAs in tumorigenesis.

  2. Profil Ekspresi mRNA Gen Murine Double Minute2, Kruppel-Like Factor4, dan c-Myc pada Fibrosarkoma

    Directory of Open Access Journals (Sweden)

    - Humaryanto

    2017-02-01

    Full Text Available Abstrak Fibrosarkoma hanya terjadi 1–3% dari seluruh keganasan jaringan lunak. Hingga saat ini etiologi fibrosarkoma belum diketahui dengan pasti. Beberapa faktor dapat menjadi penyebab patogenesis fibrosarkoma antara lain radiasi, terpapar zat kimia tertentu, serta infeksi human herpes virus 8 (HHV8 dan Epstein-Barr virus (EBV. Penelitian terkini menunjukkan bahwa banyak sarkoma terkait dengan mutasi genetik. Penelitian ini bertujuan melihat profil ekspresi mRNA gen Krüppel-like Factor4, Murine Double Minute2, dan c-Myc pada fibrosarkoma menggunakan teknik real time PCR kuantitatif (quantitative real time PCR, qRT-PCR. Analisis data menggunakan metode kuantititatif relatif 2-ΔΔCt. Penelitian ini menggunakan 10 sampel kasus fibrosarkoma yang ditemukan di Kota Jambi dari tahun 2011–2015. Hasil ΔCt (+SD MDM2, KLF-4, dan c-Myc disusun dari nilai yang terkecil hingga tertinggi adalah 1,85±2,14; 2,06±3,86; 2,9±2,66 secara berurutan. Dibanding dengan level ekspresi dengan GAPDH sebagai housekeeping gene, gen MDM2 dan KLF-4 relatif menurun dua kali lipat, sedangkan gen c-Myc relatif menurun lebih dari tiga kali lipat. Simpulan, penelitian ini menunjukkan bahwa pada kasus fibrosarkoma, gen c-Myc disupresi lebih kuat dibanding dengan gen MDM2 dan KLF-4. Abstract Fibrosarcoma is a rare soft tissue sarcoma, reported only 1–3% of all soft tissue sarcomas. Like any other soft-tissue sarcomas the definitive caused has not yet understood. Recognized causes include exposure to ionizing radiation, various physical and chemical factors, infection with human herpes virus (HHV8 and Epstein-Barr virus (EBV. Current research indicates many sarcomas are associated with genetic mutations. In this study, we investigated profile of mRNA gene expression KLF4, MDM2, and c-Myc of RNA in fibrosarcoma cases. The genes expression was examined using quantitative real time PCR (qRT-PCR and we analyzed the relative gene expression using the 2-ΔΔCt method. Ten

  3. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  4. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...

  5. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection

    Directory of Open Access Journals (Sweden)

    Anastasiya V. Snezhkina

    2016-01-01

    Full Text Available Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC. Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF. Bacterial enterotoxin activates spermine oxidase (SMO, which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP, and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.

  6. Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC

    Directory of Open Access Journals (Sweden)

    Khodadad Khodadadi

    2012-01-01

    Full Text Available Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors using OCT4, SOX2, and KLF4 in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months and characterized. The equine iPS (EiPS cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression of OCT4, SOX2 NANOG, and STAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers both in vitro by embryoid bodies (EBs formation and in vivo by teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.

  7. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  8. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  9. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  10. A proteomic study of cMyc improvement of CHO culture

    Directory of Open Access Journals (Sweden)

    Dunn Michael J

    2010-03-01

    Full Text Available Abstract Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS. Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin, protein biosysnthesis (eIF6 and energy metabolism (ATP synthetase, and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.

  11. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    Science.gov (United States)

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  12. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    Science.gov (United States)

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Low expression of c-Myc protein predicts poor outcomes in patients with hepatocellular carcinoma after resection.

    Science.gov (United States)

    Ji, Fei; Zhang, Zhi-Heng; Zhang, Yi; Shen, Shun-Li; Cao, Qing-Hua; Zhang, Long-Juan; Li, Shao-Qiang; Peng, Bao-Gang; Liang, Li-Jian; Hua, Yun-Peng

    2018-04-24

    Embryonic Liver Fodrin (ELF) is an adaptor protein of transforming growth factor (TGF-β) signaling cascade. Disruption of ELF results in mislocalization of Smad3 and Smad4, leading to compromised TGF-β signaling. c-Myc is an important oncogenic transcription factor, and the disruption of TGF-β signaling promotes c-Myc-induced hepatocellular carcinoma (HCC) carcinogenesis. However, the prognostic significance of c-Myc in HCC is less understood METHODS: The expression of c-Myc protein and mRNA were measured by immunohistochemistry (IHC) and qRT- PCR, respectively. IHC was performed to detect TGF-β1 and ELF expression in HCC tissues. Their relationship with clinicopathological factors and overall survival (OS) and disease free survival (DFS) were examined. The expression of c-Myc protein and mRNA in HCC tissues were significantly higher in HCC area than those in normal liver tissues. However, the expression were low compared with those adjacent to HCC area. c-Myc protein was independently predictive of DFS and OS, and it was negatively correlated with tumor size (P = 0.031), tumor number (P = 0.038), and recurrence (P = 0.001). Low c-Myc expression was associated with short-term recurrence and poor prognosis. The predictive value of c-Myc combined with TGF-β1 or/and ELF was higher than that of any other single marker. Low c-Myc, high TGF-β1 or/and low ELF expression was associated with the worst DFS and OS. Low expression of c-Myc protein predicts poor outcomes in patients with HCC with hepatectomy. The combination of the expression of c-Myc, TGF-β1, and ELF can be used to accurately predict outcomes of patients with HCC.

  14. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuexia [Institute of Radiation Medicine, Fudan University, Shanghai (China); Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen [Institute of Radiation Medicine, Fudan University, Shanghai (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2015-02-15

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.

  15. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    International Nuclear Information System (INIS)

    Xie, Yuexia; Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen; Shao, Chunlin

    2015-01-01

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved

  16. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  17. Targeting C-Myc Promoter: Helquats As Novel G-Quadruplex Stabilizing Ligands

    Czech Academy of Sciences Publication Activity Database

    Kužmová, Erika; Kozák, Jaroslav; Komárková, Veronika; Pytlík, R.; Teplý, Filip; Hájek, Miroslav

    2014-01-01

    Roč. 124, č. 21 (2014) ISSN 0006-4971. [Annual Meeting of the American Society of Hematology /56./. 06.12.2014-09.12.2014, San Francisco] Institutional support: RVO:61388963 Keywords : helquats * C-Myc * leukemia Subject RIV: CE - Biochemistry

  18. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  19. The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice.

    Science.gov (United States)

    Ono, Junya; Shime, Hiroaki; Takaki, Hiromi; Takashima, Ken; Funami, Kenji; Yoshida, Sumito; Takeda, Yohei; Matsumoto, Misako; Kasahara, Masanori; Seya, Tsukasa

    2017-10-17

    Intestinal tumorigenesis is promoted by myeloid differentiation primary response gene 88 (MyD88) activation in response to the components of microbiota in Apc Min/+ mice. Microbiota also contains double-stranded RNA (dsRNA), a ligand for TLR3, which activates the toll-like receptor adaptor molecule 1 (TICAM-1, also known as TRIF) pathway. We established Apc Min/+ Ticam1 -/- mice and their survival was compared to survival of Apc Min/+ Myd88 -/- and wild-type (WT) mice. The properties of polyps were investigated using immunofluorescence staining and RT-PCR analysis. We demonstrate that TICAM-1 is essential for suppression of polyp formation in Apc Min/+ mice. TICAM-1 knockout resulted in shorter survival of mice compared to WT mice or mice with knockout of MyD88 in the Apc Min/+ background. Polyps were more frequently formed in the distal intestine of Apc Min/+ Ticam1 -/- mice than in Apc Min/+ mice. Infiltration of immune cells such as CD11b + and CD8α + cells into the polyps was detected histologically. CD11b and CD8α mRNAs were increased in polyps of Apc Min/+ Ticam1 -/- mice compared to Apc Min/+ mice. Gene expression of inducible nitric oxide synthase (iNOS), interferon (IFN)-γ, CXCL9 and IL-12p40 was increased in polyps of Apc Min/+ Ticam1 -/- mice. mRNA and protein expression of c-Myc, a critical transcription factor for inflammation-associated polyposis, were increased in polyps of Apc Min/+ Ticam1 -/- mice. A Lactobacillus strain producing dsRNA was detected in feces of Apc Min/+ mice. These results imply that the TLR3/TICAM-1 pathway inhibits polyposis through suppression of c-Myc expression and supports long survival in Apc Min/+ mice.

  20. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Energy Technology Data Exchange (ETDEWEB)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Talacko, Pavel; Grobárová, Valéria [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Černý, Jan [Faculty of Science, Charles University, Prague (Czech Republic); Novák, Petr, E-mail: pnovak@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic)

    2016-12-10

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.

  1. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  2. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  3. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically...... engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  4. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study

    Science.gov (United States)

    Moosvi, Zama; Rekha, K

    2013-01-01

    Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor. PMID:23798830

  5. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    Science.gov (United States)

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  6. CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico

    2015-01-01

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472

  7. The 5T mouse multiple myeloma model: Absence of c-myc oncogene rearrangement in early transplant generations

    NARCIS (Netherlands)

    Radl, J.; Punt, Y.A.; Enden-Vieveen, M.H.M. van den; Bentvelzen, P.A.J.; Bakkus, M.H.C.; Akker T., W. van den; Benner, R.

    1990-01-01

    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobulin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM),

  8. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients

    Directory of Open Access Journals (Sweden)

    Stearns Duncan

    2011-02-01

    Full Text Available Abstract Background To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB. Methods We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt (MTS assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. Results In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR vs. 5 non-responders (SD, PD or chemotherapy (23 CR/PR vs. 20 SD/PD was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively. Conclusions c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment.

  9. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia.

    Science.gov (United States)

    Eberhart, Charles G; Kratz, John; Wang, Yunyue; Summers, Krista; Stearns, Duncan; Cohen, Kenneth; Dang, Chi V; Burger, Peter C

    2004-05-01

    Several molecular and histopathological prognostic markers have been proposed for the therapeutic stratification of medulloblastoma patients. Amplification of the c-myc oncogene, elevated levels of c-myc mRNA, or tumor anaplasia have been associated with worse clinical outcomes. In contrast, high TrkC mRNA expression generally presages longer survival. The goal of this study was to evaluate the prognostic value of c-myc, N-myc and TrkC expression in medulloblastomas and compare them to histopathological classification. We used in situ hybridization to measure expression of these molecular markers. c-myc mRNA was detected in 18 of 59 (31%) cases, and was significantly associated with shorter patient survival times on both univariate and multivariate analyses (p = 0.04). The presence of c-myc mRNA was also significantly associated with tumor anaplasia. While survival rates were higher for patients with low N-myc or high TrkC expression, these differences were not statistically significant. The group of patients with either moderate or severely anaplastic tumors showed only a trend towards shorter survival (p = 0.11). However, severe anaplasia alone was significantly prognostic (p = 0.002). Given the prognostic import of c-myc, we investigated 2 potential mechanisms by which its expression might be regulated: Wnt signaling and Mxi-1 mutation. Nuclear translocation of beta-catenin, a marker of Wnt pathway activation, was more common in medulloblastomas with high c-myc than in tumors overall, but the difference was not statistically significant. No Mxi-1 mutations were detected in the 22 cases examined. The association we describe between c-myc expression, tumor anaplasia, and worse clinical outcomes provides further evidence for the importance of this oncogene in medulloblastoma pathobiology.

  10. Distribution of C-myc Antisense Oligonucleotides in Rabbits after Local Delivery by Implanted Gelatin Coated Piatinium -iridium Stent

    Institute of Scientific and Technical Information of China (English)

    张新霞; 庞志功; 崔长琮; 许香广; 胡雪松; 方卫华

    2003-01-01

    Objectives To assess the feasibility, efficiency and tissue distribution of localdelivered c - myc antisense oligonucleotides (ASODN)by implanted gelatin coated Platinium- Iridium (Pt-Ir) stent. Methods Gelatin coated Pt- Ir stentwhich absorbed carboxyfluorescein - 5 - succimidylester (FAM) labeled c -myc ASODN were implantedin the right carotid arteries of 6 rabbits under vision.Blood samples were collected at the indicated times.The target artery、 left carotid artery、 heart、 liver andkidney obtained at 45 minutes、 2 hours and 6hours. The concentration of c - myc ASODN in plasmaand tissues were determined by Thin Layer Fluorome-try. Tissue distribution of c- myc ASODN were as-sessed by fluorescence microscopy. Results At 45min, 2 h, 6 h, the concentration of FAM labeled c -myc ASODN in target artery was 244.39, 194.44,126.94(μg/g tissues) respectively, and the deliveryefficiency were 44.4% 、 35.4% and 23.1% respec-tively. At the same indicated time point, the plasmaconcentration was 8.41, 5. 83, 14.75 (μg/ml) respec-tively. Therefore c -myc ASODN concentrations in thetarget vessel were 29、 33 and 9 -fold higher than thatin the plasma. There was circumferential distribution oflabeled c -myc in the area of highest fluorescein co-inciding with the site of medial dissecting from stent-ing, and the label was most intense in target vesselmedia harvested at 45 min time point and then dis-persed to adventitia. Conclusions Gelatin coated Pt- Ir stent mediated local delivery of c - myc ASODN isfeasible and efficient. The localization of ASODN ismainly in target vessel wall.

  11. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  12. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients.

    Science.gov (United States)

    Zhou, Ya-Xing; Zhou, Ke-Ming; Liu, Qian; Wang, Hui; Wang, Wen; Shi, Yi; Ma, Yu-Qing

    2018-04-09

    Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ 2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. Glut1 positivity was associated with tumor size (p C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.

  13. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  14. Study of C-MYC amplification and expression in Iranian gastric cancer samples using CISH and IHC methods.

    Science.gov (United States)

    Khaleghian, Malihea; Jahanzad, Issa; Shakoori, Abbas; Ardalan, Farid Azmoudeh; Azimi, Cyrus

    2015-01-01

    Gastric cancer is the fourth most frequent malignancy and the second cause of cancer-related mortality worldwide. It has been suggested that in gastric carcinogenesis, the C-MYC gene has an important function. The objective of this study is to establish the preference of Chromogenic in situ hybridization (CISH) and Immunohistochemistry (IHC) in the diagnosis and prognosis of gastric cancer. Samples comprised of 50 randomly selected patients of whom 40 were male and 10 female. To evaluate the MYC copy number and its protein expression, CISH and IHC analyses were performed for 50 gastric adenocarcinomas, in Iran. The location of the tumor in 64% of the patients was the fundus, and in 72% of patients, the tumors were of a diffuse type; 22 samples showed no amplification, and 28 samples were with amplification. MYC immunoreactivity was observed in 13 samples. Twelve samples showed both MYC amplification and MYC immunoreactivity. In addition, among the 28 CISH+ samples, 12 samples had positive signals for IHC and 16 samples had negative signals for IHC. A majority of the IHC-negative patients had no amplification, but only one patient with IHC positive had no amplification. Our conclusion was that for the management and treatment of gastric cancer, and for special attention of clinicians, for prognosis and tumor progression, the CISH was a better and more feasible test than IHC, in regard to the sensitivity and specificity.

  15. Study of C-MYC amplification and expression in Iranian gastric cancer samples using CISH and IHC methods

    Directory of Open Access Journals (Sweden)

    Malihea Khaleghian

    2015-01-01

    Full Text Available Background: Gastric cancer is the fourth most frequent malignancy and the second cause of cancer-related mortality worldwide. It has been suggested that in gastric carcinogenesis, the C-MYC gene has an important function. The objective of this study is to establish the preference of Chromogenic in situ hybridization (CISH and Immunohistochemistry (IHC in the diagnosis and prognosis of gastric cancer. Materials and Methods: Samples comprised of 50 randomly selected patients of whom 40 were male and 10 female. To evaluate the MYC copy number and its protein expression, CISH and IHC analyses were performed for 50 gastric adenocarcinomas, in Iran. Results: The location of the tumor in 64% of the patients was the fundus, and in 72% of patients, the tumors were of a diffuse type; 22 samples showed no amplification, and 28 samples were with amplification. MYC immunoreactivity was observed in 13 samples. Twelve samples showed both MYC amplification and MYC immunoreactivity. In addition, among the 28 CISH+ samples, 12 samples had positive signals for IHC and 16 samples had negative signals for IHC. A majority of the IHC-negative patients had no amplification, but only one patient with IHC positive had no amplification. Conclusion: Our conclusion was that for the management and treatment of gastric cancer, and for special attention of clinicians, for prognosis and tumor progression, the CISH was a better and more feasible test than IHC, in regard to the sensitivity and specificity.

  16. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  17. EFFECT OF STENT ABSORBED c-myc ANTISENSE OLIGODEOXYNUCLEOTIDE ON SMOOTH MUSCLE CELLS APOPTOSIS IN RABBIT CAROTID ARTERY

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 崔翰斌; 徐仓宝; 朱参战

    2002-01-01

    Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN (n=16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group(P<0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.

  18. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  19. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    International Nuclear Information System (INIS)

    Bueren, André O von; Shalaby, Tarek; Oehler-Jänne, Christoph; Arnold, Lucia; Stearns, Duncan; Eberhart, Charles G; Arcaro, Alexandre; Pruschy, Martin; Grotzer, Michael A

    2009-01-01

    With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly

  20. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Arcaro Alexandre

    2009-01-01

    Full Text Available Abstract Background With current treatment strategies, nearly half of all medulloblastoma (MB patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. Methods To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425. Results siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. Conclusion In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.

  1. cAMP-Dependent Protein Kinase A (PKA)-Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes.

    Science.gov (United States)

    Liu, Qingyuan; Nguyen, Eric; Døskeland, Stein; Ségal-Bendirdjian, Évelyne

    2015-09-01

    The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  3. SirT1 confers hypoxia-induced radioresistance via the modulation of c-Myc stabilization on hepatoma cells

    International Nuclear Information System (INIS)

    Xie Yuexia; Zhang Jianghong; Shao Chunlin; Xu Yanwu

    2012-01-01

    Intratumoral hypoxia is an important contributory factor to tumor cell resistance to radiotherapy. SirT1, a nicotinamide adenine dinucleotide (NAD + )-dependent histone/protein deacetylase, has been linked to the decrease of radiation-induced DNA damage and seems to be critical for cancer therapy. The purpose of this study was to investigate the role of SirT1 in hypoxia-induced radiation response on hepatoma cells. It was found that the administration with resveratrol, a putative SirT1 activator, enhanced the resistance of HepG2 cells against radiation-induced DNA damage of MN formation under hypoxia condition; while nicotinamide, a well-known SirT1 inhibitor, sensitized this radiation damage. Nevertheless, pretreatment of cells with 10058-F4, a specific inhibitor of c-Myc, almost eliminated the nicotinamide-induced radiosensitive effect. Further studies revealed that resveratrol inhibited c-Myc protein accumulation via up-regulation of SirT1 expression and deacetylase activity, and this loss of c-Myc protein was abolished by inhibiting its degradation in the presence of MG132, a potent inhibitor of proteasome. In contrast, nicotinamide attenuated c-Myc protein degradation induced by radiation under hypoxia through inhibition of SirT1 deacetylase activity. Our findings suggest that SirT1 could serve as a novel potent target of radiation-induced DNA damage and thus as a potential strategy to advance the efficiency of radiation therapy in hepatoma entities. (author)

  4. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  5. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Douglas B Stairs

    Full Text Available Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD. Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.To begin to identify the genetic changes responsible for transdifferentiaiton in Barrett's esophagus, we performed a microarray analysis of normal esophageal, Barrett's esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barrett's esophagus.These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barrett's esophagus.

  6. Expression of c-myc and c-fos and binding sites for estradiol and progesterone in human pituitary tumors.

    Science.gov (United States)

    Machiavelli, G A; Rivolta, C M; Artese, R; Basso, A; Burdman, J A

    1998-12-01

    We studied the concentration of mRNA from the oncogenes c-myc and c-fos in human pituitary adenomas by Northern blot hybridization (35 somatotrophinomas, 9 prolactinomas, 21 nonsecreting and 3 adrenocorticotrophinomas). The concentration of estrogens and progesterone receptors was also investigated. The levels of c-myc and c-fos mRNA was higher in nonsecreting tumors which were generally the largest and had a higher percentage of recurrence after surgery than the other groups. High concentration of estrogen receptors was observed in tumors derived from cells which are normally the target of this hormone, mainly prolactinomas. They were also present in somatotrophic and nonsecreting adenomas, related to the presence of prolactin or gonadotrophin cells in these tumors. The presence of estrogen receptors indicates that the tumor cells maintain their differentiation and a good prognosis as is the case for prolactinomas. We did not find any relationship between estrogen receptors and the concentration of c-myc and c-fos oncogenes. Larger adenomas (mainly nonsecreting) had higher levels of c-myc and c-fos mRNA than the other tumors and they had an important percentage of recurrence after surgery. It is clear that tumor size is related to the outcome after surgery and that nonsecreting adenomas are usually large because of the late diagnosis. However two large somatotrophinomas with extrasellar expansion also had overexpression of both oncogenes and both relapsed after surgery.

  7. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    Science.gov (United States)

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  8. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma

    DEFF Research Database (Denmark)

    Szabo, Agoston Gyula; Gang, Anne Ortved; Pedersen, Mette Ølgod

    2016-01-01

    The role of c-myc in multiple myeloma (MM) is controversial. We conducted a retrospective study of 117 patients with MM diagnosed between 2004 and 2010 at Herlev Hospital. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) were performed on tissue microarrays (TMAs) made from...

  9. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  10. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  11. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    Science.gov (United States)

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    International Nuclear Information System (INIS)

    Dydensborg, Anders Bondo; Teller, Inga C; Groulx, Jean-François; Basora, Nuria; Paré, Fréderic; Herring, Elizabeth; Gauthier, Rémy; Jean, Dominique; Beaulieu, Jean-François

    2009-01-01

    Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking. In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line. Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc. The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin

  13. Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice

    Directory of Open Access Journals (Sweden)

    Brudvik Kristoffer W

    2011-12-01

    Full Text Available Abstract Background The adenomatous polyposis coli (APC protein is part of the destruction complex controlling proteosomal degradation of β-catenin and limiting its nuclear translocation, which is thought to play a gate-keeping role in colorectal cancer. The destruction complex is inhibited by Wnt-Frz and prostaglandin E2 (PGE2 - PI-3 kinase pathways. Recent reports show that PGE2-induced phosphorylation of β-catenin by protein kinase A (PKA increases nuclear translocation indicating two mechanisms of action of PGE2 on β-catenin homeostasis. Findings Treatment of ApcMin/+ mice that spontaneously develop intestinal adenomas with a PKA antagonist (Rp-8-Br-cAMPS selectively targeting only the latter pathway reduced tumor load, but not the number of adenomas. Immunohistochemical characterization of intestines from treated and control animals revealed that expression of β-catenin, β-catenin nuclear translocation and expression of the β-catenin target genes c-Myc and COX-2 were significantly down-regulated upon Rp-8-Br-cAMPS treatment. Parallel experiments in a human colon cancer cell line (HCT116 revealed that Rp-8-Br-cAMPS blocked PGE2-induced β-catenin phosphorylation and c-Myc upregulation. Conclusion Based on our findings we suggest that PGE2 act through PKA to promote β-catenin nuclear translocation and tumor development in ApcMin/+ mice in vivo, indicating that the direct regulatory effect of PKA on β-catenin nuclear translocation is operative in intestinal cancer.

  14. Mitochondrial structure, function and dynamics are temporally controlled by c-Myc.

    Directory of Open Access Journals (Sweden)

    J Anthony Graves

    Full Text Available Although the c-Myc (Myc oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS, the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.

  15. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    Science.gov (United States)

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  16. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    Science.gov (United States)

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  17. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation.

    Directory of Open Access Journals (Sweden)

    Guangzhen Hu

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.

  18. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  19. Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c -Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c -Myc Oncogenic...ABSTRACT We previously made a PB-Cre4/Ai-Myc model for Cre-induced and androgen-independent expression of c -Myc and Luc2 in prostate. This is designed

  20. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Czech Academy of Sciences Publication Activity Database

    Vališ, Karel; Talacko, Pavel; Grobárová, Valeria; Černý, J.; Novák, Petr

    2016-01-01

    Roč. 349, č. 2 (2016), s. 273-281 ISSN 0014-4827 R&D Projects: GA ČR(CZ) GP14-21095P; GA ČR GA13-16565S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Hippo * Glycolysis * C-MYC Subject RIV: EE - Microbiology, Virology Impact factor: 3.546, year: 2016

  1. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  2. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  3. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    Science.gov (United States)

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  4. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  5. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  6. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    International Nuclear Information System (INIS)

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F.; Poumay, Yves

    2007-01-01

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity

  7. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line.

    Science.gov (United States)

    Leonetti, C; Biroccio, A; Benassi, B; Stringaro, A; Stoppacciaro, A; Semple, S C; Zupi, G

    2001-06-01

    Phosphorothioate c-myc antisense oligodeoxynucleotides [S]ODNs (free INX-6295) were encapsulated in a new liposome formulation and the antitumor activity was compared to the unencapsulated antisense in a human melanoma xenograft. The systemic administration of INX-6295 encapsulated in stabilized antisense lipid particles (SALP INX-6295) improved plasma AUC (area under the plasma concentration-time curve) and initial half-life of free INX-6295, resulting in a significant enhancement in tumor accumulation and improvement in tumor distribution of antisense oligodeoxynucleotides. Animals treated with SALP INX-6295 exhibited a prolonged reduction of c-myc expression, reduced tumor growth and increased mice survival. When administered in combination with cisplatin (DDP), SALP INX-6295 produced a complete tumor regression in approximately 30% of treated mice, which persisted for at least 60 days following the first cycle of treatment. Finally, the median survival of mice treated with DDP/SALP INX-6295 increased by 105% compared to 84% for animals treated with the combination DDP/free INX-6295. These data indicate that the biological activity and the therapeutic efficacy of c-myc antisense therapy may be improved when these agents are administered in lipid-based delivery systems.

  8. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    Science.gov (United States)

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  9. Cooverexpression of EpCAM and c-myc genes in malignant breast ...

    Indian Academy of Sciences (India)

    using SDS/PAGE and transferred to a nitrocellulose mem- brane in a condition of 100 V for 90 min at 4. ◦. C. Block- ing of membranes was done in blocking solution (5% nonfat milk powder, in TBST) at room temperature for 1 h followed by the incubation of membranes with the anti-EpCAM anti- body (5% nonfat milk powder, ...

  10. Cooverexpression of EpCAM and c-myc genes in malignant breast ...

    Indian Academy of Sciences (India)

    SAMIRA SADEGHI

    catumaxomab, an efficient monoclonal antibody approved in. European Market in 2009, to reduce the rate of metastasis in patients with metastatic breast cancer. ..... + tumours. However, a broader study is required to assess this hypothesis.

  11. Cooverexpression of EpCAM and c-myc genes in malignant breast ...

    Indian Academy of Sciences (India)

    RT-qPCR method, our results showed that EpCAM was overexpressed in 48% of malignant and 11.1% of benign .... to 45% of patients with breast cancer in different studies ..... in cancer maintenance, development, drug resistance, as well.

  12. Cooverexpression of EpCAM and c-myc genes in malignant breast ...

    Indian Academy of Sciences (India)

    SAMIRA SADEGHI

    Samira Sadeghi et al. domain protein2), and the transcription factor Lef1 that is ... antibody approved in. European Market in 2009, to reduce the rate of metastasis in .... Real-Time PCR. System and Maxima SYBR Green/ROX qPCR Master Mix.

  13. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  14. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell.

    Science.gov (United States)

    Hu, Yudong; Yu, Kaikai; Wang, Gang; Zhang, Depeng; Shi, Chaoji; Ding, Yunhe; Hong, Duo; Zhang, Dan; He, Huiqiong; Sun, Lei; Zheng, Jun-Nian; Sun, Shuyang; Qian, Feng

    2018-04-01

    Gastric cancer is the third common cause of cancer mortality in the world with poor prognosis and high recurrence due to lack of effective medicines. Our studies revealed that lanatoside C, a FDA-approved cardiac glycoside, had an anti-proliferation effect on different human cancer cell lines (MKN-45; SGC-7901; HN4; MCF-7; HepG2) and gastric cell lines MKN-45 and SGC-7901 were the most sensitive cell lines to lanatoside C. MKN-45 cells treated with lanatoside C showed cell cycle arrest at G2/M phase and inhibition of cell migration. Meanwhile, upregulation of cleaved caspase-9 and cleaved PARP and downregulation of Bcl-xl were accompanied with the loss of mitochondrial membrane potential (MMP) and induction of intracellular reactive oxygen species (ROS). Lanatoside C inhibited Wnt/β-catenin signaling with downregulation of c-Myc, while overexpression of c-Myc reversed the anti-tumor effect of lanatoside C, confirming that c-Myc is a key drug target of lanatoside C. Furthermore, we discovered that lanatoside C prompted c-Myc degradation in proteasome-ubiquitin pathway with attenuating the binding of USP28 to c-Myc. These findings indicate that lanatoside C targeted c-Myc ubiquitination to inhibit MKN-45 proliferation and support the potential value of lanatoside C as a chemotherapeutic candidate. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. mTOR is involved in 17β-estradiol-induced, cultured immature boar Sertoli cell proliferation via regulating the expression of SKP2, CCND1, and CCNE1.

    Science.gov (United States)

    Yang, Wei-Rong; Wang, Yong; Wang, Yi; Zhang, Jiao-Jiao; Zhang, Jia-Hua; Lu, Cheng; Wang, Xian-Zhong

    2015-04-01

    Mammalian target of rapamycin (mTOR) is known to be involved in mammalian cell proliferation, while S-phase kinase-associated protein 2 (SKP2) plays a vital role in the cell cycle. Within the testis, estrogen also plays an important role in Sertoli cell proliferation, although it is not clear how. The present study asked if mTOR is involved in 17β-estradiol-dependent Sertoli cell proliferation. We specifically assessed if extracellular signal-regulated kinase 1/2 (ERK1/2) and/or phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) exert convergent effects toward the activation of mTOR signaling, and if this signaling regulates the expression of SKP2 through retinoblastoma (RB) and early mitotic inhibitor 1 (EMI1) protein and on CCNE1 and CCND1 mRNA levels. Treatment with 17β-estradiol for 15-90 min activated mTOR, with mTOR phosphorylation peaking after 30 min. U0126 (5 μM), a specific inhibitor of (MEK1/2), and 10-DEBC (2 μM), a selective inhibitor of AKT, both significantly reduced 17β-estradiol-induced phosphorylation of mTOR. Rapamycin suppressed 17β-estradiol-induced Sertoli cell proliferation, appearing to act by reducing the abundance of SKP2, CCND1, and CCNE1 mRNA as well as RB and EMI1 protein. These data indicated that 17β-estradiol enhances Sertoli cell proliferation via mTOR activation, which involves both ERK1/2 and PI3K/AKT signaling. Activated mTOR subsequently increases SKP2 mRNA and protein expression by enhancing the expression of CCND1 and CCNE1, and inhibits SKP2 protein degradation by increasing EMI1 abundance. © 2015 Wiley Periodicals, Inc.

  16. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer: Regulatory Relationship of c-Myc and p53 with miRNAs

    Directory of Open Access Journals (Sweden)

    Yaguang Xi

    2007-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that mediate gene expression at the posttranscriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.

  17. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  18. Regulation of c-Myc mRNA by L11 in Response to UV and Gamma Irradiation

    Science.gov (United States)

    2014-12-01

    the nucleolus fol- lowed by their transport into the cytoplasm (50). This process requires coordinated transcription catalyzed by all three RNA...these RPs, including L11, are released from the nucleolus or from intact ribosomes to suppress MDM2 (68). However, whether L11 suppresses c-Myc in...centrifugation. For isolation of the nucleolus fraction, the nuclear pellets were resuspended in buffer S1 containing 0.25 M sucrose and 10 mM MgCl2, layered over

  19. 1,25 dihydroxyvitamin D3 (1,25) regulation of c-myc mRNA in HL-60 leukemia cells

    International Nuclear Information System (INIS)

    Simpson, R.U.; Bresnick, E.H.; Begley, D.A.

    1986-01-01

    Recently, 1,25 was shown to induce differentiation and decrease c-myc levels in HL-60 cells. The authors have confirmed these observations by RNA dot blot analysis. Cells treated with 50 nM 1,25 for 4, 24 and 48 hr showed c-myc mRNA levels of 26, 17 and 15% of control respectively. β-Actin mRNA levels were not altered. To ascertain whether 1, 25 regulated c-myc transcriptionally, an HL-60 nuclear RNA runoff assay was developed. Assay of total nuclei transcriptional activity revealed that 50% of RNA elongation was α-amanitin (0.8 μg/ml) sensitive and was linear with nuclei concentration (0.1-1 x 10 7 nuclei). 1,25 (50 nM) treated (45-96 hr) cells had decreased (approx.40%) total transcription rate relative to control. Decreased total RNA synthesis occurred concomitant with NBT reducing activity. 32 P-RNA runoff transcripts from HL-60 nuclei were hybridized to excess (5 μg DNA was excess) Pst I linearized c-myc and β-actin clones (in pBR322) immobilized on nitrocellulose filter. 32 P-RNA input from 2 x 10 6 to 2 x 10 7 cpm yielded linear hybridization signal. Analysis of blot dot intensity revealed no difference in transcription of c-myc in nuclei from 1,25 dosed or control cells. (myc/actin ratios: 1,25 (50 nM, 72 hr) =1.1 +/- 0.3 and control (72 hr) = 1.0, N=3 or 2 or 3 dots ea). These preliminary data suggest 1,25 does not affect c-myc transcription in HL-60 nuclei and may regulate c-myc mRNA post-transcriptionally

  20. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    Science.gov (United States)

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Fan, Hai-Yan; Li, Sheng-Chao

    2015-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a formidable medical challenge due to its malignancies and the absence of effective treatment. c-Myc, as an important transcription factor, plays crucial roles in cell cycle progression, apoptosis and cellular transformation. The c-Myc inhibitor, 10058-F4, has been reported act as a tumor suppressor in several different tumors. In current study, the tumor-suppressive roles of 10058-F4 was observed in human pancreatic cancer cells in vitro as demonstrated by decreased cell viability, cell cycle arrest at the G1/S transition and increased caspase3/7 activity. And tumor responses to gemcitabine were also significantly enhanced by 10058-F4 in PANC-1 and SW1990 cells. In a subcutaneous xenograft model, however, 10058-F4 showed no significant influence on pancreatic tumorigenesis. When combined with gemcitabine, tumorigenesis was drastically attenuated compared with gemcitabine group or 10058-F4 group; this synergistic effect was accompanied with decreased PCNA-positive cells and reduced TUNEL-positive cells in the combined treated group. Subsequent studies revealed that decreased glycolysis may be involved in the inhibitory effect of 10058-F4 on PDAC. Taken together, this study demonstrates the roles of 10058-F4 in PDAC and provides evidence that 10058-F4 in combination with gemcitabine showed significant clinical benefit over the usage of gemcitabine alone. Copyright © 2015. Published by Elsevier Masson SAS.

  2. In vivo distribution of c-myc antisense oligodeoxynucleotides local delivered by gelatin-coated platinmn-iridium stents in rabbits and its effect on apoptosis

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 许香广; 胡雪松; 方卫华; 邝碧娟

    2004-01-01

    Background Post-stenting restenosis is a significant clinical problem, involving vascular smooth muscle cells(VSMCs) proliferation and apoptosis. It is reported that c-myc antisense oligodeoxynucleotides (ASODNs) local delivered by catheter can inhibit VSMCs proliferation. This study was designed to assess tissue distribution of c-myc ASODN local delivered using gelatin-coated platinum-iridium (Pt-Ir) stents, and its effect on apoptosis of VSMCs. Methods Gelatin-coated Pt-Ir stents that had absorbed caroboxyfluorescein-5-succimidyl ester (FAM) labeled c-myc ASODNs (550 μg per stent) were implanted into the right carotid arteries of 6 rabbits. Tissue samples were obtained at 45 minutes, 2 hours, and 6 hours. Tissue distribution of c- myc ASODNs was assessed by fluorescence microscopy. In addition, 32 rabbits were randomly divided into two groups. Rabbits in the control group (n=16) were implanted with gelatin-coated Pt-Ir stents, and those in the treatment group (n=16) were implanted with gelatin-coated stents that had absorbed c-myc ASODNs. 7, 14, 30, or 90 days (n=4, respectively, for each group) after the stenting procedure, the stented segments were harvested, and histopathological examinations were performed to calculate neointimal area and mean neointimal thickness. The expression of c-myc was assessed using in situ hybridization (ISH) and immunohistochemical methods. Apoptotic VSMCs were detected using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM). Results According to fluorescence microscopic results, FAM-labeled c-myc ASODNs were concentrated in the target vessel media at the 45 minutes time point, and then dispersed to the adventitia. Morphometric analysis showed that neointimal area and mean neointimal thickness increased continuously up to 90 days after stent implantation, but that total neointimal area and mean neointimal thickness were less in the treatment group than in the

  3. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    Science.gov (United States)

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, Pcircadian locomotor output cycles kaput (Clock, Pcircadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Promoter trans-activation of protooncogenes c-fos and c-myc, but not c-Ha-ras, by products of adenovirus early region 1A

    International Nuclear Information System (INIS)

    Sassone-Corsi, P.; Borrelli, E.

    1987-01-01

    The E1A (early region 1A) oncogene products of adenovirus type 2 trans-activate the other early viral transcription units, as well as some cellular promoters. Using a short-term cotransfection assay in murine NIH 3T3 fibroblasts, we show that c-fos and c-myc promoter activities are stimulated by the E1A proteins, whereas c-Ha-ras transcription is not affected. The product of E1A 13S mRNA is responsible for the trans-activation, whereas the 12S mRNA product has no effect. Analysis of the c-fos promoter sequences required for the E1A stimulation shows that responsive sequences are located between positions -402 and -240 upstream of the transcription initiation site. This same region also contains the c-fos serum-responsive element. Furthermore, transcription of the endogenous c-fos gene in HeLa cells is increased after E1A transfection

  5. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  6. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-01-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  7. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

    DEFF Research Database (Denmark)

    Mathiasen, D.P.; Egebjerg, C.; Andersen, S.H.

    2012-01-01

    are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene...... that counteracts protein phosphatase 2A-mediated dephosphorylation of c-Myc. Here we show that JNK2 regulates Cip2a transcription via ATF2. ATF2 and c-Myc cooperate to activate the transcription of ATF3. Remarkably, not only ectopic JNK2, but also ectopic ATF2, CIP2A, c-Myc and ATF3 are sufficient to rescue...... the defective ras transformation of JNK2-deficient cells. Thus, these data identify the key signal converging point of JNK2 and ERK pathways and underline the central role of CIP2A in ras transformation.Oncogene advance online publication, 27 June 2011; doi:10.1038/onc.2011.230....

  8. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  9. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-01-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  10. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation.

    Science.gov (United States)

    Yao, Dianbo; Dong, Qianze; Tian, Yu; Dai, Chaoliu; Wu, Shuodong

    2017-11-29

    Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.

  11. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    Science.gov (United States)

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  12. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available The nucleolus may undergo disassembly either reversibly during mitosis, or irreversibly in apoptosis, thus allowing the redistribution of the nucleolar proteins.We investigated here by immunocytochemistry the fate of three representative proteins, namely phosphorylated c-Myc, fibrillarin and Ki-67, and found that they behave independently in both processes: they relocate in distinct compartments during mitosis, whereas during apoptosis they may either be cleaved (Ki-67 or be extruded into the cytoplasm with a different kinetics and following an ordered, non chaotic program. The separation of these nucleolar proteins which occurs in early apoptotic nuclei continues also in the cytoplasm, and culminates in the final formation of apoptotic blebs containing different nucleolar proteins: this evidence confirms that the apoptotic bodies may be variable in size, content and surface reactivity, and include heterogeneous aggregates of nuclear proteins and/or nucleic acids.

  13. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    Science.gov (United States)

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  14. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  15. Mechanisms for c-myc Induced Mouse Mammary Gland Carcinogenesis and for the Synergistic Role of TGF(alpha) in the Process

    Science.gov (United States)

    2001-07-01

    1242 11-28. anti-tumor effects with microencapsulated c-myc antisense Panico L, D’Antonio A, Salvatore G, Mezza E, Tortora G, De oligonucleotide... enzymatic conversion of androgens to estrogens, since an estrogen receptor antagonist cannot block the lobular- alveolar induction by T, DHT

  16. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    Science.gov (United States)

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  17. Multiple fractions of gamma rays do not induce overexpression of c-myc or c-Ki-ras oncogenes in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    Osmak, M.; Soric, J.; Matulic, M.

    1993-01-01

    Multiple fractions of gamma rays (0.5 Gy daily, 30 fractions) had previously been found to change the sensitivity of human cervical carcinoma HeLa cells to anticancer drugs. Preirradiated cells became resistant to cisplatin, methotrexate and vincristine but retained the same sensitivity to gamma rays and ultraviolet light. Some mechanisms involved in the resistance of preirradiated cells to cisplatin and vincristine were determined, i.e. the increased levels of metallothioneins and increased expression of plasma membrane P glycoprotein. As recent reports indicated that the resistance to cisplatin and ionizing radiation may involve the expression of oncogenes, the problem was studied whether multiple fractions of gamma rays can change the expression of c-myc and c-Ki-ras oncogenes in HeLa cells and whether there is a correlation between the expression of these oncogenes and the sensitivity of preirradiated cells to cisplatin and gamma rays. The expression of c-myc and c-Ki-ras oncogenes was examined using the DNA dot blot, the RNA dot blot and Northern blot analysis. The results show that preirradiation induced neither amplification nor elevated expression of c-myc and c-Ki-ras oncogenes. Furthermore, there is no correlation between the expression of c-myc and c-Ki-ras oncogenes and the acquired resistance to cisplatin. (author) 3 figs., 32 refs

  18. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    Science.gov (United States)

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the

  19. High levels of stable p53 protein and the expression of c-myc in cultured human epithelial tissue after cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.B.; Harney, J.; Hennessy, T.P.

    1994-01-01

    When explants of human uroepithelium or esophageal epithelium are exposed to acute doses of radiation (cobalt-60), the cells which grow out to form the primary cultures show a number of abnormal features. These include the development of characteristic nonsenescent foci. These foci have previously been shown to be c-myc positive and to have an abnormal, tumor-like ultrastructure. Expression of c-myc and the level of stable p53 proteins have now been examined in these cultures 2 weeks after irradiation. Both proteins occurred in dividing cells at the growing edge of the explant and in the foci. The expression of c-myc appeared to be correlated with growth. As expected, variation between individual cultures of normal human cells was noted in the expression of stable p53 protein. Most control uroepithelial cell cultures were negative, but a small cohort showed a wide range of values. The control cultures from the esophageal tissues had high expression of p53, and this decreased marginally after irradiation. Cells positive for p53 were always in cycle and were usually positive for c-myc as well. It would appear from these results that the expression of c-myc and the stable form of the p53 protein occur in irradiated primary cultures of normal human cells both in foci which also express a number of abnormalities and in open-quotes edgeclose quotes cells which are dividing. Cultures of unirradiated cells from esophagus and a small number of uroepithelial samples had high levels of p53. Possible reasons for this are discussed. 33 refs., 2 figs., 3 tabs

  20. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  1. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    Actinomycin D (Act D), an oncogenic c-Myc promoter binder, interferes with the action of RNA polymerase. There is great demand for high-throughput technology able to monitor the activity of DNA-binding drugs. To this end, binding of 7-aminoactinomycin D (7AAD) to the duplex c-Myc promoter...... pairs resulted in efficient energy transfer from drug to QD via fluorescence resonance energy transfer (FRET). Multi-way analysis of the three-way data array obtained from titration experiments was performed by use of restricted Tucker3 and hard trilinear decomposition (HTD). These techniques enable...... the important advantage over univariate classical methods of enabling us to investigate the source of variance in the fluorescence signal of the DNA-drug complex. It was established that hard trilinear decomposition analysis of FRET-measured data overcomes the problem of rank deficiency, enabling calculation...

  2. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC

    Science.gov (United States)

    Sylman, Joanna L.; Ngo, Anh T. P.; Pang, Jiaqing; Sears, Rosalie C.; Williams, Craig D.; McCarty, Owen J. T.

    2017-01-01

    Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein. PMID:27903583

  3. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  4. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    International Nuclear Information System (INIS)

    Wierstra, Inken; Alves, Juergen

    2008-01-01

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27

  5. Somatostatin reduces 3H-thymidine incorporation and c-myc, but not thyroglobulin ribonucleic acid levels in human thyroid follicular cells in vitro

    International Nuclear Information System (INIS)

    degli Uberti, E.C.; Hanau, S.; Rossi, R.; Piva, R.; Margutti, A.; Trasforini, G.; Pansini, G.; del Senno, L.

    1991-01-01

    The action of somatostatin (SRIH) on 3 H-thymidine (thy) incorporation and on c-myc and thyroglobulin RNA levels in a suspension of follicles from normal and goitrous human thyroid was examined. SRIH, at 10 - 7 M concentration, inhibited basal thy incorporation (maximally by 4 h lasting for up 24 h), which effect was greater in goiter than in normal thyroid and was also detected in growing adherent epithelial cells. Moreover, in a follicle suspension SRIH prevented TSH-stimulated thy incorporation, both in normal and in goitrous thyroid. Basal expression of c-myc RNA was not affected by SRIH in either tissue, whereas the TSH-stimulated c-myc RNA level was significantly reduced in goiter. No effect of SRIH was observed on basal or TSH-stimulated thyroglobulin RNA levels. SRIH did not alter basal cAMP concentrations in normal or goitrous follicles, but it significantly reduced TSH-stimulated cAMP accumulation both in normal thyroid and in goiter. Overall, our data indicate a direct inhibitory action of SRIH on growth, but not on differentiation, of human thyroid, probably by a mechanism not entirely cAMP dependent

  6. Detecção imunoistoquímica das oncoproteínas p21ras, c-myc E p53 no carcinoma hepatocelular e no tecido hepático não-neoplásico Immunohistochemical detection of p21ras, c-myc and p53 oncoproteins in hepatocellular carcinoma and in non-neoplastic liver tissue

    Directory of Open Access Journals (Sweden)

    Vera Lucia Nunes Pannain

    2004-12-01

    Full Text Available RACIONAL: A hepatocarcinogênese é um processo no qual as alterações genéticas e epigenéticas são bem conhecidas em modelos animais, mas carece de estudos no homem. OBJETIVOS: Analisar a freqüência das oncoproteínas p21ras, c-myc e p53 no carcinoma hepatocelular e no fígado não-neoplásico. Verificar ainda a associação destas oncoproteínas com os padrões e graus histológicos, assim como com as infecções pelos vírus das hepatites B e C. MÉTODOS: Foi analisada por método imunoistoquímico a detecção das oncoproteínas p21ras, c-myc e p53 em 47 casos de carcinoma hepatocelular e no tecido não-neoplásico circunjacente ao tumor (40 casos. RESULTADOS: As oncoproteínas p21ras, c-myc e p53 foram detectadas, respectivamente, em 44,7%, 53,2% e 36,2% dos casos de carcinoma hepatocelular. A imunorreatividade do p21ras e c-myc mostrou uma associação significativa. Contudo, não houve associação significativa entre a detecção do p21ras, c-myc e p53 com os diferentes graus e padrões histológicos, nem tampouco com as infecções pelos vírus das hepatites B e C. A mesma associação significativa entre o p21ras e c-myc foi encontrada no tecido não-neoplásico dos casos de cirrose em relação aos que não apresentaram cirrose, enquanto que o p53 foi negativo em todos os casos. CONCLUSÕES: A imunorreatividade das oncoproteínas p21ras, c-myc e p53 corrobora evidências prévias de sua detecção no carcinoma hepatocelular, o que sugere poder haver participação destas proteínas na hepatocarcinogênese humana. A significativa associação entre as proteínas p21ras, c-myc e p53 no carcinoma hepatocelular e na cirrose pode apontar uma interação entre as mesmas, sobretudo na hepatocarcinogênese pela via da cirrose.BACKGROUND: Genetic and epigenetic alterations have been described in animal hepatocarcinogenesis models but need to be studied in human being. AIMS: To assess the immunoreactivity of p21ras, c-myc and p53

  7. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela B Ortiz

    Full Text Available The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52% of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010. Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001, with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9% and correlated significantly with high tumor grade (p = 0.038, high Ki-67 protein expression (p = 0.002, and the Luminal B subtype (p = 0.002. Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01. These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.

  8. Distinct Histopathologic and Molecular Alterations in Inflammatory Bowel Disease-Associated Intestinal Adenocarcinoma: c-MYC Amplification is Common and Associated with Mucinous/Signet Ring Cell Differentiation.

    Science.gov (United States)

    Hartman, Douglas J; Binion, David G; Regueiro, Miguel D; Miller, Caitlyn; Herbst, Cameron; Pai, Reetesh K

    2018-05-17

    Chronic idiopathic inflammatory bowel disease (IBD) is a significant risk factor for the development of intestinal adenocarcinoma. The underlying molecular alterations in IBD-associated intestinal adenocarcinoma remain largely unknown. We compared the clinicopathologic and molecular features of 35 patients with 47 IBD-associated intestinal adenocarcinomas with a consecutive series of 451 patients with sporadic colorectal carcinoma identified at our institution and published data on sporadic colorectal carcinoma. c-MYC amplification was the most frequent molecular alteration identified in 33% of IBD-associated intestinal adenocarcinoma that is a significantly higher frequency than in sporadic colorectal carcinoma (8%) (P = 0.0001). Compared to sporadic colorectal carcinoma, IBD-associated intestinal adenocarcinomas more frequently demonstrated mucinous differentiation (60% vs 25%, P < 0.001) and signet ring cell differentiation (28% vs 4%, P < 0.001). Mucinous and signet ring cell differentiation were significantly associated with the presence of c-MYC amplification (both with P < 0.05). HER2 positivity (11%), KRAS exon 2 or 3 mutation (10%), and IDH1 mutation (7%) were less commonly observed in IBD-associated intestinal adenocarcinoma. There was an association between poor survival and HER2 status with 3 of 4 patients having HER2-positive adenocarcinoma dead of disease at last clinical follow-up; however, no statistically significant survival effect was identified for any of the molecular alterations identified. We demonstrate that IBD-associated intestinal adenocarcinomas have a high frequency of c-MYC amplification that is associated with mucinous and signet ring cell differentiation. Many of the identified molecular alterations have potential therapeutic relevance, including HER2 amplification, IDH1 mutation, and low frequency KRAS mutation.

  9. Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma.

    Science.gov (United States)

    Gurgel, Clarissa Araújo Silva; Buim, Marcilei Eliza Cavichiolli; Carvalho, Kátia Cândido; Sales, Caroline Brandi Schlaepfer; Reis, Mitermayer Galvão; de Souza, Renata Oliveira; de Faro Valverde, Ludmila; de Azevedo, Roberto Almeida; Dos Santos, Jean Nunes; Soares, Fernando Augusto; Ramos, Eduardo Antônio Gonçalves

    2014-09-01

    Sonic hedgehog (SHH) pathway activation has been identified as a key factor in the development of many types of tumors, including odontogenic tumors. Our study examined the expression of genes in the SHH pathway to characterize their roles in the pathogenesis of keratocystic odontogenic tumors (KOT) and ameloblastomas (AB). We quantified the expression of SHH, SMO, PTCH1, SUFU, GLI1, CCND1, and BCL2 genes by qPCR in a total of 23 KOT, 11 AB, and three non-neoplastic oral mucosa (NNM). We also measured the expression of proteins related to this pathway (CCND1 and BCL2) by immunohistochemistry. We observed overexpression of SMO, PTCH1, GLI1, and CCND1 genes in both KOT (23/23) and AB (11/11). However, we did not detect expression of the SHH gene in 21/23 KOT and 10/11 AB tumors. Low levels of the SUFU gene were expressed in KOT (P = 0.0199) and AB (P = 0.0127) relative to the NNM. Recurrent KOT exhibited high levels of SMO (P = 0.035), PTCH1 (P = 0.048), CCND1 (P = 0.048), and BCL2 (P = 0.045) transcripts. Using immunolabeling of CCND1, we observed no statistical difference between primary and recurrent KOT (P = 0.8815), sporadic and NBCCS-KOT (P = 0.7688), and unicystic and solid AB (P = 0.7521). Overexpression of upstream (PTCH1 and SMO) and downstream (GLI1, CCND1 and BCL2) genes in the SHH pathway leads to the constitutive activation of this pathway in KOT and AB and may suggest a mechanism for the development of these types of tumors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas

    DEFF Research Database (Denmark)

    Manfè, Valentina; Biskup, Edyta; Willumsgaard, Ayalah

    2013-01-01

    Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could...... improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed c...

  11. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  12. Overexpression of c-myc and loss of heterozigosity on 2p, 3p, 5q, 17p and 18q in sporadic colorectal carcinoma Sobreexpresión de c-myc y pérdida de heterozigosidad en 2p, 3p, 5q, 17p y 18q en carcinoma colorrectal esporádico

    Directory of Open Access Journals (Sweden)

    A. Sánchez-Pernaute

    2005-03-01

    Full Text Available Aim: the aim of the present study is to evaluate the prognostic influence of loss of heterozygosity on 2p, 3p, 5q, 17p and 18q, and c-myc overexpression on surgically treated sporadic colorectal carcinoma. Methods: tumor and non-tumor tissue samples from 153 patients were analyzed. Fifty-one percent of patients were male, and mean age in the series was 67 years. Tumors were located in the proximal colon in 37 cases, in the distal bowel in 37, and in the rectum in 79 patients. c-myc overexpression was studied by means of Northern blot analysis, and loss of heterozigosity through microsatellite analysis. Results: c-myc overexpression was detected in 25% of cases, and loss of heterozygosity in at least one of the studied regions in 48%. There was no association between clinical and pathologic features, and genetic alterations. The disease-free interval was significantly shorter for patients with both genetic alterations; the presence of both events was an independent prognostic factor for poor outcome in the multivariate analysis (RR: 4.34, p Objetivo: el objetivo del presente trabajo es evaluar la importancia pronóstica de la pérdida de heterozigosidad en las regiones 2p, 3p, 5q, 17p y 18q y de la sobreexpresión del gen c-myc en el carcinoma colorrectal esporádico, mediante el estudio de la supervivencia libre de enfermedad tras cirugía potencialmente curativa. Métodos: se han analizado muestras tumorales y no tumorales de mucosa colónica de 153 pacientes. El 51% de los pacientes eran varones y la edad media de la serie fue 67 años. Los tumores fueron proximales en 37 casos, distales en 37 y localizados en recto en 79. Se analizó la sobreexpresión del RNA de c-myc por Northern blot, y la presencia de pérdida de heterozigosidad en las diferentes regiones consideradas por análisis de microsatélites. Resultados: se detectó sobreexpresión de c-myc en el 25% de los casos, y pérdida de heterozigosidad en alguna de las regiones estudiadas

  13. Expression Analysis of p16, c-Myc, and mSin3A in Non-small Cell Lung Cancer by Computer Aided Scoring and Analysis (CASA).

    Science.gov (United States)

    Salmaninejad, Arash; Estiar, Mehrdad Asghari; Gill, Rajbir K; Shih, Joanna H; Hewitt, Stephen; Jeon, Hyo-Sung; Fukuoka, Junya; Shilo, Konstantin; Shakoori, Abbas; Jen, Jin

    2015-01-01

    Immunohistochemical analysis (IHC) of tissue microarray (TMA) slides enables large sets of tissue samples to be analyzed simultaneously on a single slide. However, manual evaluation of small cores on a TMA slide is time consuming and error prone. We describe a computer aided scoring and analysis (CASA) method to allow facile and reliable scoring of IHC staining using TMA containing 300 non-small cell lung cancer (NSCLC) cases. In the two previous published papers utilizing our TMA slides of lung cancer we examined 18 proteins involved in the chromatin machinery. We developed our study using more proteins of the chromatin complex and several transcription factors that facilitate the chromatin machinery. Then, a total of 78 antibodies were evaluated by CASA to derive a normalized intensity value that correlated with the overall staining status of the targeting protein. The intensity values for TMA cores were then examined for association to clinical variables and predictive significance individually and with other factors. RESULTs: Using our TMA, the intensity of several protein pairs were significantly correlated with an increased risk of death in NSCLC. These included c-Myc with p16, mSin3A with p16 and c-Myc with mSinA. Predictive values of these pairs remained significant when evaluated based on standard IHC scores. Our results demonstrate the usefulness of CASA as a valuable tool for systematic assessment of TMA slides to identify potential predictive biomarkers using a large set of primary human tissues.

  14. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    Science.gov (United States)

    Jin, Yeung Bae; Choi, Seo-Hyun; Lee, Jae Seon; Kim, Jae-Kyung; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2014-03-01

    The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.

  15. Complex Biological Systems Analysis of Cell Cycling Models in Carcinogenesis: I. The essential roles of modifications in the c-Myc, TP53/p53, p27 and hTERT modules in Cancer Initiation and Progression

    CERN Document Server

    Prisecaru, V I

    2004-01-01

    A new approach to the integration of results from a modular, complex biological systems analysis of nonlinear dynamics in cell cycling network transformations that are leading to carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks. One such network module contains the cell cyclins whose functions are essential to cell cycling and division. Cyclins are proteins that also link to several critical pro-apoptotic and other cell cycling/division components, such as: c-Myc, p27, the tumor suppressor gene TP53 and its product-- the p53 protein with key roles in controlling DNA repair, inducing apoptosis and activating p21 (which can depress cell cyclins if activated), mdm2(with its biosynthesis activated by p53 and also, in its turn, inhibiting p53), p21, the Thomsen-Friedenreich antigen(T- antigen),Rb,Bax, Ba...

  16. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  17. Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse

    International Nuclear Information System (INIS)

    Skvortsova, Ira; Skvortsov, Sergej; Raju, Uma; Stasyk, Taras; Riesterer, Oliver; Schottdorf, Eva-Maria; Popper, Bela-Andre; Schiestl, Bernhard; Eichberger, Paul; Debbage, Paul; Neher, Andreas; Bonn, Guenther K.; Huber, Lukas A.; Milas, Luka; Lukas, Peter

    2010-01-01

    Purpose: Radiation therapy cures malignant tumors of the head and neck region more effectively when it is combined with application of the anti-EGFR monoclonal antibody cetuximab. Despite the successes achieved, we still do not know how to select patients who will respond to this combination of anti-EGFR monoclonal antibody and radiation. This study was conducted to elucidate possible mechanisms which cause the combined treatment with cetuximab and irradiation to fail in some cases of squamous cell carcinomas. Methods and materials: Mice bearing FaDu and A431 squamous cell carcinoma xenograft tumors were treated with cetuximab (total dose 3 mg, intraperitoneally), irradiation (10 Gy) or their combination at the same doses. Treatment was applied when tumors reached 8 mm in size. To collect samples for further protein analysis (two-dimensional differential gel electrophoresis (2-D DIGE), mass spectrometry MALDI-TOF/TOF, Western blot analysis, and ELISA), mice from each group were sacrificed on the 8th day after the first injection of cetuximab. Other mice were subjected to tumor growth delay assay. Results: In FaDu xenografts, treatment with cetuximab alone was nearly as effective as cetuximab combined with ionizing radiation, whereas A431 tumors responded to the combined treatment with significantly enhanced delay in tumor growth. Tumors extracted from the untreated FaDu and A431 xenografts were analysed for protein expression, and 34 proteins that were differently expressed in the two tumor types were identified. The majority of these proteins are closely related to intratumoral angiogenesis, cell adhesion, motility, differentiation, epithelial-to-mesenchymal transition (EMT), c-myc signaling and DNA repair. Conclusions: The failure of cetuximab to enhance radiation response in FaDu xenografts was associated with the initiation of the program of EMT and with c-myc up-regulation in the carcinoma cells. For this reason, c-myc and EMT-related proteins (E

  18. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    OpenAIRE

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2015-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly s...

  19. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study.

    Science.gov (United States)

    Zalata, Khaled Refaat; Elshal, Mohamed Farouk; Foda, Abd AlRahman Mohammad; Shoma, Ashraf

    2015-08-01

    The current paradigm of metastasis proposes that rare cells within primary tumors acquire metastatic capability via sequential mutations, suggesting that metastases are genetically dissimilar from their primary tumors. This study investigated the changes in the level of expression of a well-defined panel of cell proliferation, differentiation, and apoptosis markers between the primary colorectal cancer (CRC) and the corresponding synchronous lymph node (LN) metastasis from the same patients. DNA flow cytometry and immunostaining of p53, bcl-2, and c-myc were carried out on 36 cases of CRC radical resection specimens with their corresponding LN metastases. There was very low probability that the histological patterns of primary tumors and LN metastases are independent (p < 0.001). Metastatic tumors were significantly more diffusely positive for p53 than the primary tumors (p < 0.001). Conversely, primary tumors were significantly more diffusely positive for c-myc than metastatic tumors (p = 0.011). No significant difference was found between the LNs and the primary tumors in bcl-2 positivity (p = 0.538) and DNA aneuploidy (p = 0.35), with a tendency towards negative bcl-2 and less aneuploidy in LN metastases than primary tumors. In conclusion, LN metastatic colorectal carcinomas have a tendency of being less differentiated, with a higher incidence of diffuse p53 staining, lower incidence of bcl-2 staining, and less aneuploidy in comparison to their primary counterparts suggesting a more aggressive biological behavior, which could indicate the necessity for more aggressive adjuvant therapy.

  20. Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells

    Directory of Open Access Journals (Sweden)

    Guo-Dan Liu

    2017-04-01

    Full Text Available AIM: To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs. METHODS: A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT and the nucleus localization signal (NLS polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3 Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS: These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION: The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.

  1. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    International Nuclear Information System (INIS)

    Gao, Feng-Hou; Liu, Feng; Zhao, Ying-Zheng; Fang, Yong; Chen, Fang-Yuan; Wu, Ying-Li; Hu, Xiao-Hui; Li, Wei; Liu, Hua; Zhang, Yan-Jie; Guo, Zhu-Ying; Xu, Mang-Hua; Wang, Shi-Ting; Jiang, Bin

    2010-01-01

    Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment

  2. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    Directory of Open Access Journals (Sweden)

    Zhao Ying-Zheng

    2010-11-01

    Full Text Available Abstract Background Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Methods Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Results Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4 hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Conclusion Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment.

  3. PET/CT imaging of c-Myc transgenic mice identifies the genotoxic N-nitroso-diethylamine as carcinogen in a short-term cancer bioassay.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available BACKGROUND: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCIPAL FINDINGS: μCT and ¹⁸F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. CONCLUSIONS/SIGNIFICANCE: The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.

  4. Nucleotide sequence of the human N-myc gene

    International Nuclear Information System (INIS)

    Stanton, L.W.; Schwab, M.; Bishop, J.M.

    1986-01-01

    Human neuroblastomas frequently display amplification and augmented expression of a gene known as N-myc because of its similarity to the protooncogene c-myc. It has therefore been proposed that N-myc is itself a protooncogene, and subsequent tests have shown that N-myc and c-myc have similar biological activities in cell culture. The authors have now detailed the kinship between N-myc and c-myc by determining the nucleotide sequence of human N-myc and deducing the amino acid sequence of the protein encoded by the gene. The topography of N-myc is strikingly similar to that of c-myc: both genes contain three exons of similar lengths; the coding elements of both genes are located in the second and third exons; and both genes have unusually long 5' untranslated regions in their mRNAs, with features that raise the possibility that expression of the genes may be subject to similar controls of translation. The resemblance between the proteins encoded by N-myc and c-myc sustains previous suspicions that the genes encode related functions

  5. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay.

    Science.gov (United States)

    Abruzzese, Maria Pia; Bilotta, Maria Teresa; Fionda, Cinzia; Zingoni, Alessandra; Soriani, Alessandra; Vulpis, Elisabetta; Borrelli, Cristiana; Zitti, Beatrice; Petrucci, Maria Teresa; Ricciardi, Maria Rosaria; Molfetta, Rosa; Paolini, Rossella; Santoni, Angela; Cippitelli, Marco

    2016-12-01

    Anti-cancer immune responses may contribute to the control of tumors after conventional chemotherapy, and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of natural killer (NK) cells in immune responses toward multiple myeloma (MM), and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones bromodomain and extra-terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, and BCL-2. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET bromodomain protein inhibition, on the expression of NK cell-activating ligands in MM cells. Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138 + MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET151) and of the selective BRD4-degrader proteolysis targeting chimera (PROTAC) (ARV-825), on the expression and function of several NK cell-activating ligands (NKG2DLs and DNAM-1Ls), using flow cytometry, real-time PCR, transient transfections, and degranulation assays. Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional PROTAC probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi

  6. The reducing agent Dithiothreitol (DTT) increases expression of c-myc and c- fos protooncogenes in human cells

    DEFF Research Database (Denmark)

    Skouv, J.; Sørensen, Ilona Kryspin; Frandsen, H.

    1995-01-01

    The objective of the present study was to assess the possible tumour promoting activity of the food mutagen 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), by studying its influence on the expression of three genes considered to be of relevance in the tumour promotion step...

  7. Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica

    Science.gov (United States)

    Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi

    2018-01-01

    SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.

  8. Thermo-Responsive Complexes of c-Myc Antisense Oligonucleotide with Block Copolymer of Poly(OEGMA) and Quaternized Poly(4-Vinylpyridine).

    Science.gov (United States)

    Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer

    2017-04-01

    Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    Science.gov (United States)

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  11. Centrosome clustering and cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    International Nuclear Information System (INIS)

    Rey, Javier del; Prat, Esther; Ponsa, Immaculada; Lloreta, Josep; Gelabert, Antoni; Algaba, Ferran; Camps, Jordi; Miró, Rosa

    2010-01-01

    Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

  12. The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, brc and c-myc genes in human leukemic cells

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Kozubek, Stanislav; Kozubek, Michal; Jirsová, Pavla; Lukášová, Emilie; Skalníková, M.; Buchníčková, Katarína

    2000-01-01

    Roč. 24, - (2000), s. 233-241 ISSN 0145-2126 R&D Projects: GA ČR GA202/97/0874; GA ČR GA202/98/P253; GA MZd NM15 Institutional research plan: CEZ:A17/98:Z5-004-9-ii Subject RIV: BO - Biophysics Impact factor: 1.502, year: 2000

  13. The use of computerized video time lapse to study cell death in rat embryo cells transfected with c-ha-ras or c-myc

    International Nuclear Information System (INIS)

    Forrester, H.B.; Vidair, C.A.; Dewey, W.C.; Ling, C.C.

    1998-01-01

    Full text: Individual rat embryo fibroblasts that had been transfected with the c-myc (REC:myc) or c-Ha ras (REC:ras) oncogene were followed after irradiation using a computer video time lapse (CVTL) system in order to quantify the lethal events that resulted in loss of clonogenic survival after irradiation. By followed the cells for 2 to 3 generations before irradiation we were able to determine where they were in the cell cycle at the time of irradiation for cell cycle analysis. After irradiation, the individual cells and their progeny were followed in multiple fields for 5-6 days Then, pedigrees for individual irradiated cells were determined by noting the times of divisions fusions, and cell death. After X-irradiation, the clonogenic survival values for these two cell lines are similar. However, by using computerized video time lapse (CVTL) to follow individual cells we found that the loss of clonogenic survival was due to two different processes, cell death and a senescent-like process. The loss of clonogenic survival of x-irradiated (9.5 and 4 Gy) REC:myc cells was attributed almost entirely to the cells dying by apoptosis (∼99 and 90%). In contrast, approximately 60% of the x-irradiated (9.5 Gy) non-clonogenic REC:ras cells died by apoptosis (with a very small amount of necrosis), and the other 40% underwent a senescent-type process in which some of the cells and their progeny stopped dividing but remained as viable cells throughout 140 hours of observation. Both processes usually occurred after the cells had divided and continued to occur in the cells' progeny for up to five divisions after irradiation. The mode of cell death in the progeny of a non-clonogenic cell can be determined only by using CVTL and can not be determined by conventional clonogenic survival experiments. Also, only by following the individual cells and their progeny can the true amount of apoptosis be determined. The cumulative percentage of apoptosis scored in whole populations

  14. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  15. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  16. Effect of stent absorbed c-myc antisense oligodeoxynucleotide on smooth muscle cells apoptosis in rabbit carotid artery%反义c-myc涂层支架对兔颈动脉细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 孟猛; 徐仓宝; 赵一岭

    2001-01-01

    目的:探讨铂-铱合金明胶蛋白涂层支架局部导入c-myc反义寡核苷酸(ASODN)对兔颈动脉细胞凋亡的影响,寻求防治支架内再狭窄的途径.方法:将携带c-myc ASODN的国产铂铱合金明胶蛋白涂层支架置入兔颈动脉(给药组,n=16),在术后7、14、30、90 d处死动物行苏木精-伊红和Weigert染色,图像分析测量新生内膜厚度和面积,c-myc蛋白免疫组化染色,采用末端脱氧核苷酸酶介导的dUTP缺口末端标记法检测细胞凋亡,并与对照组(n=16)进行对比分析.结果:两组支架术后7、1 4 d均未观察到平滑肌细胞凋亡,术后30 d在新生内膜中观察到明显的细胞凋亡,90 d时显著高于30 d;同时给药组平滑肌细胞的凋亡显著高于对照组.结论:c myc ASODN可诱导支架置入后平滑肌细胞凋亡,可用于防治再狭窄.

  17. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma.

    Science.gov (United States)

    Ehrhardt, Michael; Craveiro, Rogerio B; Velz, Julia; Olschewski, Martin; Casati, Anna; Schönberger, Stefan; Pietsch, Torsten; Dilloo, Dagmar

    2018-04-01

    Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi-kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti-neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c-myc-amplified Non-WNT/Non-SHH and SHH-TP53-mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c-kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi-modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC-0941 enhances the anti-neoplastic efficacy of Axitinib against c-myc-amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Expression of Cyclin D1 protein and CCN DI with PNKP genes in peripheral blood mononuclear cells in clean-up worker of Chernobyl accident with different state of immune system

    International Nuclear Information System (INIS)

    Bazika, D.A.; Kubashko, A.V.; Yil'jenko, Yi.M.; Belyajev, O.A.; Pleskach, O.Ya.

    2015-01-01

    The investigate of Cyclin D1+cells levels changes, associated CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers of Chornobyl accident with different state of immune system in depends on the dose irradiation. Analyzed data of the nuclear controller of cell cycle- Cyclin D1 protein expression changes and related CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers Chornobyl accident with different status of immune system in remote period after exposure is represented. Reveled changes in expression of Cyclin D1+cells and regulation of related genes may point on possible radiation-associated firm molecular disturbances occurred during elimination of consequences of Chornobyl accident, that could be a potential basis for cell and humoral communicative links breach in immune system result ing in elevation of stochastic effects like oncopathology in cleanup workers of Chornobyl accident in remote peri od after exposure

  19. Study on relationship between apoptosis-related genes and radiosensitivity of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Huixiang; Wang Yaohe; Shi Yonggang; Gao Dongling; Zhang Yunhan

    2000-01-01

    Objective: To observing the relationship between apoptosis-related genes bcl-2,c-myc, p53 and the radiosensitivity of esophageal squamous cell carcinoma. Methods: The expression levels of bcl-2, c-myc and p53 genes in 57 biopsy samples from patients of esophageal squamous cell carcinoma were detected with the LSAB immunohistochemistry method. All the patients were treated with radiotherapy. The radiotherapeutic effect in these patients was observed and the relation between gene expression and radiosensitivity was analyzed. Results: Compared with the bcl-2-negative group, the radiosensitivity of bcl-2-positive one was lower(P<0.01). The radiosensitivity of p53-positive group was slightly lower than that of the p53-negative one (P<0.05). The c-myc protein expression was not related to radiosensitivity. Conclusion: Detection and comprehensive analysis of bcl-2, c-myc and p53 protein expressions are useful in forecasting the radiotherapeutic effect on squamous cell carcinoma of esophagus

  20. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  1. MYC is a metastasis gene for non-small-cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Ulf R Rapp

    Full Text Available BACKGROUND: Metastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Lack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process. CONCLUSIONS/SIGNIFICANCE: Potential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.

  2. Detection of c-myc amplification in formalin-fixed paraffin-embedded tumor tissue by chromogenic in situ hybridization (CISH).

    Science.gov (United States)

    Todorović-Raković, Nataša

    2013-01-01

    In situ hybridization (ISH) allows evaluation of genetic abnormalities, such as changes in chromosome number, chromosome translocations or gene amplifications, by hybridization of tagged DNA (or RNA) probes with complementary DNA (or RNA) sequences in interphase nuclei of target tissue. However, chromogenic in situ hybridization (CISH) is also applicable to formalin-fixed, paraffin-embedded (FFPE) tissues, besides metaphase chromosome spreads. CISH is similar to fluorescent in situ hybridization (FISH) regarding pretreatments and hybridization protocols but differs in the way of visualization. Indeed, CISH signal detection is similar to that used in immunohistochemistry, making use of a peroxidase-based chromogenic reaction instead of fluorescent dyes. In particular, tagged DNA probes are indirectly detected using an enzyme-conjugated antibody targeting the tags. The enzymatic reaction of the chromogenic substrate leads to the formation of strong permanent brown signals that can be visualized by bright-field microscopy at 40 × magnification. The advantage of CISH is that it allows the simultaneous observation of gene amplification and tissue morphology and the slides can be stored for a long time.

  3. Periplocin from Cortex periplocae inhibits cell growth and down-regulates survivin and c-myc expression in colon cancer in vitro and in vivo via beta-catenin/TCF signaling.

    Science.gov (United States)

    Zhao, Lianmei; Shan, Baoen; Du, Yanyan; Wang, Mingxia; Liu, Lihua; Ren, Feng-Zhi

    2010-08-01

    Cancer of the colon and rectum is the third most commonly diagnosed cancer and accounts for approximately 10% of all cancer-related deaths. Although surgical resection or radiotherapy are potentially curative for localized disease, advanced colon cancer is currently associated with poor prognosis. Therefore, the development of a new and effective chemotherapeutic agent is required to target critical pathways to induce responsiveness of colon cancer cells to death signals. Dysregulation of the beta-catenin/TCF pathway plays a central role in early activities of colorectal carcinogenesis. In this study, human colon cancer SW480 cells were used to investigate the effect of CPP (periplocin from Cortex periplocae) on the modulation of the beta-catenin/TCF signaling pathway. Our research results showed that CPP caused a dose- and time-dependent inhibition of cell growth as assessed by MTT assay and an induction in apoptosis as measured by flow cytometry and transmission electron microscopy. Furthermore, the CPP- treated cells were characterized by a decreased expression of beta-catenin protein in the total cell lysates and cytosolic and nuclear extracts. This expression alleviates the binding activity of T-cell factor (Tcf) complexes to its specific DNA-binding sites. Thus, the protein expression of the downstream elements survivin and c-myc was down-regulated. To determine the precise inhibitory mechanisms involved, further in-depth in vivo studies of CPP are warranted. In conclusion, our data suggest that CPP wields a multi-prong strategy to target the beta-catenin/Tcf signaling pathway, leading to the induction of apoptosis and inhibition of growth of colon cancer cells in vitro and in vivo. Therefore, CPP may become a potential agent against colon cancer.

  4. Effect of JTV1 gene on the proliferation and apoptosis of K562 cells and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan WU

    2011-05-01

    Full Text Available Objective To investigate the effect of tumor-suppressing gene JTV1 on proliferation and apoptosis of leukemic K562 cells,and the changes in apoptosis factors Bcl-2,C-myc and Bax genes.Methods The recombinate vector pcDNA3.1-JTV1,and the empty vector pcDNA3.1 were transfected into K562 cells as control.The cell proliferation of K562 cells was evaluated by colony formation assay;the cell cycle and apoptosis rate were assessed by flow cytometry(FCM;the mRNA levels of apoptosis related genes Bax,Bcl-2 and C-myc were determined by RT-PCR;the protein levels of Bax,Bcl-2 and C-myc were assayed by Western Blotting.Results The colony formation assay showed that the proliferation of K562 cells decreased when the expression of JTV1 gene was up-regulated.FCM assay showed that the G phase cells in pcDNA3.1-JTV1 positive transfection group increased compared with that of the control group and the pcDNA3.1 empty vector transfected group,and the differences were statistically significant(P < 0.05.Compared with the control group and the empty vector group,the mRNA transcription level and the protein translation level of Bax gene increased significantly,and the mRNA transcription level and the protein translation level of Bcl-2 and C-myc gene were reduced significantly(P < 0.05.Conclusions The expressions of Bcl-2 and C-myc gene are inhibited when the gene JTV1 is up-regulated,leading to an increase in Bax gene expression,inhibition of K562 cell proliferation,and promotion of tumor cells apoptosis.Over expression of JTV1 gene can inhibit the proliferation of K562 cells and promote cell apoptosis by inhibiting Bcl-2 and C-myc expression and up-regulating that of Bax.

  5. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  6. Induction of apoptosis by 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via modulation of MAPKs (p38 and c-Jun N-terminal kinase) and c-Myc in HL-60 human leukemia cells.

    Science.gov (United States)

    Park, Eun-Jung; Kiselev, Evgeny; Conda-Sheridan, Martin; Cushman, Mark; Pezzuto, John M

    2012-03-23

    Recently, we reported that 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (AM6-36), sharing structural similarity with naturally occurring isoquinolines, induced activities mediated by retinoid X receptor (RXR) response element accompanied by antiproliferative effects on breast cancer cells. To further characterize the biologic potential of AM6-36, we currently report studies conducted with HL-60 human leukemia cells. AM6-36 significantly inhibited cellular proliferation in a dose- and time-dependent manner with an IC(50) value of 86 nM. When evaluated at low test concentrations (≤0.25 μM), AM6-36 induced arrest in the G2/M phase of the cell cycle. At higher concentrations (1 and 2 μM), the response shifted to apoptosis, which was consistent with the effect of AM6-36 on other apoptotic signatures including an increase of apoptotic annexin V(+) 7-AAD(-) cells, loss of mitochondrial membrane potential, induction of poly(ADP-ribose) polymerase cleavage, and activation of several caspases. These apoptotic effects are potentially due to up-regulation of p38 MAPK and JNK phosphorylation and down-regulation of c-Myc oncogene expression. Taken together, AM6-36 might serve as an effective anticancer agent by inducing G2/M cell cycle arrest and apoptosis through the activation of MAPKs and inhibition of c-Myc.

  7. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    Science.gov (United States)

    Pan, Bifeng; Cui, Daxiang; Xu, Ping; Ozkan, Cengiz; Feng, Gao; Ozkan, Mihri; Huang, Tuo; Chu, Bingfeng; Li, Qing; He, Rong; Hu, Guohan

    2009-03-01

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH2-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  8. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Pan Bifeng; Cui Daxiang; Xu Ping; Feng Gao; Huang Tuo; Li Qing; He Rong [Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240 (China); Ozkan, Cengiz [Mechanical Engineering Department, University of California Riverside, 900 University Avenue-Riverside, CA 92521 (United States); Ozkan, Mihri [Electrical Engineering Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Chu, Bingfeng [Department of Stomatology, General Hospital of PLA, 28 Fuxing Road, Beijing100853 (China); Hu Guohan [Department of Neurosurgery of Changzheng Hospital, 415 Fengyang Road, Second Military Medical University, Shanghai 20003 (China)], E-mail: dxcui@sjtu.edu.cn, E-mail: huguohan6504@sina.com

    2009-03-25

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH{sub 2}-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  9. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    International Nuclear Information System (INIS)

    Pan Bifeng; Cui Daxiang; Xu Ping; Feng Gao; Huang Tuo; Li Qing; He Rong; Ozkan, Cengiz; Ozkan, Mihri; Chu, Bingfeng; Hu Guohan

    2009-01-01

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH 2 -asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  10. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  11. Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population

    International Nuclear Information System (INIS)

    Peña-Chilet, Maria; Ribas, Gloria; Blanquer-Maceiras, Maite; Ibarrola-Villava, Maider; Martinez-Cadenas, Conrado; Martin-Gonzalez, Manuel; Gomez-Fernandez, Cristina; Mayor, Matias; Aviles, Juan Antonio; Lluch, Ana

    2013-01-01

    Few high penetrance genes are known in Malignant Melanoma (MM), however, the involvement of low-penetrance genes such as MC1R, OCA2, ASIP, SLC45A2 and TYR has been observed. Lately, genome-wide association studies (GWAS) have been the ideal strategy to identify new common, low-penetrance susceptibility loci. In this case–control study, we try to validate in our population nine melanoma associated markers selected from published GWAS in melanoma predisposition. We genotyped the 9 markers corresponding to 8 genes (PARP1, MX2, ATM, CCND1, NADSYN1, CASP8, IRF4 and CYP2R1) in 566 cases and 347 controls from a Spanish population using KASPar probes. Genotypes were analyzed by logistic regression and adjusted by phenotypic characteristics. We confirm the protective role in MM of the rs3219090 located on the PARP1 gene (p-value 0.027). Additionally, this SNP was also associated with eye color (p-value 0.002). A second polymorphism, rs12203592, located on the IRF4 gene was associated with protection to develop MM for the dominant model (p-value 0.037). We have also observed an association of this SNP with both lentigines (p-value 0.014) and light eye color (p-value 3.76 × 10 -4 ). Furthermore, we detected a novel association with rs1485993, located on the CCND1 gene, and dark eye color (p-value 4.96 × 10 -4 ). Finally, rs1801516, located on the ATM gene, showed a trend towards a protective role in MM similar to the one firstly described in a GWAS study. To our knowledge, this is the first time that these SNPs have been associated with MM in a Spanish population. We confirmed the proposed role of rs3219090, located on the PARP1 gene, and rs12203592, located on the IRF4 gene, as protective to MM along the same lines as have previous genome-wide associated works. Finally, we have seen associations between IRF4, PARP1, and CCND1 and phenotypic characteristics, confirming previous results for the IRF4 gene and presenting novel data for the last two, suggesting that

  12. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  13. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  14. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  15. Expression of Hormonal Carcinogenesis Genes and Related Regulatory microRNAs in Uterus and Ovaries of DDT-Treated Female Rats.

    Science.gov (United States)

    Kalinina, T S; Kononchuk, V V; Gulyaeva, L F

    2017-10-01

    The insecticide dichlorodiphenyltrichloroethane (DDT) is a nonmutagenic xenobiotic compound able to exert estrogen-like effects resulting in activation of estrogen receptor-α (ERα) followed by changed expression of its downstream target genes. In addition, studies performed over recent years suggest that DDT may also influence expression of microRNAs. However, an impact of DDT on expression of ER, microRNAs, and related target genes has not been fully elucidated. Here, using real-time PCR, we assessed changes in expression of key genes involved in hormonal carcinogenesis as well as potentially related regulatory oncogenic/tumor suppressor microRNAs and their target genes in the uterus and ovaries of female Wistar rats during single and chronic multiple-dose DDT exposure. We found that applying DDT results in altered expression of microRNAs-221, -222, -205, -126a, and -429, their target genes (Pten, Dicer1), as well as genes involved in hormonal carcinogenesis (Esr1, Pgr, Ccnd1, Cyp19a1). Notably, Cyp19a1 expression seems to be also regulated by microRNAs-221, -222, and -205. The data suggest that epigenetic effects induced by DDT as a potential carcinogen may be based on at least two mechanisms: (i) activation of ERα followed by altered expression of the target genes encoding receptor Pgr and Ccnd1 as well as impaired expression of Cyp19a1, affecting, thereby, cell hormone balance; and (ii) changed expression of microRNAs resulting in impaired expression of related target genes including reduced level of Cyp19a1 mRNA.

  16. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation

    International Nuclear Information System (INIS)

    Gazzerro, Patrizia; Abbondanza, Ciro; D'Arcangelo, Andrea; Rossi, Mariangela; Medici, Nicola; Moncharmont, Bruno; Puca, Giovanni Alfredo

    2006-01-01

    The retinoblastoma protein-interacting zinc-finger (RIZ) gene, a member of the nuclear protein methyltransferase superfamily, is characterized by the presence of the N-terminal PR domain. The RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the PR (PRDI-BF1 and RIZ homologous) domain, RIZ2 lacks it. RIZ gene expression is altered in a variety of human cancers and RIZ1 is now considered to be a candidate tumor suppressor. Estradiol treatment of MCF-7 cells produced a selective decrease of RIZ1 transcript and an increase of total RIZ mRNA. Experiments of chromatin immunoprecipitation indicated that RIZ2 protein expression was controlled by estrogen receptor and RIZ1 had a direct repressor function on c-myc gene expression. To investigate the role of RIZ gene products as regulators of the proliferation/differentiation transition, we analyzed the effects of forced suppression of RIZ1 induced in MCF-7 cells by siRNA of the PR domain-containing form. Silencing of RIZ1 expression stimulated cell proliferation, similar to the effect of estradiol on these cells, associated with a transient increase of c-myc expression

  17. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells

    International Nuclear Information System (INIS)

    Amirak, Emre; Zakkar, Mustafa; Evans, Paul C.; Kemp, Paul R.

    2010-01-01

    Vascular smooth muscle cell (VSMC) proliferation remains a major cause of veno-arterial graft failure. We hypothesised that exposure of venous SMCs to arterial pressure would increase KLF5 expression and that of cell cycle genes. Porcine jugular veins were perfused at arterial or venous pressure in the absence of growth factors. The KLF5, c-myc, cyclin-D and cyclin-E expression were elevated within 24 h of perfusion at arterial pressure but not at venous pressure. Arterial pressure also reduced the decline in SM-myosin heavy chain expression. These data suggest a role for KLF5 in initiating venous SMCs proliferation in response to arterial pressure.

  18. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  19. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  20. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or γ-rays

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-01-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, cytoskeletal elements, and many more. The experiments reported herein were designed to examine the effects of either JANUS neutron or γ-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or γ-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and Rb following γ-ray but not following neutron exposure. Interestingly, expression of c-myc was repressed following γ-ray but not following neutron exposure. Radiations at different doses and dose rates were compared for each of the genes studied

  1. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.

    Science.gov (United States)

    Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi

    2016-02-15

    FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.

  2. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Pereira, Francisca; Alves de Matos, António P; Fernandes, Marta; Baptista, Pedro V; Fernandes, Alexandra R

    2017-05-01

    Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells' phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  4. Promoter hypermethylation-induced transcriptional down-regulation of the gene MYCT1 in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yang, Min; Li, Wei; Liu, Yi-Ying; Fu, Shuang; Qiu, Guang-Bin; Sun, Kai-Lai; Fu, Wei-Neng

    2012-01-01

    MYCT1, previously named MTLC, is a novel candidate tumor suppressor gene. MYCT1 was cloned from laryngeal squamous cell cancer (LSCC) and has been found to be down-regulated in LSCC; however, the regulatory details have not been fully elucidated. Here, we sought to investigate the methylation status of the CpG islands of MYCT1 and mRNA levels by bisulfite-specific PCR (BSP) based on sequencing restriction enzyme digestion, reverse transcription and real-time quantitative polymerase chain reaction (RQ-PCR). The function of specific sites in the proximal promoter of MYCT1 in LSCC was measured by transient transfection, luciferase assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). The results suggested hypermethylation of 12 CpG sites of the promoter in both laryngeal cancer tissues and the laryngeal cancer line Hep-2 cell. The hypermethylation of the site CGCG (−695 to −692), which has been identified as the c-Myc binding site, was identified in laryngeal cancer tissues (59/73) compared to paired mucosa (13/73); in addition, statistical analysis revealed that the methylation status of this site significantly correlated with cancer cell differentiation(p < 0.01). The mRNA level of MYCT1 increased in Hep-2 cells treated with 5-aza-C (p < 0.01). The luciferase activity from mutant transfectants pGL3-MYCT1m (−852/+12, mut-695-C > A, mut-693-C > G) was significantly reduced compared with the wild type pGL3-MYCT1 (−852/+12), while the luciferase activity from wild transfectants pGL3-MYCT1 (−852/+12) rose after 5-aza treatment in Hep-2 cells. Finally, EMSA and ChIP confirmed that the methylation of the CGCG (−695 to −692) site prevented c-Myc from binding of the site and demethylation treatment of the 5′ flanking region of MYCT1 by 5-aza induced the increased occupation of the core promoter by c-Myc (p < 0.01). In summary, this study concluded that hypermethylation contributed to the transcriptional down

  5. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  6. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  7. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  8. The cucurbitacins D, E, and I from Ecballium elaterium (L. upregulate the LC3 gene and induce cell-cycle arrest in human gastric cancer cell line AGS

    Directory of Open Access Journals (Sweden)

    Naser Jafargholizadeh

    2018-03-01

    Full Text Available Objective(s: Cucurbitacins exhibit a range of anti-cancer functions. We investigated the effects of cucurbitacins D, E, and I purified from Ecballium elaterium (L. A. Rich fruits on some apoptotic and autophagy genes in human gastric cancer cell line AGS. Materials and Methods: Using quantitative reverse transcription PCR (qRT-PCR, the expression of LC3, VEGF, BAX, caspase-3, and c-MYC genes were quantified in AGS cells 24 hr after treatment with cucurbitacins D, E, and I at concentrations 0.3, 0.1 and 0.5 μg/ml, respectively. Cell cycle and death were analyzed by flowcytometry. Results: Purified cucurbitacins induced sub-G1 cell-cycle arrest and cell death in AGS cells and upregulated LC3mRNA effectively, but showed a very low effect on BAX, caspase-3, and c-MYC mRNA levels. Also after treatment with cucurbitacin I at concentration 0.5 μg/ml, VEGF mRNA levels were increased about 4.4 times. Pairwise comparison of the effect of cucurbitacins D, E, and I on LC3 mRNA expression showed that the cucurbitacin I effect is 1.3 and 1.1 times that of cucurbitacins E and D, respectively; cucurbitacin D effect is 1.2 times that of cucurbitacin E (P-value

  9. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    DEFF Research Database (Denmark)

    Christensen, Lise-Lotte; True, Kirsten; Hamilton, Mark P.

    2016-01-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host...... gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16...... indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved...

  10. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  11. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  12. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  13. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  14. Assessment of Tumor Heterogeneity, as Evidenced by Gene Expression Profiles, Pathway Activation, and Gene Copy Number, in Patients with Multifocal Invasive Lobular Breast Tumors

    Science.gov (United States)

    Norton, Nadine; Advani, Pooja P.; Serie, Daniel J.; Geiger, Xochiquetzal J.; Necela, Brian M.; Axenfeld, Bianca C.; Kachergus, Jennifer M.; Feathers, Ryan W.; Carr, Jennifer M.; Crook, Julia E.; Moreno-Aspitia, Alvaro; Anastasiadis, Panos Z.; Perez, Edith A.; Thompson, E. Aubrey

    2016-01-01

    Background Invasive lobular carcinoma (ILC) comprises approximately ~10–20% of breast cancers. In general, multifocal/multicentric (MF/MC) breast cancer has been associated with an increased rate of regional lymph node metastases. Tumor heterogeneity between foci represents a largely unstudied source of genomic variation in those rare patients with MF/MC ILC. Methods We characterized gene expression and copy number in 2 or more foci from 11 patients with MF/MC ILC (all ER+, HER2-) and adjacent normal tissue. RNA and DNA were extracted from 3x1.5mm cores from all foci. Gene expression (730 genes) and copy number (80 genes) were measured using Nanostring PanCancer and Cancer CNV panels. Linear mixed models were employed to compare expression in tumor versus normal samples from the same patient, and to assess heterogeneity (variability) in expression among multiple ILC within an individual. Results 35 and 34 genes were upregulated (FC>2) and down-regulated (FC<0.5) respectively in ILC tumor relative to adjacent normal tissue, q<0.05. 9/34 down-regulated genes (FIGF, RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2, KIT) had changes larger than CDH1, a hallmark of ILC. Copy number changes in these patients were relatively few but consistent across foci within each patient. Amplification of three genes (CCND1, FADD, ORAOV1) at 11q13.3 was present in 2/11 patients in both foci. We observed significant evidence of within-patient between-foci variability (heterogeneity) in gene expression for 466 genes (p<0.05 with FDR 8%), including CDH1, FIGF, RELN, SFRP1, MMP7, NTRK2, LAMB3, SPRY2 and KIT. Conclusions There was substantial variation in gene expression between ILC foci within patients, including known markers of ILC, suggesting an additional level of complexity that should be addressed. PMID:27078887

  15. An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Genta Sawada

    Full Text Available Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC. Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes.We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort.We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC.Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.

  16. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  17. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech

    2012-01-01

    Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression...... pluripotency in the pig. This may help to explain the difficulties in producing stable piPSCs and bona fide embryonic stem cell lines in this species....... transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous...

  18. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma.

    Directory of Open Access Journals (Sweden)

    Janice E Drew

    Full Text Available Cancers exhibit abnormal molecular signatures associated with disease initiation and progression. Molecular signatures could improve cancer screening, detection, drug development and selection of appropriate drug therapies for individual patients. Typically only very small amounts of tissue are available from patients for analysis and biopsy samples exhibit broad heterogeneity that cannot be captured using a single marker. This report details application of an in-house custom designed GenomeLab System multiplex gene expression assay, the hCellMarkerPlex, to assess predictive gene signatures of normal, adenomatous polyp and carcinoma colon tissue using archived tissue bank material. The hCellMarkerPlex incorporates twenty-one gene markers: epithelial (EZR, KRT18, NOX1, SLC9A2, proliferation (PCNA, CCND1, MS4A12, differentiation (B4GANLT2, CDX1, CDX2, apoptotic (CASP3, NOX1, NTN1, fibroblast (FSP1, COL1A1, structural (ACTG2, CNN1, DES, gene transcription (HDAC1, stem cell (LGR5, endothelial (VWF and mucin production (MUC2. Gene signatures distinguished normal, adenomatous polyp and carcinoma. Individual gene targets significantly contributing to molecular tissue types, classifier genes, were further characterised using real-time PCR, in-situ hybridisation and immunohistochemistry revealing aberrant epithelial expression of MS4A12, LGR5 CDX2, NOX1 and SLC9A2 prior to development of carcinoma. Identified gene signatures identify aberrant epithelial expression of genes prior to cancer development using in-house custom designed gene expression multiplex assays. This approach may be used to assist in objective classification of disease initiation, staging, progression and therapeutic responses using biopsy material.

  19. Identification of differentially expressed genes and biological pathways in bladder cancer

    Science.gov (United States)

    Tang, Fucai; He, Zhaohui; Lei, Hanqi; Chen, Yuehan; Lu, Zechao; Zeng, Guohua; Wang, Hangtao

    2018-01-01

    The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein-protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in ‘extracellular matrix organization’, ‘proteinaceous extracellular matrix’ and ‘heparin binding’. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the ‘cell cycle’, whereas the downregulated DEGs were significantly enriched in ‘complement and coagulation cascades’. JUN, cyclin-dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub-networks revealed that these gene were enriched in significant pathways, including the ‘cell cycle’ signaling pathway and ‘PI3K-Akt signaling pathway’. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC. PMID:29532898

  20. Explorative data analysis of MCL reveals gene expression networks implicated in survival and prognosis supported by explorative CGH analysis

    International Nuclear Information System (INIS)

    Blenk, Steffen; Engelmann, Julia C; Pinkert, Stefan; Weniger, Markus; Schultz, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans K; Müller, Tobias; Dandekar, Thomas

    2008-01-01

    Mantle cell lymphoma (MCL) is an incurable B cell lymphoma and accounts for 6% of all non-Hodgkin's lymphomas. On the genetic level, MCL is characterized by the hallmark translocation t(11;14) that is present in most cases with few exceptions. Both gene expression and comparative genomic hybridization (CGH) data vary considerably between patients with implications for their prognosis. We compare patients over and below the median of survival. Exploratory principal component analysis of gene expression data showed that the second principal component correlates well with patient survival. Explorative analysis of CGH data shows the same correlation. On chromosome 7 and 9 specific genes and bands are delineated which improve prognosis prediction independent of the previously described proliferation signature. We identify a compact survival predictor of seven genes for MCL patients. After extensive re-annotation using GEPAT, we established protein networks correlating with prognosis. Well known genes (CDC2, CCND1) and further proliferation markers (WEE1, CDC25, aurora kinases, BUB1, PCNA, E2F1) form a tight interaction network, but also non-proliferative genes (SOCS1, TUBA1B CEBPB) are shown to be associated with prognosis. Furthermore we show that aggressive MCL implicates a gene network shift to higher expressed genes in late cell cycle states and refine the set of non-proliferative genes implicated with bad prognosis in MCL. The results from explorative data analysis of gene expression and CGH data are complementary to each other. Including further tests such as Wilcoxon rank test we point both to proliferative and non-proliferative gene networks implicated in inferior prognosis of MCL and identify suitable markers both in gene expression and CGH data

  1. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1

    Science.gov (United States)

    Gao, Guozhen; Dhar, Surbhi

    2017-01-01

    Abstract The type II arginine methyltransferase PRMT5 is responsible for the symmetric dimethylation of histone to generate the H3R8me2s and H4R3me2s marks, which correlate with the repression of transcription. However, the protein level of a number of genes (MEP50, CCND1, MYC, HIF1a, MTIF and CDKN1B) are reported to be downregulated by the loss of PRMT5, while their mRNA levels remain unchanged, which is counterintuitive for PRMT5's proposed role as a transcription repressor. We noticed that the majority of the genes regulated by PRMT5, at the posttranscriptional level, express mRNA containing an internal ribosome entry site (IRES). Using an IRES-dependent reporter system, we established that PRMT5 facilitates the translation of a subset of IRES-containing genes. The heterogeneous nuclear ribonucleoprotein, hnRNP A1, is an IRES transacting factor (ITAF) that regulates the IRES-dependent translation of Cyclin D1 and c-Myc. We showed that hnRNP A1 is methylated by PRMT5 on two residues, R218 and R225, and that this methylation facilitates the interaction of hnRNP A1 with IRES RNA to promote IRES-dependent translation. This study defines a new role for PRMT5 regulation of cellular protein levels, which goes beyond the known functions of PRMT5 as a transcription and splicing regulator. PMID:28115626

  2. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene.

    Science.gov (United States)

    Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao

    2017-01-01

    Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Dynamic telomerase gene suppression via network effects of GSK3 inhibition.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2009-07-01

    Full Text Available Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression.In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3'-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFkappaB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc.Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting.

  4. Growth inhibition of head and neck squamous cell carcinoma cells by sgRNA targeting the cyclin D1 mRNA based on TRUE gene silencing.

    Directory of Open Access Journals (Sweden)

    Satoshi Iizuka

    Full Text Available Head and neck squamous cell carcinoma (HNSCC exhibits increased expression of cyclin D1 (CCND1. Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA. In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs.

  5. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data

    Science.gov (United States)

    Schrader, Alexandra; Meyer, Katharina; Walther, Neele; Stolz, Ailine; Feist, Maren; Hand, Elisabeth; von Bonin, Frederike; Evers, Maurits; Kohler, Christian; Shirneshan, Katayoon; Vockerodt, Martina; Klapper, Wolfram; Szczepanowski, Monika; Murray, Paul G.; Bastians, Holger; Trümper, Lorenz; Spang, Rainer; Kube, Dieter

    2016-01-01

    To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery. PMID:27166259

  6. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    Science.gov (United States)

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  7. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    Science.gov (United States)

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  9. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  10. Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Delshad, AliReza; Sadeghizadeh, Majid; Taheri, Taher; Hassoun, Hayder K

    2017-04-01

    Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.

  11. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  12. A gene expression profile indicative of early stage HER2 targeted therapy response.

    Science.gov (United States)

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  13. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients

    International Nuclear Information System (INIS)

    Walker, B A; Wardell, C P; Brioli, A; Boyle, E; Kaiser, M F; Begum, D B; Dahir, N B; Johnson, D C; Ross, F M; Davies, F E; Morgan, G J

    2014-01-01

    Secondary MYC translocations in myeloma have been shown to be important in the pathogenesis and progression of disease. Here, we have used a DNA capture and massively parallel sequencing approach to identify the partner chromosomes in 104 presentation myeloma samples. 8q24 breakpoints were identified in 21 (20%) samples with partner loci including IGH, IGK and IGL, which juxtapose the immunoglobulin (Ig) enhancers next to MYC in 8/23 samples. The remaining samples had partner loci including XBP1, FAM46C, CCND1 and KRAS, which are important in B-cell maturation or myeloma pathogenesis. Analysis of the region surrounding the breakpoints indicated the presence of superenhancers on the partner chromosomes and gene expression analysis showed increased expression of MYC in these samples. Patients with MYC translocations had a decreased progression-free and overall survival. We postulate that translocation breakpoints near MYC result in colocalization of the gene with superenhancers from loci, which are important in the development of the cell type in which they occur. In the case of myeloma these are the Ig loci and those important for plasma cell development and myeloma pathogenesis, resulting in increased expression of MYC and an aggressive disease phenotype

  14. Stat1-independent regulation of gene expression in response to IFN-γ

    Science.gov (United States)

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  15. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  16. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  17. Understanding Endogenous c-Myc Function in Human Breast Cancer Development

    National Research Council Canada - National Science Library

    Xia, Bing

    2003-01-01

    My research is focused on BRCA2, whose mutation has been implicated in the development of breast, ovarian, prostate, pancreatic cancers and Fanconi anemia BRCA2 is an extremely large protein that is challenging% to study...

  18. Treatment of Endocrine-Resistant Breast Cancer with a Small Molecule c-Myc Inhibitor

    Science.gov (United States)

    2016-08-01

    Selective inhibition of tu- mor oncogenes by disruption of super-enhancers. Cell 2013; 153:320-334. 26 Ott CJ, Kopp N, Bird L, et al. BET bromodomain...maintenance of nor- mal functions of the female reproductive tissues and non-repro- ductive tissues including metabolic homeostasis, skeletal...steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994;63:451–86. [2] Della Torre S, Benedusi V, Fontana R, Maggi A. Energy metabolism and

  19. Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors

    OpenAIRE

    Müller, Inga; Larsson, Karin; Frenzel, Anna; Oliynyk, Ganna; Zirath, Hanna; Prochownik, Edward V.; Westwood, Nicholas J.; Henriksson, Marie Arsenian

    2014-01-01

    This study was funded by grants from the Swedish Research Council and the Swedish Cancer Society. IM and HZ were recipients of graduate student grants from KI (KID), MAH was recipient of a Senior Investigator Award from the Swedish Cancer Society, and NJW was a Royal Society University Research Fellow when this work began. Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tum...

  20. RESEARCH ARTICLE Co-overexpression of EpCAM and c-myc ...

    Indian Academy of Sciences (India)

    Purpose:The overexpression of epithelial cell adhesion molecule (EpCAM) ... Half LIM domain protein2), and the transcription factor Lef1 that is cleaved by presenilin-2 ..... and self-renewal capability, producing a rapidly dividing tumor mass.

  1. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes.

    Science.gov (United States)

    Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher

    2016-07-15

    The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.

  2. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  3. Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs.

    Directory of Open Access Journals (Sweden)

    Simone Pacini

    Full Text Available BACKGROUND: We recently characterized a progenitor of mesodermal lineage (MPCs from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. CONCLUSIONS/SIGNIFICANCE: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.

  4. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.

    Science.gov (United States)

    Hoefnagel, Juliette J; Dijkman, Remco; Basso, Katia; Jansen, Patty M; Hallermann, Christian; Willemze, Rein; Tensen, Cornelis P; Vermeer, Maarten H

    2005-05-01

    In the European Organization for Research and Treatment of Cancer (EORTC) classification 2 types of primary cutaneous large B-cell lymphoma (PCLBCL) are distinguished: primary cutaneous follicle center cell lymphomas (PCFCCL) and PCLBCL of the leg (PCLBCL-leg). Distinction between both groups is considered important because of differences in prognosis (5-year survival > 95% and 52%, respectively) and the first choice of treatment (radiotherapy or systemic chemotherapy, respectively), but is not generally accepted. To establish a molecular basis for this subdivision in the EORTC classification, we investigated the gene expression profiles of 21 PCLBCLs by oligonucleotide microarray analysis. Hierarchical clustering based on a B-cell signature (7450 genes) classified PCLBCL into 2 distinct subgroups consisting of, respectively, 8 PCFCCLs and 13 PCLBCLsleg. PCLBCLs-leg showed increased expression of genes associated with cell proliferation; the proto-oncogenes Pim-1, Pim-2, and c-Myc; and the transcription factors Mum1/IRF4 and Oct-2. In the group of PCFCCL high expression of SPINK2 was observed. Further analysis suggested that PCFCCLs and PCLBCLs-leg have expression profiles similar to that of germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphoma, respectively. The results of this study suggest that different pathogenetic mechanisms are involved in the development of PCFCCLs and PCLBCLs-leg and provide molecular support for the subdivision used in the EORTC classification.

  5. Timed feeding of mice modulates light-entrained circadian rhythms of reticulated platelet abundance and plasma thrombopoietin and affects gene expression in megakaryocytes.

    Science.gov (United States)

    Hartley, Paul S; Sheward, John; Scholefield, Emma; French, Karen; Horn, Jacqueline M; Holmes, Megan C; Harmar, Anthony J

    2009-07-01

    Circadian (c. 24 h) rhythms of physiology are entrained to either the environmental light-dark cycle or the timing of food intake. In the current work the hypothesis that rhythms of platelet turnover in mammals are circadian and entrained by food intake was explored in mice. Mice were entrained to 12 h light-dark cycles and given either ad libitum (AL) or restricted access (RF) to food during the light phase. Blood and megakaryocytes were then collected from mice every 4 h for 24 h. It was found that total and reticulated platelet numbers, plasma thrombopoietin (TPO) concentration and the mean size of mature megakaryocytes were circadian but not entrained by food intake. In contrast, a circadian rhythm in the expression of Arnt1 in megakaryocytes was entrained by food. Although not circadian, the expression in megakaryocytes of Nfe2, Gata1, Itga2b and Tubb1 expression was downregulated by RF, whereas Ccnd1 was not significantly affected by the feeding protocol. It is concluded that circadian rhythms of total platelet number, reticulated platelet number and plasma TPO concentration are entrained by the light-dark cycle rather than the timing of food intake. These findings imply that circadian clock gene expression regulates platelet turnover in mammals.

  6. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  7. Striking similarity in the gene expression levels of individual Myc module members among ESCs, EpiSCs, and partial iPSCs.

    Directory of Open Access Journals (Sweden)

    Masataka Hirasaki

    Full Text Available Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs. Epiblast stem cells (EpiSCs are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties.

  8. Relationship of JAK2V617F gene mutation with cell proliferation and coagulation function in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Xiao-Nan Zhang

    2017-05-01

    Full Text Available Objective: To study the relationship of JAK2V617F gene mutation with cell proliferation and coagulation function in myeloproliferative neoplasms. Methods: Patients who were diagnosed with BCR-ABL-negative myeloproliferative neoplasms in Anyang District Hospital between June 2014 and August 2016 were selected, JAK2V617F gene mutation was detected, and according to the test results, the patients were divided into mutation-positive group and mutation-negative group. The expression of JAK2/STATs signaling pathway molecules and cell proliferation genes in bone marrow fluid as well as the coagulation function indexes in peripheral blood were detected. Results: p-JAK2, p-STAT3, p-STAT5, Survivin, C-myc, CyclinD1 and ASXL1 protein expression in myeloproliferative neoplasms of mutation-positive group were significantly higher than those of mutation-negative group, and peripheral blood PT and APTT levels were significantly lower than those of mutation-negative group while TT and FIB levels were not significantly different from those of mutation-negative group. Conclusion: JAK2V617F gene mutation in myeloproliferative neoplasms can promote the cell proliferation and cause the hypercoagulable state.

  9. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.; Nelson, L.D.; Conner, B.J. [Univ. of Texas, Houston (United States)] [and others

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  10. An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Directory of Open Access Journals (Sweden)

    Amanda Ackley

    2013-01-01

    Full Text Available Small noncoding antisense RNAs (sasRNAs guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.

  11. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  12. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    International Nuclear Information System (INIS)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car -/- ) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car -/- livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: → The azo dye and mouse carcinogen OAT is a very effective mCAR activator. → OAT increases mCAR transactivation in a dose-dependent manner. → OAT CAR-dependently increases the expression of a specific subset of CAR target genes. → OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  13. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    International Nuclear Information System (INIS)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-01-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression

  14. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    Science.gov (United States)

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  15. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  16. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison M; Easton, Douglas F; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Fasching, Peter A; Haeberle, Lothar; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marmé, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Nielsen, Sune F; Nordestgaard, Børge G; González-Neira, Anna; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Fagerholm, Rainer; Dörk, Thilo; Bogdanova, Natalia V; Mannermaa, Arto; Hartikainen, Jaana M; Van Dijck, Laurien; Smeets, Ann; Flesch-Janys, Dieter; Eilber, Ursula; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Goldberg, Mark S; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Winqvist, Robert; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; García-Closas, Montserrat; Figueroa, Jonine; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hall, Per; Li, Jingmei; Cox, Angela; Cross, Simon S; Pharoah, Paul D P; Shah, Mitul; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Ademuyiwa, Foluso; Ambrosone, Christine B; Swerdlow, Anthony; Jones, Michael; Chang-Claude, Jenny

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.

  17. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  18. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  19. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  20. Gene expression changes as markers of early lapatinib response in a panel of breast cancer cell lines

    LENUS (Irish Health Repository)

    O’Neill, Fiona

    2012-06-18

    AbstractBackgroundLapatinib, a tyrosine kinase inhibitor of HER2 and EGFR and is approved, in combination with capecitabine, for the treatment of trastuzumab-refractory metastatic breast cancer. In order to establish a possible gene expression response to lapatinib, a panel of breast cancer cell lines with varying sensitivity to lapatinib were analysed using a combination of microarray and qPCR profiling.MethodsCo-inertia analysis (CIA), a data integration technique, was used to identify transcription factors associated with the lapatinib response on a previously published dataset of 96 microarrays. RNA was extracted from BT474, SKBR3, EFM192A, HCC1954, MDAMB453 and MDAMB231 breast cancer cell lines displaying a range of lapatinib sensitivities and HER2 expression treated with 1 μM of lapatinib for 12 hours and quantified using Taqman RT-PCR. A fold change ≥ ± 2 was considered significant.ResultsA list of 421 differentially-expressed genes and 8 transcription factors (TFs) whose potential regulatory impact was inferred in silico, were identified as associated with lapatinib response. From this group, a panel of 27 genes (including the 8 TFs) were selected for qPCR validation. 5 genes were determined to be significantly differentially expressed following the 12 hr treatment of 1 μM lapatinib across all six cell lines. Furthermore, the expression of 4 of these genes (RB1CC1, FOXO3A, NR3C1 and ERBB3) was directly correlated with the degree of sensitivity of the cell line to lapatinib and their expression was observed to “switch” from up-regulated to down-regulated when the cell lines were arranged in a lapatinib-sensitive to insensitive order. These included the novel lapatinib response-associated genes RB1CC1 and NR3C1. Additionally, Cyclin D1 (CCND1), a common regulator of the other four proteins, was also demonstrated to observe a proportional response to lapatinib exposure.ConclusionsA panel of 5 genes were determined to be differentially

  1. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    Science.gov (United States)

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  2. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  3. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Science.gov (United States)

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  4. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  5. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    Science.gov (United States)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  6. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and migration of colon cancer cells

    International Nuclear Information System (INIS)

    Salim, Tavga; Sand-Dejmek, Janna; Sjölander, Anita

    2014-01-01

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D 4 (LTD 4 ) exerts its effects through the CysLT 1 receptor. We previously reported an upregulation of CysLT 1 R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD 4 on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD 4 stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD 4 significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD 4 can be blocked by the inhibition of CysLT 1 R. Furthermore, LTD 4 induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT 1 and the Wnt/β-catenin pathway. In conclusion, LTD 4 , which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D 4 (LTD 4 ) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD 4 triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD 4 also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells

  8. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  9. Human small-cell lung cancers show amplification and expression of the N-myc gene

    International Nuclear Information System (INIS)

    Nau, M.M.; Brooks, B.J. Jr.; Carney, D.N.; Gazdar, A.F.; Battey, J.F.; Sausville, E.A.; Minna, J.D.

    1986-01-01

    The authors have found that 6 of 31 independently derived human small-cell lung cancer (SCLC) cell lines have 5- to 170-fold amplified N-myc gene sequences. The amplification is seen with probes from two separate exons of N-myc, which are homologous to either the second or the third exon of the c-myc gene. Amplified N-myc sequences were found in a tumor cell line started prior to chemotherapy, in SCLC tumor samples harvested directly from tumor metastases at autopsy, and from a resected primary lung cancer. Several N-myc-amplified tumor cell lines also exhibited N-myc hybridizing fragments not in the germ-line position. In one patient's tumor, an additional amplitifed N-myc DNA fragment was observed and this fragment was heterogeneously distributed in liver metastases. In contrast to SCLC with neuroendocrine properties, no non-small-cell lung cancer lines examined were found to have N-myc amplification. Fragments encoding two N-myc exons also detect increased amounts of a 3.1-kilobase N-myc mRNA in N-myc-amplified SCLC lines and in one cell line that does not show N-myc gene amplification. Both DNA and RNA hybridization experiments, using a 32 P-labelled restriction probe, show that in any one SCLC cell line, only one myc-related gene is amplified and expressed. They conclude that N-myc amplification is both common and potentially significant in the tumorigenesis or tumor progression of SCLC

  10. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  11. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  12. Molecular Genetics and Gene Therapy in Esophageal Cancer: a Review Article

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Noori Daloii Ph.D.

    2011-06-01

    Full Text Available Background: With approximately 386,000 deaths per year, esophageal cancer is the 6th most common cause of death due to cancer in the world. This cancer, like any other cancer, is the outcome of genetic alterations or environmental factors such as tobacco smoke and gastro-esophageal reflux. Tobacco smoking is a major etiologic factor for esophageal squamous cell carcinoma in western countries, and it increases the risk by approximately 3 to 5 folds. Chronic gastro-esophageal reflux usually leads to the replacement of squamous mucosa by intestinal-type Barrett’s metaplastic mucosa which is considered the most important factor causing esophageal adenocarcinoma. In contrast to esophageal adenocarcinoma, different risk factors and mechanisms, such as mutations in oncogenes and tumor suppressor genes, play an important role in causing esophageal squamous cell carcinoma. Molecular studies on esophageal cancers have revealed frequent genetic abnormalities in esophageal squamous cell carcinoma and adenocarcinoma, including altered expression of p53, p16, cyclin D1, EGFR, E-cadherin, COX-2, iNOS, RARs, Rb, hTERT, p21, APC, c-MYC, VEGF, TGT-α and NF-κB. Many studies have focused on the role of different polymorphisms such as aldehyde dehydrogenase 2 and alcohol dehydrogenase 2 in causing esophageal cancer. Different agents including bestatin, curcumin, black raspberries, 5-lipoxygenase (LOX and COX-2 inhibitors have been found to play a role in inhibiting esophageal carcinogenesis. Different gene therapy approaches including p53 and p21WAF1 replacement gene therapies and therapy by suicide genes have also been experimented. Moreover, efforts have been made to use nanotechnology and aptamer technology in this regard.

  13. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer

    International Nuclear Information System (INIS)

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y.; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y.; Javed, Awais; Mahmoud, Fade A.; Osarogiagbon, Raymond University; Manne, Upender

    2016-01-01

    African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. We retrieved demographic, clinical, and archived tumor tissues from stage II colon cancer patients at four institutions. The 12-gene assay and mismatch repair (MMR) status were performed by Genomic Health (Redwood City, California). Student’s t-test and the Wilcoxon rank sum test were used to compare Recurrence Score data and gene expression data from AA and CA patients (SAS Enterprise Guide 5.1). Samples from 122 AA and 122 CA patients were analyzed. There were 118 women (63 AA, 55 CA) and 126 men (59 AA, 67 CA). Median age was 66 years for AA patients and 68 for CA patients. Age, gender, year of surgery, pathologic T-stage, tumor location, the number of lymph nodes examined, lymphovascular invasion, and MMR status were not significantly different between groups (p = 0.93). The mean Recurrence Score result for AA patients (27.9 ± 12.8) and CA patients (28.1 ± 11.8) was not significantly different and the proportions of patients with high Recurrence Score values (≥41) were similar between the groups (17/122 AA; 15/122 CA). None of the gene expression variables, either single genes or gene groups (cell cycle group, stromal group, BGN1, FAP, INHBA1, Ki67, MYBL2, cMYC and GADD45B), was significantly different between the racial groups. After controlling for clinical and pathologic covariates, the means and distributions of Recurrence Score results and gene expression profiles showed no statistically significant difference between patient groups. The distribution of Recurrence Score

  14. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer.

    Science.gov (United States)

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y; Javed, Awais; Mahmoud, Fade A; Osarogiagbon, Raymond U; Manne, Upender

    2016-06-18

    African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. We retrieved demographic, clinical, and archived tumor tissues from stage II colon cancer patients at four institutions. The 12-gene assay and mismatch repair (MMR) status were performed by Genomic Health (Redwood City, California). Student's t-test and the Wilcoxon rank sum test were used to compare Recurrence Score data and gene expression data from AA and CA patients (SAS Enterprise Guide 5.1). Samples from 122 AA and 122 CA patients were analyzed. There were 118 women (63 AA, 55 CA) and 126 men (59 AA, 67 CA). Median age was 66 years for AA patients and 68 for CA patients. Age, gender, year of surgery, pathologic T-stage, tumor location, the number of lymph nodes examined, lymphovascular invasion, and MMR status were not significantly different between groups (p = 0.93). The mean Recurrence Score result for AA patients (27.9 ± 12.8) and CA patients (28.1 ± 11.8) was not significantly different and the proportions of patients with high Recurrence Score values (≥41) were similar between the groups (17/122 AA; 15/122 CA). None of the gene expression variables, either single genes or gene groups (cell cycle group, stromal group, BGN1, FAP, INHBA1, Ki67, MYBL2, cMYC and GADD45B), was significantly different between the racial groups. After controlling for clinical and pathologic covariates, the means and distributions of Recurrence Score results and gene expression profiles showed no statistically significant difference between patient groups. The distribution of

  15. Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer

    International Nuclear Information System (INIS)

    Contino, Flavia; Mazzarella, Claudia; Ferro, Arianna; Lo Presti, Mariavera; Roz, Elena; Lupo, Carmelo; Perconti, Giovanni; Giallongo, Agata; Feo, Salvatore

    2013-01-01

    The human ERBB2 gene is frequently amplified in breast tumors, and its high expression is associated with poor prognosis. We previously reported a significant inverse correlation between Myc promoter-binding protein-1 (MBP-1) and ERBB2 expression in primary breast invasive ductal carcinoma (IDC). MBP-1 is a transcriptional repressor of the c-MYC gene that acts by binding to the P2 promoter; only one other direct target of MBP-1, the COX2 gene, has been identified so far. To gain new insights into the functional relationship linking MBP-1 and ERBB2 in breast cancer, we have investigated the effects of MBP-1 expression on endogenous ERBB2 transcript and protein levels, as well as on transcription promoter activity, by transient-transfection of SKBr3 cells. Reporter gene and chromatin immunoprecipitation assays were used to dissect the ERBB2 promoter and identify functional MBP-1 target sequences. We also investigated the relative expression of MBP-1 and HDAC1 in IDC and normal breast tissues by immunoblot analysis and immunohistochemistry. Transfection experiments and chromatin immunoprecipitation assays in SKBr3 cells indicated that MBP-1 negatively regulates the ERBB2 gene by binding to a genomic region between nucleotide −514 and −262 of the proximal promoter; consistent with this, a concomitant recruitment of HDAC1 and loss of acetylated histone H4 was observed. In addition, we found high expression of MBP-1 and HDAC1 in normal tissues and a statistically significant inverse correlation with ErbB2 expression in the paired tumor samples. Altogether, our in vitro and in vivo data indicate that the ERBB2 gene is a novel MBP-1 target, and immunohistochemistry analysis of primary tumors suggests that the concomitant high expression of MBP-1 and HDAC1 may be considered a diagnostic marker of cancer progression for breast IDC

  16. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina

    2004-01-01

    Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important role in tumorigenesis and progression of UADT...

  17. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    modulator-1; c-myc binding protein [ Homo sapiens ]. regulation of transcription, DNA dependent NM_012488 1.55 2.53 Rattus norvegicus α-2-macroglobulin...myc binding protein [ Homo sapiens ] Regulation of transcription, DNA dependent NM_012488 1.55 2.53 Rattus norvegicus α-2-macroglobulin (A2m) Protease...1-HIV LTR-MLV Promoter EG FP -C el l N um be r (M ea n) 10 ul Vector 50 ul Vector 7 Periosteal/Endosteal Cell Transduction 0 200 400 600 800

  18. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  19. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  20. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes.

    Science.gov (United States)

    Steppan, Scott; Adkins, Ronald; Anderson, Joel

    2004-08-01

    The muroid rodents are the largest superfamily of mammals, containing nearly one third of all mammal species. We report on a phylogenetic study comprising 53 genera sequenced for four nuclear genes, GHR, BRCA1, RAG1, and c-myc, totaling up to 6400 nucleotides. Most relationships among the subfamilies are resolved. All four genes yield nearly identical phylogenies, differing only in five key regions, four of which may represent particularly rapid radiations. Support is very strong for a fundamental division of the mole rats of the subfamilies Spalacinae and Rhizomyinae from all other muroids. Among the other "core" muroids, a rapid radiation led to at least four distinct lineages: Asian Calomyscus, an African clade of at least four endemic subfamilies, including the diverse Nesomyinae of Madagascar, a hamster clade with maximum diversity in the New World, and an Old World clade including gerbils and the diverse Old World mice and rats (Murinae). The Deomyinae, recently removed from the Murinae, is well supported as the sister group to the gerbils (Gerbillinae). Four key regions appear to represent rapid radiations and, despite a large amount of sequence data, remain poorly resolved: the base of the "core" muroids, among the five cricetid (hamster) subfamilies, within a large clade of Sigmodontinae endemic to South America, and among major geographic lineages of Old World Murinae. Because of the detailed taxon sampling within the Murinae, we are able to refine the fossil calibration of a rate-smoothed molecular clock and apply this clock to date key events in muroid evolution. We calculate rate differences among the gene regions and relate those differences to relative contribution of each gene to the support for various nodes. The among-gene variance in support is greatest for the shortest branches. We present a revised classification for this largest but most unsettled mammalian superfamily.

  1. Identification of genes potentially regulated by human polynucleotide phosphorylase (hPNPase old-35 using melanoma as a model.

    Directory of Open Access Journals (Sweden)

    Upneet K Sokhi

    Full Text Available Human Polynucleotide Phosphorylase (hPNPase(old-35 or PNPT1 is an evolutionarily conserved 3'→ 5' exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPase(old-35 in cellular physiology, we knocked-down and overexpressed hPNPase(old-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPase(old-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPase(old-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPase(old-35 knockdown and overexpression datasets allowed us to identify 77 potential "direct" and 61 potential "indirect" targets of hPNPase(old-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPase(old-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.

  2. Gene expression changes induced by estrogen and selective estrogen receptor modulators in primary-cultured human endometrial cells: signals that distinguish the human carcinogen tamoxifen

    International Nuclear Information System (INIS)

    Pole, Jessica C.M.; Gold, Leslie I.; Orton, Terry; Huby, Russell; Carmichael, Paul L.

    2005-01-01

    Tamoxifen has long been the endocrine treatment of choice for women with breast cancer and is now employed for prophylactic use in women at high risk from breast cancer. Other selective estrogen receptor modulators (SERMs), such as raloxifene, mimic some of tamoxifen's beneficial effects and, like tamoxifen, exhibit a complex mixture of organ-specific estrogen agonist and antagonistic properties. However, accompanying the positive effects of tamoxifen has been the emergence of evidence for an increased risk of endometrial cancer associated with its use. A more complete understanding of the mechanism(s) of SERM carcinogenicity and endometrial effects is therefore required. We have sought to compare and characterise the transcript profile of tamoxifen, raloxifene and the agonist estradiol in human endometrial cells. Using primary cultures of human endometria, to best emulate the in vivo responses in a manageable in vitro system, we have shown 230 significant changes in gene expression for epithelial cultures and 83 in stromal cultures, either specific to 17β-estradiol, tamoxifen or raloxifene, or changed across more than one of the treatments. Considering the transcriptome as a whole, the endometrial responses to raloxifene or tamoxifen were more similar than either drug was to 17β-estradiol. Treatment of endometrial cultures with tamoxifen resulted in the largest number of gene changes relative to control cultures and a high proportion of genes associated with regulation of gene transcription, cell-cycle control and signal transduction. Tamoxifen-specific changes that might point towards mechanisms for its proliferative response in the endometrium included changes in retinoblastoma and c-myc binding proteins, the APCL, dihydrofolate reductase (DHFR) and E2F1 genes and other transcription factors. Tamoxifen was also found to give rise to the highest number of gene expression changes common to those that characterise malignant endometria. It is anticipated that this

  3. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis

    International Nuclear Information System (INIS)

    Hulit, James; Di Vizio, Dolores; Pestell, Richard G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway

  4. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  5. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2014-06-01

    87 MG cells were cultured in Eagle’s minimum essential medium (EMEM) modi - fied to contain Earle’s Balanced Salt Solution, nonessential amino acids, 2...engineered to ectopically express firefly luciferase and mCherry, allowing surrogate measurement of tumor growth in vivo. Nonobese diabetic severe combined

  6. C-MYC amplification and expression in stomach cancer samples in Iranian population using two techniques of CISH and IHC

    Directory of Open Access Journals (Sweden)

    Malihea Khaleghian

    2015-07-01

    Results: Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly in men more than women. Our results showed an indication of some correlation between grades and CISH results, although the difference was not significant. Our data also showed that CISH+ patients (43.1% were more frequent in comparison with IHC+ patients (14.7%. There was a correlation between CISH and IHC. This result revealed that there was a significant difference between grades and IHC. There was also no statistically significant difference between CISH amplification in diffuse and intestinal types. Conclusion: Our conclusion is that for the treatment, management of stomach cancer, and monitoring of progress and prognosis of the tumor that is almost important for patients and clinicians, CISH test is a better and feasible to IHC test, with regards to sensitivity and specificity.

  7. Thermally Targeted Delivery of a c-Myc Inhibitory Peptide In Vivo Using Elastin-like Polypeptide

    Science.gov (United States)

    2009-10-01

    cytoplasm. Also, in a subset of cells, Bac-ELP1⁎-H1 showed very bright nuclear staining exclusive of nucleoli (Fig. 5, lower right, arrows). 3.6. Time...localization was very bright relative to the amount of polypeptide in the cytoplasm, and it appeared to be nucleoplasmic and excluded from nucleoli . The

  8. Isolation and characterization of exosome from human embryonic stem cell-derived c-myc-immortalized mesenchymal stem cells

    NARCIS (Netherlands)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; De Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular

  9. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.

  10. Differential Requirements for c-Myc in Chronic Hematopoietic Hyperplasia and Acute Hematopoietic Malignancies in Pten-null Mice

    Science.gov (United States)

    Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang

    2011-01-01

    Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961

  11. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2015-06-01

    We next tested whether BET bromodomain inhibition mitigated the acti- vation of proadhesion pathways in aortic endothelium, which oc- curs during the...tinuum of activity as Myc flickers on and off of weakly bound, weakly expressed promoters, but stays longer or more frequently at high output promoters

  12. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    2010-12-01

    Full Text Available Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  13. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  14. Dual roles for CoAA and its counterbalancing isoform CoAM in human kidney cell tumorigenesis

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y.; Tsai, Ming-Jer; W. O’Malley, Bert

    2008-01-01

    Co-Activator Activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein we show that CoAA is a dual-function coregulator that inhibits G1/S transition in human kidney cells and suppresses anchorage independent growth and xenograft tumor formation. Suppression occurs in part by downregulating c-myc and its downstream effectors ccnd1 and skp2, and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene, c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, Coactivator Modulator (CoAM), antagonizes CoAA-induced G1/S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma as compared to normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice-isoform. This is so far the only example of a nuclear receptor coregulator involved in suppression of kidney cancer, and suggests potentially significant new roles for coregulators in renal cancer biology. PMID:18829545

  15. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale

    Directory of Open Access Journals (Sweden)

    Ayman I. Elkady

    2012-01-01

    Full Text Available The present study aimed to examine the antiproliferative potentiality of an extract derived from the medicinal plant ginger (Zingiber officinale on growth of breast cancer cells. Ginger treatment suppressed the proliferation and colony formation in breast cancer cell lines, MCF-7 and MDA-MB-231. Meanwhile, it did not significantly affect viability of nontumorigenic normal mammary epithelial cell line (MCF-10A. Treatment of MCF-7 and MDA-MB-231 with ginger resulted in sequences of events marked by apoptosis, accompanied by loss of cell viability, chromatin condensation, DNA fragmentation, activation of caspase 3, and cleavage of poly(ADP-ribose polymerase. At the molecular level, the apoptotic cell death mediated by ginger could be attributed in part to upregulation of Bax and downregulation of Bcl-2 proteins. Ginger treatment downregulated expression of prosurvival genes, such as NF-κB, Bcl-X, Mcl-1, and Survivin, and cell cycle-regulating proteins, including cyclin D1 and cyclin-dependent kinase-4 (CDK-4. On the other hand, it increased expression of CDK inhibitor, p21. It also inhibited the expression of the two prominent molecular targets of cancer, c-Myc and the human telomerase reverse transcriptase (hTERT. These findings suggested that the ginger may be a promising candidate for the treatment of breast carcinomas.

  16. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis.

    Science.gov (United States)

    Kim, Ji H; Gupta, Subash C; Park, Byoungduck; Yadav, Vivek R; Aggarwal, Bharat B

    2012-03-01

    The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  18. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ma Jianjun

    2008-10-01

    Full Text Available Abstract Background NDRG2 (N-Myc downstream-regulated gene 2 was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. Methods In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40 and carcinomas (n = 35, along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. Results The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Conclusion Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.

  19. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    International Nuclear Information System (INIS)

    Zhao, Huadong; Chen, Suning; Lin, Wei; Shi, Hai; Ma, Jianjun; Liu, Xinping; Ma, Qingjiu; Yao, Libo; Zhang, Jian; Lu, Jianguo; He, Xianli; Chen, Changsheng; Li, Xiaojun; Gong, Li; Bao, Guoqiang; Fu, Qiang

    2008-01-01

    NDRG2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma

  20. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice.

    Science.gov (United States)

    Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A

    2014-01-15

    Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.

  2. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  3. Modified T-cells (using TCR and CTAs, chimeric antigen receptor (CAR and other molecular tools in recent gene therapy

    Directory of Open Access Journals (Sweden)

    A.S. Odiba

    2018-07-01

    Full Text Available T-cell-based cancer immunotherapy by the transfer of cloned TCRs that are isolated from tumor penetrating T-cells becomes a possibility through NY-ESOc259; a human-derived affinity-enhanced TCR that provides a level of sufficiency in long-term safety and efficacy. NY-ESOc259 recognizes a peptide common to CTAs (LAGE-1 and NY-ESO-1 in melanoma. Risks associated with insertion related transformation in gene therapy have been alleviated through strategies that include the engineering of transcription activator like effector nucleases (TALEN, RNA-guided nucleases (CRISPR/Cas9, Zinc-finger nucleases (ZFN. Cancer immunotherapy based on the genetic modification of autologous T-cells (dependent on the engineered autologous CD8+ T-cells, designed to distinguish and destroy cells bearing tumor-specific antigens via a CAR is able to exterminate B-cell leukemias and lymphomas that are resilient to conventional therapies. A tool with a very large reservoir of potentials in molecular therapy strategy is the Pluripotent Stem Cells (PSC, with pluripotency factors that include Klf4, Sox2, c-Myc, Oct4, differentiating into disease-associated cell phenotypes of three germ layers, comprising of mesoderm (e.g. cardiac cells, blood and muscle, endoderm (liver, pancreas and ectoderm (epidermis, neurons. It finds good application in disease modelling as well as therapeutic options in the restoration of CGD by using AAVS1 as the vector where the therapeutic cassette is integrated into the locus to restore superoxide production in the granulocytes. Fascinatingly, Clinical trial involving iPSC are already underway where scientists have plans to use iPSC-derived cells to treat macular degeneration (a devastating age-related eye disease. Application of these findings has redefined incurable diseases disorders as curable. Keywords: Clinical trials, Disorders, Gene therapy, Molecular biology, Pharmacotherapy, Vector

  4. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  5. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  6. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  7. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  8. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats.

    Science.gov (United States)

    Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo

    2018-04-01

    Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

  9. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  10. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  11. Modulation of rhodopsin gene expression and signaling mechanisms evoked by endothelins in goldfish and murine pigment cell lines

    Directory of Open Access Journals (Sweden)

    G.J.D. Lopes

    2010-09-01

    Full Text Available Endothelins (ETs and sarafotoxins (SRTXs belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L:10-h darkness (10D was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

  12. Apoptotic potential and cell sensitivity to fractionated radiotherapy

    International Nuclear Information System (INIS)

    Rupnow, Brent A.; Murtha, Albert D.; Alarcon, Rodolfo M.; Giaccia, Amato J.; Knox, Susan J.

    1997-01-01

    Purpose/Objective: At present, the relationship between sensitivity to radiation-induced apoptosis and overall cellular radiosensitivity remains unclear. In particular, the relationship of apoptotic sensitivity to the survival of cells following fractionated irradiation has not been well studied. The purpose of the present study was to determine if increasing cell sensitivity to radiation-induced apoptosis would result in decreased clonogenic survival following single dose and fractionated irradiation in vitro. Materials and Methods: To address this, we chose a cell line (Rat-1MycER) in which the sensitivity to radiation-induced apoptosis could be altered by switching on or off the activity of a conditional c-Myc allele (c-MycER). The c-MycER construct expresses a full length c-Myc protein fused to a modified hormone binding domain of the estrogen receptor. Only in the presence of the estrogen analog 4-hydroxytamoxifen (4HT), does the conditional c-MycER become active. Apoptosis following irradiation in these cells (with and without c-MycER activation) was analyzed by flow cytometry to determine the percentage of cells undergoing apoptosis following various radiation doses and at different times after irradiation. Additionally, clonogenic survival analysis was performed following single radiation doses from 0 to 10 Gy and following five fractions of 2 or 4 Gy each. Survival of cells with and without c-MycER activation was compared. Furthermore, the effect of overexpressing the anti-apoptotic Bcl-2 gene on apoptosis induction and clonogenic survival of these cells was examined. Results: Rat-1MycER cells were strongly sensitized to radiation-induced apoptosis in a dose and time dependent manner when MycER was activated relative to cells treated without c-MycER activation. This c-Myc-mediated sensitivity to radiation-induced apoptosis was suppressed by overexpression of the anti-apoptotic protein Bcl-2. In addition to increasing apoptosis, activating c-MycER prior to

  13. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    Directory of Open Access Journals (Sweden)

    Stallcup Michael R

    2009-01-01

    Full Text Available Abstract Background Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. Methods We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95: African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. Results We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants. We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26. A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other

  14. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    International Nuclear Information System (INIS)

    Haiman, Christopher A; Stallcup, Michael R; Greene, Geoffrey L; Press, Michael F; Garcia, Rachel R; Hsu, Chris; Xia, Lucy; Ha, Helen; Sheng, Xin; Le Marchand, Loic; Kolonel, Laurence N; Henderson, Brian E

    2009-01-01

    Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP) suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95): African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls) nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants). We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26). A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other studies. Our findings suggest that common coding

  15. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.

    Science.gov (United States)

    Crawford, Andrew J; Smith, Eric N

    2005-06-01

    We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of

  16. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Science.gov (United States)

    Burns, Joseph C; Yoo, James J; Atala, Anthony; Jackson, John D

    2012-01-01

    The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative

  17. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Directory of Open Access Journals (Sweden)

    Joseph C Burns

    Full Text Available The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore

  18. The inflammatory mediator leukotriene D{sub 4} induces subcellular β-catenin translocation and migration of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Tavga [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Sand-Dejmek, Janna [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Section of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö (Sweden); Bayer HealthCare, Pharmaceuticals Medical Affairs, Solna (Sweden); Sjölander, Anita, E-mail: anita.sjolander@med.lu.se [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden)

    2014-02-15

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D{sub 4} (LTD{sub 4}) exerts its effects through the CysLT{sub 1} receptor. We previously reported an upregulation of CysLT{sub 1}R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD{sub 4} on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD{sub 4} stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD{sub 4} significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD{sub 4} can be blocked by the inhibition of CysLT{sub 1}R. Furthermore, LTD{sub 4} induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT{sub 1} and the Wnt/β-catenin pathway. In conclusion, LTD{sub 4}, which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D{sub 4} (LTD{sub 4}) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD{sub 4} triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD{sub 4} also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells.

  19. Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer

    Directory of Open Access Journals (Sweden)

    Dahan Laetitia

    2011-11-01

    Full Text Available Abstract Background We analyzed the influence of 8 germinal polymorphisms of candidate genes potentially related to EGFR signalling (EGFR, EGF, CCND1 or antibody-directed cell cytotoxicity (FCGR2A and FCGR3A on outcome of colorectal cancer (CRC patients receiving cetuximab-based therapy. Methods Fifty-eight advanced CRC patients treated with cetuximab-irinotecan salvage therapy between 2001 and 2007 were analyzed (mean age 60; 50 PS 0-1. The following polymorphisms were analyzed on blood DNA: EGFR (CA repeats in intron 1, -216 G > T, -191C > A, R497K, EGF (A61G, CCND1 (A870G, FCGR2A (R131H, FCGR3A (F158V. Statistical analyses were conducted on the total population and on patients with wt KRas tumors. All SNPs were considered as ternary variables (wt/wt vs wt/mut vs mut/mut, with the exception of -191C > A EGFR polymorphism (AA patient merged with CA patients. Results Analysis of skin toxicity as a function of EGFR intron 1 polymorphism showed a tendency for higher toxicity in patients with a low number of CA-repeats (p = 0.058. CCND1 A870G polymorphism was significantly related to clinical response, both in the entire population and in KRas wt patients, with the G allele being associated with a lack of response. In wt KRas patients, time to progression (TTP was significantly related to EGFR -191C > A polymorphism with a longer TTP in CC patients as compared to others, and to CCND1 A870G polymorphism with the G allele being associated with a shorter TTP; a multivariate analysis including these two polymorphisms only retained CCND1 polymorphism. Overall survival was significantly related to CCND1 polymorphism with a shorter survival in patients bearing the G allele, and to FCGR3A F158V polymorphism with a shorter survival in VV patients (in the entire population and in KRas wt patients. FCGR3A F158V and CCND1 A870G polymorphisms were significant independent predictors of overall survival. Conclusions Present original data obtained in wt KRas

  20. Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer

    International Nuclear Information System (INIS)

    Dahan, Laetitia; Seitz, Jean-François; Milano, Gérard; Norguet, Emmanuelle; Etienne-Grimaldi, Marie-Christine; Formento, Jean-Louis; Gasmi, Mohamed; Nanni, Isabelle; Gaudart, Jean; Garcia, Stéphane; Ouafik, L'Houcine

    2011-01-01

    We analyzed the influence of 8 germinal polymorphisms of candidate genes potentially related to EGFR signalling (EGFR, EGF, CCND1) or antibody-directed cell cytotoxicity (FCGR2A and FCGR3A) on outcome of colorectal cancer (CRC) patients receiving cetuximab-based therapy. Fifty-eight advanced CRC patients treated with cetuximab-irinotecan salvage therapy between 2001 and 2007 were analyzed (mean age 60; 50 PS 0-1). The following polymorphisms were analyzed on blood DNA: EGFR (CA repeats in intron 1, -216 G > T, -191C > A, R497K), EGF (A61G), CCND1 (A870G), FCGR2A (R131H), FCGR3A (F158V). Statistical analyses were conducted on the total population and on patients with wt KRas tumors. All SNPs were considered as ternary variables (wt/wt vs wt/mut vs mut/mut), with the exception of -191C > A EGFR polymorphism (AA patient merged with CA patients). Analysis of skin toxicity as a function of EGFR intron 1 polymorphism showed a tendency for higher toxicity in patients with a low number of CA-repeats (p = 0.058). CCND1 A870G polymorphism was significantly related to clinical response, both in the entire population and in KRas wt patients, with the G allele being associated with a lack of response. In wt KRas patients, time to progression (TTP) was significantly related to EGFR -191C > A polymorphism with a longer TTP in CC patients as compared to others, and to CCND1 A870G polymorphism with the G allele being associated with a shorter TTP; a multivariate analysis including these two polymorphisms only retained CCND1 polymorphism. Overall survival was significantly related to CCND1 polymorphism with a shorter survival in patients bearing the G allele, and to FCGR3A F158V polymorphism with a shorter survival in VV patients (in the entire population and in KRas wt patients). FCGR3A F158V and CCND1 A870G polymorphisms were significant independent predictors of overall survival. Present original data obtained in wt KRas patients corresponding to the current cetuximab

  1. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  2. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sibel, E-mail: stopuz@istanbul.edu.tr [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Turgut Kara, Neslihan [Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul (Turkey); Sezerman, Osman Ugur [Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul (Turkey); Durasi, İlknur Melis [Biological Sciences and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul (Turkey); Chen, Tao [Department of Toxicology, School of Public Health, Soochow University, Suzhou (China); Demirel, Goksun; Alpertunga, Buket [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Chipman, J. Kevin [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); Mally, Angela [Department of Toxicology, University of Würzburg, Würzburg (Germany)

    2015-12-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  3. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma.

    Science.gov (United States)

    Grinchuk, Oleg V; Yenamandra, Surya P; Iyer, Ramakrishnan; Singh, Malay; Lee, Hwee Kuan; Lim, Kiat Hon; Chow, Pierce Kah-Hoe; Kuznetsov, Vladamir A

    2018-01-01

    Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10 -6 ) and cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for

  4. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    International Nuclear Information System (INIS)

    Ozden, Sibel; Turgut Kara, Neslihan; Sezerman, Osman Ugur; Durasi, İlknur Melis; Chen, Tao; Demirel, Goksun; Alpertunga, Buket; Chipman, J. Kevin; Mally, Angela

    2015-01-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  5. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  6. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Directory of Open Access Journals (Sweden)

    Q. Sun

    2012-10-01

    Full Text Available The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3 can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  7. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    International Nuclear Information System (INIS)

    Sun, Q.; Xiong, J.; Lu, J.; Xu, S.; Li, Y.; Zhong, X.P.; Gao, G.K.; Liu, H.Q.

    2012-01-01

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy

  8. Secretory TAT-peptide-mediated protein transduction of LIF receptor α-chain distal cytoplasmic motifs into human myeloid HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Xiong, J. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Lu, J. [Office of Medical Education, Training Department, Second Military Medical University, Shanghai (China); Xu, S. [Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China); Li, Y. [State Food and Drug Administration of China,Huangdao Branch, Qingdao (China); Zhong, X.P.; Gao, G.K. [Department of Hyperbaric Medicine, No. 401 Hospital of PLA, Qingdao (China); Liu, H.Q. [2Department of Histology and Embryology, Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai (China)

    2012-06-22

    The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

  9. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  10. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    Science.gov (United States)

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  11. Ageing genes

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2018-01-01

    The idea of gerontogenes is in line with the evolutionary explanation of ageing as being an emergent phenomenon as a result of the imperfect maintenance and repair systems. Although evolutionary processes did not select for any specific ageing genes that restrict and determine the lifespan...... of an individual, the term ‘gerontogenes’ primarily refers to any genes that may seem to influence ageing and longevity, without being specifically selected for that role. Such genes can also be called ‘virtual gerontogenes’ by virtue of their indirect influence on the rate and process of ageing. More than 1000...... virtual gerontogenes have been associated with ageing and longevity in model organisms and humans. The ‘real’ genes, which do influence the essential lifespan of a species, and have been selected for in accordance with the evolutionary life history of the species, are known as the longevity assurance...

  12. Gene doping.

    Science.gov (United States)

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  13. Gene Locater

    DEFF Research Database (Denmark)

    Anwar, Muhammad Zohaib; Sehar, Anoosha; Rehman, Inayat-Ur

    2012-01-01

    software's for calculating recombination frequency is mostly limited to the range and flexibility of this type of analysis. GENE LOCATER is a fully customizable program for calculating recombination frequency, written in JAVA. Through an easy-to-use interface, GENE LOCATOR allows users a high degree...... of flexibility in calculating genetic linkage and displaying linkage group. Among other features, this software enables user to identify linkage groups with output visualized graphically. The program calculates interference and coefficient of coincidence with elevated accuracy in sample datasets. AVAILABILITY...

  14. Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer

    International Nuclear Information System (INIS)

    Seo, Jin-Hee; Jeong, Eui-Suk; Choi, Yang-Kyu

    2014-01-01

    Gastric cancer is the second most common cause of cancer-related death in males and the fourth in females. Traditional treatment has poor prognosis because of recurrence and systemic side effects. Therefore, the development of new therapeutic strategies is an important issue. Lentivirus-mediated shRNA stably inhibits target genes and can efficiently transduce most cells. Since overexpressed cyclin D1 is closely related to human gastric cancer progression, inhibition of cyclin D1 using specific targeting could be an effective treatment method of human gastric cancer. The therapeutic effect of lentivirus-mediated shRNA targeting of cyclin D1 (ShCCND1) was analyzed both in vitro and in vivo experiments. In vitro, NCI-N87 cells with downregulation of cyclin D1 by ShCCND1 showed significant inhibition of cell proliferation, cell motility, and clonogenicity. Downregulation of cyclin D1 in NCI-N87 cells also resulted in significantly increased G1 arrest and apoptosis. In vivo, stable NCI-N87 cells expressing ShCCND1 were engrafted into nude mice. Then, the cancer-growth inhibition effect of lentivirus was confirmed. To assess lentivirus including ShCCND1 as a therapeutic agent, intratumoral injection was conducted. Tumor growth of the lentivirus-treated group was significantly inhibited compared to growth of the control group. These results are in accordance with the in vitro data and lend support to the mitotic figure count and apoptosis analysis of the tumor mass. The lentivirus-mediated ShCCND1 was constructed, which effectively inhibited growth of NCI-N87-derived cancer both in vitro and in vivo. The efficiency of shRNA knockdown and variation in the degree of inhibition is mediated by different shRNA sequences and cancer cell lines. These experimental results suggest the possibility of developing new gastric cancer therapies using lentivirus-mediated shRNA

  15. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    transactivator can stimulate a wide range of cellular genes and displays oncogenic potential in cell culture as well as in a transgenic environment.

    The HBs transactivators are encoded by the preS/S region of S gene and may involve carboxy terminal truncation to gain transactivation function. Expression of host genes by viral transactivators is mediated by regulatory elements of the cellular transcription factors like c-fos, c-myc, NF-kappa B, SRE and Sp1. Thus, during hepatitis B infection, the tendency of rearrangement of hepatocyte chromosomes is combined with the forcible turnover of cells. This is a constantly operating system for the selection of cells that grow better than normal cells, possibly involving important steps in multi-staged hepatocarcinogeneses. Gene expression profiling and proteomic techniques may help to characterize the molecular mechanisms driving HBV-associated carcinogenesis, and thus potentially identify new strategies in diagnosis and therapy.

     

    REFERENCES

    1. Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R. (1990 The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature 343, 457-461.

    2. Caselmann WH. (1996 Trans-activation of cellular genes by hepatitis B virus proteins: a possible mechanism of hepatocarcinogenesis. Adv Virus Res 47, 253-302.

    3. Matsubara K, Tokino T. (1990 Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol Biol

  16. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy

    DEFF Research Database (Denmark)

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar

    2014-01-01

    oncogene E3 ubiquitin protein ligase (MDM2), MDM4, and tumor protein 53 (TP53) were rare or absent. Gene expression profiling did not reveal any striking differences with respect to cyclin D1 in DLBCL. CONCLUSIONS: Compared with patients who had cyclin D1-negative DLBCL, men were more commonly affected......1-positive according to immunohistochemistry were also assessed for rearrangements of the cyclin D1 gene (CCND1) using fluorescence in situ hybridization. Gene expression profiling was performed to compare patients who had DLBCL with and without cyclin D1 expression. RESULTS: In total, 30 patients...... (2.1%) who had DLBCL that expressed cyclin D1 and lacked CCND1 gene rearrangements were identified. Patients with cyclin D1-positive DLBCL had a median age of 57 years (range, 16.0-82.6 years). There were 23 males and 7 females. Twelve patients (40%) had bulky disease. None of them expressed CD5. Two...

  17. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  18. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  19. Gene doping: gene delivery for olympic victory

    OpenAIRE

    Gould, David

    2012-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted...

  20. Genes and Hearing Loss

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  1. High-level inducible Smad4-reexpression in the cervical cancer cell line C4-II is associated with a gene expression profile that predicts a preferential role of Smad4 in extracellular matrix composition

    International Nuclear Information System (INIS)

    Klein-Scory, Susanne; Zapatka, Marc; Eilert-Micus, Christina; Hoppe, Sabine; Schwarz, Elisabeth; Schmiegel, Wolff; Hahn, Stephan A; Schwarte-Waldhoff, Irmgard

    2007-01-01

    Smad4 is a tumour suppressor frequently inactivated in pancreatic and colorectal cancers. We have recently reported loss of Smad4 in every fourth carcinoma of the uterine cervix. Smad4 transmits signals from the TGF-β superfamily of cytokines and functions as a versatile transcriptional co-modulator. The prevailing view suggests that the tumour suppressor function of Smad4 primarily resides in its capability to mediate TGF-β growth inhibitory responses. However, accumulating evidence indicates, that the acquisition of TGF-β resistance and loss of Smad4 may be independent events in the carcinogenic process. Through inducible reexpression of Smad4 in cervical cancer cells we wished to shed more light on this issue and to identify target genes implicated in Smad4 dependent tumor suppression. Smad4-deficient human C4-II cervical carcinoma cells were used to establish inducible Smad4 reexpression using the commercial Tet-on™ system (Clontech). The impact of Smad4 reexpression on cell growth was analysed in vitro and in vivo. Transcriptional responses were assessed through profiling on cDNA macroarrays (Clontech) and validated through Northern blotting. Clones were obtained that express Smad4 at widely varying levels from approximately physiological to 50-fold overexpression. Smad4-mediated tumour suppression in vivo was apparent at physiological expression levels as well as in Smad4 overexpressing clones. Smad4 reexpression in a dose-dependent manner was associated with transcriptional induction of the extracellular matrix-associated genes, BigH3, fibronectin and PAI-1, in response to TGF-β. Smad4-dependent regulation of these secreted Smad4 targets is not restricted to cervical carcinoma cells and was confirmed in pancreatic carcinoma cells reexpressing Smad4 after retroviral transduction and in a stable Smad4 knockdown model. On the other hand, the classical cell cycle-associated TGF-β target genes, c-myc, p21 and p15, remained unaltered. Our results show that

  2. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  3. Imaging reporter gene for monitoring gene therapy

    International Nuclear Information System (INIS)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  4. Systematic validation of predicted microRNAs for cyclin D1

    International Nuclear Information System (INIS)

    Jiang, Qiong; Feng, Ming-Guang; Mo, Yin-Yuan

    2009-01-01

    MicroRNAs are the endogenous small non-coding RNA molecules capable of silencing protein coding genes at the posttranscriptional level. Based on computer-aided predictions, a single microRNA could have over a hundred of targets. On the other hand, a single protein-coding gene could be targeted by many potential microRNAs. However, only a relatively small number of these predicted microRNA/mRNA interactions are experimentally validated, and no systematic validation has been carried out using a reporter system. In this study, we used luciferease reporter assays to validate microRNAs that can silence cyclin D1 (CCND1) because CCND1 is a well known proto-oncogene implicated in a variety of types of cancers. We chose miRanda (http://www.microRNA.org) as a primary prediction method. We then cloned 51 of 58 predicted microRNA precursors into pCDH-CMV-MCS-EF1-copGFP and tested for their effect on the luciferase reporter carrying the 3'-untranslated region (UTR) of CCND1 gene. Real-time PCR revealed the 45 of 51 cloned microRNA precursors expressed a relatively high level of the exogenous microRNAs which were used in our validation experiments. By an arbitrary cutoff of 35% reduction, we identified 7 microRNAs that were able to suppress Luc-CCND1-UTR activity. Among them, 4 of them were previously validated targets and the rest 3 microRNAs were validated to be positive in this study. Of interest, we found that miR-503 not only suppressed the luciferase activity, but also suppressed the endogenous CCND1 both at protein and mRNA levels. Furthermore, we showed that miR-503 was able to reduce S phase cell populations and caused cell growth inhibition, suggesting that miR-503 may be a putative tumor suppressor. This study provides a more comprehensive picture of microRNA/CCND1 interactions and it further demonstrates the importance of experimental target validation

  5. A mechanistic study of cigarette smoke and cyclooxygenase-2 on proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Shin, Vivian Y.; Liu, Edgar S.L.; Ye, Yi-Ne; Koo, Marcel W.L.; Chu, K.-M.; Cho, C.-H.

    2004-01-01

    Cigarette smoke has been shown to cause gastric cancer. Overexpression of cyclooxygenase-2 (COX-2) is a common characteristic in gastric malignancy. The present study aimed to explore the correlation between cigarette smoke and COX-2 in the promotion of tumorigenesis in human gastric cancer cells (AGS). We further studied the action of COX-2 on other proto-oncogenes on gastric tumor growth. Results showed that chloroform extract (CE) and ethanol extract (EE) from cigarette smoke dose-dependently stimulated gastric cancer cell proliferation, which was accompanied with an activation of ornithine decarboxylase (ODC) activity, COX-2, and c-myc expressions. Both antisense of c-myc and α-difluoromethylornithine (DFMO, specific ODC inhibitor) inhibited cell proliferation without affecting COX-2 expression in response to cigarette smoke extracts (CSE). However, selective COX-2 inhibitor (SC-236) not only blocked the proliferative activity but also the ODC activity and c-myc protein expression by CSE in gastric cancer cells. Further, supplementation of exogenous prostaglandin (PG) E 2 reversed all the inhibitory actions of SC-236. Our results underline the importance of COX-2 in the cancer-promoting effect of CSE and its modulation on its downstream growth-related genes, such as c-myc and ODC in cancer cell proliferation. These results reveal that CSE-induced gastric carcinogenesis is via the COX-2/c-myc/ODC and PGE 2 -dependent pathway. Hence, selective COX-2 inhibitor could be an effective therapeutic agent for gastric cancer in smokers

  6. Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis.

    Science.gov (United States)

    Selvakumaran, M; Liebermann, D; Hoffman-Liebermann, B

    1993-05-01

    Conditional mutants of the myeloblastic leukemic M1 cell line, expressing the chimeric mycer transgene, have been established. It is shown that M1 mycer cells, like M1, undergo terminal differentiation coupled to growth arrest and programmed cell death (apoptosis) after treatment with the physiologic differentiation inducer interleukin-6. However, when beta-estradiol is included in the culture medium, M1 mycer cells respond to differentiation inducers like M1 myc cell lines, where the differentiation program is blocked at an intermediate stage. By manipulating the function of the mycer transgene product, it is shown that there is a 10-hour window during myeloid differentiation, from 30 to 40 hours after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, where activation of c-myc has no apparent effect on mature macrophages. M1 mycer cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal myelopoiesis and in leukemogenesis, also providing a strategy to clone c-myc target genes.

  7. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination.

    Science.gov (United States)

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-11-07

    c-Myc. These data suggest that a combination of CAERS and CFEZO is a promising treatment for the prevention of colon cancer.

  8. Influence of x-rays and UV-light on the presence of oncogene proteins in spleen cells of leukemic mice

    International Nuclear Information System (INIS)

    Popovic Hadzija, M.; Poljak Blazi, M.

    1996-01-01

    Proto-oncogenes are involved in growth, defferentiation and proliferation of normal cells, and in process of neoplastic transformation. In genome of normal cells, exist also tumor-suppressor genes, which contribute to cancer when they are inactivated. Those genes are target for carcinogenesis provoked by radiation. However, species specific genetic factors are important in determing which, if any, gene will be transformed by radiation. It is possible to presume that oncogenes are involved in the development of radioresistant phenotype of ML. Because of that, we examined the presence of c-myc protein in ML cells during the growth of ML and after the irradiation of these cells. Also, we examined the presence of tumor-suppressor protein p53, because inactivation or loss of p53 gene is in connection with transformation of cells. ML is strain specific for RFM mice. Spleen cells were tested 9 (nonterminal phase NTP) or 12 days (terminal phase TP) after inoculation of ML. Cells from NTP were also irradiate with x-rays or UV-light. C-myc protein expresse 74.98% spleen cells of healthy RFM mice. Wild type of p53 protein was detected in 60% of these cells, but mp53 was found in only 5.3% of cells. These results could be explained by the role of c-myc and p53 proteins in regulation of biologic processes. A few spleen cells of NTP expressed c-myc (15%) and mp53 (9.6%) proteins. But, in the same phase higher expressions of wp53 protein (30.5%) was found. On the other hand, the number of c-myc positive cells in TP of leukemia explanation lies in connection of c-myc protein and process of programmed cell death (apoptosis). During growth of ML the number of mp53 positive cells increased (to 47.8%), but wp53 positive cells decreased (to13.4%9). Both types of irradiation provoked strong activation of cellular c-myc gene in ML cells of NTP. We found about 95% c-myc positive cells after x-rays and 93% after UV-light

  9. A viral long terminal repeat expressed in CD4+CD8+ precursors is downregulated in mature peripheral CD4-CD8+ or CD4+CD8- T cells.

    OpenAIRE

    Paquette, Y; Doyon, L; Laperrière, A; Hanna, Z; Ball, J; Sekaly, R P; Jolicoeur, P

    1992-01-01

    The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to...

  10. Investigating the Role of the Post-transcriptional Gene Regulator MiR-24-3p in the Proliferation, Migration and Apoptosis of Human Arterial Smooth Muscle Cells in Arteriosclerosis Obliterans

    Directory of Open Access Journals (Sweden)

    Xiao-feng Zhu

    2015-07-01

    Full Text Available Aims: To explore the expression of miR-24-3p in human arteries with arteriosclerosis obliterans (ASO as well as the role of miR-24-3p in the pathogenesis of ASO. Methods: We used quantitative real-time PCR (qRT-PCR and in situ hybridization to monitor miR-24-3p expression in human arteries. To investigate the effect of miR-24-3p on human arterial smooth muscle cells (HASMCs, we applied cell counting and EdU assays to monitor proliferation and transwell and wound healing assays to investigate migration and flow cytometry to investigate apoptosis. Furthermore, we applied 3'-untranslated region (3'-UTR luciferase assays to investigate the role of miR-24-3p in targeting platelet-derived growth factor receptor B (PDGFRB and c-Myc. Results: MiR-24-3p was mainly located in the media of arteries and was downregulated in ASO arteries compared with normal arteries. Platelet-derived growth factor BB (PDGF-BB treatment reduced the expression of miR-24-3p in primary cultured HASMCs. MiR-24-3p mimic oligos inhibited the proliferation and migration, and promotes apoptosis of HASMCs. Our 3'-UTR luciferase assays confirmed that PDGFRB and c-Myc were targets of miR-24-3p. Conclusion: The results suggest that miR-24-3p regulates the proliferation and migration of HASMCs by targeting PDGFRB and c-Myc. The PDGF/miR-24-3p/PDGFRB and PDGF/miR-24-3p/c-Myc pathways may play critical roles in the pathogenesis of ASO. These findings highlight the potential for new therapeutic targets for ASO.

  11. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  12. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  13. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer

    International Nuclear Information System (INIS)

    Kaukoniemi, Kirsi M; Rauhala, Hanna E; Scaravilli, Mauro; Latonen, Leena; Annala, Matti; Vessella, Robert L; Nykter, Matti; Tammela, Teuvo L J; Visakorpi, Tapio

    2015-01-01

    Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3’UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3’UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer

  14. Gene doping: gene delivery for olympic victory.

    Science.gov (United States)

    Gould, David

    2013-08-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  15. CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Liu, Zhen; Cheng, Chao; Luo, Xiaojun; Xia, Qiong; Zhang, Yejie; Long, Xiaobing; Jiang, Qingping; Fang, Weiyi

    2016-01-01

    In previous investigation, we reported that stably knocking down cyclin-dependent kinase 4(CDK4) induced expression of let-7c, which further suppressed cell cycle transition and cell growth by modulating cell cycle signaling in nasopharyngeal carcinoma (NPC). In this study, we further explored the molecular function and mechanism of CDK4 modulating miRNAs to stimulate cell cycle transition, cell growth, and Cisplatin (DDP) -resistance on in NPC. We identified changes in miRNAs by miRNA array and real-time PCR and the effect on DDP after knocking down CDK4 in NPC cells. Further, we investigated the molecular mechanisms by which CDK4 modulated miR-15a in NPC. Moreover, we also explored the role of miR-15a and the effect on DDP in NPC. Finally, we analyzed the correlation of miR-15a and CDK4 expression in NPC tissues. In addition to let-7 family members, we observed that upregulated expression of miR-15a was significantly induced in CDK4-suppressed NPC cells. Further, we found that knocking down CDK4 suppressed c-Myc expression, and the latter directly suppressed the expression of miR-15a in NPC. Furthermore, miR-15a as a tumor suppressor antagonized CDK4 repressing cell cycle progression and cell growth in vitro and in vivo and induced the sensitivity of cells to DDP by regulating the c-Myc/CCND1/CDK4/E2F1 pathway in NPC. Finally, miR-15a was negatively weak correlated with the expression of CDK4 in NPC. Our studies demonstrate that CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in NPC. The online version of this article (doi:10.1186/s12885-016-2277-2) contains supplementary material, which is available to authorized users

  16. Evolution of homeobox genes.

    Science.gov (United States)

    Holland, Peter W H

    2013-01-01

    Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.

  17. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  18. Carboxylesterase 1 genes

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk

    2018-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase that metabolizes commonly used drugs. The CES1-related pseudogene, carboxylesterase 1 pseudogene 1 (CES1P1), has been implicated in gene exchange with CES1 and in the formation of hybrid genes including the carboxylesterase 1A2 gene (CES1A2...

  19. DNA methylation analysis of paediatric low-grade astrocytomas identifies a tumour-specific hypomethylation signature in pilocytic astrocytomas.

    Science.gov (United States)

    Jeyapalan, Jennie N; Doctor, Gabriel T; Jones, Tania A; Alberman, Samuel N; Tep, Alexander; Haria, Chirag M; Schwalbe, Edward C; Morley, Isabel C F; Hill, Alfred A; LeCain, Magdalena; Ottaviani, Diego; Clifford, Steven C; Qaddoumi, Ibrahim; Tatevossian, Ruth G; Ellison, David W; Sheer, Denise

    2016-05-27

    Low-grade gliomas (LGGs) account for about a third of all brain tumours in children. We conducted a detailed study of DNA methylation and gene expression to improve our understanding of the biology of pilocytic and diffuse astrocytomas. Pilocytic astrocytomas were found to have a distinctive signature at 315 CpG sites, of which 312 were hypomethylated and 3 were hypermethylated. Genomic analysis revealed that 182 of these sites are within annotated enhancers. The signature was not present in diffuse astrocytomas, or in published profiles of other brain tumours and normal brain tissue. The AP-1 transcription factor was predicted to bind within 200 bp of a subset of the 315 differentially methylated CpG sites; the AP-1 factors, FOS and FOSL1 were found to be up-regulated in pilocytic astrocytomas. We also analysed splice variants of the AP-1 target gene, CCND1, which encodes cell cycle regulator cyclin D1. CCND1a was found to be highly expressed in both pilocytic and diffuse astrocytomas, but diffuse astrocytomas have far higher expression of the oncogenic variant, CCND1b. These findings highlight novel genetic and epigenetic differences between pilocytic and diffuse astrocytoma, in addition to well-described alterations involving BRAF, MYB and FGFR1.

  20. Effect of recombinant human erythropoietin expressions of apoptosis ...

    African Journals Online (AJOL)

    apoptosis genes in rats following traumatic brain injury. Xuesong Yuan1* ... ĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by ... stem cells present in the bone marrow. ... neuronal regeneration [12], lowering toxicity of.

  1. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    OpenAIRE

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif; Therkelsen, Ib; Borup, Rehannah; Nilsson, Elise; Multhaupt, Hinke; Bouchard, Caroline; Quistorff, Bjørn; Kjær, Andreas; Landberg, Göran; Staller, Peter

    2011-01-01

    This paper characterizes FoxO3A as required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production. Mechanistically, FoxO3A is shown to promote hypoxic cell survival by directly antagonizing c-Myc at nuclear encoded mitochondrial genes.

  2. Gene doping in sports.

    Science.gov (United States)

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement. Copyright 2004 Adis Data Information BV

  3. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  4. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  5. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  6. Radiotechnologies and gene therapy

    International Nuclear Information System (INIS)

    Xia Jinsong

    2001-01-01

    Gene therapy is an exciting frontier in medicine today. Radiologist will make an uniquely contribution to these exciting new technologies at every level by choosing sites for targeting therapy, perfecting and establishing routes of delivery, developing imaging strategies to monitor therapy and assess gene expression, developing radiotherapeutic used of gene therapy

  7. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  8. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.

    Science.gov (United States)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J

    2017-02-01

    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  9. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  10. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  11. Primetime for Learning Genes.

    Science.gov (United States)

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene ( BDNF ), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  12. Genes and Social Behavior

    OpenAIRE

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2008-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence beh...

  13. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Refining discordant gene trees.

    Science.gov (United States)

    Górecki, Pawel; Eulenstein, Oliver

    2014-01-01

    Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

  15. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  16. Chromatin loops, gene positioning, and gene expression

    NARCIS (Netherlands)

    Holwerda, S.; de Laat, W.

    2012-01-01

    Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the alpha- and beta-globin

  17. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    Science.gov (United States)

    2016-06-01

    commercialize an approved gene therapy based treatment for FANCA . The commercialization of a FA treatment will serve as a platform therapy for other orphan...with Fanconi anemia A by introducing a functioning FANCA gene into autologous CD34+ stem and progenitor cells. Cells will be treated ex vivo and...project is to use a single pool of CRISPR-Cas constructs targeting all 198 genes in the 11q13.5-14.1 cluster between (and including) CCND1 and GAB2, and

  18. Your Genes, Your Choices

    Science.gov (United States)

    Table of Contents Your Genes, Your Choices describes the Human Genome Project, the science behind it, and the ethical, legal, and social issues that are ... Nothing could be further from the truth. Your Genes, Your Choices points out how the progress of ...

  19. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  20. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  1. Radionuclide reporter gene imaging

    International Nuclear Information System (INIS)

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  2. Radionuclide reporter gene imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-04-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases.

  3. Concomitant Classic Hodgkin Lymphoma of Lymph Node and cMYC-Positive Burkitt Leukemia/Lymphoma of the Bone Marrow Presented Concurrently at the Time of Presentation: A Rare Combination of Discordant Lymphomas

    Directory of Open Access Journals (Sweden)

    Dina S. Soliman

    2016-01-01

    Full Text Available Discordant lymphoma is rare condition in which different types of malignant lymphomas occurring in different anatomic sites. The two diseases may present clinically as concurrent or sequential disease (10. Herein we are reporting a Pakistani female in her 60s, a carrier of hepatitis B virus with multiple comorbidities presented with cervical lymphadenopathy, diagnosed as Hodgkin's lymphoma, mixed cellularity. During the staging workup, the patient was discovered to have extensive bone marrow (BM involvement by Burkitt leukaemia/lymphoma (BL. Cytogenetic analysis revealed positivity for t(8;14(q24;q32 confirmed by Fluorescence In Situ Hybridization (FISH for IGH/MYC. Epstein-Barr virus (EBV was demonstrated heavily in our case, with (EBV DNA of 24,295,560 copies/ml by PCR at time of presentation, in addition, the neoplastic cells in both diagnostic tissues (cervical lymph node and BM demonstrated positivity for EBV. A diagnosis of concomitant EBV related discordant lymphoma (classical Hodgkin lymphoma (cHL and Burkitt lymphoma (BL in leukemic phase was made. Among all reported cases, this case is highly exceptional because it is the first case of discordant/composite lymphoma, with this combination and concomitant presentation. Since we are dealing with a case with an exceptionally rare combination, we found it significant to elaborate more on its clinical features, contributing factors including EBV role, response to treatment, complications, and prognosis.

  4. Methanogenesis and methane genes

    International Nuclear Information System (INIS)

    Reeve, J.N.; Shref, B.A.

    1991-01-01

    An overview of the pathways leading to methane biosynthesis is presented. The steps investigated to date by gene cloning and DNA sequencing procedures are identified and discussed. The primary structures of component C of methyl coenzyme M reductase encoded by mcr operons in different methanogens are compared. Experiments to detect the primary structure of the genes encoding F420 reducing hydrogenase (frhABG) and methyl hydrogen reducing hydrogenase (mvhDGA) in methanobacterium thermoautotrophicum strain H are compared with each other and with eubacterial hydrogenase encoding genes. A biotechnological use for hydrogenases from hypermorphillic archaebacteria is suggested. (author)

  5. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  6. Finding Genes for Schizophrenia

    OpenAIRE

    Åberg, Karolina

    2005-01-01

    Schizophrenia is one of our most common psychiatric diseases. It severely affects all aspects of psychological functions and results in loss of contact with reality. No cure exists and the treatments available today produce only partial relief for disease symptoms. The aim of this work is to better understand the etiology of schizophrenia by identification of candidate genes and gene pathways involved in the development of the disease. In a preliminarily study, the effects of medication and g...

  7. Epigenetics: beyond genes

    CSIR Research Space (South Africa)

    Fossey, A

    2009-06-01

    Full Text Available in forestry breeding. Keywords Gene regulation; chromatin; histone code hyporthesis; RNA silencing; post transcriptional gene silencing; forestry. Introduction to epigenetic phenomena Most living organisms share a vast amount of genetic information... (Rapp and Wendel, 2005). Epigenetic phenomena pervade all aspects of cell proliferation and plant development and are often in conflict with Mendelian models of genetics (Grant-Downton and Dickinson, 2005). A key element in many epigenetic effects...

  8. Gene-Gene and Gene-Environment Interactions in the Etiology of Breast Cancer

    National Research Council Canada - National Science Library

    Adegoke, Olufemi

    2003-01-01

    The objective of this CDA is to evaluate the gene-gene and gene-environment interactions in the etiology of breast cancer in two ongoing case-control studies, the Shanghai Breast Cancer Study (SBCS...

  9. Radiosensitivity and genes

    Energy Technology Data Exchange (ETDEWEB)

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  10. Radiosensitivity and genes

    International Nuclear Information System (INIS)

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  11. Evidence for homosexuality gene

    Energy Technology Data Exchange (ETDEWEB)

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  12. The Mycoplasma hominis vaa gene displays a mosaic gene structure

    DEFF Research Database (Denmark)

    Boesen, Thomas; Emmersen, Jeppe M. G.; Jensen, Lise T.

    1998-01-01

    Mycoplasma hominis contains a variable adherence-associated (vaa) gene. To classify variants of the vaa genes, we examined 42 M. hominis isolated by PCR, DNA sequencing and immunoblotting. This uncovered the existence of five gene categories. Comparison of the gene types revealed a modular...

  13. FunGene: the functional gene pipeline and repository.

    Science.gov (United States)

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  14. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  15. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  16. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  17. GoGene: gene annotation in the fast lane.

    Science.gov (United States)

    Plake, Conrad; Royer, Loic; Winnenburg, Rainer; Hakenberg, Jörg; Schroeder, Michael

    2009-07-01

    High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4,000,000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18,000,000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene.

  18. Genes and inheritance.

    Science.gov (United States)

    Middelton, L A; Peters, K F

    2001-10-01

    The information gained from the Human Genome Project and related genetic research will undoubtedly create significant changes in healthcare practice. It is becoming increasingly clear that nurses in all areas of clinical practice will require a fundamental understanding of basic genetics. This article provides the oncology nurse with an overview of basic genetic concepts, including inheritance patterns of single gene conditions, pedigree construction, chromosome aberrations, and the multifactorial basis underlying the common diseases of adulthood. Normal gene structure and function are introduced and the biochemistry of genetic errors is described.

  19. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  20. Norrie disease gene is distinct from the monoamine oxidase genes

    OpenAIRE

    Sims, Katherine B.; Ozelius, Laurie; Corey, Timothy; Rinehart, William B.; Liberfarb, Ruth; Haines, Jonathan; Chen, Wei Jane; Norio, Reijo; Sankila, Eeva; de la Chapelle, Albert; Murphy, Dennis L.; Gusella, James; Breakefield, Xandra O.

    1989-01-01

    The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and /or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in “classic” Norrie disease patients. Genomic DNA from these “nondelet...

  1. Hidden genes in birds

    Czech Academy of Sciences Publication Activity Database

    Hron, Tomáš; Pajer, Petr; Pačes, Jan; Bartůněk, Petr; Elleder, Daniel

    2015-01-01

    Roč. 16, August 18 (2015) ISSN 1465-6906 R&D Projects: GA MŠk(CZ) LK11215; GA MŠk LO1419 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68378050 Keywords : REPETITIVE SEQUENCES * G/C stretches * avian genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.313, year: 2015

  2. Rhabdovirus accessory genes.

    Science.gov (United States)

    Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R

    2011-12-01

    The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. Targeting fumonisin biosynthetic genes

    Science.gov (United States)

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  4. Radio-induced genes

    International Nuclear Information System (INIS)

    Rigaud, O.; Kazmaier, M.

    2000-01-01

    The monitoring system of the DNA integrity of an irradiated cell does not satisfy oneself to recruit the enzymes allowing the repair of detected damages. It sends an alarm signal whom transmission leads to the activation of specific genes in charge of stopping the cell cycle, the time to make the repair works, or to lead to the elimination of a too much damaged cell. Among the numerous genes participating to the monitoring of cell response to irradiation, the target genes of the mammalian P53 protein are particularly studied. Caretaker of the genome, this protein play a central part in the cell response to ionizing radiations. this response is less studied among plants. A way to tackle it is to be interested in the radioinduced genes identification in the vegetal cell, while taking advantage of knowledge got in the animal field. The knowledge of the complete genome of the arabette (arabidopsis thaliana), the model plant and the arising of new techniques allow to lead this research at a previously unknown rhythm in vegetal biology. (N.C.)

  5. The Gene Guessing Game

    OpenAIRE

    Dunham, Ian

    2000-01-01

    A recent flurry of publications and media attention has revived interest in the question of how many genes exist in the human genome. Here, I review the estimates and use genomic sequence data from human chromosomes 21 and 22 to establish my own prediction.

  6. Targeting trichothecene biosynthetic genes

    NARCIS (Netherlands)

    Wei, Songhong; Lee, van der Theo; Verstappen, Els; Gent, van Marga; Waalwijk, Cees

    2017-01-01

    Biosynthesis of trichothecenes requires the involvement of at least 15 genes, most of which have been targeted for PCR. Qualitative PCRs are used to assign chemotypes to individual isolates, e.g., the capacity to produce type A and/or type B trichothecenes. Many regions in the core cluster

  7. Silence of the Genes

    Indian Academy of Sciences (India)

    Srimath

    a gene in the opposite orientation in a cultured plant cell line and observed that the ..... started emerging in early 1990s from the work carried out by the. It is believed that ... cause human diseases such as cervical cancer, hepatitis, measles.

  8. Silence of the Genes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. Silence of the Genes - 2006 Nobel Prize in Physiology or Medicine. Utpal Nath Saumitra Das. General Article Volume 12 Issue 4 April 2007 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  10. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  11. Industrial scale gene synthesis.

    Science.gov (United States)

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery. Copyright © 2011 Elsevier Inc. All rights reserved.