WorldWideScience

Sample records for c-mod research program

  1. Overview of Alcator C-Mod Research

    Science.gov (United States)

    White, A. E.

    2017-10-01

    Alcator C-Mod, a compact (R =0.68m, a =0.21m), high magnetic field, Bt Research spans the topics of core transport and turbulence, RF heating and current drive, pedestal physics, scrape-off layer, divertor and plasma wall interactions. In the last experimental campaign, Super H-mode was explored and featured the highest pedestal pressures ever recorded, pped 90 kPa (90% of ITER target), consistent with EPED predictions. Optimization of naturally ELM-suppressed EDA H-modes accessed the highest volume averaged pressures ever achieved (〈p〉>2 atm), with pped 60 kPa. The SOL heat flux width has been measured at Bpol = 1.25T, confirming the Eich scaling over a broader poloidal field range than before. Multi-channel transport studies focus on the relationship between momentum transport and heat transport with perturbative experiments and new multi-scale gyrokinetic simulation validation techniques were developed. U.S. Department of Energy Grant No. DE-FC02-99ER54512.

  2. Twenty Years of Research on the Alcator C-Mod Tokamak

    Science.gov (United States)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  3. 20 years of research on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  4. 20 years of research on the Alcator C-Mod tokamaka)

    Science.gov (United States)

    Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.

    2014-11-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  5. Alcator C-Mod: research in support of ITER and steps beyond

    Science.gov (United States)

    Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; LaBombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.

    2015-10-01

    This paper presents an overview of recent highlights from research on Alcator C-Mod. Significant progress has been made across all research areas over the last two years, with particular emphasis on divertor physics and power handling, plasma-material interaction studies, edge localized mode-suppressed pedestal dynamics, core transport and turbulence, and RF heating and current drive utilizing ion cyclotron and lower hybrid tools. Specific results of particular relevance to ITER include: inner wall SOL transport studies that have led, together with results from other experiments, to the change of the detailed shape of the inner wall in ITER; runaway electron studies showing that the critical electric field required for runaway generation is much higher than predicted from collisional theory; core tungsten impurity transport studies reveal that tungsten accumulation is naturally avoided in typical C-Mod conditions.

  6. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  7. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Loarte, A.; Polevoi, A. R.; Hosokawa, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Reinke, M. L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Köchl, F. [Technische Universität Wien, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Pütterich, T.; Dux, R. [Max-Planck-Institut für Plasmaphysik, Boltzmanstraße 2, D-85748 Garching (Germany); Zhogolev, V. E. [NRC “Kurchatov Institute,” Kurchatov Square 1, 123098 Moscow (Russian Federation)

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  8. Transport experiments in Alcator-C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, M.; Boivin, R.L.; Bonoli, P.; Christensen, C.; Fiore, C.; Garnier, D.; Goetz, J.; Golovato, S.; Graf, M.; Granetz, R.; Horne, S.; Hsu, T.; Hubbard, A.; Hutchinson, I.; Irby, J.; Kurz, C.; LaBombard, B.; Lipschultz, B.; Luke, T.; Marmar, E.; McCracken, G.; Niemczewski, A.; O`Shea, P.; Porkolab, M.; Rice, J.; Reardon, J.; Schachter, J.; Snipes, J.; Stek, P.; Takase, Y.; Terry, J.; Umansky, M.; Watterson, R.; Wolfe, S. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bombarda, F. [ENEA-Frascati, Frascati (Italy); May, M. [Johns Hopkins University, Baltimore, Maryland 21218 (United States); Welch, B. [University of Maryland, College Park, Maryland 20742 (United States)

    1995-06-01

    A series of transport experiments has been carried out in Alcator-C-Mod. [Phys Plasmas {bold 1}, 1511 (1994)]. Data from both Ohmic and ICRF (ion cyclotron range of frequencies) heated plasmas can be fitted with an L-mode (low mode) scaling law. The Ohmic {tau}{sub {ital E}}`s show no scaling with density in any regime and can reach values of 2--3 times neo-Alcator. Impurity confinement has been studied with the laser blow-off technique with {tau}{sub {ital I}} showing nearly linear scaling with plasma current. Ohmic and ICRF H modes are obtained over a wide range of discharge parameters, extending the range in the international database for {ital nB}, by almost a factor of 10. The power threshold for ELM-free (edge localized mode) discharges is in rough agreement with the scaling {ital P}/{ital S}=0.044{ital nB}. Energy diffusivities of Ohmic and ICRF heated plasmas have been measured from local analysis of plasma profiles and power fluxes. The same analysis produces a value for plasma resistivity which lies between the Spitzer and neoclassical calculations. Analysis of plasma transients have yielded values for particle diffusivity and convection velocity.

  9. Overview of Recent Alcator C-Mod Results

    Science.gov (United States)

    Marmar, Earl; Alcator C-Mod Team

    2014-10-01

    Alcator C-Mod research currently emphasizes RF heating, current and flow drive, divertor/PMI issues, non-ELMing pedestal regimes with enhanced confinement, and disruption mitigation/runaway dynamics. Stability analysis of I-mode pedestals shows pressures well below the peeling-ballooning limit, as well as expected kinetic ballooning mode thresholds, consistent with the lack of ELMs. Results with the magnetic field aligned ICRF antenna show reductions in high-Z metallic impurities. Implementation of novel ``mirror-probe'' electronics has enabled simultaneous measurements of Te, ne and φ with 1 μs time response using a single probe tip, revealing important properties of the Quasi-Coherent-Mode (QCM) which regulates edge particle transport in EDA H-mode. An Accelerator-based In-situ Material Surveillance diagnostic has been deployed, providing the first between-shot measurements of surface evolution of the all-metal wall. We have observed suppression of boundary turbulence and τE improvement using LHRF into high-density H-modes, with H-factor increases up to 30%. Upgrades which are ready for construction and near term installation on C-Mod include: an off-midplane LH launcher to test theories of improved current drive at high density and an actively heated (900 K) tungsten DEMO-like outer divertor. We are proposing a new facility, ADX, based on Alcator technology, to access advanced magnetic topologies to solve the divertor PMI problem, combined with high-field launch LHCD and ICRF to extend the tokamak to steady-state with reactor relevant tools. Supported by USDOE.

  10. Identification of Mercier instabilities in Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    In, Y.; Ramos, J. J.; Hastie, R. J.; Catto, P. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E.; Porkolab, M.; Snipes, J.; Wolfe, S. (and others)

    2000-12-01

    During current ramp-up discharges, highly localized magnetohydrodynamic (MHD) fluctuations were observed on the electron cyclotron emission diagnostics of Alcator C-Mod tokamak [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)]. The electron temperature profile was hollow, while the density profile was weakly decreasing. Assuming that the equilibration time was short enough to quickly thermalize ions the pressure profile was also found to be hollow. Using this pressure profile as an additional constraint to the EFIT program, an equilibrium with reversed shear was constructed having a q(0)>>1. The localized MHD activity was observed near the inner q=5 rational surface in this reconstructed equilibrium, where the Mercier criterion for ideal MHD stability was violated because of the reversed pressure gradient (dp/dr>0), q>1 and moderate shear. When kinetic effects were added, the ideal Mercier mode was finite ion Larmor radius stabilized. However, ion Landau damping was found to be strong enough to drive a kinetic Mercier instability.

  11. Assessment of ICRF Antenna Performance in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    G. Schilling; S.J. Wukitch; Y. Lin; N. Basse; P.T. Bonoli; E. Edlund; L. Lin; A. Parisot; M. Porkolab

    2004-08-10

    The Alcator C-Mod has presented a challenge to install high-power ICRF antennas in a tight space. Modifications have been made to the antenna plasma-facing surfaces and the internal current-carrying structure in order to overcome performance limitations. At the present time, the antennas have exceeded 5 MW into plasma with heating phasing, up to 2.7 MW with current-drive phasing, with good efficiency and no deleterious effects

  12. Advanced tokamak physics scenarios in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.; Bonoli, P.T.; Golovato, S.; Ramos, J.; Sugiyama, L.; Takase, Y. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Nevins, W.M. [LLNL, Livermore, California 94550 (United States)

    1996-02-01

    Several advanced tokamak modes of operation have been identified in the Alcator C-Mod tokamak. Of particular interest are (i) Reversed shear mode with high bootstrap fraction using on-axis FW current drive and off-axis mode-conversion current drive and/or lower hybrid current drive; (ii) High performance plasmas ({ital Q}{approximately}0.1{endash}1) which may be accessed by the PEP (pellet enhanced performance) mode of operation with intense ICRF heating. {copyright} {ital 1996 American Institute of Physics.}

  13. Correlation ECE diagnostic in Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    Sung C.

    2015-01-01

    electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8 decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.

  14. Correlation ECE diagnostic in Alcator C-Mod

    Science.gov (United States)

    Sung, C.; White, A. E.; Howard, N. T.; Mikkelsen, D.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2015-03-01

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.

  15. Cross Machine Comparison of Turbulence and Transport Measurements on Alcator C-Mod and ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Conway, G. D.; Freethy, Simon; Goerler, Tobias; Howard, N. T.; White, A. E.; ASDEX Upgrade Team

    2017-10-01

    Experimental turbulence and transport measurements aid in the effort to validate gyrokinetic codes such as GYRO and GENE. There seems to be some discrepancy between the ability of ion-scale simulations to match experimental heat fluxes on Alcator C-Mod [A.J. Creely, PoP 2017] and ASDEX Upgrade (AUG) [D. Told, PoP 2013], motivating additional experimental measurements, such as perturbative thermal diffusivity and electron temperature fluctuations. The perturbative thermal diffusivity is measured on both machines using partial sawtooth crashes [A.J. Creely, NF 2016] and cross machine parametric trends are investigated. Calculations based on partial sawteeth heat pulses are compared to modulated ECH heat pulses on AUG for the first time, and agree within uncertainty. Electron temperature fluctuations are measured with correlation ECE. Comparisons of total temperature fluctuation levels between gyrokinetic codes and experiment seem to show similar trends to electron heat flux, in that they are under-predicted on C-Mod, but matched or even over-predicted on AUG. This implies possible differences in the dominant plasma turbulence, but further study is needed. This work is also supported by the US DOE under Grants DE-SC0006419 and DE-FC02-99ER54512-CMOD, and by the US DoD and the Air Force Office of Scientific Research under the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  16. Evidence for Chaotic Edge Turbulence in the Alcator C-Mod Tokamak

    Science.gov (United States)

    Zhu, Ziyan; White, Anne; Carter, Troy; Terry, Jim; Baek, Seung Gyou

    2017-10-01

    Turbulence greatly reduces the confinement time of magnetic-confined plasmas; understanding the nature of this turbulence and the associated transport is therefore of great importance. This research seeks to establish whether turbulent fluctuations in Alcator C-Mod are chaotic or stochastic. Stochastic fluctuations may lead to a random walk diffusive transport, whereas a diffusive description is unlikely to be valid for chaotic fluctuations since it lives in restricted areas of phase space (e.g., on attractors). Analysis of the time series obtained with the O-mode reflectometer and the gas puff imaging (GPI) systems reveals that the turbulent density fluctuations in C-Mod are chaotic. Supporting evidence for this conclusion includes the observation of an exponential power spectra (which is associated with Lorentzian-shaped pulses in the time series), the population of the corresponding Bandt-Pompe (BP) probability distribution, and the location of the signal on the Complexity-Entropy plane (C-H plane). These analysis techniques will be briefly introduced along with a discussion of the analysis results. The classification of edge turbulence as chaotic opens the door for further work to understand the underlying process and the impact on turbulent transport. Supported by USDoE awards DE-FC02-99ER54512 and DE-FC02-07ER54918:011.

  17. Edge Minority Heating Experiment in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; J.L. Terry; P. Bonoli; R. Budny; C.S. Chang; C. Fiore; G. Schilling; S. Wukitch; J. Hughes; Y. Lin; R. Perkins; M. Porkolab; the Alcator C-Mod Team

    2005-03-25

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of radio-frequency power is less than or equal to 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed.

  18. ICRF heating in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Golovato, S.N.; Porkolab, M.; Takase, Y.; Boivin, R.; Bombarda, F.; Bonoli, P.; Christensen, C.; Fiore, C.; Garnier, D.; Goetz, J.; Graf, M.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Hutchinson, I.; Irby, J.; Jablonski, D.; Kurz, C.; LaBombard, B.; Lipschultz, B.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; Niemczewski, A.; OShea, P.; Reardon, J.; Rice, J.; Rost, C.; Schachter, J.; Snipes, J.A.; Stek, P.; Terry, J.; Watterson, R.; Welch, B.; Wolfe, S. [MIT Plasma Fusion Center, Cambridge, Massachusetts 02139, (United States)

    1996-02-01

    ICRF heating experiments have been carried out in the Alcator C-Mod tokamak at power levels up to 3.5 MW. Features of Alcator C-Mod include high density operation, molybdenum plasma facing components, and a closed divertor configuration. The heating is accomplished with two two-strap antennas each run with dipole phasing at 80 MHz in deuterium plasmas with a hydrogen minority resonant at 5.3 T. Plasmas with {ital T}{sub {ital i}}=4 keV and {ital T}{sub {ital e}}=5 keV at {bar {ital n}}{sub {ital e}}=1{times}10{sup 20} m{sup {minus}3} have been produced with 3.5 MW of heating power. The heating has been shown to be strongest with a low minority concentration (1{endash}5{percent}) and the resonance on axis. For {bar {ital n}}{sub {ital e}}{approx_gt}2{times}10{sup 20} m{sup {minus}3}, the central {ital Z}{sub eff} remains below 1.5 with more than 2.5 MW of applied rf power. L-mode confinement scaling is observed both for ohmic and ICRF-heated plasmas with some deterioration at higher densities. H-mode transitions have been produced with the threshold for ELM-free H-modes at or below the ASDEX/DIII-D scaling. Enhanced confinement with strongly peaked density profiles has been achieved by lithium pellet injection. Applying 3 MW of rf power shortly after pellet penetration produces {ital T}{sub {ital i}0}=4 keV and a factor of five increase in fusion neutron rate (up to 9{times}10{sup 13} s{sup {minus}1}), and an H-mode transition. {copyright} {ital 1996 American Institute of Physics.}

  19. Characteristics of high-confinement modes in Alcator C Mod

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, J.A.; Boivin, R.L.; Christensen, C.; Fiore, C.; Garnier, D.; Goetz, J.; Golovato, S.N.; Graf, M.; Granetz, R.S.; Greenwald, M.; Hubbard, A.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Marmar, E.S.; Niemczewski, A.; OShea, P.; Porkolab, M.; Stek, P.; Takase, Y.; Terry, J.L.; Umansky, M.; Wolfe, S.M. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1996-05-01

    The regime of high particle and energy confinement known as the H mode [Phys. Rev. Lett. {bold 49}, 1408 (1982)] has been extended to a unique range of operation for divertor tokamaks up to toroidal fields of nearly 8 T, line-averaged electron densities of 3{times}10{sup 20} m{sup {minus}3}, and surface power densities of nearly 0.6 MW/m{sup 2} in the compact high-field tokamak Alcator C Mod [Phys. Plasmas {bold 1}, 1511 (1994)]. H modes are achieved in Alcator C Mod with Ion Cyclotron Resonant Frequency (ICRF) heating and with Ohmic heating alone without boronization of the all molybdenum tiled first wall. Large increases in charge exchange flux are observed during the H mode over the entire range of energies from 2 to 10 keV. There appears to be an upper limit to the midplane neutral pressure, of about 0.08 Pa above which no H modes have been observed. The plasmas with the best energy confinement have the lowest midplane neutral pressures, below 0.01 Pa. There is an edge electron temperature threshold such that {ital T}{sub {ital e}}{ge}280 eV {plus_minus}40 eV for sustaining the H mode, which is equal at L{endash}H and H{endash}L transitions. The hysteresis in the threshold power between L{endash}H and H{endash}L transitions is less than 25{percent} on average. Both core and edge particle confinement improve by a factor of 2{endash}4 from L mode to H mode. Energy confinement also improves by up to a factor of 2 over L mode. {copyright} {ital 1996 American Institute of Physics.}

  20. Neutral particle dynamics in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Niemczewski, Artur P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1995-08-01

    This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism.

  1. Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment

    Science.gov (United States)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  2. Hydrogenic retention with high-Z plasma facing surfaces in Alcator C-Mod

    NARCIS (Netherlands)

    Lipschultz, B.; Whyte, D. G.; Irby, J.; Labombard, B.; Wright, G. M.

    2009-01-01

    The retention of deuterium (D) fuel in the Alcator C-Mod tokamak is studied using a new 'static' gas balance method. C-Mod solely employs high-Z molybdenum (Mo) and tungsten (W) for its plasma facing materials, with intermittent application of thin boron (B) films. The primarily Mo

  3. High performance discharges and capabilities in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1996-12-01

    Alcator C-Mod is a compact, diverted, shaped, high magnetic field (B = 9 T) tokamak operating at the Massachusetts Institute of Technology Plasma Fusion Center. The machine interior is all metallic, and the walls and divertor region are covered with molybdenum tiles. The vacuum vessel is a continuous, thick wall stainless steel construction, prototypical of future fusion devices (e.g., ITER). Typical discharge cleaning utilizes ECDC, or electron-cyclotron discharge cleaning, in the steady state at low magnetic field (0.0875 T). While its dimensions are compact (R = 0.67 m, a = 0.22 m, K = 1.8), C-Mod is designed to operate up to 2.5 MA at 9.0 T magnetic field. To present date the machine has operated at currents up to 1.5 MA at B = 5.3 T, and magnetic fields up to 8.0 T at I{sub p} = 1.2 MA. Due to the high current density, line average densities of 4.0 x 10{sup 20} m{sup {minus}3} are obtained with gas fueling, and peak densities in excess of 1.0 x 10{sup 21} m{sup {minus}3} have been obtained with pellet fueling. Typical pulse lengths are up to 2.0 seconds, with a flat-top of typically 1.0 sec. Presently the device is equipped with 4.0 MW of ICRF heating power operating at 80 MHz, but this capability is being upgraded to 8.0 MW with the addition of 4.0 MW of tunable ICRF power operating at 40.80 MHz. A 20 pellet/pulse deuterium injector is operational, and a 4 pellet Li injector is also operational. To reduce the influx of metallic impurities during high power operation, recently boronization of the machine interior was begun prior to plasma discharges, this allowed plasma operation with full auxiliary power capability without excessive radiative power losses from the plasma core. 7 refs.

  4. Design of folded waveguide antenna for Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Fogelman, C.H.; Bigelow, T.S.; Carter, M.D.; Hoffman, D.J.; Riemer, B.W.; Yugo, J.J. [Oak Ridge National Lab., TN (United States); Golovato, S.N.; Bonoli, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-12-01

    The Oak Ridge National Laboratory (ORNL) ion cyclotron range of frequencies (ICRF) antenna for Alcator C-Mod is a folded waveguide (FWG) antenna designed to determine whether the FWG can serve as a high power density, ceramic-free antenna for both present heating and fast wave current drive (FWCD) applications and for future tokamaks such as the International Thermonuclear Experimental Reactor (ITER) and the Tokamak Physics Experiment (TPX). The FWG is particularly attractive because it has a low internal electric field per unit power coupled to the Plasma. This results in more power capability and has been demonstrated by 1-MW (unloaded) tests on the Radio Frequency Test Facility (RFTF). The experiment will characterize the impact of an FWG on impurity control in the presence of high power density and on central beating. The antenna is designed to withstand the tokamak environment, including high heat fluxes, high-temperature bakeout, and major disruptions, without vacuum leaks. The front face is curved to fit the plasma outline. Two front plates are fabricated for the antenna one with full-width slits at every other location between vanes and the other with alternating right and left half-width slits at every location between vanes for pi-phasing.

  5. Edge Turbulence Imaging in the Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.P. Stotler; J.L. Terry; B. LaBombard; M. Greenwald; M. Muterspaugh; C.S. Pitcher; the Alcator C-Mod Group; K. Hallatschek; R.J. Maqueda; B. Rogers; J.L. Lowrance; V.J. Mastrocola; G.F. Renda

    2001-11-26

    The 2-D radial vs. poloidal structure of edge turbulence in the Alcator C-Mod tokamak [I.H. Hutchinson, R. Boivin, P.T. Bonoli et al., Nuclear Fusion 41(2001) 1391] was measured using fast cameras and compared with 3-D numerical simulations of edge plasma turbulence. The main diagnostic is Gas Puff Imaging (GPI), in which the visible D(subscript alpha) emission from a localized D(subscript 2) gas puff is viewed along a local magnetic field line. The observed D(subscript alpha) fluctuations have a typical radial and poloidal scale of approximately 1 cm, and often have strong local maxima (''blobs'') in the scrape-off layer. The motion of this 2-D structure motion has also been measured using an ultra-fast framing camera with 12 frames taken at 250,000 frames/sec. Numerical simulations produce turbulent structures with roughly similar spatial and temporal scales and transport levels as that observed in the experiment; however, some differences are also noted, perhaps requiring diagnostic improvement and/or additional physics in the numerical model.

  6. LHCD during current ramp experiments on Alcator C-Mod

    Science.gov (United States)

    Wallace, G. M.; Poli, F.; Chilenski, M. A.; Hughes, J. W.; Mumgaard, R. T.; Scott, S. D.; Shiraiwa, S.; Wukitch, S. J.

    2017-10-01

    The lower hybrid current drive (LHCD) system on Alcator C-Mod is capable of sustaining fully non-inductive discharges for multiple current relaxation times (τcr ˜ 200 ms) at line averaged densities in the range of 5x1019 m-3. Some of these non-inductive discharges develop unstable MHD modes that can greatly reduce current drive performance, particularly in discharges with plasma current of 0.5 MA or less [1,2]. Avoiding these unstable MHD modes motivated an experiment to test if the stable current profile shape of a higher current non-inductive discharge could be achieved in a lower current discharge. Starting from a discharge at 0.8 MA, the plasma current was ramped down to 0.5 MA over 200 ms. The surface voltage of the plasma swings negative during the ramp, with the loop voltage reversal impacting the edge fast electron measurements immediately. Little change can be seen during the Ip ramp in the core fast electron measurements, indicating that the loop voltage reversal does not penetrate fully to the magnetic axis on the timescale of the current ramp. The resulting discharge did not exhibit deleterious MHD instabilities, however the existence of this one discharge does not necessarily represent a robust solution to the problem.

  7. LHCD during current ramp experiments on Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    Wallace G.M.

    2017-01-01

    Full Text Available The lower hybrid current drive (LHCD system on Alcator C-Mod is capable of sustaining fully non-inductive discharges for multiple current relaxation times (τcr ∼ 200 ms at line averaged densities in the range of 5x1019 m-3. Some of these non-inductive discharges develop unstable MHD modes that can greatly reduce current drive performance, particularly in discharges with plasma current of 0.5 MA or less [1,2]. Avoiding these unstable MHD modes motivated an experiment to test if the stable current profile shape of a higher current non-inductive discharge could be achieved in a lower current discharge. Starting from a discharge at 0.8 MA, the plasma current was ramped down to 0.5 MA over 200 ms. The surface voltage of the plasma swings negative during the ramp, with the loop voltage reversal impacting the edge fast electron measurements immediately. Little change can be seen during the Ip ramp in the core fast electron measurements, indicating that the loop voltage reversal does not penetrate fully to the magnetic axis on the timescale of the current ramp. The resulting discharge did not exhibit deleterious MHD instabilities, however the existence of this one discharge does not necessarily represent a robust solution to the problem.

  8. Mode conversion in ICRF experiments on Alcator C-Mod

    Science.gov (United States)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.

  9. Gyrokinetic Simulations of Impurity Seeded C-Mod Ohmic Plasmas

    Science.gov (United States)

    Porkolab, Miklos; Ennever, Paul; Rice, John; Rost, J. Chris; Davis, Evan; Ernst, Darin; Fiore, Catherine; Hubbard, Amanda; Hughes, Jerry; Terry, Jim; Tsujii, Naoto; Candy, Jeff; Staebler, Gary; Reinke, Matthew; Alcator C-Mod Team

    2014-10-01

    Ohmic plasmas on C-Mod were seeded with nitrogen to study the impact of dilution in the LOC (linear ohmic) and SOC (saturated ohmic) regimes. The seeding decreased ion diffusivity and caused the rotation to reverse in certain cases. TGLF, TGYRO, and global GYRO simulations were performed on these plasmas, simulating both the transport and the density fluctuations. TGYRO simulations using TGLF showed that the ion temperature profile only needed slight modification to get agreement with the heat flux, and the electron temperature profile needed almost no modification. However, when these TGYRO modified profiles were simulated with global GYRO the ion and electron fluxes were much lower than the experimental measurements and the TGLF simulated fluxes. The average of the TGYRO and experimental profiles gave ion fluxes that agreed with the experimental fluxes, and the density fluctuations agreed with PCI measurements. The electron flux from GYRO is below experimental levels, and since these plasmas have little TEM turbulence ETG simulations are being performed to make up the difference. Results will be presented. Work supported by US DOE awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  10. High confinement dissipative divertor operation on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, J.A.; LaBombard, B.; Lipschultz, B.; Pitcher, C.S.; Terry, J.L.; Boswell, C.; Gangadhara, S.; Pappas, D.; Weaver, J.; Welch, B.; Boivin, R.L.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hubbard, A.; Hutchinson, I.; Irby, J.; Marmar, E.; Mossessian, D.; Porkolab, M.; Rice, J.; Rowan, W.L.; Schilling, G.; Snipes, J.; Takase, Y.; Wolfe, S.; Wukitch, S. [Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1999-05-01

    Alcator C-Mod [I. H. Hutchinson {ital et al.}, Phys. Plasmas {bold 1}, 1511 (1994)] has operated a High-confinement-mode (H-mode) plasma together with a dissipative divertor and low core Z{sub eff}. The initially attached plasma is characterized by steady-state enhancement factor, H{sub ITER89P} [P. N. Yushmanov {ital et al.}, Nucl. Fusion {bold 30}, 1999 (1990)], of 1.9, central Z{sub eff} of 1.1, and a radiative fraction of {approximately}50{percent}. Feedback control of a nitrogen gas puff is used to increase radiative losses in both the core/edge and divertor plasmas in almost equal amounts. Simultaneously, the core plasma maintains H{sub ITER89P} of 1.6 and Z{sub eff} of 1.4 in this nearly 100{percent} radiative state. The power and particle flux to the divertor plates have been reduced to very low levels while the core plasma is relatively unchanged by the dissipative nature of the divertor. {copyright} {ital 1999 American Institute of Physics.}

  11. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  12. ICRF loading studies on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, A; Wukitch, S J; Bonoli, P; Hughes, J W; LaBombard, B; Lin, Y; Parker, R; Porkolab, M; Ram, A K [Plasma Science and Fusion Center, MIT, Cambridge MA 02139 (United States)

    2004-11-01

    Rapid changes in the loading resistance of fast wave antennas can limit high power operations of heating systems in the ion cyclotron range of frequencies (ICRF). Although novel matching techniques are being developed to reduce their effects, understanding the physics involved in these variations is of interest to guide and facilitate the design effort. We have studied the dependence of the loading resistance upon plasma parameters for the three ICRF antennas in the Alcator C-Mod tokamak. In contrast with similar studies in JET and Tore Supra, the evanescent decay term was not found to play an important role. The dominant variations could be related to changes in the shape of the electron density profiles in the propagating region. In H-mode, the loading resistance decreases as the density at the top of the pedestal is increased, and increases for higher scrape-off-layer (SOL) densities. This dependence on global plasma parameters is generally identical for the three antennas, up to a proportionality constant, while local changes in front of an individual antennas could explain the residual discrepancy. To link the observations with theory, the surface impedance at the Faraday shield was calculated by solving the wave equation in a slab geometry using experimental radial density profiles. This approach leads to a good agreement with measurements over a wide range of operating conditions in L-mode, ELM-free and EDA H-mode plasmas, and it can be interpreted qualitatively in terms of impedance transformation in the SOL region. Implications for more complex modelling approaches are also discussed.

  13. ICRF heating experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Y.; Bonoli, P.T.; Hubbard, A.; Mazurenko, A.; OShea, P.J.; Porkolab, M.; Reardon, J.; Wukitch, S.; Boivin, R. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Bombarda, F. [Associazione EURATOM-ENEA sulla Fusione, Frascati 00044 (Italy); Fiore, C.; Garnier, D.; Goetz, J.A.; Granetz, R.; Greenwald, M. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Hartmann, D. [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Hutchinson, I.H.; Irby, J.; LaBombard, B.; Lipschultz, B.; Marmar, E. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); May, M. [Department of Physics, The John Hopkins University, Baltimore, Maryland 21218 (United States); Rice, J.; Rost, J.C.; Schachter, J.; Snipes, J.A.; Stek, P.; Terry, J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Welch, B. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Wolfe, S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    Routine high power operation of the ICRF heating system (up to 3.5 MW at 80 MHz) has enabled studies of enhanced confinement modes as well as high heat flux divertor experiments in the Alcator C-Mod tokamak with toroidal magnetic fields of up to 8 T. H-mode was routinely observed when the edge temperature exceeded a threshold value. Boronization has reduced the radiated power to approximately 30{percent} of the input power, which had little effect on confinement of L-mode plasmas, but had a large impact on the performance of H-mode plasmas. It has become possible to achieve quasi-steady-state H-modes with H{approx_equal}2 and {beta}{sub N}{approx_equal}1.5 simultaneously with P{sub rad}/P{sub in}{approx_equal}0.3 and Z{sub eff}{approx_equal}1.5. PEP mode can be obtained with central ICRF heating combined with core fuelling by pellet injection. Because of the high central density, ion heating becomes the dominant heating channel during PEP mode. For direct electron heating schemes, such as heating by the mode converted ion Bernstein wave, the electron heating profile can be measured using the break-in-slope analysis of the electron temperature at rf power transitions. Mode conversion heating produced highly localized electron heating profiles, both on-axis and off-axis. Recent developments in full-wave codes have improved the agreement between the observed experimental results and the theoretically calculated power absorption profiles and power partition between ions and electrons. {copyright} {ital 1997 American Institute of Physics.}

  14. Three-dimensional Simulation of Gas Conductance Measurement Experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Stotler; B. LaBombard

    2004-06-15

    Three-dimensional Monte Carlo neutral transport simulations of gas flow through the Alcator C-Mod subdivertor yield conductances comparable to those found in dedicated experiments. All are significantly smaller than the conductance found with the previously used axisymmetric geometry. A benchmarking exercise of the code against known conductance values for gas flow through a simple pipe provides a physical basis for interpreting the comparison of the three-dimensional and experimental C-Mod conductances.

  15. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  16. Validation study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges

    Science.gov (United States)

    Sung, C.; White, A.; Howard, N.; Mikkelsen, D.; Holland, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2014-10-01

    A validation study of local gyrokinetic simulations (GYRO) near the edge region (r / a ~ 0 . 85) has been performed for two C-Mod ohmic discharges, namely one that is in the Linear Ohmic Confinement (LOC) regime and the other one in the Saturated Ohmic Confinement (SOC) regime. Comparing the simulated heat fluxes and synthetic Te fluctuations with the experiments, it is found that GYRO can reproduce the ion heat flux and the Te fluctuation level measured by the Correlation ECE (CECE) diagnostic within their uncertainties, while the simulated electron heat flux is under-predicted. Furthermore, the synthetic Te spectral shape is not matched with the measured spectrum in both LOC/SOC discharges. We have also performed global simulations to consider the interaction of turbulence within the sampling volume of the CECE diagnostic, enabling us to evaluate the importance of global simulations in applying a synthetic CECE diagnostic in this study. The LOC/SOC transition physics will be also explored. Research supported by USDoE Awards DE-SC0006419, DE-FC02-99ER54512.

  17. Comparison of electron temperature fluctuations with gyrokinetic sumulations across the ohmic energy confinement transition in Alcator C-Mod

    Science.gov (United States)

    Sung, C.; White, A.; Howard, N.; Mikkelsen, D.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Hubbard, A.; Greenwald, M.

    2013-10-01

    Long wavelength electron temperature fluctuations (kyρs < 0 . 3) near the edge (r / a ~ 0 . 85) are reduced across the ohmic confinement transition from Linear Ohmic Confinement(LOC) regime to Saturated Ohmic Confinement(SOC) regime in Alcator C-Mod. Linear stability analysis shows that the dominant mode of long wavelength turbulence near the edge is changed from Trapped Electron Mode(TEM) to Ion Temperature Gradient(ITG) mode while the dominant mode is not changed deeper in the core (r / a ~ 0 . 5). This indicates that local turbulence changes near the edge might be responsible for the change of global energy confinement in ohmic plasmas. Further study using nonlinear gyrokinetic simulations is being performed to clarify the relation between the change of local turbulence and global ohmic energy confinement. Through nonlinear gyrokinetic simulation (GYRO), we will investigate the change of fluctuating quantities (T~ , ñ , ϕ~) and their phase relations across ohmic confinement transitions, and relate them to the change of energy transport. A synthetic CECE diagnostic for C-Mod has been developed, and it will be used to validate the gyrokinetic simulations. Research supported by USDoE awards DE-SC0006419, DE-FC02-99ER54512.

  18. Theoretical analysis of mode conversion electron heating experiments in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; OShea, P.J. [MIT PSFC, Cambridge, Massachusetts 02139 (United States); Brambilla, M. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Hubbard, A.; Porkolab, M.; Takase, Y.; Wukitch, S. [MIT PSFC, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    A computer code is used for analysis of the electron heating and current drive at 80 and 40 MHz via mode converted ion Bernstein waves in the Alcator C-Mod tokamak. The results will be tested experimentally. {copyright} {ital 1997 American Institute of Physics.}

  19. Overview of experimental results and code validation activities at Alcator C-Mod

    Science.gov (United States)

    Greenwald, M.; Bader, A.; Baek, S.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bitter, M.; Bonoli, P.; Brookman, M.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Chilenski, M.; Chung, M.; Churchill, M.; Cziegler, I.; Davis, E.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Ding, W.; Dominguez, A.; Ellis, R.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fitzgerald, E.; Fredian, T.; Garcia, O. E.; Gao, C.; Garrett, M.; Golfinopoulos, T.; Granetz, R.; Groebner, R.; Harrison, S.; Harvey, R.; Hartwig, Z.; Hill, K.; Hillairet, J.; Howard, N.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I.; Irby, J.; James, A. N.; Kanojia, A.; Kasten, C.; Kesner, J.; Kessel, C.; Kube, R.; LaBombard, B.; Lau, C.; Lee, J.; Liao, K.; Lin, Y.; Lipschultz, B.; Ma, Y.; Marmar, E.; McGibbon, P.; Meneghini, O.; Mikkelsen, D.; Miller, D.; Mumgaard, R.; Murray, R.; Ochoukov, R.; Olynyk, G.; Pace, D.; Park, S.; Parker, R.; Podpaly, Y.; Porkolab, M.; Preynas, M.; Pusztai, I.; Reinke, M.; Rice, J.; Rowan, W.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Snyder, P.; Sorbom, B.; Soukhanovskii, V.; Stillerman, J.; Sugiyama, L.; Sung, C.; Terry, D.; Terry, J.; Theiler, C.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Woller, K.; Wright, G.; Wright, J.; Wukitch, S.; Wurden, G.; Xu, P.; Yang, C.; Zweben, S.

    2013-10-01

    Recent research on the Alcator C-Mod tokamak has focused on a range of scientific issues with particular emphasis on ITER needs and on detailed comparisons between experimental measurements and predictive models. Research on ICRF (ion cyclotron range of frequencies) heating emphasized the origins and mitigation of metallic impurities while work on lower hybrid current drive experiments have focused on linear and nonlinear wave interactions that limit efficiency at high densities in regimes with low single pass absorption. Experiments in core turbulence and transport focused on quantitative, multi-field comparisons between nonlinear gyro-kinetics simulations and experimental measurements of profiles, fluxes and fluctuations. Experiments into self-generated rotation observed spontaneous flow reversal at a critical density identical to the transition density between linear ohmic confinement and saturated ohmic confinement regimes. H-mode studies have measured pedestal widths consistent with kinetic-ballooning-mode-like instabilities, while the pedestal heights quantitatively match the EPED code predictions. Experiments with I-mode have increased the operating window for this promising edge-localized-mode-free regime. Extrapolation of I-mode to ITER suggests that the fusion gain Q ∼ 10 could be possible in ITER. Investigations into the physics and scaling of the power exhaust channel width in attached enhanced D-alpha H-mode and L-mode plasma showed a direct connection between the midplane pressure-folding length and the outer divertor target footprint. The width was found to scale inversely with IP, while being independent of conducted power, BT or q95 and insensitive to the scrape-off layer connection length—a behaviour that suggests critical-gradient physics sets both pressure and heat-flux profiles.

  20. Comparisons of small ELM H-Mode regimes on the Alcator C-Mod and JFT-2M tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, A E [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Kamiya, K [Japan Atomic Energy Agency, Naka-city, Ibaraki 311-0193 (Japan); Oyama, N [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Basse, N [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Biewer, T [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Edlund, E [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Hughes, J W [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Lin, L [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Porkolab, M [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Rowan, W [Fusion Research Center, University of Texas at Austin, TX (United States); Snipes, J [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Terry, J [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States); Wolfe, S M [MIT Plasma Science and Fusion Center, Cambridge MA, 02139 (United States)

    2006-05-15

    Comparisons of H-mode regimes were carried out on the Alcator C-Mod and JFT-2M tokamaks. Shapes were matched apart from aspect ratio, which is lower on C-Mod. The high recycling steady H-mode on JFT-2M and enhanced D-alpha (EDA) regime on C-Mod, both of which feature very small or no ELMs, are found to have similar access conditions in q{sub 95} - {nu}* space, occurring for pedestal collisionality {nu}* > 1. Differences in edge fluctuations were found, with lower frequencies but higher mode numbers on C-Mod. In both tokamaks an attractive regime with small ELMs on top of an enhanced D{sub {alpha}} baseline was obtained at moderate {nu}* and higher pressure. The JFT-2M shape favoured the appearance of ELMs on C-Mod and also resulted in the appearance of a lower frequency component of the quasicoherent mode during EDA.

  1. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    2010-09-24

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________

  2. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Candy, J. [General Atomics, La Jolla, California 92121 (United States); and others

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  3. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)

    Science.gov (United States)

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod

    2013-05-01

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T˜e/Te)/(n ˜e/ne), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  4. Blob sizes and velocities in the Alcator C-Mod scrape-off layer

    DEFF Research Database (Denmark)

    Kube, R.; Garcia, O.E.; LaBombard, B.

    A new blob-tracking algorithm for the GPI diagnostic installed in the outboard-midplane of Alcator C-Mod is developed. I t tracks large-amplitude fluctuations propagating through the scrape-off layer and calculates blob sizes and velocities. We compare the results of this method to a blob velocit...... scaling from a simple blob-model for sheath-connected blobs. We further present initial results from a fully three-dimensional blob model that features plasma resistivity as a free parameter....

  5. ICRF heating and current drive regimes in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.K. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Bonoli, P.T. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Hosea, J.C.; LeBlanc, B.; Majeski, R.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Porkolab, M. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Rogers, J.H.; Schilling, G. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Smithe, D.N. [Mission Research Corporation, Newington, Virginia 22122 (United States); Takase, Y. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Wilson, J.R.; Wright, J.C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Wukitch, S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    Kinetic wave models are used to evaluate a variety of heating scenarios on Alcator C-Mod. In deuterium-hydrogen plasmas heated with ICRF waves in the 40{endash}80 MHz frequency range, single pass absorption coefficients obtained with the METS95 code are compared for the hydrogen (H) minority, deuterium (D) minority, and D-H mode conversion regimes. At the highest magnetic fields available (B{sub T}{ge}8T), the feasibility of off-axis electron absorption of 40 MHz ICRF waves at the shear Alfven wave resonance layer for H majority plasmas is discussed. {copyright} {ital 1997 American Institute of Physics.}

  6. High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.

    2015-04-01

    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

  7. Influence of boronization on operation with high- Z plasma facing components in Alcator C-Mod

    Science.gov (United States)

    Lipschultz, B.; Lin, Y.; Marmar, E. S.; Whyte, D. G.; Wukitch, S.; Hutchinson, I. H.; Irby, J.; LaBombard, B.; Reinke, M. L.; Terry, J. L.; Wright, G.; Alcator C-Mod Group

    2007-06-01

    We report the results of operation of Alcator C-Mod with all high-Z molybdenum plasma facing component (PFC) surfaces. Without boron-coated PFCs energy confinement was poor (HITER,89 ∼ 1) due to high core molybdenum (nMo/ne ⩽ 0.1%) and radiation. After applying boron coatings, nMo/ne was reduced by a factor of 10-20 with HITER,89 approaching 2. Results of between-discharge boronization, localized at various major radii, point towards important molybdenum source regions being small, outside the divertor, and due to RF-sheath-rectification. Boronization also has a significant effect on the plasma startup phase lowering Zeff, radiation, and lowering the runaway electron damage. The requirement of low-Z coatings over at least a fraction of the Mo PFCs in C-Mod for best performance together with the larger than expected D retention in Mo, give impetus for further high-Z PFC investigations to better predict the performance of un-coated tungsten surfaces in ITER and beyond.

  8. Observations of edge ion heating during ICRH in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Rost, J.C.; Boivin, R.L.; Porkolab, M.; Reardon, J.C.; Takase, Y. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    Observations of edge ion tails during ICRF injection on Alcator C-Mod have been made using a toroidally and poloidally scanning charge-exchange neutral particle analyzer. The ion tails create a large flux of charge-exchange neutrals (hydrogen and deuterium), at suprathermal energies, with a short rise time ({le}0.2ms, the instrumental time resolution), but are not associated with impurity generation or loss of heating efficiency. For most values of toroidal field, there is an RF power threshold of 500kW for edge tail production, but this decreases to {lt}10kW at certain fields. A dedicated experiment was performed to map the poloidal and pitch-angle dependence of the escaping energetic neutrals as a function of RF power at a toroidal field where the edge-heating power threshold is low. The ion tails generated in this experiment are a mix of ripple-trapped, banana-trapped, and passing particles. The transport and loss mechanisms for these classes of particles are used to infer the spatial dependence of the particle heating. Evidence of Parametric Decay Instability (PDI) has been found on C-Mod using RF probes, and theoretical calculations of PDI thresholds and data from toroidal field ramps are used to find the radius at which the edge heating is occurring. {copyright} {ital 1997 American Institute of Physics.}

  9. Impact of perturbative, non-axisymmetric impurity fueling on Alcator C-Mod H-modes

    Science.gov (United States)

    Reinke, M. L.; Lore, J. D.; Terry, J.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Hubbard, A.; Hughes, J. W.; Mumgaard, R.; Pitts, R. A.

    2017-12-01

    Experiments on Alcator C-Mod have been performed to investigate the impact of toroidally localized impurity injection on H-mode exhaust scenarios. Results help to inform sub-divertor gas injector designs, in particular that of the ITER machine, for which this work was primarily undertaken. In repeated EDA H-modes, the amount of N2 injected into the private flux region was scanned up to levels which strongly impacted normalized energy confinement, H98, and led to an H/L back-transition. Repeated scans increased the toroidal peaking of the gas injection, reducing from five equally spaced locations to a single toroidal and poloidal injector. Results show the impact on the pedestal and core plasma is similar between all cases as long as the total gas injection rate is held constant. An influence on toroidally localized impurity spectroscopy is shown, demonstrating a complication in using such data in interpreting experiments and supporting boundary modeling in cases where there are localized extrinsic or intrinsic impurity sources. These results, along with prior work in this area on Alcator C-Mod, form a comprehensive set of L-mode and H-mode data to be used for validation of 3D boundary physics codes.

  10. Development of a reciprocating probe servomotor control system with real-time feedback on plasma position for the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, D.; Kuang, A. Q.; Labombard, B.; Burke, W.

    2015-11-01

    Reciprocating probe drives are one of the diagnostic workhorses in the boundary of magnetic confinement fusion experiments. The probe is scanned into an exponentially increasing heat flux, which demands a prompt and precise turn around to maintain probe integrity. A new linear servomotor controlled reciprocating drive utilizing a commercial linear servomotor and drive controller has been developed for the Alcator C-Mod tokamak. The quick response of the controller (able to apply an impulse of 50A in about 1ms) along with real-time plasma measurements from a Mirror Langmuir Probe (MLP) allows for real-time control of the probe trajectory based on plasma conditions at the probe tip. Since the primary concern for probe operation is overheating, an analog circuit has been created that computes the surface temperature of the probe from the MLP measurements. The probe can be programmed to scan into the plasma at various times and then turns around when the computed surface temperature reaches a set threshold, maximizing the scan depth into the plasma while avoiding excessive heating. Design, integration, and first measurements with this new system will be presented. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, A DOE SC User Facility.

  11. On the ρ* Scaling of Intrinsic Rotation in C-Mod Plasmas with Edge Transport Barriers

    Science.gov (United States)

    Rice, John; Hughes, Jerry; Diamond, Patrick; Cao, Norman; Chilenski, Mark; Hubbard, Amanda; Irby, James; Kosuga, Yusuke; Lin, Yijun; Reinke, Matt; Tolman, Elizabeth; Wolfe, Steve; Wukitch, Steve

    2017-10-01

    Changes in the core intrinsic toroidal rotation velocity following L- to H- and L- to I-mode transitions have been investigated in Alcator C-Mod tokamak plasmas. The magnitude of the co-current rotation increments is found to increase with the pedestal temperature gradient and q95, and to decrease with toroidal magnetic field. These results are captured quantitatively by a model of fluctuation entropy balance which gives the Mach number Mi ρ*/2 Ls/LT gradTq95/BT in an ITG turbulence dominant regime. The agreement between experiment and theory gives confidence for extrapolation to future devices in similar operational regimes. Core thermal Mach numbers of 0.07 and 0.2 are expected for ITER and ARC, respectively. DoE Contract # DE-FC02-99ER54512.

  12. Neutral particle analysis of ICRF heated discharges on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W D; Boivin, R L; Bonoli, P T; Fiore, C L; Hubbard, A; Irby, J; Nelson-Melby, E; Porkolab, M; Wukitch, S J [NW17-121 MIT-PSFC Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139 (United States)

    2003-08-01

    A neutral particle analyser (NPA) has been used to make measurements of the ion distribution in the Alcator C-Mod tokamak. We have used the analyser to measure the energy distribution of majority deuterons and minority hydrogen (up to 20 keV) at 0.4{<=}r/a{<=}0.6, during minority ion cyclotron range of frequencies (ICRF) heating. These energy spectra were also simulated by using the predicted minority ion distribution from a combined Fokker Planck ICRF code in a model for the neutral particle flux. The model predictions for neutral flux were found to be in qualitative agreement with the measured energy spectra. The energy spectra for two different ICRF antenna configurations were also measured and found to be very similar.

  13. RF current profile control studies in the alcator C-mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P. T. [MIT PSFC, Cambridge, Massachusetts 02139 (United States); Porkolab, M. [MIT PSFC, Cambridge, Massachusetts 02139 (United States); Wukitch, S. J. [MIT PSFC, Cambridge, Massachusetts 02139 (United States); Bernabei, S. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Kaita, R. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Mikkelsen, D. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Phillips, C. K. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Schilling, G. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States)

    1999-09-20

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (P{sub ICH}=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with q{sub min}{approx_equal}1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with q{sub min}(greater-or-similar sign)2 and a larger shear reversal radius. (c) 1999 American Institute of Physics.

  14. A Lower Hybrid Current Drive System for Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    S. Bernabei; J.C. Hosea; D. Loesser; J. Rushinski; J.R. Wilson; P. Bonoli; M. Grimes; R. Parker; M. Porkolab; D. Terry; P. Woskov

    2001-05-04

    A Lower Hybrid Current Drive system is being constructed jointly by Plasma Science and Fusion Center (PSFC) and Princeton Plasma Physics Laboratory (PPPL) for installation on the Alcator C-Mod tokamak, with the primary goal of driving plasma current in the outer region of the plasma. The Lower Hybrid (LH) system consists of 3 MW power at 4.6 GHz with a maximum pulse length of 5 seconds. Twelve klystrons will feed an array of 4-vertical and 24-horizontal waveguides mounted in one equatorial port. The coupler will incorporate some compact characteristics of the multijunction power splitting while retaining full control of the toroidal phase. In addition a dynamic phase control system will allow feedback stabilization of MHD modes. The desire to avoid possible waveguide breakdown and the need for compactness have resulted in some innovative technical solution which will be presented.

  15. Extension of Alcator C-Mod's ICRF experimental capability

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, G. [Princeton University Plasma Physics Laboratory, Princeton, New Jursey 08543 (United States); Hosea, J. C. [Princeton University Plasma Physics Laboratory, Princeton, New Jursey 08543 (United States); Wilson, J. R. [Princeton University Plasma Physics Laboratory, Princeton, New Jursey 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Lee, W. D. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Nelson-Melby, E. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Porkolab, M. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1999-09-20

    A new 4-strap single-ended ICRF antenna has been added to the Alcator C-Mod tokamak. PPPL designed, fabricated, and tested the antenna up to 45 kV on an rf test stand. It is capable of symmetric phasing for ICRF heating studies, and asymmetric phasing with an improved directed wave spectrum for current drive. Two new 2 MW transmitters, tunable from 40-80 MHz, allow operation in plasma at 43, 60, and 78 MHz to match a variety of toroidal fields and plasma conditions. This addition increases the total available ICRF power to 4 MW at 80 MHz plus 4 MW at 40-80 MHz. Plasma heating and current drive experiments at the extended power levels and new frequencies are planned, and initial system performance will be discussed. (c) 1999 American Institute of Physics.

  16. Comparison of detached and radiative divertor operation in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, J.A.; Kurz, C.; LaBombard, B.; Lipschultz, B.; Niemczewski, A.; McCracken, G.M.; Terry, J.L.; Boivin, R.L.; Bombarda, F.; Bonoli, P.; Fiore, C.; Golovato, S.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Hutchinson, I.; Irby, J.; Marmar, E.; Porkolab, M.; Rice, J.; Snipes, J.; Takase, Y.; Watterson, R.; Welch, B.; Wolfe, S.; Christensen, C.; Garnier, D.; Jablonski, D.; Lo, D.; Lumma, D.; May, M.; Mazurenko, A.; Nachtrieb, R.; OShea, P.; Reardon, J.; Rost, J.; Schachter, J.; Sorci, J.; Stek, P.; Umansky, M.; Wang, Y. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1996-05-01

    The divertor of the Alcator C-Mod tokamak [Phys. Plasmas {bold 1}, 1511 (1994)] routinely radiates a large fraction of the power entering the scrape-off layer. This dissipative divertor operation occurs whether the divertor is detached or not, and large volumetric radiative emissivities, up to 60 MWm{sup {minus}3} in ion cyclotron range of frequency (ICRF) heated discharges, have been measured using bolometer arrays. An analysis of both Ohmic and ICRF-heated discharges has demonstrated some of the relative merits of detached divertor operation versus high-recycling divertor operation. An advantage of detached divertor operation is that the power flux to the divertor plates is decreased even further than its already low value. Some disadvantages are that volumetric losses outside the separatrix in the divertor region are decreased, the neutral compression ratio is decreased, and the penetration efficiency of impurities increases. {copyright} {ital 1996 American Institute of Physics.}

  17. Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J. E.; Greenwald, M. J.; Podpaly, Y. A.; Reinke, M. L.; Hughes, J. W.; Howard, N. T.; Ma, Y.; Cziegler, I.; Ennever, P. C.; Ernst, D.; Fiore, C. L.; Gao, C.; Irby, J. H.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Diamond, P. H. [UCSD, La Jolla, California 92903 (United States); Duval, B. P. [CRPP, EPFL, Lausanne 1015 (Switzerland)

    2012-05-15

    Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

  18. Observation of TAEs destabilized by energetic particles in Alcator C-Mod

    Science.gov (United States)

    Sears, J.; Bader, A.; Burke, W.; Kramer, G.; Parker, R. R.; Snipes, J. A.

    2008-11-01

    Toroidicity-induced Alfv'en Eigenmodes (TAEs) are weakly damped MHD modes in toroidal plasmas. The modes occur at discrete frequencies near φTAE=vA/2qR, ( vA=B/√μ0ρ ) in a gap of the continuous spectrum of Alfv'en waves. In Alcator C-Mod L-mode plasmas with ICRF heating up to 4.5 MW, damping rates of stable TAEs have been measured to decrease from ˜5% at 2.5 MW of ICRF to ˜0.5% at 4 MW of ICRF. Unstable modes are also observed during ICRF heating at 3.5 MW and higher. Measurements of charge exchanged neutral particles indicate that the damping decreases as the population of energetic particles near the mode resonance increases. Measured TAE structure, frequency and damping rate are compared to computational results from NOVA-K.

  19. Mode conversion electron heating in Alcator C-Mod: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Brambilla, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Nelson-Melby, E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Phillips, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Porkolab, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Schilling, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Taylor, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wukitch, S. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boivin, R. L. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boswell, C. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] (and others)

    2000-05-01

    Localized electron heating [full width at half maximum of {delta}(r/a){approx_equal}0.2] by mode converted ion Bernstein waves (IBW) has been observed in the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. These experiments were performed in D({sup 3}He) plasmas at high magnetic field (B{sub 0}=7.9 T), high-plasma density (n{sub e0}{>=}1.5x10{sup 20} m{sup -3}), and for 0.05{<=}n{sub He-3}/n{sub e}{<=}0.30. Electron heating profiles of the mode converted IBW were measured using a break in slope analysis of the electron temperature versus time in the presence of rf (radio frequency) modulation. The peak position of electron heating was found to be well-correlated with {sup 3}He concentration, in agreement with the predictions of cold plasma theory. Recently, a toroidal full-wave ion cyclotron range of frequencies (ICRF) code TORIC [M. Brambilla, Nucl. Fusion 38, 1805 (1998)] was modified to include the effects of IBW electron Landau damping at (k{sub (perpendicular} {sub sign)}{rho}{sub i}){sup 2}>>1, This model was used in combination with a 1D (one-dimensional) integral wave equation code METS [D. N. Smithe et al., Radio Frequency Power in Plasmas, AIP Conf. Proc. 403 (1997), p. 367] to analyze these experiments. Model predictions were found to be in qualitative and in some instances quantitative agreement with experimental measurements. A model for mode conversion current drive (MCCD) has also been developed which combines a toroidal full wave code with an adjoint evaluation of the ICRF current drive efficiency. Predictions for off-axis MCCD in C-Mod have been made using this model and will be described. (c) 2000 American Institute of Physics.

  20. ICRF power deposition studies using ECE diagnostics on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    OShea, P.J.; Bonoli, P.; Hubbard, A.; Porkolab, M.; Takase, Y. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    ICRF provides Alcator C-Mod with up to 3.5 MW of power at 80 MHz using two double-strap antennas. By varying the magnetic field and the mix of ion species, a variety of heating regimes have been studied. To investigate electron heating regimes, mixtures of {sup 3}He and H were used in plasmas at 6.5T. Efficient ({lt}80{percent}) direct electron heating has been observed in this scenario and is attributed to mode conversion to the ion Bernstein wave (IBW). Measurements of the mode conversion power deposition using a nine channel grating polychromator (GPC) indicate that the IBW damping can be very strong, with central power densities {gt}25MW/m{sup 3} and FWHM widths of {approx}0.2a. The presence of {gt}8{percent} deuterium {open_quotes}impurity{close_quotes} in these plasmas is shown to significantly broaden the power deposition profiles. The GPC has also been used to study the heating mechanisms in the two standard C-Mod heating scenarios: D(H) and D({sup 3}He) minority heating at 5.3T and 7.9T respectively. Mode conversion can provide a significant fraction of the heating in D({sup 3}He) plasmas, with 60{percent} efficiency and profiles which are peaked well off axis (r/a{approx}0.6) at the highest {sup 3}He concentrations (n{sub 3{sub He}}/n{sub e}{approx}0.2). Data from D(H) experiments illustrate techniques to measure minority ion tails using electron temperature dynamics. In addition, evidence is presented for D(H) mode conversion heating at high hydrogen concentration. {copyright} {ital 1997 American Institute of Physics.}

  1. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  2. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    Science.gov (United States)

    Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-01

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  3. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  4. The Design and Performance of a Twenty Barrel Hydrogen Pellet Injector for Alcator C-Mod

    Science.gov (United States)

    Urbahn, John A.

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have led to a single stage, pipe gun design with twenty barrels. Pellets are formed by in-situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extensively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius. Line averaged density increases of up to 300 percent were recorded with peak densities of just under 1 times 10^ {21} / m^3, the highest achieved on C-Mod to date. A comparison is made between the ablation source function derived from tracker data with that predicted by four different variations of the neutral shield model

  5. Upgrade to the Gas Puff Imaging Diagnostic that Views Alcator C-Mod's Inboard Edge

    Science.gov (United States)

    Sierchio, J. M.; Terry, J. L.

    2012-10-01

    We describe an upgrade of Alcator C-Mod's Gas Puff Imaging system which views the inboard plasma edge and SOL along lines-of-sight that are approximately parallel to the local magnetic field. The views are arranged in a 2D (R,Z) array with ˜2.8 cm radial coverage and ˜2.4 cm poloidal coverage. 23 of 54 available views were coupled via fibers to individual interference filters and PIN photodiode detectors. We are in the process of upgrading the system in order to increase the sensitivity of the system by replacing the PIN photodiodes with a 4x8 array of Avalanche Photo-Diodes (APD). Light from 30 views is coupled to the single-chip APD array through a single interference filter. We expect an improvement in signal-to-noise ratio of more than 10x. The frequency response of the system will increase from ˜400 kHz to 1MHz. The dynamic range of the new system is manipulated by changing the high-voltages on the APDs. Test results of the detectors' channel-to-channel cross-talk, frequency response, and gain curves will be presented, along with schematics of the experimental setup. The upgraded system allows for more study of inboard edge fluctuations, including whether the quasi-coherent fluctuations observed in the outboard edge also exist inboard.

  6. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    Science.gov (United States)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  7. Comparison of measured and modeled gas-puff emissions on Alcator C-Mod

    Science.gov (United States)

    Baek, Seung-Gyou; Terry, J. L.; Stotler, D. P.; Labombard, B. L.; Brunner, D. F.

    2017-10-01

    Understanding neutral transport in tokamak boundary plasmas is important because of its possible effects on the pedestal and scrape-off layer (SOL). On Alcator C-Mod, measured neutral line emissions from externally-puffed deuterium and helium gases are compared with the synthetic results of a neutral transport code, DEGAS 2. The injected gas flow rate and the camera response are absolutely calibrated. Time-averaged SOL density and temperature profiles are input to a steady-state simulation. An updated helium atomic model is employed in DEGAS2. Good agreement is found for the D α peak brightness and profile shape. However, the measured helium I line brightness is found to be lower than that in the simulation results by a roughly a factor of three over a wide range of density particularly in the far SOL region. Two possible causes for this discrepancy are reviewed. First, local cooling due to gas puff may suppress the line emission. Second, time-dependent turbulence effect may impact the helium neutral transport. Unlike deuterium atoms that gain energy from charge exchange and dissociation processes, helium neutrals remain cold and have a relatively short mean free path, known to make them prone to turbulence based on the Kubo number criterion. Supported by USDoE awards: DE-FC02-99ER54512, DE-SC0014251, and DE-AC02-09CH11466.

  8. Design and Analysis of the Alcator C-Mod Two-Strap ICRF Antenna

    Science.gov (United States)

    Takase, Y.; Golovator, S. N.; Porkolab, M.; Bajwa, K.; Becker, H.; Caldwell, D.

    1992-01-01

    ICRF fast wave heating with up to 8 MW of rf power at 80 MHz is planned on the Alcator C-MOD tokamak (R=0.665 m, a=0.21 m, κ=1.8, B≤9 T, I≤3 MA). During the initial tokamak operation, a movable single-strap antenna will be used to ensure operational flexibility. The second ICRF antenna, which is currently under construction, has two current straps which can be driven out-of-phase to improve the heating efficiency and minimize impurity generation. The current straps are mechanically isolated from the 4` feedthroughs. The Faraday shield consists of a single layer of circular cross section rods which are slanted at 10° to horizontal to approximately align with the field line over a wide range of operating conditions. The antenna box is protected by TiC coated TZM (Molybdenum alloy) tiles arranged in a ``picture-frame'' fashion. These tiles can be replaced with tiles made of a lower Z material. Because of its larger size, the two-strap antenna must be assembled inside the vacuum chamber and attached to the wall of the vacuum vessel to support against larger disruption loads. The rf thermal loads are significantly lower for the same total power (2 MW per antenna), which allows a longer pulse (10 sec) operation.

  9. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  10. The multi-spectral line-polarization MSE system on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Scott, S. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  11. Analysis of 4-strap ICRF Antenna Performance in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    G. Schilling; S.J. Wukitch; R.L. Boivin; J.A. Goetz; J.C. Hosea; J.H. Irby; Y. Lin; A. Parisot; M. Porkolab; J.R. Wilson; the Alcator C-Mod Team

    2003-07-31

    A 4-strap ICRF antenna was designed and fabricated for plasma heating and current drive in the Alcator C-Mod tokamak. Initial upgrades were carried out in 2000 and 2001, which eliminated surface arcing between the metallic protection tiles and reduced plasma-wall interactions at the antenna front surface. A boron nitride septum was added at the antenna midplane to intersect electric fields resulting from radio-frequency sheath rectification, which eliminated antenna corner heating at high power levels. The current feeds to the radiating straps were reoriented from an E||B to E parallel B geometry, avoiding the empirically observed {approx}15 kV/cm field limit and raising antenna voltage holding capability. Further modifications were carried out in 2002 and 2003. These included changes to the antenna current strap, the boron nitride tile mounting geometry, and shielding the BN-metal interface from the plasma. The antenna heating efficiency, power, and voltage characteristics under these various configurations will be presented.

  12. Upgrades to the 4-strap ICRF Antenna in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    G. Schilling; J.C. Hosea; J.R. Wilson; W. Beck; R.L. Boivin; P.T. Bonoli; D. Gwinn; W.E. Lee; E. Nelson-Melby; M. Porkolab; R. Vieira; S.J. Wukitch; and J.A. Goetz

    2001-06-12

    A 4-strap ICRF antenna suitable for plasma heating and current drive has been designed and fabricated for the Alcator C-Mod tokamak. Initial operation in plasma was limited by high metallic impurity injection resulting from front surface arcing between protection tiles and from current straps to Faraday shields. Antenna modifications were made in February 2000, resulting in impurity reduction, but low-heating efficiency was observed when the antenna was operated in its 4-strap rather than a 2-strap configuration. Further modifications were made in July 2000, with the installation of BN plasma-facing tiles and radio- frequency bypassing of the antenna backplane edges and ends to reduce potential leakage coupling to plasma surface modes. Good heating efficiency was now observed in both heating configurations, but coupled power was limited to 2.5 MW in H-mode, 3 MW in L-mode, by plasma-wall interactions. Additional modifications were started in February 2001 and will be completed by this meeting. All the above upgrades and their effect on antenna performance will be presented.

  13. Investigation of performance limiting phenomena in a variable phase ICRF antenna in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wukitch, S J [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Boivin, R L [General Atomics, San Diego, CA 92186 (United States); Bonoli, P T [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Goetz, J A [University of Wisconsin, Madison, WI 53706 (United States); Irby, J [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Hutchinson, I [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Lin, Y [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Parisot, A [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Porkolab, M [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Marmar, E [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Schilling, G [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Wilson, J R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2004-09-01

    High power density, phased antenna operation can often be limited by antenna voltage handling and/or impurity and density production. Using a pair of two-strap antennas for comparison, the performance of a four-strap, fast wave antenna is assessed for a variety of configurations and antenna phases in Alcator C-Mod. To obtain robust voltage handling, the antenna was reconfigured to eliminate regions where the RF E-field is parallel to B or to reduce the RF E-field to <1.0 MV m{sup -1}. To limit impurity generation, BN tiles were used to replace the original Mo tiles, a BN clad septum was inserted to limit field line connection length, and BN-metal interfaces were shielded from the plasma. With these modifications, the antenna heating efficiency and impurity generation are nearly identical to those of the two-strap antennas and independent of antenna phase in L-mode discharges. This antenna has achieved 11 MW m{sup -2} in both heating and current drive phases in both L-mode and H-mode discharges.

  14. Characterization of enhanced D{alpha} high-confinement modes in Alcator {ital C}-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, M.; Boivin, R.; Bonoli, P.; Budny, R.; Fiore, C.; Goetz, J.; Granetz, R.; Hubbard, A.; Hutchinson, I.; Irby, J.; LaBombard, B.; Lin, Y.; Lipschultz, B.; Marmar, E.; Mazurenko, A.; Mossessian, D.; Sunn Pedersen, T.; Pitcher, C.S.; Porkolab, M.; Rice, J.; Rowan, W.; Snipes, J.; Schilling, G.; Takase, Y.; Terry, J.; Wolfe, S.; Weaver, J.; Welch, B.; Wukitch, S. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1999-05-01

    Regimes of high-confinement mode have been studied in the Alcator {ital C}-Mod tokamak [Hutchinson {ital et al.}, Phys. Plasmas {bold 1}, 1511 (1994)]. Plasmas with no edge localized modes (ELM-free) have been compared in detail to a new regime, enhanced D{alpha} (EDA). EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. The edge gradients in EDA seem to be relaxed by a continuous process rather than an intermittent one as is the case for standard ELMy discharges and thus do not present the first wall with large periodic heat loads. This process is probably related to fluctuations seen in the plasma edge. EDA plasmas are more likely at low plasma current (q{gt}3.7), for moderate plasma shaping, (triangularity {approximately}0.35{endash}0.55), and for high neutral pressures. As observed in soft x-ray emission, the pedestal width is found to scale with the same parameters that determine the EDA/ELM-free boundary. {copyright} {ital 1999 American Institute of Physics.}

  15. BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode

    Science.gov (United States)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  16. ICRF heating in Alcator C-Mod: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Fiore, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Greenwald, M. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Hosea, J. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey, 08543 (United States); Hubbard, A. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Hutchinson, I. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Irby, J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Nelson-Melby, E. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Marmar, E. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Phillips, C. K. [Princeton Plasma Physics Laboratory, Princeton, New Jersey, 08543 (United States)] (and others)

    1999-09-20

    Alcator C-Mod, the high field, high density, diverted, compact tokamak in the world's portfolio of high performance plasma fusion devices, is heated exclusively with ICRF auxiliary power. In this paper an overview of recent results is summarized, with particular attention given to the importance of RF operation and the flexibility afforded by different heating scenarios. Besides the routine minority heating operation, results in the mode conversion heating regime are also presented (mainly direct electron heating through mode converted ion Bernstein waves). Recent attempts at improving plasma performance by establishing internal transport barriers (ITBs) by various transient profile control techniques (the so-called Advanced Tokamak mode of operation) are also presented. Future improvements in performance afforded by the recent addition of a new 4-strap antenna and 4 MW of tunable (40-80 MHz) ICRF power are also discussed. Mode-conversion current drive (MCCD) and fast wave current drive (FWCD) will be among the many new options that will be tested with the goal of improving plasma performance. (c) 1999 American Institute of Physics.

  17. Sawtooth period changes with mode conversion current drive on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, A; Wukitch, S J; Bonoli, P; Greenwald, M; Hubbard, A; Lin, Y; Parker, R; Porkolab, M; Ram, A K; Wright, J C [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States)

    2007-03-15

    Significant changes in the sawtooth period have been observed on the Alcator C-Mod tokamak during phased ion cyclotron range of frequencies (ICRF) operation in the mode conversion regime. As the mode conversion layer was swept outwards through the q = 1 surface in D({sup 3}He) plasmas, the sawtooth period was found to increase and then decrease for counter-current drive phasing. For co-current drive and heating phasings, it was observed to decrease and then increase. With 2 MW ICRF power, the period varied from 3 to 12 ms. The observed evolution is consistent with localized current drive by mode converted waves in the vicinity of the q = 1 surface. Simulations with the full wave code TORIC indicate that the electron heating and current drive are due to mode converted ion cyclotron waves. The observed evolution for symmetric (heating) phasing is difficult to attribute to localized heating, since temperature profile stiffness prohibits large changes in the resistivity gradient at the q = 1 surface. An alternative explanation is found in TORIC simulations, which predict co-current drive for symmetric phasing due to a strong up-down asymmetry in the ICW wave field.

  18. Scaling and transport analysis of divertor conditions on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    LaBombard, B.; Goetz, J.; Kurz, C.; Jablonski, D.; Lipschultz, B.; McCracken, G.; Niemczewski, A.; Boivin, R.L.; Bombarda, F.; Christensen, C.; Fairfax, S.; Fiore, C.; Garnier, D.; Graf, M.; Golovato, S.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Hutchinson, I.; Irby, J.; Kesner, J.; Luke, T.; Marmar, E.; May, M.; O`Shea, P.; Porkolab, M.; Reardon, J.; Rice, J.; Schachter, J.; Snipes, J.; Stek, P.; Takase, Y.; Terry, J.; Tinios, G.; Watterson, R.; Welch, B.; Wolfe, S. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1995-06-01

    Detailed measurements and transport analysis of divertor conditions in Alcator C-Mod [Phys. Plasmas {bold 1}, 1511 (1994)] are presented for a range of line-averaged densities, 0.7{lt}{ital {bar n}}{sub {ital e}}{lt}2.2{times}10{sup 20} m{sup {minus}3}. Three parallel heat transport regimes are evident in the scrape-off layer: sheath-limited conduction, high-recycling divertor, and detached divertor, which can coexist in the same discharge. {ital Local} cross-field pressure gradients are found to scale simply with a {ital local} electron temperature. This scaling is consistent with classical electron parallel conduction being balanced by anomalous cross-field transport ({chi}{sub {perpendicular}}{similar_to}0.2 m{sup 2} s{sup {minus}1}) proportional to the local pressure gradient. A 60%--80% of divertor power is radiated in attached discharges, approaching 100% in detached discharges. Detachment occurs when the heat flux to the plate is low and the plasma pressure is high ({ital T}{sub {ital e}}{similar_to}5 eV). High neutral pressures in the divertor are nearly always present (1--20 mTorr), sufficient to remove parallel momentum via ion--neutral collisions.

  19. Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod

    Science.gov (United States)

    Porkolab, M.; Dorris, J.; Ennever, P.; Fiore, C.; Greenwald, M.; Hubbard, A.; Ma, Y.; Marmar, E.; Podpaly, Y.; Reinke, M. L.; Rice, J. E.; Rost, J. C.; Tsujii, N.; Ernst, D.; Candy, J.; Staebler, G. M.; Waltz, R. E.

    2012-12-01

    Transport in ohmically heated plasmas in Alcator C-Mod was studied in both the linear (LOC) and saturated (SOC) ohmic L-mode confinement regimes and the importance of turbulent transport in the region r/a = 0.5-0.8 was established. After an extensive analysis with TGLF and GYRO, it is found that using an effective impurity ion species with Zi = 8, and moderately high Zeff (2.0-5.6), in the LOC regime electron transport becomes dominant due to TEM turbulence. The key ingredient in the present results is the observation that dilution of the main ion species (deuterium) by impurity species of moderate charge state reduces dominant ITG turbulence, in contrast to the SOC regime with little, if any dilution. The turbulent spectrum measured with the phase contrast imaging (PCI) diagnostic is in qualitative agreement with predictions of a synthetic PCI diagnostic adopted to Global GYRO. The toroidal rotation in the low-density LOC regime is in the co-current direction but as the density is raised in the SOC regime the rotation reverses to the counter current drive direction. The impurity content of the plasma was measured recently and an effective Zi of 9 was deduced.

  20. First Measurements of Edge Transport Driven by the Shoelace Antenna on Alcator C-Mod

    Science.gov (United States)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W. M.; Hughes, J. W.; Brunner, D. F.; Davis, E. M.; Ennever, P. C.; Granetz, R. S.; Greenwald, M. J.; Irby, J. H.; Leccacorvi, R.; Marmar, E. S.; Parkin, W. C.; Porkolab, M.; Terry, J. L.; Vieira, R. F.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team

    2015-11-01

    The Shoelace antenna is a unique device designed to couple to the Quasi-Coherent Mode (QCM, k⊥ ~ 1 . 5 cm-1, 50 < f < 200 kHz) and Weakly-Coherent Mode (WCM, k⊥ ~ 1 . 5 cm-1, 200 < f < 500 kHz), continuous edge fluctuations that sustain high-performance confinement regimes by exhausting impurities. The antenna is used to explore whether modes like the QCM and WCM may be exploited to actively regulate edge transport. In initial experiments, the antenna excited a resonance at the QCM frequency and phase velocity, but transport measurements were unavailable. A subsequent redesign of the winding pitch allows the antenna to be field-aligned while mapping magnetically to the Mirror Langmuir Probe (MLP) on the last-closed flux surface. This has enabled the first measurements of edge transport induced by the antenna-driven fluctuation, which has been further enhanced by quadrupling the antenna source power. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE SC User Facility.

  1. Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Stotler; C.S. Pitcher; C.J. Boswell; B. LaBombard; J.L. Terry; J.D. Elder; S. Lisgo

    2002-05-07

    A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter.

  2. The high resolution video capture system on the alcator C-Mod tokamak

    Science.gov (United States)

    Allen, A. J.; Terry, J. L.; Garnier, D.; Stillerman, J. A.; Wurden, G. A.

    1997-01-01

    A new system for routine digitization of video images is presently operating on the Alcator C-Mod tokamak. The PC-based system features high resolution video capture, storage, and retrieval. The captured images are stored temporarily on the PC, but are eventually written to CD. Video is captured from one of five filtered RS-170 CCD cameras at 30 frames per second (fps) with 640×480 pixel resolution. In addition, the system can digitize the output from a filtered Kodak Ektapro EM Digital Camera which captures images at 1000 fps with 239×192 resolution. Present views of this set of cameras include a wide angle and a tangential view of the plasma, two high resolution views of gas puff capillaries embedded in the plasma facing components, and a view of ablating, high speed Li pellets. The system is being used to study (1) the structure and location of visible emissions (including MARFEs) from the main plasma and divertor, (2) asymmetries in gas puff plumes due to flows in the scrape-off layer (SOL), and (3) the tilt and cigar-shaped spatial structure of the Li pellet ablation cloud.

  3. Results from Active Excitation of Toroidal Alfvén Eigenmodes in Alcator C-Mod

    Science.gov (United States)

    Sears, J.; Burke, W.; Parker, R.; Snipes, J.; Tang, V.; Wolfe, S.; Fasoli, A.

    2006-10-01

    Toroidal Alfvén Eigenmodes (TAEs) are weakly damped MHD waves in tokamak plasmas. Interaction with fast particles such as fusion-born alphas can overcome the damping and lead to the spontaneous appearance of unstable TAEs. The Active MHD diagnostic on Alcator C-Mod is used to investigate the relationship between the TAE margin to instability and controllable plasma parameters. The diagnostic identifies the frequency response of the plasma in the TAE frequency range, fTAE=vA/4πqR. It perturbs the magnetic field with two antennas and detects the plasma response with an array of pick-up coils. The total damping rate and toroidal mode number of the TAE are extracted from a parametric model fitted to the frequency response. Particular attention is paid to signal processing techniques for minimizing uncertainty. The relationship between the TAE damping rate and ICRF heating is investigated with the aid of a neutral particle analyzer to quantify the fast ion population. Other parameters investigated for their effect on damping rate are collisionality, normalized ion gyro-radius, beta, triangularity, and the direction of the ∇B drift with respect to the x-point in diverted plasmas.

  4. Electrical Characteristics and Performance of the Alcator C-Mod Quasi-Coherent Mode Antenna System

    Science.gov (United States)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W.; Leccacorvi, R.; Vieira, R.; Zaks, J.; Davis, E. M.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S. M.; Woskov, P. P.; Wukitch, S. J.; Xu, X.; the Alcator C-Mod Team

    2011-10-01

    We have designed a new antenna for the purpose of coupling to the Quasi-Coherent Mode (QCM) and other edge fluctuations in Alcator C-Mod [see poster by B. LaBombard et al.]. A guiding principle of the design was to create a magnetic field perturbation matched in frequency (~ 100 kHz) and wave vector (k⊥ ~ 1 . 5 cm-1) to the spontaneously-occurring QCM, and with amplitude several times larger at the mode flux surface. The basic electrical and electromagnetic properties of the antenna built to meet this goal are discussed. In addition, an engineering review of the power system is provided, with a description of a discretely-variable L-style impedance matching network which provides very fine resolution in the range from 50 to 300 kHz, reflecting < 10 % power in initial bench tests. Preliminary results of the first experimental campaign are compared with supporting calculations from BOUT++ simulations. Supported by USDoE award DE-FC02-99ER54512.

  5. Active MHD Spectroscopy of Alfvén Eigenmodes on Alcator C-Mod

    Science.gov (United States)

    Sears, J.; Snipes, J.; Burke, W.; Parker, R.; Fasoli, A.

    2004-11-01

    Alfvén eigenmode resonances are excited in a variety of plasma conditions in C-Mod with two moderate-n antennas positioned above and below the outboard midplane. Power amplifiers (≈ 3 kW) sweep the driving frequency over the audio range (< 30 kHz) or over a selected ± 50 kHz range from 100 kHz to 1 MHz. Logic circuitry that calculates the center frequency of the Toroidal Alfven Eigenmode gap, f_TAE=v_A/4π qR, in real-time from BT and e measurements is being developed to enable the antennas to track f_TAE. Simultaneous in-vessel phase calibration of the pick-up coils will be used to better identify toroidal mode numbers. Shot-to-shot elongation scans do not show the dependence of damping on edge shear that was seen in results at JET. Inner wall limited plasmas with moderate outer gaps show higher damping rates than diverted plasmas with low outer gaps. Low frequency experiments below 20kHz will also be presented.

  6. Alcator C-Mod's Quasi-Coherent Mode Antenna: Experimental Results and Interpretation

    Science.gov (United States)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W.; Davis, E. M.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Terry, J. L.; Wolfe, S. M.; Woskov, P. P.; Xu, X.

    2012-10-01

    A new ``Shoelace'' antenna has been installed on Alcator C-Mod. Its goal is to interact with edge fluctuations, and particularly the quasi-coherent mode (QCM) associated with the steady-state EDA H-mode. With k=1.5 cm-1 and frequency range, 40

  7. Pedestal and confinement properties under shape and magnetic topology variation on Alcator C-Mod

    Science.gov (United States)

    Hughes, J. W.; Lipschultz, B.; Whyte, D.; Marmar, E. S.; Greenwald, M.; Hubbard, A. E.; McDermott, R. M.

    2008-11-01

    Recent work on Alcator C-Mod has examined the influence of magnetic topology and equilibrium shape on edge pedestal structure and plasma confinement. H-mode pedestal parameters show a striking sensitivity to the ion ∇B drift direction, relative to the active x-point position, with considerable variability observed when the distance between separatrices is on the order of the pedestal width (˜5mm) or less, i.e. very near double null (DN). Near DN H-modes can have improved confinement factors (H98>1) as a result of elevated pedestal temperature (Tped), with the edge regulated by benign small edge-localized modes (ELMs) or continuous modes. Such operational regimes with no large ELMs are desirable for ITER and other future devices. Discharges with L-mode-like particle confinement, yet with H98 1 and Tped 1keV, were maintained steady-state by operating with high current, strong shaping and unfavorable ∇B drift direction, while holding input power below the L-H threshold to prevent particle barrier formation. The pedestal and confinement properties of these improved ELM-free regimes will be compared to those of typical H-modes.

  8. Coastal Inlets Research Program

    Science.gov (United States)

    2015-10-30

    The Coastal Inlets Research Program (CIRP) is a R&D Program funded through the Operations & Maintenance (O&M) funding. The CIRP mission is to...transport, and vessel-induced flow and wake. In FY 2014, the Corps spent approximately $808 million in maintenance dredging of 152 million cubic...web-based tools and applications. The CIRP’s applied research and development provides quantitative and practical predictive tools and data to

  9. On the ρ ∗ scaling of intrinsic rotation in C-Mod plasmas with edge transport barriers

    Science.gov (United States)

    Rice, J. E.; Hughes, J. W.; Diamond, P. H.; Cao, N.; Chilenski, M. A.; Hubbard, A. E.; Irby, J. H.; Kosuga, Y.; Lin, Y.; Metcalf, I. W.; Reinke, M. L.; Tolman, E. A.; Victora, M. M.; Wolfe, S. M.; Wukitch, S. J.

    2017-11-01

    Changes in the core intrinsic toroidal rotation velocity following L- to H- and L- to I-mode transitions have been investigated in Alcator C-Mod tokamak plasmas. The magnitude of the co-current rotation increments is found to increase with the pedestal temperature gradient and q95 , and to decrease with toroidal magnetic field. These results are captured quantitatively by a model of fluctuation entropy balance which gives the Mach number Mi \\cong ρ _*/2 L_s/LT ∼ \

  10. Lithium pellet injection experiments on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, Darren Thomas [Univ. of California, Berkeley, CA (United States)

    1996-06-01

    A pellet enhanced performance mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (ℓp ℓ a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neoclassical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li+ emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near the n = ∞ and the n = 1 marginal stability limits.

  11. Non-local heat transport in Alcator C-Mod ohmic L-mode plasmas

    Science.gov (United States)

    Gao, C.; Rice, J. E.; Sun, H. J.; Reinke, M. L.; Howard, N. T.; Mikkelson, D.; Hubbard, A. E.; Chilenski, M. A.; Walk, J. R.; Hughes, J. W.; Ennever, P. C.; Porkolab, M.; White, A. E.; Sung, C.; Delgado-Aparicio, L.; Baek, S. G.; Rowan, W. L.; Brookman, M. W.; Greenwald, M. J.; Granetz, R. S.; Wolfe, S. W.; Marmar, E. S.; The Alcator C-Mod Team

    2014-08-01

    Non-local heat transport experiments were performed in Alcator C-Mod ohmic L-mode plasmas by inducing edge cooling with laser blow-off impurity (CaF2) injection. The non-local effect, a cooling of the edge electron temperature with a rapid rise of the central electron temperature, which contradicts the assumption of ‘local’ transport, was observed in low collisionality linear ohmic confinement (LOC) regime plasmas. Transport analysis shows this phenomenon can be explained either by a fast drop of the core diffusivity, or the sudden appearance of a heat pinch. In high collisionality saturated ohmic confinement (SOC) regime plasmas, the thermal transport becomes ‘local’: the central electron temperature drops on the energy confinement time scale in response to the edge cooling. Measurements from a high resolution imaging x-ray spectrometer show that the ion temperature has a similar behaviour as the electron temperature in response to edge cooling, and that the transition density of non-locality correlates with the rotation reversal critical density. This connection may indicate the possible connection between thermal and momentum transport, which is also linked to a transition in turbulence dominance between trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. Experiments with repetitive cold pulses in one discharge were also performed to allow Fourier analysis and to provide details of cold front propagation. These modulation experiments showed in LOC plasmas that the electron thermal transport is not purely diffusive, while in SOC the electron thermal transport is more diffusive like. Linear gyrokinetic simulations suggest the turbulence outside r/a = 0.75 changes from TEM dominance in LOC plasmas to ITG mode dominance in SOC plasmas.

  12. Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; OShea, P.; Brambilla, M.; Golovato, S.N.; Hubbard, A.E.; Porkolab, M.; Takase, Y.; Boivin, R.L.; Bombarda, F.; Christensen, C.; Fiore, C.L.; Garnier, D.; Goetz, J.; Granetz, R.; Greenwald, M.; Horne, S.F.; Hutchinson, I.H.; Irby, J.; Jablonski, D.; LaBombard, B.; Lipschultz, B.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; Nachtrieb, R.; Niemczewski, A.; Ohkawa, H.; Pappas, D.A.; Reardon, J.; Rice, J.; Rost, C.; Schachter, J.; Snipes, J.A.; Stek, P.; Takase, K.; Terry, J.; Wang, Y.; Watterson, R.L.; Welch, B.; Wolfe, S.M. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1997-05-01

    Highly localized direct electron heating [full width at half-maximum (FWHM){congruent}0.2a] via mode converted ion Bernstein waves has been observed in the Alcator C-Mod Tokamak [I. H. Hutchinson {ital et al.}, Phys. Plasmas {bold 1}, 1511 (1994)]. Electron heating at or near the plasma center (r/a{ge}0.3) has been observed in H({sup 3}He) discharges at B{sub 0}=(6.0{endash}6.5)T and n{sub e}(0){congruent}1.8{times}10{sup 20}m{sup {minus}3}. [Here, the minority ion species is indicated parenthetically.] Off-axis heating (r/a{ge}0.5) has also been observed in D({sup 3}He) plasmas at B{sub 0}=7.9T. The concentration of {sup 3}He in these experiments was in the range of n{sub 3{sub He}}/n{sub e}{congruent}(0.2{endash}0.3) and the locations of the mode conversion layer and electron heating peak could be controlled by changing the {sup 3}He concentration or toroidal magnetic field (B{sub 0}). The electron heating profiles were deduced using a rf modulation technique. Detailed comparisons with one-dimensional and toroidal full-wave models in the ion cyclotron range of frequencies have been carried out. One-dimensional full-wave code predictions were found to be in qualitative agreement with the experimental results. Toroidal full-wave calculations indicated the importance of volumetric and wave focusing effects in the interpretation of the experimental results. {copyright} {ital 1997 American Institute of Physics.}

  13. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  14. Survey of the TS-ECE Discrepancy and recent investigations in ICRF heated plasmas at Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    Reinke M. L.

    2012-09-01

    Full Text Available This paper reports on a new investigation of the long-standing, unresolved discrepancy between Thomson Scattering (TS and Electron Cyclotron Emission (ECE measurements of electron temperature in high temperature tokamak plasmas. At the Alcator C-Mod tokamak, ion cyclotron range of frequency (ICRF heating is used to produce high temperature conditions where the TS- ECE discrepancy, as observed in the past at JET and TFTR, should appear. Plasmas with Te(0 up to 8 keV are obtained using three different heating scenarios: Ion Cyclotron Resonance Heating (ICRH, ICRF mode conversion heating and a combination of the two heating methods. This is done in order to explore the hypothesis that ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases at C-Mod, we find no evidence for the type of discrepancy reported at JET and TFTR. Here we present the C-Mod results along with a summary of past work on the TS-ECE discrepancy.

  15. Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.

    2017-10-01

    Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.

  16. MRM Evaluation Research Program

    Science.gov (United States)

    Taylor, James C.

    1998-01-01

    This is an interim report on the current output of the MRM evaluation research program. During 1998 this research program has used new and existing data to create an important tool for the development and improvement of "maintenance resource management" (MRM). Thousands of surveys completed by participants in airline MRM training and/or behavior change programs have, for the first time, been consolidated into a panel of "MRM Attitudes and Opinion Profiles." These profiles can be used to compare the attitudes about decision making and communication in any given company at any stage in its MRM program with attitudes of a large sample of like employees during a similar period in their MRM involvement. This panel of comparison profiles for attitudes and opinions is a tool to help audit the effectiveness of a maintenance human factors program. The profile panel is the first of several tools envisioned for applying the information accumulating in MRM databases produced as one of the program's long range objectives.

  17. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  18. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  19. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  20. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  1. Observation of reversed shear Alfvén eigenmodes between sawtooth crashes in the Alcator C-Mod tokamak.

    Science.gov (United States)

    Edlund, E M; Porkolab, M; Kramer, G J; Lin, L; Lin, Y; Wukitch, S J

    2009-04-24

    Groups of frequency chirping modes observed between sawtooth crashes in the Alcator C-Mod tokamak are interpreted as reversed shear Alfvén eigenmodes near the q=1 surface. These modes indicate that a reversed shear q profile is generated during the relaxation phase of the sawtooth cycle. Two important parameters, q_{min} and its radial position, are deduced from comparisons of measured density fluctuations with calculations from the ideal MHD code NOVA. These studies provide valuable constraints for further modeling of the sawtooth cycle.

  2. Base Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  3. The effects of main ion dilution on turbulence and transport in Alcator C-Mod and comparisons with gyrokinetic simulations

    Science.gov (United States)

    Ennever, Paul; Porkolab, Miklos; Reink, Matthew; Rice, John; Rost, J. Chris; Davis, Evan; Ernst, Darin; Fiore, Catherine; Hubbard, Amanda; Hughes, Jerry; Terry, Jim; Tsuii, Naoto; Staebler, Gary; Candy, Jeff; the Alcator C-Mod Team

    2013-10-01

    In previous studies of C-Mod experiments with gyrokinetic codes it was found that ion turbulence and transport was reduced when the main ions were diluted by introducing low-Z impurities. In recent experiments on C-Mod, nitrogen (Z = 7) was injected into ohmic plasmas at a range of densities across the LOC-SOC transition. Experimentally it was observed that the ion thermal diffusivity decreased with nitrogen seeding, but the ion temperature gradient also increased such that the ion heat flux remained the same. It was also observed that the seeding induced a rotation reversal, similar to spontaneous reversals observed previously by lowering the density in unseeded ohmic plasmas. Simulations of these plasmas have been carried out with TGLF and non-linear GYRO. The energy transport, momentum transport, and turbulent density fluctuations simulated by these codes will be compared with experimental measurements. Work supported by US DOE awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  4. Access to high-confinement regimes on Alcator C-Mod and the complex influence of divertor geometry

    Science.gov (United States)

    Hughes, J. W.; Labombard, B.; Brunner, D.; Hubbard, A.; Terry, J.; Rice, J.; Walk, J.; Cziegler, I.; Edlund, E.; Theiler, C.

    2015-11-01

    Placement of X-points and strike points in a diverted tokamak can have a remarkable impact on plasma properties, including thermal and particle confinement. The distinctive divertor of Alcator C-Mod allows substantial variation of divertor leg length, field line attack angle and divertor baffling, allowing us to induce changes in both L-mode confinement and access to both H-mode and I-mode. With the ion ∇B drift directed toward the divertor, scanning the strike point can induce ~ 2 × reductions in H-mode power threshold, and can produce a window for I-mode operation with H98 > 1 . Detailed high-resolution measurements, spanning the last closed flux surface, provide profiles of key quantities (n, T, ϕ) and their gradients, which are of likely importance in determining whether a discharge evolves an edge transport barrier, or remains in an L-mode state. Advances in Langmuir probes have enabled characterization of both radial profiles and fast (power is approached. These data allow new tests of models for H-mode access, especially those attempting to explain the non-monotonic density dependence of the H-mode power threshold through changes in transport and/or turbulence. Supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE Office of Science User Facility.

  5. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  6. Impact of magnetic field and heating power on Er profile and fluctuations in I-mode pedestals in C-Mod

    Science.gov (United States)

    Hughes, Jerry; Wilks, T. M.; Theiler, C.; Hubbard, A. E.; Baek, S.-G.; Churchill, M.; Cziegler, I.; Edlund, E.; Rice, J.; Tolman, E.; C-Mod Team

    2017-10-01

    Cross machine comparisons of I-mode show robust stationary ELM suppressed plasmas over broad operating conditions, suggesting the potential for the regime to be utilized in future reactors. I-modes typically exhibit separation of particle and energy transport channels, often associated with the weakly coherent mode (WCM) coupled to a GAM-like fluctuation in the edge pedestal region. C-Mod I-mode pedestals are analyzed over varied magnetic fields (2.8-5.8T) and auxiliary power (1.5-4.6 MW) to determine trends in the edge radial electric field, ExB shear, rotation, and fluctuations. In a controlled power ramp, the radial electric field well increases with power before reaching its maximum before the I-H transition. With increased input power, preliminary observations show an increase in the fluctuation frequencies, followed by a frequency reversal associated with an increase in mid-spectrum fluctuations. Previous research has explored the L-I and I-H power thresholds dependence on plasma density, surface area and magnetic field, allowing us to examine pedestal ExB shear as a function of proximity to these thresholds. Work supported by the U.S. DOE under DE-FC02-99ER54512 and DE-SC0014264.

  7. Response to ""Comment on ""Magnetic topology effects on alcator c-mod scrape-off layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N [Los Alamos National Laboratory; Catto, Peter J [CAMBRIDGE

    2008-01-01

    Recent interest in the experimental study of tokamak plasma flow for different magnetic field geometries calls for theoretical understanding of the effects of tokamak magnetic topology changes on the flow. The consequences of total magnetic field reversal and/or X-point reversal on divergence-free plasma flow within magnetic flux surfaces are considered and the results are applied to interpret recent Alcator C-Mod scrape-off layer flow measurements. In his comment to that work, Aydemir asserted that poloidal plasma flow reversal is not a valid response to toroidal magnetic field reversal in an up-down symmetric tokamak, and that the toroidal plasma flow must reverse instead. We show that this assertion is wrong due to his misunderstanding of the corresponding symmetry transformation.

  8. Experimental and theoretical study of quasicoherent fluctuations in enhanced D(alpha) plasmas in the Alcator C-Mod tokamak.

    Science.gov (United States)

    Mazurenko, A; Porkolab, M; Mossessian, D; Snipes, J A; Xu, X Q; Nevins, W M

    2002-11-25

    A comparison of experimental measurements and theoretical studies of the quasicoherent (QC) mode, observed at high densities during enhanced D(alpha) (EDA) H mode in the Alcator C-Mod tokamak, are reported. The QC mode is a high frequency ( approximately 100 kHz) nearly sinusoidal fluctuation in density and magnetic field, localized in the steep density gradient ("pedestal") at the plasma edge, with typical wave numbers k(R) approximately 3-6 cm(-1), k(theta) approximately 1.3 cm(-1) (midplane). It is proposed here that the QC mode is a form of resistive ballooning mode known as the resistive X-point mode, in reasonable agreement with predictions by the BOUT (boundary-plasma turbulence) code.

  9. Negative magnetic shear modes of operation in the Alcator C-Mod tokamak near the beta limit

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; Porkolab, M.; Ramos, J.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Nevins, W. [Lawrence Livermore National Lab., CA (United States); Kessel, C. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1997-02-01

    The stability properties of non-inductively driven, reserved-shear type current profiles that may be achieved for Alcator C-Mod tokamak-like parameters (aspect ratio R/a = 3) are examined. It is found that without a conducting wall, the best stability results ({beta}{sub N} up to 3.7) are achieved for highly triangular plasmas ({delta} = 0.7) at {sub qmin} 2.2, for relatively broad pressure profiles ({sub {rho}}(0)/P{sub avg} = 2.8) and large values of r{sub min}/a ( = 0.75). For elliptical or circular cross-sectional plasmas with little triangularity, the stability limits are significantly lower ({beta}{sub Nmax} = 2.2). Finally, more-peaked pressure profiles ({rho}(0)/P{sub avg} 4.5) have lower beta limits than broader profiles. (Author).

  10. Experimental study of reversed shear Alfven eigenmodes during the current ramp in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E M; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Porkolab, M; Lin, Y; Tsujii, N; Wukitch, S J [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Lin, L, E-mail: eedlund@pppl.go [University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2010-11-15

    Experiments conducted in the Alcator C-Mod tokamak have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs during the current ramp provides a constraint on the evolution of q{sub min}, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive bounds on the adiabatic index, a measure of the plasma compressibility. This scaling places the adiabatic index at 1.40 {+-} 0.15 and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7/4.

  11. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.

    2010-08-27

    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.

  12. EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)

    2015-08-15

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.

  13. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  14. Wide-frequency range, dynamic matching network and power system for the "Shoelace" radio frequency antenna on the Alcator C-Mod tokamak.

    Science.gov (United States)

    Golfinopoulos, Theodore; LaBombard, Brian; Burke, William; Parker, Ronald R; Parkin, William; Woskov, Paul

    2014-04-01

    A wide-frequency range (50-300 kHz) power system has been implemented for use with a new RF antenna - the "Shoelace" antenna - built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

  15. Research Programs & Initiatives

    Science.gov (United States)

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  16. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  17. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  18. The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons with gyrokinetic simulations

    Science.gov (United States)

    Ennever, P.; Porkolab, M.; Candy, J.; Staebler, G.; Reinke, M. L.; Rice, J. E.; Rost, J. C.; Ernst, D.; Fiore, C.; Hughes, J.; Terry, J.

    2015-07-01

    Main ion dilution has been predicted by gyrokinetic simulations to have a significant effect on ion thermal transport in C-Mod ohmic plasmas. This effect was verified experimentally with a specific set of experiments on C-Mod in which ohmic deuterium plasmas across the linear ohmic confinement (LOC) through the saturated ohmic confinement (SOC) regimes were diluted by seeding with nitrogen gas (Z = 7) injection. The seeding was observed to increase the normalized ion temperature gradients (ITGs) by up to 30% without a corresponding increase in the gyrobohm normalized ion energy flux, indicating a change in either the stiffness or the critical ion temperature gradient associated with ITG turbulence. The seeding also reversed the direction of the intrinsic toroidal rotation in plasmas slightly above the normal intrinsic rotation reversal critical density. GYRO simulations of the seeded and unseeded plasmas show that the seeding affected both the critical gradient and the stiffness. For plasmas in the LOC regime, the dilution primarily increased the critical gradient, while for plasmas in the SOC regime the dilution primarily decreased the stiffness. At r/a = 0.8, where the experimental fluxes were above marginal stability, local GYRO predicted and experimental energy fluxes agreed, except for Qi in the SOC regime where GYRO under-predicted the experimental energy flux. At r/a = 0.6, where the experimental fluxes were close to marginally stable, local GYRO predicted ITG modes to be strongly unstable and are responsible for both Qi and Qe (with Qi > Qe), as opposed to the experiment where Qi < Qe. In contrast, global GYRO in this region predicted the ITG modes to be closer to marginal stability, and accurately predict the experimental Qi when the Ti profile is modified within experimental uncertainties. The fact that Qe is always less than Qi in the r/a = 0.6 simulations with k θ ρ s ≤ 1 indicates that high-k electron temperature gradient driven (ETG) modes must be

  19. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y. [MIT Plasma Fusion Center, Cambridge, MA (United States)

    1996-12-31

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R{sub 0} = 0.67 m, B{sub 0} {le} 9.0 T, {kappa} {le} 1.8, {delta} {le} 0.8, and 1.0 x 10{sup 20} m{sup -3} n{sub e} (0) {le} 1.0 x 10{sup 21} m{sup -3}. Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f{sub 0} = 2f{sub CH}) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f{sub 0} = f{sub CH}) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ({sup 3}He) (f{sub 0} = f{sub C{sup 3}He}) at 7.9 T in a D-({sup 3}He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-({sup 3}He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study {open_quotes}single pass{close_quotes} damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-({sup 3}He) indicates improved wave focussing and {sup 3}He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of {sup 3}He tail power to the background deuterium is also found for PEP-mode plasmas.

  20. Human Research Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Strategically, the HRP conducts research and technology development that: 1) enables the development or modification of Agency-level human health and performance...

  1. Tansmutation Research program

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  2. Surface thermocouples for measurement of pulsed heat flux in the divertor of the Alcator C-Mod tokamak.

    Science.gov (United States)

    Brunner, D; LaBombard, B

    2012-03-01

    A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of ~10 MW/m(2) over an ~1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 μm thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m(2), surface temperatures rise ~1000 °C/s, corresponding to a heat flux flowing along the local magnetic field of ~200 MW/m(2). Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.

  3. Characterization of SOL plasma flows and potentials in ICRF-heated plasmas in Alcator C-mod

    Science.gov (United States)

    Hong, R.; Wukitch, S. J.; Lin, Y.; Terry, J. L.; Cziegler, I.; Reinke, M. L.; Tynan, G. R.

    2017-10-01

    Gas-puff imaging techniques are employed to determine the far SOL region radial electric field and the plasma potential in ICRF heated discharges in the Alcator C-Mod tokamak. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced {E}× {B} flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E r are observed to increase with the toroidal magnetic field strength B φ and the ICRF power. In particular, the RF-induced E r extends from the vicinity of the ICRF antenna to the separatrix when {B}\\varphi =7.9 {{T}} and {P}{ICRF}≳ 1 {MW}. In addition, low-Z impurity seeding near the antenna is found to substantially reduce the sheath potential associated with ICRF power. The TDE techniques have also been used to revisit and estimate ICRF-induced potentials in different antenna configurations: (1) conventional toroidally aligned (TA) antenna versus field-aligned (FA) antenna; (2) FA monopole versus FA dipole. It shows that FA and TA antennas produce similar magnitude of plasma potentials, and the FA monopole induced greater potential than the FA dipole phasing. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the poloidal phase velocity.

  4. Spectral measurements of lower hybrid waves in the high-density multi-pass regime of Alcator C-Mod

    Science.gov (United States)

    Baek, Seung Gyou; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Faust, I. C.; Hubbard, A. E.; Labombard, B. L.; Porkolab, M.; Takase, Y.; Shinya, T.; Vieira, R.; Mucic, N.

    2014-10-01

    Spectral measurements of lower hybrid waves have been performed on the diverted Alcator C-Mod tokamak with an aim of identifying the root cause of the observed anomalous loss of LH current drive efficiency in the high-density multi-pass regime. A recent experiment conducted in the reversed-field configuration confirms the previously observed magnetic-configuration dependent parametric decay instabilities (PDI) in the forward-field configuration at ne ~ 1 . 1 ×1020 m-2, suggesting edge/scrape-off-layer plasmas are playing an important role in determining the PDI onset. As the plasma density is raised toward ne ~ 1 . 5 ×1020 m-2, decay spectra are observed to be dominated by PDI that are excited at the low-field-side (LFS) of the tokamak, regardless of magnetic-configuration types. While the quantification of pump depletion due to PDI needs further investigations, the measured pump peak power at the high-field-side is observed to maintain its strength up to ne ~ 1 . 5 ×1020 m-2, indicating multi-pass propagations of LH waves. This also implies that strong single-pass Landau absorption could help recover the expected current drive efficiency. A set of LH magnetic probes is being designed to further examine how much the launched parallel wavenumber spectrum is affected by nonlinear effects on the first pass from the launcher to the plasma at the LFS. Supported by DOE Award DE-FC02-99ER54512.

  5. Reduction of ion transport and turbulence via dilution with nitrogen and neon injection in C-Mod deuterium plasmas

    Science.gov (United States)

    Porkolab, M.; Ennever, P.; Baek, S. G.; Creely, A. J.; Edlund, E. M.; Hughes, J.; Rice, J. E.; Rost, J. C.; White, A. E.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team

    2016-10-01

    Recent experiments on C-Mod ohmic plasmas and gyrokinetic studies indicated that dilution of deuterium plasmas by injection of nitrogen decreased the ion diffusivity and may also alter the direction of intrinsic toroidal rotation. Simulations with TGLF and GYRO showed that dilution of deuterium ions in low density (LOC) plasmas increased the critical ion temperature gradient, while in high density (SOC) plasmas it decreased the stiffness. The density fluctuation spectrum measured in low q95 plasmas with Phase Contrast Imaging (PCI), and corroborated with spatially localized reflectometer measurements show a reduction of turbulence near r/a = 0.8 with kρs <= 1, in agreement with modeling predictions in this region where the ion turbulence is well above marginal stability. Measurements also indicate that reversal of the toroidal rotation direction near the SOC-LOC transition may depend on ion collisionality rather than that of electrons. New experiments with neon seeding, which may be more relevant to ITER than with nitrogen seeding, show similar results. The impact of dilution on Te turbulence as measured with CECE diagnostic will also be presented. Supported by US DOE Awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  6. ICRF mode conversion flow drive study with enhanced wave detection by phase contrast imaging on Alcator C-Mod

    Science.gov (United States)

    Lin, Y.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J. E.; Wukitch, S. J.

    2015-11-01

    Applying ICRF power in D(He3) plasmas has been found to drive plasma rotation in the mode conversion (MC) regime at a moderate He3 level. With the help of ICRF wave simulation, MC induced symmetry-breaking in momentum distribution is thought to be the likely cause of the observed flow drive effect. However, the detailed mechanism of how the waves generate rotation is unclear due to the involvement of three waves in the MC region: the MC ion Bernstein wave, MC ion cyclotron wave, and fast wave. Recently, the phase contrast imaging system on Alcator C-Mod has been upgraded, and it has been shown to have much higher sensitivity in detecting RF waves. Further MC flow drive experiments at 8 T will be carried out in the 2015 campaign. We will study the dependence of the rotation vs. the measured wave amplitude, k spectrum, location, and relative amplitude among the three waves. This study will shed lights on the flow drive mechanism and help assess the roles played by the different waves in the process. Supported by USDoE awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  7. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    Science.gov (United States)

    Sung, C.; White, A. E.; Howard, N. T.; Oi, C. Y.; Rice, J. E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Mikkelsen, D.; Ernst, D.; Walk, J.; Hughes, J. W.; Irby, J.; Kasten, C.; Hubbard, A. E.; Greenwald, M. J.; the Alcator C-Mod Team

    2013-08-01

    The first measurements of long wavelength (kyρs < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge.

  8. Impact of dilution of deuterium on ion thermal diffusivity and turbulence in C-Mod Ohmic plasmas

    Science.gov (United States)

    Porkolab, Miklos; Ennever, P.; Edlund, E.; Rice, J.; Rost, J. C.; Ernst, D.; Fiore, C.; Hubbard, A.; Hughes, J.; Terry, J.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team

    2015-11-01

    Past experiments on C-Mod and gyrokinetic studies indicated that dilution of the deuterium ion species decreases the ion diffusivity in Ohmically heated deuterium plasmas. Comparison of recent controlled seeding experiments to TGLF and GYRO simulations shows that main ion dilution reduces the ion transport in low density (LOC) plasmas by increasing the critical gradient, while in high density (SOC) plasmas ion dilution primarily decreased the stiffness (1). Meanwhile, there is still a deficit in the predicted electron transport in simulations that are restricted to wavenumbers kρs <= 1 . Importantly, measurements of the turbulent spectrum were also carried out with a Phase Contrast Imaging (PCI) diagnostic with a new detector array with an improved frequency response (now up to 1 MHz), and the results are in good agreement with synthetic diagnostic predictions. References: (1) Paul Ennever, Invited Talk at this meeting. Work supported by US DOE awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  9. Physics and performance of the I-mode regime over an expanded operating space on Alcator C-Mod

    Science.gov (United States)

    Hubbard, A. E.; Baek, S.-G.; Brunner, D.; Creely, A. J.; Cziegler, I.; Edlund, E.; Hughes, J. W.; LaBombard, B.; Lin, Y.; Liu, Z.; Marmar, E. S.; Reinke, M. L.; Rice, J. E.; Sorbom, B.; Sung, C.; Terry, J.; Theiler, C.; Tolman, E. A.; Walk, J. R.; White, A. E.; Whyte, D.; Wolfe, S. M.; Wukitch, S.; Xu, X. Q.; the Alcator C-Mod Team

    2017-12-01

    New results on the I-mode regime of operation on the Alcator C-Mod tokamak are reported. This ELM-free regime features high energy confinement and a steep temperature pedestal, while particle confinement remains at L-mode levels, giving stationary density and avoiding impurity accumulation. I-mode has now been obtained over nearly all of the magnetic fields and currents possible in this high field tokamak (I p 0.55-1.7 MA, B T 2.8-8 T) using a configuration with B  ×  ∇ B drift away from the X-point. Results at 8 T confirm that the L-I power threshold varies only weakly with B T, and that the power range for I-mode increases with B T; no 8 T discharges transitioned to H-mode. Parameter dependences of energy confinement are investigated. Core transport simulations are giving insight into the observed turbulence reduction, profile stiffness and confinement improvement. Pedestal models explain the observed stability to ELMs, and can simulate the observed weakly coherent mode. Conditions for I-H transitions have complex dependences on density as well as power. I-modes have now been maintained in near-DN configurations, leading to improved divertor power flux sharing. Prospects for I-mode on future fusion devices such as ITER and ARC are encouraging. Further experiments on other tokamaks are needed to improve confidence in extrapolation.

  10. A `shoelace' antenna system for direct excitation of C-Mod's quasi-coherent mode and boundary layer turbulence

    Science.gov (United States)

    Labombard, B.; Golfinopoulos, T.; Parker, R.; Burke, W.; Leccacorvi, R.; Vieira, R.; Zaks, J.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S.; Woskov, P.; Wuktich, S.

    2011-10-01

    Experiments indicate that short wavelength, drift-Alfvenic turbulence largely sets the transport levels in the plasma edge: pressure gradients in L and H-mode are `clamped' at canonical values of the MHD parameter (αMHD) ; broadband and coherent fluctuations have strong magnetic signatures, with k⊥ρs ~ 0.1 being prominent. A quasi-coherent mode (50 kHz < f < 150 kHz, 1 < k⊥ < 2 cm-1) drives particle transport in C-Mod's EDA H-modes, making them steady-state without ELMs. With the idea of exciting, controlling or otherwise exploiting this transport behavior, we are developing a novel, high k⊥ antenna system to drive drift-Alfvenic modes at the outer midplane with k⊥ ~ 1.5 cm-1. A `shoelace' style winding is placed in close proximity to the last-closed flux surface. In principle, this scheme inductively drives parallel current fluctuations that mimic intrinsic plasma fluctuations but at larger amplitude. Details of the antenna system design, its planned modes of operation and initial results will be presented. Supported by USDoE award DE-FC02-99ER54512.

  11. Effects of ICRF and/or LHCD on SOL density profiles and fluctuations in Alcator C-Mod

    Science.gov (United States)

    Lau, Cornwall; Hanson, Greg; Lin, Yijun; Wukitch, Steve; Faust, Ian; Hughes, Jerry; Labombard, Brian; Ma, Yunxing; Meneghini, Orso; Parker, Ron; Shiraiwa, Syun'ichi; Terry, Jim; Wallace, Greg; Wilgen, John

    2011-10-01

    Antenna operation and antenna-plasma interactions during RF heating and current drive are greatly influenced by the scrape-off-layer (SOL) densities. A swept-frequency X-mode reflectometer installed on Alcator C-Mod measures the SOL density profiles and fluctuations at three poloidal locations adjacent to the Lower Hybrid (LH) launcher. The application of LH power consistently decreases the density in front of the LH launcher, consistent with a ponderomotive force; the application of ICRF power also decreases the density in front of the LH launcher, which may be consistent with ICRF sheath induced convective cells. LH power also seems to strongly modify the density profile shape in the near and far SOL, especially at high line averaged densities. The reflectometer measured density profiles and preliminary results on phase fluctuation behavior will be presented and compared with measurements from other diagnostics, such as Thomson scattering and gas puff imaging diagnostic. This work is supported by U.S. DoE under awards DE-AC05-00OR22725 and DE-FC02-99ER54512.

  12. The influence of divertor geometry on access to high confinement regimes on the Alcator C-Mod tokamak

    Science.gov (United States)

    Hughes, J. W.; Labombard, B.; Hubbard, A.; Marmar, E.; Terry, J.; Rice, J.; Walk, J.; Whyte, D.; Ma, Y.; Cziegler, I.; Edlund, E.; Theiler, C.

    2014-10-01

    The placement of X-point and strike points in a diverted tokamak can have a remarkable impact on properties of the discharge, including thermal and particle confinement. The distinctive divertor of Alcator C-Mod allows us to demonstrate these effects experimentally, as we vary equilibrium shaping to obtain substantial variation of divertor leg length, field line attack angle and divertor baffling. In response to these changes, we observe differences in both L-mode confinement and access to high-confinement regimes (i.e. ELMy H-mode and I-mode). With the ion grad-B drift directed toward the divertor, scanning the strike point can induce ~2× reductions in H-mode power threshold, and can produce a window for I-mode operation with H98 > 1. Recent experiments seek to explore these effects using improved diagnostics, and to extend them to the case with ion grad-B drift directed away from the divertor. Supported by USDoE award DE-FC02-99ER54512.

  13. Research on Automatic Programming

    Science.gov (United States)

    1975-12-31

    It was not released to the general ECL user community , and in its stead several features were installed in the compiler. These included the...processes to communicate with each other in the manner specified. A technique has now been developed whereby the correctness of the specification can be...Refutation graphs and resolution theorem proving, Working paper, Harvard University, Center for Research in Computing Tecnology , TR-1-74, January 1974

  14. USDA's Plant Genome Research Program.

    Science.gov (United States)

    McCarthy, S

    1993-07-01

    Biotechnology will provide U.S. farmers with another green revolution. The United States Department of Agriculture has put together the Plant Genome Research Program as a coordinated multi-agency effort within the department to help develop the "new agriculture." The Cooperative State Research Service is managing the program's competitive research grants. Research topics include high- and low-resolution chromosomal maps; the isolation and transfer of economically important genes; and new technology developments. The Agricultural Research Service is the lead agency for the Plant Genome Research Program and coordinates data collection and information management resources for the program. Five species groups are collaborating in the database development effort for the program by defining the user needs for their species and collecting and evaluating their species data for the database. A central database for the Plant Genome Research Program is under development at the National Agricultural Library (NAL) and ultimately will contain data for as many as seventy-one different plant species. NAL will provide user access via Internet, dial-up modem, and, at a later date, a CD-ROM product.

  15. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  16. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  17. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    Science.gov (United States)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  18. The quasi-coherent signature of enhanced D{sub {alpha}} H-mode in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, J.A.; LaBombard, B.; Greenwald, M.; Hutchinson, I.H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States)

    2001-04-01

    The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced D{sub {alpha}} (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of k{sub r} approx. 1.5 cm{sup -1}, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was B-tilde{sub {theta}} approx. 5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge. (author). Letter-to-the-editor.

  19. Local gas injection as a scrape-off layer diagnostic on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, David F. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    A capillary puffing array has been installed on Alcator C-Mod which allows localized introduction of gaseous species in the scrape-off layer. This system has been utilized in experiments to elucidate both global and local properties of edge transport. Deuterium fueling and recycling impurity screening are observed to be characterized by non-dimensional screening efficiencies which are independent of the location of introduction. In contrast, the behavior of non-recycling impurities is seen to be characterized by a screening time which is dependent on puff location. The work of this thesis has focused on the use of the capillary array with a camera system which can view impurity line emission plumes formed in the region of an injection location. The ionic plumes observed extend along the magnetic field line with a comet-like asymmetry, indicative of background plasma ion flow. The flow is observed to be towards the nearest strike-point, independent of x-point location, magnetic field direction, and other plasma parameters. While the axes of the plumes are generally along the field line, deviations are seen which indicate cross-field ion drifts. A quasi-two dimensional fluid model has been constructed to use the plume shapes of the first charge state impurity ions to extract information about the local background plasma, specifically the temperature, parallel flow velocity, and radial electric field. Through comparisons of model results with those of a three dimensional Monte Carlo code, and comparisons of plume extracted parameters with scanning probe measurements, the efficacy of the model is demonstrated. Plume analysis not only leads to understandings of local edge impurity transport, but also presents a novel diagnostic technique.

  20. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  1. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    Science.gov (United States)

    Hughes, J. W.; Loarte, A.; Reinke, M. L.; Terry, J. L.; Brunner, D.; Greenwald, M.; Hubbard, A. E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S. J.

    2011-08-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H98 >= 1) in H-mode and its relation to H-mode threshold power scaling, Pth, are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above Pth. In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced Dα (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, Pnet, and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H98 near unity. As Pnet is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N2, high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4×), all while maintaining H98 ~ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of Pnet, helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that Pnet/Pth of one or greater is likely to lead to H98 >= 1 operation

  3. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  4. Human Immunodeficiency Virus Research Program

    Science.gov (United States)

    1993-11-30

    assessment of periodontal changes relative to Walter Reed Staging and CD4/CD8 counts, as well as other co-factors, such as smoking . Assessment of soft...Some commonly held concepts that have greatly influenced the course of HIV-1 vaccine research in the past and that are pertinent to this program are...criteria for reduced severity of disease and transmission potential using an integrated immunologic, virologic, and structural analysis of lymphoid tissues

  5. Cooperative IASCC Research (CIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.L. [Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Group

    1998-03-01

    Irradiation assisted stress corrosion cracking (IASCC) describes intergranular environmental cracking of material exposed to ionizing radiation. The implications of IASCC are significant, both in terms of repair and outage costs as well as the potential for cracking in components that may be extremely difficult to repair or replace. Significant advancements have been made in the understanding of IASCC. However, it is clear that major unknowns persist and must be understood and quantified before the life of a reactor component at risk from IASCC can be predicted or significantly extended. Although individual organizations are continuing to effectively address IASCC, it became apparent that a more direct form of cooperation would be more timely and efficient in addressing the technical issues. Thus in 1995 EPRI formed the Cooperative IASCC Research (CIR) Program. This is a cooperative, jointly funded effort with participants from eight countries providing financial support and technical oversight. The efforts of the CIR Program are directed at the highest priority questions in the areas of material susceptibility, water chemistry and material stress. Major research areas of the Program are: (1) evaluation of IASCC mechanisms, (2) development of methodology for predicting IASCC, and (3) quantification of irradiation effects on metallurgy, mechanics and electrochemistry. Studies to evaluate various IASCC mechanisms include work to better understand the possible roles of radiation-induced segregation (RIS), radiation microstructure, bulk and localized deformation effects, overall effects on strength and ductility, hydrogen and helium effects, and others. Experiments are being conducted to isolate individual effects and determine the relative importance of each in the overall IASCC mechanism. Screening tests will be followed by detailed testing to identify the contribution of each effect over a range of conditions. The paper describes the completed and ongoing work being

  6. Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    Science.gov (United States)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2015-08-01

    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-3He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.

  7. Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Tsujii, N., E-mail: tsujii@k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Jaeger, E. F. [XCEL Engineering, Inc., Oak Ridge, Tennessee 37830 (United States); Green, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States)

    2015-08-15

    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-{sup 3}He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.

  8. The LTX- β Research Program

    Science.gov (United States)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Hughes, P. E.; Kaita, R.; Kozub, T.; Merino, E.; Zhang, X.; Biewer, T. M.; Canik, J. M.; Elliott, D. B.; Reinke, M. L.; Bialek, J.; Hansen, C.; Jarboe, T.; Kubota, S.; Rhodes, T.; Dorf, M. A.; Rognlien, T.; Scotti, F.; Soukhanovskii, V. A.; Koel, B. E.; Donovan, D.; Maan, A.

    2017-10-01

    LTX- β, the upgrade to the Lithium Tokamak Experiment, approximately doubles the toroidal field (to 3.4 kG) and plasma current (to 150 - 175 kA) of LTX. Neutral beam injection at 20 kV, 30 A will be added in February 2018, with systems provided by Tri-Alpha Energy. A 9.3 GHz, 100 kW, short-pulse (5-10 msec) source will be available in summer 2018 for electron Bernstein wave heating. New lithium evaporation sources will allow between-shots recoating of the walls. Upgrades to the diagnostic set are intended to strengthen the research program in the critical areas of equilibrium, core transport, scrape-off layer physics, and plasma-material interactions. The LTX- β research program will combine the capability for gradient-free temperature profiles, to stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of ∇n-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the TEM include sheared flow stabilization, which can be tested on LTX- β. The goal will be to minimize anomalous transport in a low aspect ratio tokamak, which would lead to a very compact, tokamak-based fusion core. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  9. SUPRI heavy oil research program

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

    1991-12-01

    The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

  10. Global Biology Research Program: Program plan

    Science.gov (United States)

    1983-01-01

    Biological processes which play a dominant role in these cycles which transform and transfer much of this material throughout the biosphere are examined. A greater understanding of planetary biological processes as revealed by the interaction of the biota and the environment. The rationale, scope, research strategy, and research priorities of the global biology is presented.

  11. Ion cyclotron range of frequencies mode conversion electron heating in deuterium-hydrogen plasmas in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wukitch, S J [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bonoli, P T [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marmar, E [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Mossessian, D [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson-Melby, E [Centre de Recherches en Physique des Plasmas, Association EURATOM - Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Phillips, P [Fusion Research Center, University of Texas, Austin, Texas 78712 (United States); Porkolab, M [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Schilling, G [Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Wolfe, S [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wright, J [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2003-06-01

    Localized direct electron heating (EH) by mode-converted (MC) ion cyclotron range of frequencies (ICRF) waves in D(H) tokamak plasmas has been clearly observed for the first time in Alcator C-Mod. Both on- and off-axis (high field side) mode conversion EH (MCEH) have been observed. The MCEH profile was obtained from a break-in-slope analysis of electron temperature signals in the presence of radio frequency shut-off. The temperature was measured by a 32-channel high spatial resolution ({<=}7 mm) 2nd harmonic heterodyne electron cyclotron emission system. The experimental profiles were compared with the predictions from a toroidal full-wave ICRF code TORIC. Using the hydrogen concentration measured by a high-resolution optical spectrometer, TORIC predictions were shown qualitatively in agreement with the experimental results for both on- and off-axis MC cases. From the simulations, the EH from MC ion cyclotron wave and ion Bernstein wave is examined.

  12. The effects of main-ion dilution on turbulence in low q95 C-Mod ohmic plasmas, and comparisons with nonlinear GYRO

    Science.gov (United States)

    Ennever, P.; Porkolab, M.; Candy, J.; Staebler, G.; Reinke, M. L.; Rice, J. E.; Rost, J. C.; Ernst, D.; Hughes, J.; Baek, S. G.

    2016-08-01

    Recent experiments on C-mod seeding nitrogen into ohmic plasmas with q95 = 3.4 found that the seeding greatly reduced long-wavelength (ITG-scale) turbulence. The long-wavelength turbulence that was reduced by the nitrogen seeding was localized to the region of r /a ≈0.85 , where the turbulence is well above marginal stability (as evidenced by Qi/QGB≫1 ). The nonlinear gyrokinetic code GYRO was used to simulate the expected turbulence in these plasmas, and the simulated turbulent density fluctuations and turbulent energy fluxes quantitatively agreed with the experimental measurements both before and after the nitrogen seeding. Unexpectedly, the intrinsic rotation of the plasma was also found to be affected by the nitrogen seeding, in a manner apparently unrelated to a change in the electron-ion collisionality that was proposed by other experiments.

  13. Linear servomotor probe drive system with real-time self-adaptive position control for the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, D.; Kuang, A. Q.; LaBombard, B.; Burke, W.

    2017-07-01

    A new servomotor drive system has been developed for the horizontal reciprocating probe on the Alcator C-Mod tokamak. Real-time measurements of plasma temperature and density—through use of a mirror Langmuir probe bias system—combined with a commercial linear servomotor and controller enable self-adaptive position control. Probe surface temperature and its rate of change are computed in real time and used to control probe insertion depth. It is found that a universal trigger threshold can be defined in terms of these two parameters; if the probe is triggered to retract when crossing the trigger threshold, it will reach the same ultimate surface temperature, independent of velocity, acceleration, or scrape-off layer heat flux scale length. In addition to controlling the probe motion, the controller is used to monitor and control all aspects of the integrated probe drive system.

  14. University Research Initiative Research Program Summaries

    Science.gov (United States)

    1987-06-01

    stomatogastric ganglion are coupled to those in other ganglia. Another physiological system, studied by Dr. Cohen, is the lamprey spinal cord, an ideal...detailed structure of the lamprey oscillators. 103 10O4 I. ENVIRONMENTAL SCIENCE AND TECHNOLOGY Services’ Areas of Emphasis: Geosciences (ARO) Ocean...modeling and remote sensing to understand the mesoscale variability of the eastern Pacific Ocean. The principal objective of the program is to develop a

  15. Summer Prostate Cancer Research Training Program

    Science.gov (United States)

    2016-07-01

    Award Number: W81XWH-13-1-0178 TITLE: Summer Prostate Cancer Research Training Program PRINCIPAL INVESTIGATOR: David M. Lubaroff, PhD CONTRACTING...Prostate Cancer Research Training Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0178 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David M...Distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The HBCU Summer Research Training Program accepted a total of 8 students from Lincoln

  16. Chronic Disease Control Research Fellowship Program (Guatemala ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Program will recruit and mentor research fellows to study policy-relevant issues and translate the resulting knowledge into action. The program will focus initially on tobacco control research (smoking prevention, cessation), in recognition that tobacco use is the leading cause of chronic disease. However, as the program ...

  17. Sonic boom research. [computer program

    Science.gov (United States)

    Zakkay, V.; Ting, L.

    1976-01-01

    A computer program for CDC 6600 is developed for the nonlinear sonic boom analysis including the asymmetric effect of lift near the vertical plane of symmetry. The program is written in FORTRAN 4 language. This program carries out the numerical integration of the nonlinear governing equations from the input data at a finite distance from the airplane configuration at a flight altitude to yield the pressure signitude at ground. The required input data and the format for the output are described. A complete program listing and a sample calculation are given.

  18. U.S. Global Change Research Program

    Science.gov (United States)

    ... 2021: A Triennial Update, a report on the Program's progress since 2012. Read the Update Our Changing ... NASA NSF SI USAID U.S. Global Change Research Program 1800 G Street, NW, Suite 9100 Washington, D. ...

  19. Training program attracts work and health researchers

    DEFF Research Database (Denmark)

    Skakon, Janne

    2007-01-01

    to examining work disability prevention issues. An innovative program that attracts international students, the Work Disability Prevention Canadian Institutes of Health Research (CIHR) Strategic Training Program, aims to build research capacity in young researchers and to create a strong network that examines...

  20. Research Award: Innovation for Inclusive Development program

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    2011-09-12

    Research Award: Innovation for Inclusive Development program. Deadline: September 12, 2011. Note that all applications must be sent electronically. IDRC offers Research Awards annually to Canadians, permanent residents of. Canada, and citizens of developing countries pursuing master's or doctoral studies.

  1. Prostate Cancer Research Training Program

    Science.gov (United States)

    2012-05-01

    www.agep.iastate.edu SROP: http://www.grad.uiowa.edu/students/SROP The Summer Program: A welcoming summer picnic was held on the day of the...s are available for advice a nd assistance throughout the summer and the regular academic year. The faculty members are listed below as well as a

  2. Prostate Cancer Research Training Program

    Science.gov (United States)

    2017-09-01

    degradable particle technology, CpG oligonucleotides and heat shock proteins for generating sustained immunotherapeutic responses against cancer. Dr...of restaurants ranging from fast food to fine dining. Application to the Program - Application forms, distributed with this brochure...oligonucleotides and heat shock proteins for generating sustained immunotherapeutic responses against cancer. Dr. Salem’s laboratory also

  3. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  4. Design and operation of a high-heat flux, flush-mounted ‘rail’ Langmuir probe array on Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    A.Q. Kuang

    2017-08-01

    Full Text Available A poloidal array of toroidally-extended, flush-mounted ‘rail’ Langmuir probes was recently installed on Alcator C-Mod's vertical target plate divertor. The aim was to investigate if a Langmuir probe array could be designed to survive reactor-level heat fluxes and have the ability to make measurements that could be reliably interpreted under reactor-level plasma densities, neutral densities and magnetic fields. Langmuir probes are typically built to have incident field-line angles >10° to avoid interpretation issues associated with sheath expansion. However, at the high parallel heat fluxes experienced in reactor-relevant conditions such a probe would quickly overheat and melt. To mitigate both the issues of extreme heat flux and sheath expansion, each probe was designed to be flush with the divertor surface, toroidally-extended and field-aligned, giving it a ‘rail’ geometry. The flush mounted probes have proven to be exceptionally robust surviving the 2015–2016 campaign – a first for a C-Mod probe system. Examination of the probe current-voltage (I-V characteristics reveals that they are immune to sheath expansion at incident field angles down to ∼0.5°. Comparison of the flush probes to traditional proud probes shows that both measure the same electron pressure across the divertor plate. However, there are significant and systematic differences in the density, temperature and floating potential. This suggests that there is important physics, perhaps unique to conditions in a vertical-target plate divertor with small field-line attack angles, that affects the I-V characteristics and is not currently included in probe data analyses. Finally, the probe response is examined in the ‘death-ray’ regime, just near detachment. Previous work using proud probes has suggested that the ‘death-ray’ is an artefact of the probe bias. However, on flush mounted probes the ‘death-ray’ manifests itself under different conditions, which

  5. The NASA hypersonic research engine program

    Science.gov (United States)

    Rubert, Kennedy F.; Lopez, Henry J.

    1992-01-01

    An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.

  6. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  7. Developing a hospital nursing research program.

    Science.gov (United States)

    MacKay, R; Cruickshank, J; Matsuno, K

    Including nursing research as a stream in the nursing career structure in Western Australia paved the way for development of the Nursing Research Department at Sir Charles Gairdner Hospital. Over the last two years a program of research activities has been introduced to assist nurses to evaluate their practice, to critique the research and apply its results in patient care.

  8. Examining Burma's Development: A Research Fellowship Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The program's launch takes advantage of recent governance and societal changes in Burma, which have created an encouraging research environment where research can influence public policy. A sufficient supply of researchers with the capacity and means to conduct quality research is essential to exploit these new ...

  9. Examining Burma's Development: A Research Fellowship Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The program's launch takes advantage of recent governance and societal changes in Burma, which have created an encouraging research environment where research can influence ... The main objective of this competitive research fund is to support applied research in areas vital to achieving long-term food security.

  10. Prostate Cancer Research Training Program

    Science.gov (United States)

    2014-05-01

    specific interest in minimally invasive procedures, new techniques, and outcomes. Dr. Brown initiated many of the laparoscopic and robotic programs at...These include, but are not limited to, the following: Friday and Saturday Night Concert Series – Free musical concerts held each Friday and...Thursday Night Concerts in Coralville – These musical concerts, held in Morrison Park in the adjacent town of Coralville, IA, are also free and

  11. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    .... This search for natural plant enemies (insects and fungal pathogens) has led researchers to the native ranges of noxious aquatic plants, located throughout the continents of Africa, Asia, Europe, and Australia...

  12. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2014-07-01

    9:00 J. Eudy UNMC DNA Analysis Core 10:30 D . Romberger Pulmonary Disease and Research July 26 UNL 9:00 J. Morris Morrison...Celerion Corp. July 9 UNMC 9:00 J. Eudy DNA Sequencing and Analysis 10:30 K. Bayles Infectious Disease Research at UNMC...Smooth Muscle Cells Mesenchymal Cells Basement Membrane Luminal Basal E P IT H E L IA L C O M P A R T M E N T VITAMIN D

  13. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2017-04-01

    Award Number: W81XWH-12-2-0018 TITLE: NRC/AMRMC Resident Research Associateship Program PRINCIPAL INVESTIGATOR: Howard Gamble CONTRACTING...Associateship Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-2-0018 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Howard Gamble 5d. PROJECT NUMBER...final report. The productivity of these Associates is listed in the technical report. 15. SUBJECT TERMS- Associateship program , post-doc, awards 16

  14. 2016 Research Outreach Program report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kim, Yangkyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.

  15. Military Vision Research Program. Addendum

    Science.gov (United States)

    2011-08-01

    Coleraine, N.Ireland ¶ Cathedral Eye Clinic, Belfast, N.Ireland ‡ Departments of Ophthalmology and Microbiology and Immunobiology, Harvard Medical School...using a protocol that adhered to the tenets of the Declaration of Helsinki , and approved by the Schepens Eye Research Institute Human Studies Internal

  16. Relationship between frequency power spectra and intermittent, large-amplitude bursts in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.

    2017-11-01

    Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.

  17. X-ray observations of {{\\rm{K}}}_{\\beta } emission from medium Z He-like ions in C-Mod tokamak plasmas

    Science.gov (United States)

    Rice, J. E.; Rosmej, F. B.; Cao, N.; Chilenski, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Lin, Y.; Rodriguez-Fernandez, P.; Wolfe, S. M.; Wukitch, S. J.; Bitter, M.; Delgado-Aparicio, L.; Hill, K.; Reinke, M. L.

    2018-02-01

    X-ray spectra of n = 3–1 transitions in He-like ions (and satellites) from calcium, argon and chlorine have been measured in the core of Alcator C-Mod tokamak plasmas using high wavelength resolution x-ray spectrometer systems. The intensity ratio of the intercombination line y 3 (1s3p 3P1–1s2 1S0) to the resonance line w 3 (1s3p 1P1–1s2 1S0) is found to be much larger than what is expected if collisional excitation out of the ground state is considered as the only population mechanism for the upper levels. This suggests that recombination and cascades from higher levels with n ≥slant 4 are important. Modeling with the MARIA code is in good agreement with the observations, demonstrating the importance of recombination population of the upper level for y 3. The intensity ratio y 3/w 3 has been studied over a large range of core electron temperature and density, and radial position in the plasma. The observed ratio decreases with increasing T e , increases with increasing Z and is independent of n e , in agreement with modeling.

  18. Non-local heat transport, rotation reversals and up/down impurity density asymmetries in Alcator C-Mod ohmic L-mode plasmas

    Science.gov (United States)

    Rice, J. E.; Gao, C.; Reinke, M. L.; Diamond, P. H.; Howard, N. T.; Sun, H. J.; Cziegler, I.; Hubbard, A. E.; Podpaly, Y. A.; Rowan, W. L.; Terry, J. L.; Chilenski, M. A.; Delgado-Aparicio, L.; Ennever, P. C.; Ernst, D.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Marmar, E. S.; Porkolab, M.; White, A. E.; Wolfe, S. M.

    2013-03-01

    Several seemingly unrelated effects in Alcator C-Mod ohmic L-mode plasmas are shown to be closely connected: non-local heat transport, core toroidal rotation reversals, energy confinement saturation and up/down impurity density asymmetries. These phenomena all abruptly transform at a critical value of the collisionality. At low densities in the linear ohmic confinement regime, with collisionality ν* ⩽ 0.35 (evaluated inside of the q = 3/2 surface), heat transport exhibits non-local behaviour, core toroidal rotation is directed co-current, edge impurity density profiles are up/down symmetric and a turbulent feature in core density fluctuations with kθ up to 15 cm-1 (kθρs ˜ 1) is present. At high density/collisionality with saturated ohmic confinement, electron thermal transport is diffusive, core rotation is in the counter-current direction, edge impurity density profiles are up/down asymmetric and the high kθ turbulent feature is absent. The rotation reversal stagnation point (just inside of the q = 3/2 surface) coincides with the non-local electron temperature profile inversion radius. All of these observations suggest a possible unification in a model with trapped electron mode prevalence at low collisionality and ion temperature gradient mode domination at high collisionality.

  19. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    Directory of Open Access Journals (Sweden)

    Lin Y.

    2017-01-01

    Full Text Available In recent three-ion species (majority D and H plus a trace level of 3He ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC flow drive experiment in D(3He plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  20. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    Science.gov (United States)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  1. Measurements of ion cyclotron parametric decay of lower hybrid waves at the high-field side of Alcator C-Mod

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Porkolab, M.

    2013-05-01

    Ion cyclotron parametric decay instability (PDI) of lower hybrid (LH) waves is surveyed using edge Langmuir probes on the Alcator C-Mod tokamak. The measurement is carried out simultaneously at the high-field side (HFS) and low-field side (LFS) mid-plane of the tokamak, as well as in the outer divertor region. Different LH spectra are observed depending on the location of the probes and magnetic configuration in L-mode plasmas, with \\overrightarrow{B}\\times\\bigtriangledown B drift direction downward. In lower single null (LSN) plasmas, strong ion cyclotron PDI occurring at the HFS is observed for the first time. This instability is characterized by a frequency separation in sidebands corresponding to the ion cyclotron frequency (ωci) near the HFS scrape-off layer and develops with threshold-like behavior as density increases. In inner wall limited (IWL) plasmas, this HFS instability shows a higher density threshold compared with that in LSN plasmas. The pump width becomes broadened even in the absence of the sidebands. In upper single null plasmas with similar plasma parameters, ion cyclotron PDI sidebands have a frequency separation corresponding to ωci near the LFS and are weaker than those observed in the LSN and IWL plasmas. Correlation between the onset of ion cyclotron PDI and the observed loss of lower hybrid current drive efficiency (Wallace et al 2012 Phys. Plasmas 19 062505) is discussed.

  2. Edge turbulence and divertor heat flux width simulations of Alcator C-Mod discharges using an electromagnetic two-fluid model

    Science.gov (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.

    2017-11-01

    The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.

  3. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent modea)

    Science.gov (United States)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.; Burke, W.; Davis, E.; Granetz, R.; Greenwald, M.; Irby, J.; Leccacorvi, R.; Marmar, E.; Parkin, W.; Porkolab, M.; Terry, J.; Vieira, R.; Wolfe, S.

    2014-05-01

    A novel "Shoelace" antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k⊥=1.5±0.1 cm-1 and 45C-Mod, responsible for exhausting impurities in the steady-state, ELM-free Enhanced Dα H-mode. In H-mode, whether or not there is a QCM, the antenna drives coherent, field-aligned perturbations in density, ñe, and field, B˜θ, which are guided by field lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly damped (γ/ω0˜5% -10%) resonance near the natural QCM frequency. This result is significant, offering the possibility that externally driven modes may be used to enhance particle transport. In L-mode, the antenna drives only a non-resonant B˜θ response. The facts that the driven mode has the same wave number and propagation direction as the QCM, and is resonant at the QCM frequency, suggest the antenna may couple to this mode, which we have shown elsewhere to be predominantly drift-mode-like [B. LaBombard et al., Phys. Plasmas 21, 056108 (2014)].

  4. Environmental research program: FY 1987, annual report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  5. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  6. International Community-University Research Alliance Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The International Community-University Research Alliance program (ICURA) is a joint initiative of the Social Sciences and Humanities Research Council (SSHRC) and IDRC. ICURA seeks to foster innovative research, training and the creation of new knowledge in areas of importance to the social, cultural and economic ...

  7. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  8. Environmental research program. 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of the Environmental Research Program is to contribute to the understanding of the formation, mitigation, transport, transformation, and ecological effects of energy-related pollutants on the environment. The program is multidisciplinary and includes fundamental and applied research in chemistry, physics, biology, engineering, and ecology. The program undertakes research and development in efficient and environmentally benign combustion, pollution abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group investigates combustion, atmospheric processes, flue-gas chemistry, and ecological systems.

  9. GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

    2000-10-01

    The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate

  10. Increasing research literacy: the community research fellows training program.

    Science.gov (United States)

    Coats, Jacquelyn V; Stafford, Jewel D; Sanders Thompson, Vetta; Johnson Javois, Bethany; Goodman, Melody S

    2015-02-01

    The Community Research Fellows Training (CRFT) Program promotes the role of underserved populations in research by enhancing the capacity for community-based participatory research (CBPR). CRFT consists of 12 didactic training sessions and 3 experiential workshops intended to train community members in research methods and evidence-based public health. The training (a) promotes partnerships between community members and academic researchers, (b) enhances community knowledge of public health research, and (c) trains community members to become critical consumers of research. Fifty community members participated in training sessions taught by multidisciplinary faculty. Forty-five (90%) participants completed the program. Findings demonstrate that the training increased awareness of health disparities, research knowledge, and the capacity to use CBPR as a tool to address disparities. © The Author(s) 2014.

  11. Small business innovation research program solicitation

    Science.gov (United States)

    1994-01-01

    The National Aeronautics and Space Administration invites eligible small business concerns to submit Phase 1 proposals for its 1994 Small Business Innovation Research (SBIR) Program, which is described in this twelfth annual NASA SBIR Program Solicitation. The 1994 solicitation period for Phase 1 proposals begins April 4, 1994 and ends June 15, 1994. Eligible firms with research or research and development capabilities (R/R&D) in any of the listed topic and subtopic areas are encouraged to participate. Through SBIR, NASA seeks innovative concepts addressing the program needs described in the SBIR solicitation subtopics and offering commercial application potential. This document contains program background information, outlines eligibility requirements for SBIR participants, describes the three SBIR program phases, and provides the information qualified offerors need to prepare and submit responsive proposals.

  12. Program of Research in Structures and Dynamics

    Science.gov (United States)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  13. Sea Turtle Research Program Summary Report

    National Research Council Canada - National Science Library

    1997-01-01

    The USACE Sea Turtle Research Program (STRP) was conducted to minimize the risk to sea turtle populations in channels along the southeast Atlantic region of the United States from hopper-dredging activities...

  14. Structural Metadata Research in the Ears Program

    National Research Council Canada - National Science Library

    Liu, Yang; Shriberg, Elizabeth; Stolcke, Andreas; Peskin, Barbara; Ang, Jeremy; Hillard, Dustin; Ostendorf, Mari; Tomalin, Marcus; Woodland, Phil; Harper, Mary

    2005-01-01

    Both human and automatic processing of speech require recognition of more than just words. In this paper we provide a brief overview of research on structural metadata extraction in the DARPA EARS rich transcription program...

  15. Research for International Tobacco Control (RITC) : Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    . The Department for International Development (DFID), United Kingdom, is making a grant of up to £1 100 000 to IDRC to cover three years of Research for International Tobacco Control (RITC) programming between April 2005 and March ...

  16. Breast Cancer and the Environment Research Program

    Science.gov (United States)

    The Breast Cancer and the Environment Research Program supports a multidisciplinary network of scientists, clinicians, and community partners to examine the effects of environmental exposures that may predispose a woman to breast cancer throughout her life.

  17. Environmental Research Division's Data Access Program (ERDDAP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ERDDAP (the Environmental Research Division's Data Access Program) is a data server that gives you a simple, consistent way to download subsets of scientific...

  18. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  19. NASA Small Business Innovation Research program

    Science.gov (United States)

    Johnson, Harry W.

    1985-01-01

    NASA activities in the framework of the 11-agency federal Small Business Innovation Research program are outlined in tables and graphs and briefly characterized. Statistics on the program are given; the technical topics covered are listed; and the procedures involved in evaluating applications for support are discussed. A number of typical defects in proposals are indicated, and recommendations for avoiding them are provided.

  20. Research and Development Conference CIEE Program 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  1. Research Ethics with Undergraduates in Summer Research Training Programs

    Science.gov (United States)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  2. Minority International Research Training Program: Global Collaboration in Nursing Research.

    Science.gov (United States)

    McElmurry, Beverly J.; Misner, Susan J.; Buseh, Aaron G.

    2003-01-01

    The Minority International Research Training Program pairs minority nursing students with faculty mentors at international sites for short-term research. A total of 26 undergraduate, 22 graduate, and 6 postdoctoral students have participated. Challenges include recruitment, orientation, and preparation of students; identification and preparation…

  3. Lower Hybrid Wave Electric Field Vector Measurements Using Non-Perturbative Dynamic Stark Effect Optical Spectroscopy on Alcator C-Mod

    Science.gov (United States)

    Martin, E. H.

    2017-10-01

    Plasma-wave interactions near the lower hybrid (LH) wave launcher can have a major impact on driven LH current, especially in the high-density regime. To identify the relevant physics responsible for this interaction a correlated effort of experimental measurements and simulations of the LH wave electric field vector, ELH, were carried out on Alcator C-Mod using the SELHF (Stark Effect Lower Hybrid Field) diagnostic and COMSOL modeling. For a range of plasma parameters observations show that: 1) The polarization ELH resides primarily in the radial-poloidal plane and becomes increasingly poloidal for locations away and to the top of the LH launcher. 2) Saturation of the radial component of ELH is observed at an LH power density of approximately 12 MW/m2. 3) Reflectometry phase fluctuations were found to be correlated with |ELH|. These results suggest that the LH resonance cone and power spectrum may be substantially modified near the LH launcher in the high-density regime from the expected radial polarization and square root scaling of the magnitude with LH power. Simulation of the experimental data was carried out through development of a synthetic diagnostic using a full wave cold plasma COMSOL model. Density fluctuations and reflectometry measured density profiles were incorporated. Without density fluctuations, the synthetic ELH signal is dominantly in the radial direction and scales with the square root of LH power, as expected. Increasing density fluctuations in the model can cause the magnitude of ELH to decrease substantially and greatly vary the direction of ELH. The observations and results outlined above will be presented in detail and the applicability of density fluctuations as a mechanism behind the behavior of ELH will be discussed. Funded by the DOE OFES (DE-AC05-00OR22725 and DE-FC02-99ER54512).

  4. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent mode

    Energy Technology Data Exchange (ETDEWEB)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.; Burke, W.; Davis, E.; Granetz, R.; Greenwald, M.; Irby, J.; Leccacorvi, R.; Marmar, E.; Parkin, W.; Porkolab, M.; Terry, J.; Vieira, R.; Wolfe, S. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15

    A novel “Shoelace” antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k{sub ⊥}=1.5±0.1 cm{sup −1} and 45C-Mod, responsible for exhausting impurities in the steady-state, ELM-free Enhanced D{sub α} H-mode. In H-mode, whether or not there is a QCM, the antenna drives coherent, field-aligned perturbations in density, n{sup ~}{sub e}, and field, B{sup ~}{sub θ}, which are guided by field lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly damped (γ/ω{sub 0}∼5%−10%) resonance near the natural QCM frequency. This result is significant, offering the possibility that externally driven modes may be used to enhance particle transport. In L-mode, the antenna drives only a non-resonant B{sup ~}{sub θ} response. The facts that the driven mode has the same wave number and propagation direction as the QCM, and is resonant at the QCM frequency, suggest the antenna may couple to this mode, which we have shown elsewhere to be predominantly drift-mode-like [B. LaBombard et al., Phys. Plasmas 21, 056108 (2014)].

  5. Studies of turbulence and transport in Alcator C-Mod ohmic plasmas with phase contrast imaging and comparisons with gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Porkolab, M; Edlund, E M; Rost, J C; Greenwald, M; Tsujii, N [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Candy, J; Waltz, R E [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Mikkelsen, D R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Recent advances in gyrokinetic simulation have allowed for quantitative predictions of core turbulence and associated transport. However, numerical codes must be tested against experimental results in both turbulence and transport. In this paper, we present recent results from ohmic plasmas in the Alcator C-Mod tokamak using phase contrast imaging (PCI) diagnostic, which is capable of measuring density fluctuations with wave numbers up to 55 cm{sup -1}. The experiments were carried out over the range of densities covering the 'neo-Alcator' (linear confinement time scaling with density, electron transport dominates) to the 'saturated ohmic' regime. We have also simulated these plasmas with the gyrokinetic code GYRO and compared numerical predictions with experimentally measured turbulence through a synthetic PCI diagnostic method. The key role played by the ion temperature gradient (ITG) turbulence has been verified, including measurements of turbulent wave propagation in the ion diamagnetic direction. It is found that the intensity of density fluctuations increases with density, in agreement between simulation and experiments. The absolute fluctuation intensity agrees with the simulation within experimental error ({+-}60%). In the saturated ohmic regime, the simulated ion and electron thermal diffusivities also agree with experiments after varying the ion temperature gradient within experimental uncertainty. However, in the linear ohmic regime, GYRO does not agree well with experiments, showing significantly larger ion thermal transport and smaller electron thermal transport. Our study shows that although the short wavelength turbulence in the electron temperature gradient (ETG) range is unstable in the linear ohmic regime, the nonlinear simulation with k{sub {theta}}{rho}{sub s} up to 4 does not raise the electron thermal diffusivity to the experimental level, where k{sub {theta}} is the poloidal wavenumber and {rho}{sub s} is the ion

  6. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    administration and management of all MTFs, including budgetary matters, information technology, administrative policy and procedure, military medical...2013;7(12). 7. Kitchen LW, Vaughn DW, Skillman DR. Role of US military research programs in the development of US Food and Drug Administration ...that would optimally support military medical professionals who oversee and conduct DHP medical research. In response, the DHB assigned the Public

  7. Research Award: Agriculture and Food Security Program

    International Development Research Centre (IDRC) Digital Library (Canada)

    Office 2004 Test Drive User

    2015-08-06

    Research Award: Agriculture and Food Security. Program. Deadline: August 6, 2015. Please note that all applications must be submitted online. IDRC is one of the world's leaders in generating new knowledge to meet global challenges. We offer a number of research awards providing a unique opportunity to enhance ...

  8. Research Award: Agriculture and Food Security Program

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    2014-08-06

    Research Award: Agriculture and Food Security. Program. Deadline: August 6, 2014. Please note that all applications must be submitted online. IDRC is one of the world's leaders in generating new knowledge to meet global challenges. We offer a number of research awards providing a unique opportunity to enhance ...

  9. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  10. Base Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  11. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  12. Collaborative applied research programs at AITF

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Ross [Alberta Innovates Technology Futures (Canada)

    2011-07-01

    Alberta Innovates Technology Futures (AITF) is a 600 employee company created in 2010 and owned by the Alberta government; offices are located in Edmonton, Devon, Vegreville and Calgary. The purpose of this document is to present the services provided by AITF. The company provides technical support and advisory services as well as commercialization support, they provide the link between the concept stage and the commercialization stage. AITF proposes collaborative programs which can be consortia made up of a series of projects on general industry issues or joint industry projects which focus on a specific issue. During this presentation, a joint industry project, the fuels and lubricants exchange program, was presented along with several consortia such as the carbonate research program, the materials and reliability in oil sands program, and the AACI program. This presentation highlighted the work carried out by AITF to meet the needs of their clients.

  13. Overview of NRC PRA research program

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.A.; Drouin, M.T.; Ramey-Smith, A.M.; VanderMolen, M.T. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-02-01

    The NRC`s research program in probabilistic risk analysis includes a set of closely-related elements, from basic research to regulatory applications. The elements of this program are as follows: (1) Development and demonstration of methods and advanced models and tools for use by the NRC staff and others performing risk assessments; (2) Support to agency staff on risk analysis and statistics issues; (3) Reviews of risk assessments submitted by licensees in support of regulatory applications, including the IPEs and IPEEEs. Each of these elements is discussed in the paper, providing highlights of work within an element, and, where appropriate, describing important support and feedback mechanisms among elements.

  14. Environmental Research Program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.

    1995-04-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multi-disciplinary and includes fundamental research and development in efficient and environmentally-benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems.

  15. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  16. Jointly Sponsored Research Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Jointly Sponsored Research Program (JSRP) is a US Department of Energy (DOE) program funded through the Office of Fossil Energy and administered at the Morgantown Energy Technology Center. Under this program, which has been in place since Fiscal Year 1990, DOE makes approximately $2.5 million available each year to the Energy and Environmental Research Center (EERC) to fund projects that are of current interest to industry but which still involve significant risk, thus requiring some government contribution to offset the risk if the research is to move forward. The program guidelines require that at least 50% of the project funds originate from nonfederal sources. Projects funded under the JSRP often originate under a complementary base program, which funds higher-risk projects. The projects funded in Fiscal Year 1996 addressed a wide range of Fossil Energy interests, including hot-gas filters for advanced power systems; development of cleaner, more efficient processing technologies; development of environmental control technologies; development of environmental remediation and reuse technologies; development of improved analytical techniques; and development of a beneficiation technique to broaden the use of high-sulfur coal. Descriptions and status for each of the projects funded during the past fiscal year are included in Section A of this document, Statement of Technical Progress.

  17. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    Science.gov (United States)

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  18. Examining Burma's Development: A Research Fellowship Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The program's launch takes advantage of recent governance and societal changes in Burma, which have created an encouraging research environment where ... Internet et les technologies en réseau telles que la téléphonie mobile suscitent des changements économiques et sociaux dans les pays en développement.

  19. Pilot Project - National Development Research Program (Honduras ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Canada-Latin America and Caribbean Zika Virus Research Program. A new funding opportunity on Zika virus is responding to the virus outbreak and the health threat it represents for the affected populations in the hardest hit countries in Latin America and the... View moreCanada-Latin America and Caribbean Zika Virus ...

  20. Crime Laboratory Proficiency Testing Research Program.

    Science.gov (United States)

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  1. The Dental Services Research Scholars Program.

    Science.gov (United States)

    Keenan, Terrance

    1983-01-01

    A foundation program to bring research on health services and policy issues into the domain of clinical scholarship is described. The principal approach is to train young clinicians for academic careers with major responsibilities in health studies at university health sciences centers. (MSE)

  2. A Program for Outdoor Recreation Research.

    Science.gov (United States)

    National Academy of Sciences, Washington, DC.

    The categorical sections of the proposed program for outdoor recreation research are (1) principal findings and recommendations of the National Academy of Sciences, (2) the social and behavioral dimensions of outdoor recreation, (3) the economics of outdoor recreation, and (4) the operation of recreation service systems. Among the specific topics…

  3. Research and development program, fiscal year 1974

    Energy Technology Data Exchange (ETDEWEB)

    1972-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for Fiscal Year 1974 is conducted within the scope of the following categories: Effects of Radiation of Living Organisms; Molecular and Cellular Radiobiology; Land and Fresh Water Environmental Sciences; Radiological and Health Physics and Instrumentation; and Nuclear Medical Research. (ACR)

  4. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  5. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  6. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  7. Plutonium research program, fiscal year 1970

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    This report contains a compilation of unclassified plutonium programs underway in FY 1970 in the field of materials science. It includes work in ceramics, metallurgy, solid state physics and physical chemistry. Information on each of the programs is given in five sub-headings: scope of the work; technical effort in manyears; primary class of materials studied; person(s) to contact for further information; and reports and publications. All the work listed is restricted to either research or long range development and not applied or hardware-type projects.

  8. Small business innovation research: Program solicitation

    Science.gov (United States)

    1989-01-01

    This, the seventh annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the Technical Topics and Subtopics in which SBIR Phase 1 proposals are solicited in 1989. These Topics and Subtopics cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired.

  9. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  10. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  11. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  12. Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1997-01-01

    objectives were consistent with the overall program goals. Modem Technology Systems, Inc., was able to meet the SHARP Apprentices, Coordinators and Mentors during their site visits to Stennis Space Center, Ames Research Center and Dryden Flight Research Center. All three Centers had very efficient programs and adhered to SHARP's general guidelines and procedures. MTSI was able to meet the apprentices from the other Centers via satellite in July during the SHARP Video-Teleconference(ViTS). The ViTS offered the apprentices and the NASA and SHARP Coordinators the opportunity to introduce themselves. The apprentices from each Center presented topical "Cutting Edge Projects". Some of the accomplishments for the 1997 SHARP Program year included: MTSI hiring apprentices from four of the nine NASA Centers, the full utilization of the EDCATS by apprentices and NASA/SHARP Coordinators, the distribution of the SHARP Apprentice College and Scholarship Directory, a reunion with former apprentices from Langley Research Center and the development of a SHARP Recruitment Poster. MTSI developed another exciting newsletter containing graphics and articles submitted by the apprentices and the SHARP Management Team.

  13. Space Technology Research Vehicle (STRV)-2 program

    Science.gov (United States)

    Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.

    2000-11-01

    The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.

  14. Research and development program, fiscal year 1966

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1966 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Chemical Toxicity; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine program may be summarized as follows: (1) investigation of the effects of ionizing radiation on living organisms and systems of biological significance; (2) investigation of the dynamic aspects of physiological and biochemical processes in man, animals and plants and how these processes are modified by radiation and related pathological states; (3) the assessment and study of the immediate and long term consequences of the operation or detonation of nuclear devices on the fauna, and flora in man's environment and on man; (4) the development of methods of minimizing or preventing the detrimental effects of ionizing radiation; (5) research in, and development of, beneficial uses of ionizing radiation and radioactive substances in medicine and biology; (6) research in the development of new and more efficient radiation detection devices; (7) research, including field studies, as mutually agreed upon by the Commission and the University, in connection with the conduct of weapon tests and biomedical and civil effects experiments at such tests conducted at continental and overseas test sites; and (8) the conduct of training and educational activities in the biological and medical aspects of radiation and related fields.

  15. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-05-31

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in – vii – DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  16. Ocean Margins Programs, Phase I research summaries

    Energy Technology Data Exchange (ETDEWEB)

    Verity, P. [ed.

    1994-08-01

    During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

  17. Dryden Flight Research Center Chemical Pharmacy Program

    Science.gov (United States)

    Davis, Bette

    1997-01-01

    The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.

  18. Jointly Sponsored Research Program on Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by

  19. Research and development program, fiscal year 1970

    Energy Technology Data Exchange (ETDEWEB)

    1968-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for FY 1970 is conducted within the scope of the following categories: Somatic Effects of Radiation; Combating Detrimental Effects of Radiation; Molecular and Cellular Level Studies; Environmental Radiation Studies; Radiological and Health Physics and Instrumentation; Cancer Research; and Selected Beneficial Applications. The overall objectives of the Laboratory within these areas of the Biology and Medicine Program may be summarized as follows: (1) investigation of the effects of ionizing radiation on systems of biological significance and on living organisms; (2) assessment and study of the immediate and long term consequences of the environmental radioactivity on flora, fauna, and man; (3) development of beneficial uses of ionizing radiation and radioactive substances in medicine and biology; and (4) the conduct of training and educational activities in fields related to the biological and medical aspects of radiation.

  20. NASA Glenn Research Center's Hypersonic Propulsion Program

    Science.gov (United States)

    Palac, Donald T.

    1999-01-01

    NASA Glenn Research Center (GRC), as NASA's lead center for aeropropulsion, is responding to the challenge of reducing the cost of space transportation through the integration of air-breathing propulsion into launch vehicles. Air- breathing launch vehicle (ABLV) propulsion requires a marked departure from traditional propulsion applications. and stretches the technology of both rocket and air-breathing propulsion. In addition, the demands of the space launch mission require an unprecedented level of integration of propulsion and vehicle systems. GRC is responding with a program with rocket-based combined cycle (RBCC) propulsion technology as its main focus. RBCC offers the potential for simplicity, robustness, and performance that may enable low-cost single-stage-to-orbit (SSTO) transportation. Other technologies, notably turbine-based combined cycle (TBCC) propulsion, offer benefits such as increased robustness and greater mission flexibility, and are being advanced, at a slower pace, as part of GRC's program in hypersonics.

  1. Summer Research Program (1992). Graduate Student Research Program (GSRP) Reports. Volume 10. Wright Laboratory

    Science.gov (United States)

    1992-12-28

    report presents the results of work accomplished during the 8-week AFOSR summer research program at the AARA lab of Wright Patterson Air Force Base...during the 8-week AFOSR summer research pro- gram at the AARA lab of Wright Patterson Air Force Base. The goal of this work is a scheme for detecting

  2. Environmental research program. 1995 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore the nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.

  3. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  4. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  5. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  6. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications...

  7. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  8. DOE-EERC jointly sponsored research program

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  9. Research Experience in Psychiatry Residency Programs Across Canada: Current Status

    Science.gov (United States)

    Shanmugalingam, Arany; Ferreria, Sharon G; Norman, Ross M G; Vasudev, Kamini

    2014-01-01

    Objective: To determine the current status of research experience in psychiatry residency programs across Canada. Method: Coordinators of Psychiatric Education (COPE) resident representatives from all 17 psychiatry residency programs in Canada were asked to complete a survey regarding research training requirements in their programs. Results: Among the 17 COPE representatives, 15 completed the survey, representing 88% of the Canadian medical schools that have a psychiatry residency program. Among the 15 programs, 11 (73%) require residents to conduct a scholarly activity to complete residency. Some of these programs incorporated such a requirement in the past 5 years. Ten respondents (67%) reported availability of official policy and (or) guidelines on resident research requirements. Among the 11 programs that have a research requirement, 10 (91%) require residents to complete 1 scholarly activity; 1 requires completion of 2 scholarly activities. Eight (53%) residency programs reported having a separate research track. All of the programs have a research coordinator and 14 (93%) programs provide protected time to residents for conducting research. The 3 most common types of scholarly activities that qualify for the mandatory research requirement are a full independent project (10 programs), a quality improvement project (8 programs), and assisting in a faculty project (8 programs). Six programs expect their residents to present their final work in a departmental forum. None of the residency programs require publication of residents’ final work. Conclusions: The current status of the research experience during psychiatry residency in Canada is encouraging but there is heterogeneity across the programs. PMID:25565474

  10. ORD Land Research Program Mid-Cycle Review - January 2009

    Science.gov (United States)

    The purpose of the review was to evaluate progress that the Land Research Program has made since the 2005 program review and to assess the responsiveness of the Program to advice, comments, and recommendations provided by the BOSC.

  11. Program Officer | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job Summary Working as a member of one or two multi-disciplinary teams and under the guidance of a senior team member, Program Leader (PL) and/or Program Manager (PM) if applicable, the Program Officer (PO):

  12. Geothermal Research Program of the US Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, W.A.; Guffanti, M.

    1981-01-01

    The beginning of the Geothermal Research Program, its organization, objectives, fiscal history, accomplishments, and present emphasis. The projects of the Geothermal Research Program are presented along with a list of references.

  13. Transit Marketing : A Program of Research, Demonstration and Communication

    Science.gov (United States)

    1985-04-01

    This report recommends a five-year program of research, demonstration, and communication to improve the effectiveness of marketing practice in the U.S. transit industry. The program is oriented toward the development of improved market research tools...

  14. Overview of NASA's Microgravity Materials Research Program

    Science.gov (United States)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  15. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  16. 15 CFR 256.2 - The Research Associate Program.

    Science.gov (United States)

    2010-01-01

    ... ASSOCIATE PROGRAM § 256.2 The Research Associate Program. The Bureau provides its facilities, scientific competence, and technical supervision for defined scientific or technical research by a Research Associate when such research is complementary to and compatible with scientific or technical research being...

  17. INEL BNCT Research Program Annual Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1994-08-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogs that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.

  18. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  20. Center Independent Research & Developments: JPL IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative projects are sought in the areas of basic research, fundamental research, applied research, development and systems and other concept formulation studies....

  1. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  2. Annual health examination program, Ames Research Center

    Science.gov (United States)

    Hughes, L.; Ladou, J.

    1975-01-01

    A cost analysis of a low-volume multiphasic health testing program is presented. The results indicate that unit costs are similar to those of high-volume automated programs. The comparability in unit cost appears to result from the savings in personnel and space requirements of the smaller program as compared with the larger ones.

  3. Forest productivity: an integrated research and development program

    Science.gov (United States)

    Daniel C. Dey; Thomas R. Crow; Don E. Riemenschneider

    2003-01-01

    In 2000, the North Central Research Station initiated the Forest Productivity Integrated Research Program (North Central Research Station 2001). This program combines the efforts of scientists from across the Station's 13 research work units to examine the current condition of the forests in the North Central Region and their prospects for producing wood and fiber...

  4. Integrating research and education into clinical practice: the multi-organ transplant student research training program.

    Science.gov (United States)

    Famure, Olusegun; Li, Anna; Ross, Heather; Kim, S Joseph

    2012-01-01

    Given the increased student interest in health research and the need to implement health research initiatives, the Multi-Organ Transplant Student Research Training Program provides student trainees with the opportunity to contribute to health research initiatives in transplant care. Program quality initiatives achieved include the development of a clinical research database, knowledge exchange, performance measurement tools, and health research projects. The program promotes collaboration between academic and healthcare institutions to integrate research and education into clinical practice.

  5. DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Echol E. Cook, Ph.D., PE.

    1998-11-01

    During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The Spin

  6. OVERVIEW OF THE INTRAMURAL RISK MANAGEMENT RESEARCH PROGRAM

    Science.gov (United States)

    This presentation will provide a summary of the risk management portion of ORD's endocrine disrupting chemicals (EDCs) research program, including its motivation, goals, planning efforts and resulting research areas.In an emerging research area like EDCs, risk management ...

  7. Ecological Research Division Theoretical Ecology Program. [Contains abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

  8. Program of Research and Education in Aerospace Structures

    Science.gov (United States)

    Whitesides, John L.; Johansen, Laurie W.

    2005-01-01

    Since its inception in January 2003, the program has provided support for 1 research professor and a total of 10 Graduate Research Scholar Assistants of these all 10 have completed their MS degree program. The program has generated 10 MS thesis. Final report lists papers presented in seminars for the period January 1, 2003 through June 30, 2005.

  9. Heavy Truck Clean Diesel Cooperative Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  10. Decontamination Systems Information and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Echol E; Beatty, Tia Maria

    1998-07-01

    The following paragraphs comprise the research efforts during the second quarter of 1998 (April 1 - June 30.) These tasks have been granted a continuation until the end of August 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final draft technical reports will be the next submission. During this period, work was completed on the Injection and Circulation of Potable Water Through PVDs on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data has been evaluated and representative graphs are presented. The plot of Cumulative Injected Volume vs. Cumulative Week Time show the ability to consistently inject through the two center PVDs at a rate of approximately ten (10) gallons per hour. This injection rate was achieved under a static head that varied from five (5) feet to three (3) feet. The plot of Extracted Flow Rate vs. Cumulative Week Time compares the extraction rate with and without the injection of water. The injection operation was continuous for eight hour periods while the extraction operation was executed over a pulsing schedule. Extraction rates as high as forty-five (45) gallons per hour were achieved in conjunction with injection (a 350% increase over no injection.) The retrieved TCE in the liquid phase varied to a considerable degree depending on the pulsing scheme, indicating a significant amount of stripping (volatilization) took place during the extraction process. A field experiment was conducted to confirm this. A liquid sample was obtained using the same vacuum system used in the pad operation and a second liquid sample was taken by a bailer. Analyzation of TCE concentration showed 99.5% volatilization when the vacuum system was used for extraction. This was also confirmed by data from the air monitoring program which indicated that 92%-99% of the retrieved TCE was being

  11. Summer Undergraduate Breast Cancer Research Program

    National Research Council Canada - National Science Library

    Folk, William

    2002-01-01

    .... These students participated in faculty-mentored research projects for eight weeks and participated in seminars, brown-bag lunches, and specialty discussion on research, clinical trials, career...

  12. Programs | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    We help bring ideas to life. Our development programs support innovative solutions that improve global access to food, jobs, health, and technologies for growth. At IDRC, we have learned that the greatest benefit comes from focusing our investments to deliver large-scale impact. Our programs seek answers that drive ...

  13. Office of Naval Research Graduate Fellowship Program

    Science.gov (United States)

    1994-07-29

    202)986-8500 0 Fax: (202)265-8504 April 15, 1993 MEMORANDUM To: Bursar’s Office From: Jeffrey P. Jarosz, Program Mananger , Projects Department Subject...Best of luck in your studies and career, and keep in touch! Yours truly, Jeffrey P. Jarosz Program Mananger Projects Department PS One other thing

  14. Programs and Research Advisor | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Analysis of trends and policy developments in the Sub-Saharan African Region in order to support IDRC's strategic plan and programming by: collating various information and data relevant to IDRC programs in the region through consultation of print and electronic sources and internal and external network of contacts; ...

  15. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies. (ACR)

  16. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health

    National Research Council Canada - National Science Library

    Landrigan, Philip J; Wright, Robert O; Cordero, Jose F; Eaton, David L; Goldstein, Bernard D; Hennig, Bernhard; Maier, Raina M; Ozonoff, David M; Smith, Martyn T; Tukey, Robert H

    2015-01-01

    The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites...

  17. ORD Clean Air Research Program Review and Response

    Science.gov (United States)

    The objective of this review was to evaluate the relevance, quality, performance, scientific and managerial leadership, and outcomes of the Program and provide guidance and recommendations as to the progress and directions of the Clean Air Research Program

  18. Program of Research for Forests and Associated Rangelands

    Science.gov (United States)

    Nelson S. Loftus; Joseph G. Massey; [Compilers

    1978-01-01

    This research plan for the Southern Region is a companion publication to the National Program of Research for Forests and Associated Rangelands. While the national program reflects both regional and national priorities, this plan provides details on forestry research matters concerning the South. For the reader's convenience, background information on development...

  19. DFID-IDRC Global Adaptation Research Program | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Global Adaptation Research Program (now known as the Collaborative Adaptation Research Initiative in Africa and Asia or CARIAA) is a new partnership between IDRC and the UK's Department for International Development. This program of research on adaptation to climate change represents a joint investment of ...

  20. Situated Research Design and Methodological Choices in Formative Program Evaluation

    Science.gov (United States)

    Supovitz, Jonathan

    2013-01-01

    Design-based implementation research offers the opportunity to rethink the relationships between intervention, research, and situation to better attune research and evaluation to the program development process. Using a heuristic called the intervention development curve, I describe the rough trajectory that programs typically follow as they…

  1. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... interpreting the results of scientific and engineering research on water-resources problems. (10) Providing... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM...

  2. Advanced Pediatric Brain Imaging Research and Training Program

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging Research and Training Program PRINCIPAL INVESTIGATOR: Catherine...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH-11-2-0198 5c. PROGRAM ...13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of our BRAIN training program over the past year of the project is to successfully convert the

  3. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  4. Geothermal Energy Research Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  5. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  6. Summer Undergraduate Breast Cancer Research Program

    National Research Council Canada - National Science Library

    Folk, William R; Blockus, Linda

    2004-01-01

    ...) supported 4 students in 2003. These students participated in faculty-mentored research projects for eight weeks and participated in seminars, brown-bag lunches, and specialty discussions on research, clinical trials, career...

  7. Summer Undergraduate Breast Cancer Research Program

    National Research Council Canada - National Science Library

    Folk, William

    2003-01-01

    ...) supported 6 students in 2002. These students participated in faculty-mentored research projects for eight weeks and participated in seminars, brown-bag lunches, and specialty discussions on research, clinical trials, career...

  8. Jump Starting Research: Preresearch STEM Programs

    Science.gov (United States)

    Schneider, Kimberley R.; VanBennekom, Neyda; Bahr, David; Burkett, Susan; Lusth, John C.; Pressley, Shelley

    2016-01-01

    Three different course models devoted to preparing science and engineering students for successful research endeavors were offered at three research institutions. Goals of this work include (a) involving students early in their academic career so they can gain the most out of subsequent research experiences and (b) providing basic skills to make…

  9. Otolaryngology Residency Program Research Resources and Scholarly Productivity.

    Science.gov (United States)

    Villwock, Jennifer A; Hamill, Chelsea S; Nicholas, Brian D; Ryan, Jesse T

    2017-06-01

    Objective To delineate research resources available to otolaryngology residents and their impact on scholarly productivity. Study Design Survey of current otolaryngology program directors. Setting Otolaryngology residency programs. Subjects and Methods An anonymous web-based survey was sent to 98 allopathic otolaryngology training program directors. Fisher exact tests and nonparametric correlations were used to determine statistically significant differences among various strata of programs. Results Thirty-nine percent (n = 38) of queried programs responded. Fourteen (37%) programs had 11 to 15 full-time, academic faculty associated with the residency program. Twenty (53%) programs have a dedicated research coordinator. Basic science lab space and financial resources for statistical work were present at 22 programs (58%). Funding is uniformly provided for presentation of research at conferences; a minority of programs (13%) only funded podium presentations. Twenty-four (63%) have resident research requirements beyond the Accreditation Council for Graduate Medical Education (ACGME) mandate of preparing a "manuscript suitable for publication" prior to graduation. Twenty-five (67%) programs have residents with 2 to 3 active research projects at any given time. None of the investigated resources were significantly associated with increased scholarly output. There was no uniformity to research curricula. Conclusions Otolaryngology residency programs value research, evidenced by financial support provided and requirements beyond the ACGME minimum. Additional resources were not statistically related to an increase in resident research productivity, although they may contribute positively to the overall research experience during training. Potential future areas to examine include research curricula best practices, how to develop meaningful mentorship and resource allocation that inspires continued research interest, and intellectual stimulation.

  10. U.S. Global Change Research Program Budget Crosscut

    Data.gov (United States)

    Office of Science and Technology Policy, Executive Office of the President — U.S. Global Change Research Program budget authority for Agency activities in which the primary focus is on:Observations, research, and analysis of climate change...

  11. MnDOT research program strategic plan 2017-2022.

    Science.gov (United States)

    2017-03-01

    In response to the top transportation trends in Minnesota, and opportunities and challenges facing its transportation system, MnDOT has developed this five-year Research Program Strategic Plan (2017 2022) to take stock of its research portfolio, ...

  12. Program of research in severe storms

    Science.gov (United States)

    1979-01-01

    Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.

  13. Infectious Disease Clinical Research Program (IDCRP)

    Data.gov (United States)

    Federal Laboratory Consortium — Our mission is to conduct infectious disease clinical research of importance to the military through a unique, adaptive, and collaborative network, to inform health...

  14. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  15. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  16. ANSTO - Program of Research 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report outlines the planned research and development activities for 1994-1995 in five major research units: Advanced Materials, Applications of Nuclear Physics, Biomedicine and Health, Environmental Sciences and the Safety and Reliability Centre. A list of recent publication originated from ANSTO`s scientific and engineering activities is also included. ills.

  17. Our programs | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-11-02

    Nov 2, 2010 ... In addition, the Development Innovation Fund seeks to improve the lives of the poor by supporting leading-edge scientific research. It will do so through competitive grants that bring together Canadian scientists, developingcountry researchers, and the private sector to produce breakthroughs in global ...

  18. Researcher Teacher Program: Achievements and Shortcomings

    Science.gov (United States)

    Nami, Shamsi; Matin, Nematallah

    2017-01-01

    Matin1 1 Faculty member of Organization for Educational Research and Planning (OERP), Iran Correspondence: Shamsi Nami, Faculty member of Organization for Educational Research and Planning (OERP), Iran. E-mail: shamsinami@gmail.com Received: July 24, 2016 Accepted: October 10, 2016 Online Published: February 27, 2017 doi:10.5539/ies.v10n3p99 URL:…

  19. Research Award: Supporting Inclusive Growth program Deadline ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... Candidates should have the following qualifications: • Strong research, analysis, and writing skills for different audiences (academic, policy, general public);. • Experience working/researching in a developing country; and. • Strong written and verbal communication skills; a second or third language is an.

  20. Action Research: Effective Marketing Strategies for a Blended University Program

    Science.gov (United States)

    Cook, Ruth Gannon; Ley, Kathryn

    2008-01-01

    This action research study investigated a marketing plan based on collaboration among a program faculty team and other organizational units for a graduate professional program. From its inception through the second year of operation, program enrollment increased due to the marketing plan based on an effective approach grounded in simple marketing…

  1. Preventing Hypothermia in Preterm Infants: A Program of Research

    African Journals Online (AJOL)

    Preventing Hypothermia in Preterm Infants: A Program of Research. Robin B. Knobel-Dail*. Duke University School of Nursing and School of Medicine. Abstract. Neonatal hypothermia is a worldwide problem and leads to increased morbidity and mortality in newborn infants. This paper describes a program of research to ...

  2. North American long-term soil productivity research program

    Science.gov (United States)

    Allan E. Tiarks; Marilyn A. Buford; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix Ponder; Douglas M. Stone

    1997-01-01

    The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses n soil productivity on national forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to forests as collected. National...

  3. Anthropology and Educational Research: A Report on Federal Agency Programs

    Science.gov (United States)

    Ianni, Francis A. J.

    1976-01-01

    Summarizes and discusses a set of interviews with program specialists and managers conducted early in the spring of 1974 in several federal government agencies. These interviews attempted to determine the status of anthropology in educational research programs, to identify issues and problems concerning anthropology's role in educational research,…

  4. Assessment Study of an Undergraduate Research Training Abroad Program

    Science.gov (United States)

    Nieto-Fernandez, Fernando; Race, Kathryn; Quarless, Duncan A.

    2013-01-01

    The Old Westbury Neuroscience International Research Program (OWNIP) encourages undergraduate students from health disparities populations and underrepresented minorities to pursue careers in basic science, biomedical, clinical, and behavioral health research fields. To evaluate this program, several measures were used tracked through an online…

  5. AFT Educational Research and Dissemination Program. Final Report.

    Science.gov (United States)

    Rauth, Marilyn; And Others

    The goal of the American Federation of Teachers (AFT) Educational Research and Dissemination Program was to establish a model for dissemination of educational research to classroom teachers. Research findings focusing on classroom management and teacher effectiveness were translated to individual teachers by Teacher Research Linkers (TRLs) who had…

  6. Independent Research Program Annual Report FY88

    Science.gov (United States)

    1989-04-01

    Trouton, Proc. Roy . Soc. Vol. A77, p 426 (1906). 17 BLANK PAGE i18 William M. Lagna and Ronny C. Robbins, CRDEC Infrared Radiative Pyrolysis Mass...8217Iy of using enzyme Program PlanAdjunct to the ROI Master Plan, amplification in conjunction with receptor Pro r Pa, (1986). recognition to develop... Britten , and A. T. (1981). Eldefrawi, "Coupling Between the Nicontinic Acetylcholine Receptor Site and Its Ionic Channel 18. M. Bradford, Anal. Biochem

  7. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2013-03-01

    R.C.A. Thompson and S.D. Blacksell. 2011. Hepatitis E virus is prevalent in the pig population of Lao People’s Democratic Republic and evidence...pending submission. Chen, Guojun 8/8/2011-5/14/2012 1 Virus -like particle for antisense ODN delivery 2 Peptide-oligonucleic acid conjugates for...Comments 18) PLEASE PROVIDE ANY SUGGESTIONS FOR PROGRAM IMPROVEMENT. Please do NOT scan to PDF . Send the Final Report as MSWord

  8. A Research Program in Computer Technology

    Science.gov (United States)

    1979-01-01

    14 (7), 1971, 453-360. 5. Donzeau-Gouge, V., G. Kahn, and B. Lang , A Complete Machine-Checked Definition of a Simple Programming Language Using...Denotational Semantics, IRIA Laborla, Technical Report 330, October 1978. 6. Donzeau-Gouge, V., G. Kahn, and B. Lang , Formal Definition of Ada, Honeywell...May 1976. r S.-..-. . . . . . . . 12. ARPANET TENEX SERVICE T’fhttiral Staff Marion McKinley, Jr. William H. Moore Robert Hines Serge Poievitzky Edward

  9. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  10. Silver Foam Technologies Healing Research Program

    Science.gov (United States)

    2009-09-01

    incorporated into the foam at sufficient concentrations without congealing. Open-ended hydrophilic foam sponges incorporating Zeolite and Silver Glass Beads...1: Research open-end hydrophilic foam: The result of this research has produced an open-end hydrophilic foam with an absorption ration of fifteen...quarter inch thick and ten inches in length, eight inches in width and one half inch thick. Task 2: Metalized open-end hydrophilic foam: Uniform

  11. USAF 1990 Research Initiation Program. Volume 3

    Science.gov (United States)

    1992-06-25

    Worchester Polytechnic Institute - I New Orleans , University of - I Wright State University - 4 New York, City College of - 1 Wyoming, University of - 1...Engineering Dr. Johanna Schruben University of Houston-Victoria Specialty: Mathematics xiv RESEARCH REPORTS xv MINI-GRANT RESEARCH REPORTS Technical...a Double Aperture Dr. Johanna Schruben Telescope Obtained as a Function of the Ratio of Optical Transfer Functions Without and With Diversity 210

  12. The REVEL Project: an Oceanographic Research Immersion Professional Development Program

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are motivated to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. In addition, the program supports teachers to implement research-based, data-oriented activities in their classrooms, and prepares them to use curriculum that will enhance student learning through the research process. Evaluation for year 2003-2004 of the program reveals that the program is designed as a successful research immersion opportunity during which teachers learn content, process, culture and ethos of authentic research. Qualitative results indicate that teachers who have participated in the program assimilate the scientific process over several years and share their expertise in ways most beneficial for their communities for years to come.

  13. LTRC Annual Research Program : Fiscal Year July 1, 2017 - June 30, 2018.

    Science.gov (United States)

    2017-06-01

    FHWA Part II SPR Research Program FAP Number SPR-0010(34) & FHWA Funded Research Program & FHWA LTAP Funded Program & FHWA STP Funded Program & Federal & Self-Generated Funded Research Program & Other DOTD Funded Projects

  14. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  15. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  16. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  17. Building Innovation and Sustainability in Programs of Research.

    Science.gov (United States)

    Villarruel, Antonia M

    2018-01-01

    Innovation and sustainability are two important concepts of impactful programs of research. While at first glance these concepts and approaches may seem at odds, they are synergistic. We examine the social, political, and policy context as it relates to innovation and sustainability. We present an exemplar of a program of research and discuss factors to consider in developing innovative and sustainable programs of research. Innovation is an important component of sustainable programs of research. Understanding the social and political context and addressing relevant policy issues are factors to be considered in both innovation and sustainability. Innovation and sustainability, important components of research, are also central to clinical practice. Open communication between researchers and clinicians can support the acceleration of innovations and the integration of evidence-based findings in practice. © 2017 Sigma Theta Tau International.

  18. Heavy liquid metals: Research programs at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  19. Joint University Program for Air Transportation Research, 1986

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  20. Program Leader | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and relevant Regional Directors in the identification and evaluation of emerging and key development trends and priorities in a particular region; and; Collaborates with Centre supported Secretariats working in the same research and development areas as the PI's to create synergies between the secretariat and the PI's.

  1. The southern plains LTAR watershed research program

    Science.gov (United States)

    Patrick Starks; Jean L. Steiner

    2016-01-01

    Water connects physical, biological, chemical, ecological, and economic forces across the landscape. While hydrologic processes and scientific investigations related to sustainable agricultural systems are based on universal principles, research to understand processes and evaluate management practices is often site-specific in order to achieve a critical mass of...

  2. Research Awards: Canadian Partnerships Program Deadline: 12 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... This award provides young and upcoming professionals with a unique opportunity to strengthen their research skills and gain a fresh perspective on the Canadian community – both in universities and civil society organizations (CSOs) – that is actively engaged in creating, sharing, and using knowledge to ...

  3. Land Treatment Research and Development Program, Synthesis of Research Results,

    Science.gov (United States)

    1983-08-01

    the impact of effluent application. Elgawhary, S.M., I.K. Iskandar and B.J. Blake (1979) Evaluation of nitrification inhibitors in cold regions lond...investigate the possibility that nitrapyrin could be useful. as a nitrification inhibitor in land treatment. Laboratory tests included soil incubation and soil...the U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, the Agriculture Research Service, St. Paul, Minnesota, and many

  4. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  5. Computer Presentation Programs and Teaching Research Methodologies

    Directory of Open Access Journals (Sweden)

    Vahid Motamedi

    2015-05-01

    Full Text Available Supplementing traditional chalk and board instruction with computer delivery has been viewed positively by students who have reported increased understanding and more interaction with the instructor when computer presentations are used in the classroom. Some problems contributing to student errors while taking class notes might be transcription of numbers to the board, and handwriting of the instructor can be resolved in careful construction of computer presentations. The use of computer presentation programs promises to increase the effectiveness of learning by making content more readily available, by reducing the cost and effort of producing quality content, and by allowing content to be more easily shared. This paper describes how problems can be overcome by using presentation packages for instruction.

  6. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2016-04-27

    virus and reduced Plasmodium oocyst density in An. albimanus. In Ae. aegypti, the bacterial community can affect the dynamics of dengue virus, in which...and Ray, R. Morphological and Functional Differentiation in BE(2)-M17 Human Neuroblastoma Cells by Treatment with Trans-Retinoic Acid. BMC Neuroscience... treatment . BMC Research Notes, 2012, 5:437. b) Books, book chapters, other publications N/A c) Manuscripts in preparation, manuscripts submitted

  7. Coconut Program Area Research Planning and Prioritization

    OpenAIRE

    Aragon, Corazon

    2000-01-01

    The coconut industry is one of the country's major pillars in employment generation and foreign exchange earnings. However, local production problems, the expansion in coconut hectarage of neighboring countries, and recent developments in biotechnology research on other competing crops that have high lauric oil content might affect its long-term sustainability and viability. In a highly liberalized global trade environment, innovation and creativity in the country's coconut industry are neede...

  8. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  9. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  10. Human Genome Program Report. Part 2, 1996 Research Abstracts

    Science.gov (United States)

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  11. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  12. Action Research in EdD Programs in Educational Leadership

    Science.gov (United States)

    Osterman, Karen; Furman, Gail; Sernak, Kathleen

    2014-01-01

    This exploratory study gathered information about the use of action research within doctor of education programs in educational leadership and explored faculty understanding of and perspectives on action research. Survey data established that action research is used infrequently to meet dissertation requirements. Contributing factors include lack…

  13. Research Awards: Agriculture and Food Security program Deadline ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    Research Awards: Agriculture and Food Security program. Deadline: 12 September 2012. Please note that all applications must be sent electronically. IDRC's Research Awards are a unique opportunity for master's and doctoral-level students, as well as recent graduates to enhance their research skills and gain a fresh ...

  14. Summer Research Program - 1998 High School Apprenticeship Program. Volume 14. Phillips Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  15. Summer Research Program - 1998 High School Apprenticeship Program Volume 15B Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  16. Summer Research Program - 1998 High School Apprenticeship Program Volume 15C Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  17. Summer Research Program - 1997. High School Apprenticeship Program Final Reports. Volume 15A, Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  18. Summer Research Program - 1997. High School Apprenticeship Program. Final Reports Volume 15B, Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  19. Summer Research Program - 1997. High School Apprenticeship Program. Final Reports, Volume 12A, Armstrong Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  20. Summer Research Program - 1998 High School Apprenticeship Program Final Reports. Volume 12, Armstrong Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  1. Summer Research Program - 1996 High School Apprenticeship Program. Volume 16, Arnold Engineering Development Center

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  2. Summer Research Program - 1998 High School Apprenticeship Program Volume 13 Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  3. Summer Research Program - 1997. High School Apprenticeship Program. Final Reports. Volume 15C, Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  4. Summer Research Program - 1996 High School Apprenticeship Program Volume 13 Phillips Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  5. Summer Research Program - 1997 High School Appenticeship Program Volume 16 Arnold Engineering Development Center

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  6. Summer Research Program - 1996. High School Apprenticeship Program Final Reports. Volume 15B, Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  7. 1997 Summer Research Program (SRP), High School Apprenticeship Program (HSAP), Final Reports, Volume 13, Phillips Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  8. Summer Research Program - 1998 High School Apprenticeship Program. Volume 15A. Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1998-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  9. Summer Research Program - 1996 High School Apprenticeship Program. Volume 12B, Armstrong Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  10. Summer Research Program - 1997 High School Apprenticeship Program. Volume 14, Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1997-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  11. Summer Research Program - 1996 High School Apprenticeship Program Volume 15A Wright Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1996-01-01

    The United States Air Force Summer Research Program (USAF-SRP) is designed to introduce university, college, and technical institute faculty members, graduate students, and high school students to Air Force research...

  12. (Coordinated research programs in nuclear medicine)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.

    1990-10-03

    The traveler visited the Clinic for Nuclear Medicine at the University of Bonn, West Germany, to review, organize, and plan collaborative studies. He also met with the editorial board of the journal NucCompact -- European/American Communications in Nuclear Medicine, on which he serves as US editor. He also visited colleagues at the Cyclotron Research Center (CRC) at the University of Liege, Belgium, to coordinate clinical applications of the ultrashort-lived iridium-191m radionuclide obtained from the osmium-190/iridium-191m generator system. The traveler planned and coordinated continuing collaboration with colleagues at the CRC for further applications of this generator system. He also visited the University of Metz, Metz, France, to organize a three-center project for the synthesis and evaluation of various receptor-specific cerebral imaging agents, involving the Oak Ridge National Laboratory (ORNL), CRC, and the University of Metz.

  13. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  14. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  15. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  16. Online Financial Education Programs: Theory, Research, and Recommendations

    OpenAIRE

    Jinhee Kim; Mia B. Russell; Allison Schroeder

    2017-01-01

    Technological advances have created unprecedented opportunities for online financial education that can be used to improve financial literacy and money management practices. While online financial education programs have become popular, relevant research and theoretical frameworks have rarely been considered in the development of such programs. This article synthesizes lessons from literature and theories for the development of an effective online financial education program. Drawing from ...

  17. EPA Response to Review of Office of Research and Development's Research Programs

    Science.gov (United States)

    EPA's response to the review report of the Office of Research and Development’s (ORD) Strategic Research Action Plans (StRAPs) and the cross-cutting program Roadmaps for Environmental Justice and Global Climate Change.

  18. Review of U.S. EPA Office of Research and Development's Research Programs - 2017

    Science.gov (United States)

    A review report of the Office of Research and Development’s (ORD) Strategic Research Action Plans (StRAPs) and the cross-cutting program Roadmaps for Environmental Justice and Global Climate Change.

  19. Review of U.S. EPA Office of Research and Development's Research Programs

    Science.gov (United States)

    A review report of the Office of Research and Development’s (ORD) Strategic Research Action Plans (StRAPs) and the cross-cutting program Roadmaps for Environmental Justice and Global Climate Change.

  20. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health

    National Research Council Canada - National Science Library

    Landrigan, Philip J; Wright, Robert O; Cordero, Jose F; Eaton, David L; Goldstein, Bernard D; Hennig, Bernhard; Maier, Raina M; Ozonoff, David M; Smith, Martyn T; Tukey, Robert H

    2015-01-01

    .... SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research...

  1. Aquatic Plant Control Research Program. Volume A-00-1

    National Research Council Canada - National Science Library

    Kirk, James

    2000-01-01

    ... at the Waterways Experiment Station. It is principally intended to be a forum whereby information pertaining to and resulting from the Corps of Engineers' nationwide Aquatic Plant Control Research Program (APCRP...

  2. AGING WATER INFRASTRUCTURE RESEARCH PROGRAM: ADDRESSING THE CHALLENGE THROUGH INNOVATION

    Science.gov (United States)

    A driving force behind the Sustainable Water Infrastructure (SI) initiative and the Aging Water Infrastructure (AWI) research program is the Clean Water and Drinking Water Infrastructure Gap Analysis. In this report, EPA estimated that if operation, maintenance, and capital inves...

  3. Northeast Cooperative Research Study Fleet (SF) Program Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeast Cooperative Research Study Fleet (SF) Program partners with a subset of commercial fishermen to collect high quality, high resolution, haul by haul...

  4. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  5. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  6. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  7. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  8. The Adolescent Family Life Program and Adoption Research.

    Science.gov (United States)

    Kring, Thomas C.

    1998-01-01

    Describes the Adolescent Family Life Program, which develops and tests approaches that encourage adoption as an alternative to abortion for pregnant teens. Notes that both abortion and adoption rates have dropped since the program was instituted in 1981; maintains that additional research is needed into factors associated with adoption. Discusses…

  9. Joint University Program for Air Transportation Research, 1988-1989

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  10. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  11. U.S. Nuclear Regulatory Commission natural analogue research program

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A.; Ott, W.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  12. Mississippi CaP HBCU Undergraduate Research Training Program

    Science.gov (United States)

    2016-09-01

    our program). Our strategy of advertisement included online advertisement in the research-related section and Summer Internships and Outreach Programs...How were the results disseminated to communities of interest? As dissemination modalities we used Facebook and LinkedIn. Those resources have been...Research Symposium in the UMMC-Cancer Institute Facebook group page) Page 12 of 61 Plans to accomplish the proposed goals: With focus on the next report

  13. Supporting medical education research quality: the Association of American Medical Colleges' Medical Education Research Certificate program.

    Science.gov (United States)

    Gruppen, Larry D; Yoder, Ernie; Frye, Ann; Perkowski, Linda C; Mavis, Brian

    2011-01-01

    The quality of the medical education research (MER) reported in the literature has been frequently criticized. Numerous reasons have been provided for these shortcomings, including the level of research training and experience of many medical school faculty. The faculty development required to improve MER can take various forms. This article describes the Medical Education Research Certificate (MERC) program, a national faculty development program that focuses exclusively on MER. Sponsored by the Association of American Medical Colleges and led by a committee of established medical education researchers from across the United States, the MERC program is built on a set of 11 interactive workshops offered at various times and places across the United States. MERC participants can customize the program by selecting six workshops from this set to fulfill requirements for certification. This article describes the history, operations, current organization, and evaluation of the program. Key elements of the program's success include alignment of program content and focus with needs identified by prospective users, flexibility in program organization and logistics to fit participant schedules, an emphasis on practical application of MER principles in the context of the participants' activities and interests, consistency in program content and format to ensure standards of quality, and a sustainable financial model. The relationship between the national MERC program and local faculty development initiatives is also described. The success of the MERC program suggests that it may be a possible model for nationally disseminated faculty development programs in other domains.

  14. Danish integrated antimicrobial in resistance monitoring and research program

    DEFF Research Database (Denmark)

    Hammerum, Anette Marie; Heuer, Ole Eske; Emborg, Hanne-Dorthe

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish...... a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research...... activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries....

  15. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  16. Human Research Program Integrated Research Plan: December 20, 2007, Interim Baseline

    Science.gov (United States)

    2008-01-01

    The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. This Integrated Research Plan (IRP) describes the program s research activities that are intended to address the needs of human space exploration and serve HRP customers. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration. The document serves several purposes for the Human Research Program: The IRP provides a means to assure that the most significant risks to human space explorers are being adequately mitigated and/or addressed, The IRP shows the relationship of research activities to expected outcomes and need dates, The IRP shows the interrelationships among research activities that may interact to produce products that are integrative or cross defined research disciplines, The IRP illustrates the non-deterministic nature of research and technology activities by showing expected decision points and potential follow-on activities, The IRP shows the assignments of responsibility within the program organization and, as practical, the intended solicitation approach, The IRP shows the intended use of research platforms such as the International Space Station, NASA Space Radiation Laboratory, and various space flight analogs. The IRP does not show all budgeted activities of the Human research program, as some of these are enabling functions, such as management, facilities and infrastructure

  17. Ground-Based Research within NASA's Materials Science Program

    Science.gov (United States)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  18. Research on the Academic Benefits of the Advanced Placement Program

    Directory of Open Access Journals (Sweden)

    Russell T. Warne

    2017-01-01

    Full Text Available With more than 3 million participants per year, the Advanced Placement (AP program is one of the most popular programs in the United States for exposing high-achieving high school students to advanced academic content. Sponsored by the College Board, the AP program provides a framework in which high school teachers can teach introductory college-level courses to high school students. These students then take one of 34 standardized tests at the end of the year, and students who score well on their course’s AP test can receive college credit from their university in which they later enroll. Despite the popularity of the AP program, remarkably little independent research has been conducted on the academic benefits of AP. In this article, I summarize the state of knowledge about the academic benefits of AP. Previous research and descriptive data indicate that AP students outperform non-AP students on a variety of academic measures, but many other aspects of the program are poorly understood, partially due to variability across AP subjects. These aspects include the causal impact of AP, which components of the program are most effective in boosting academic achievement, and how students engage with the AP program. I also conclude by making suggestions for researchers to use new methodologies to investigate new scientific and policy questions and new student populations to improve the educational scholars’ and practitioners’ understanding of the AP program.

  19. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  20. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    Science.gov (United States)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  1. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  2. Pilot Mentorship Program for Tobacco Control Researchers | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It will do so by offering expanded capacity-building opportunities for tobacco control researchers through a parallel mentorship program. Research for International Tobacco Control (RITC) has identified an initial cadre of awardees who possess excellent tobacco control leadership potential. The idea is to enhance the ...

  3. National Shipbuilding Research Program and Navy - Further Advancement Through Collaboration

    Science.gov (United States)

    2002-02-26

    resounding validation from the broad ASE was growing beyond just a research industry , and development program. The development time coupled with two years...than product focused. Therefore, a research industry is, and feels, accountable for the institution with R&D efforts aimed at the way the money is spent

  4. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  5. Integrating Research into an Undergraduate Family Sciences Program

    Science.gov (United States)

    Khelifa, Maher; Sonleitner, Nancy; Wooldridge, Deborah; Mayers, Gloysis

    2004-01-01

    The authors report the outcomes of introducing undergraduate research to family science majors at Zayed University, United Arab Emirates. The program has enriched students' educational experiences and has had tangible benefits. In addition to acquiring research skills, students improved in critical analysis, originality, independent learning,…

  6. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  7. How one teacher research experience program is transforming STEM education

    Science.gov (United States)

    Warburton, J.; Fahnestock, J.; Larson, A.

    2016-12-01

    Celebrating over 10 years of success, the PolarTREC-Teachers and Researchers Exploring and Collaborating program, administered by the Arctic Research Consortium of the United States, is a unique professional development program for United States educators and polar researchers. Through an innovative teacher research experience, utilizing field-based experiences in the polar regions, PolarTREC provides teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry they need to promote authentic scientific research in their classroom. The program evaluation objectives were 1) to better understand the immediate impacts of the program on participating teachers, their students, and the researchers with whom they partnered; and 2) to explore the long-term impacts of the PolarTREC experiences on participating teachers' professional experiences, and in particular their use of authentic scientific research with their students and ongoing relationships with researcher team members and other PolarTREC teachers. In this presentation, we will share our data on how the PolarTREC model is transforming STEM educators not only how they teach science in their classroom but also how they both perceive science, a paradigm shift, that defines their careers.

  8. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  9. The 2003 NASA Faculty Fellowship Program Research Reports

    Science.gov (United States)

    Nash-Stevenson, S. K.; Karr, G.; Freeman, L. M.; Bland, J. (Editor)

    2004-01-01

    For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.

  10. Research on teacher education programs: logic model approach.

    Science.gov (United States)

    Newton, Xiaoxia A; Poon, Rebecca C; Nunes, Nicole L; Stone, Elisa M

    2013-02-01

    Teacher education programs in the United States face increasing pressure to demonstrate their effectiveness through pupils' learning gains in classrooms where program graduates teach. The link between teacher candidates' learning in teacher education programs and pupils' learning in K-12 classrooms implicit in the policy discourse suggests a one-to-one correspondence. However, the logical steps leading from what teacher candidates have learned in their programs to what they are doing in classrooms that may contribute to their pupils' learning are anything but straightforward. In this paper, we argue that the logic model approach from scholarship on evaluation can enhance research on teacher education by making explicit the logical links between program processes and intended outcomes. We demonstrate the usefulness of the logic model approach through our own work on designing a longitudinal study that focuses on examining the process and impact of an undergraduate mathematics and science teacher education program. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Research training program: Duke University and Brazilian Society of Cardiology.

    Science.gov (United States)

    Pellanda, Lucia Campos; Cesa, Claudia Ciceri; Belli, Karlyse Claudino; David, Vinicius Frayze; Rodrigues, Clarissa Garcia; Vissoci, João Ricardo Nickenig; Bacal, Fernando; Kalil, Renato A K; Pietrobon, Ricardo

    2012-12-01

    Research coaching program focuses on the development of abilities and scientific reasoning. For health professionals, it may be useful to increase both the number and quality of projects and manuscripts. To evaluate the initial results and implementation methodology of the Research and Innovation Coaching Program of the Research on Research group of Duke University in the Brazilian Society of Cardiology. The program works on two bases: training and coaching. Training is done online and addresses contents on research ideas, literature search, scientific writing and statistics. After training, coaching favors the establishment of a collaboration between researchers and centers by means of a network of contacts. The present study describes the implementation and initial results in reference to the years 2011-2012. In 2011, 24 centers received training, which consisted of online meetings, study and practice of the contents addressed. In January 2012, a new format was implemented with the objective of reaching more researchers. In six months, 52 researchers were allocated. In all, 20 manuscripts were published and 49 more were written and await submission and/or publication. Additionally, five research funding proposals have been elaborated. The number of manuscripts and funding proposals achieved the objectives initially proposed. However, the main results of this type of initiative should be measured in the long term, because the consolidation of the national production of high-quality research is a virtuous cycle that feeds itself back and expands over time.

  12. Joint University Program for Air Transportation Research, 1987

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  13. Solar heating and cooling commercialization research program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.L.; Tragert, W.; Weir, S.

    1979-11-01

    The Solar Heating and Cooling Commercialization Research Program has addressed a recognized need to accelerate the commercialization of solar products. The development of communication techniques and materials for a target group of heating, ventilating and air-conditioning (HVAC) wholesalers and distributors has been the primary effort. A summary of the program, the approach to the development of the techniques and materials, the conclusions derived from seminar feedback, the development of additional research activities and reports and the recommendations for follow-on activities are presented. The appendices offer detailed information on specific elements of the research effort.

  14. The U.S. Global Change Research Program

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M.C.

    1994-05-04

    The Office of Science and Technology Policy has established the National Science and Technology Council (NSTC) to help solve problems, to improve economic competitiveness, and to provide stimulus for education. Within the NSTC, the Committee on Environment and Natural Resources Research is responsible for seven environmental issues, including all research relating to global change. The US Global Change Research Program supports international protocols and conventions relating to ozone, climate, and biodiversity. It contributes to the advancement of knowledge in science, education, and technology transfer by providing scientific understanding for policy. This program supports the mission of federal agencies in the areas of forecasts, regulations, services, etc.

  15. Incorporating resident research into the dermatology residency program

    Science.gov (United States)

    Wagner, Richard F; Raimer, Sharon S; Kelly, Brent C

    2013-01-01

    Programmatic changes for the dermatology residency program at The University of Texas Medical Branch were first introduced in 2005, with the faculty goal incorporating formal dermatology research projects into the 3-year postgraduate training period. This curriculum initially developed as a recommendation for voluntary scholarly project activity by residents, but it evolved into a program requirement for all residents in 2009. Departmental support for this activity includes assignment of a faculty mentor with similar interest about the research topic, financial support from the department for needed supplies, materials, and statistical consultation with the Office of Biostatistics for study design and data analysis, a 2-week elective that provides protected time from clinical activities for the purpose of preparing research for publication and submission to a peer-reviewed medical journal, and a departmental award in recognition for the best resident scholarly project each year. Since the inception of this program, five classes have graduated a total of 16 residents. Ten residents submitted their research studies for peer review and published their scholarly projects in seven dermatology journals through the current academic year. These articles included three prospective investigations, three surveys, one article related to dermatology education, one retrospective chart review, one case series, and one article about dermatopathology. An additional article from a 2012 graduate about dermatology education has also been submitted to a journal. This new program for residents was adapted from our historically successful Dermatology Honors Research Program for medical students at The University of Texas Medical Branch. Our experience with this academic initiative to promote dermatology research by residents is outlined. It is recommended that additional residency programs should consider adopting similar research programs to enrich resident education. PMID:23901305

  16. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  17. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  18. Report of an innovative research program for baccalaureate nursing students.

    Science.gov (United States)

    Sheil, E P; Crain, H

    1992-10-01

    In summary, an innovative low-cost way to teach undergraduate students about research and to socialize students into attending research conferences has been developed. It is not perfect yet, but with time, critical students, and responsive research-productive faculty, each program should improve. It is not surprising that sophomore students do not achieve the objectives at the same level as older students. As students move closer to the "real" world of nursing practice and develop increasing sophistication about nursing in general and research in particular, they are, hopefully, more knowledgeable consumers of nursing research. What is particularly satisfying to the planners of those Research Days is that through the experience of attending Undergraduate Research Day at various points in their educational progress, students are socialized into discussing research. Additionally, they seemed to develop some degree of comfort with this aspect of their future nursing role. The RN and former student panel participants normalized research involvement for the student attendees. Panel member stories about their mistakes and successes made students realize that nursing investigations need not be the sole property of those with doctoral degrees. A serendipitous outcome of these programs was an increased awareness by students of the specific research project in which their teachers were engaged. Students informally reported a feeling of pride and reflected accomplishment. The importance of timing in offering such programs should not have been a surprise at this urban commuter university. Unwittingly, in scheduling the Friday afternoon program the planners ignored the initial consideration that the program not impose financial hardship on students.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  20. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  1. Setting a research agenda to inform intensive comprehensive aphasia programs.

    Science.gov (United States)

    Hula, William D; Cherney, Leora R; Worrall, Linda E

    2013-01-01

    Research into intensive comprehensive aphasia programs (ICAPs) has yet to show that this service delivery model is efficacious, effective, has cost utility, or can be broadly implemented. This article describes a phased research approach to the study of ICAPs and sets out a research agenda that considers not only the specific issues surrounding ICAPs, but also the phase of the research. Current ICAP research is in the early phases, with dosing and outcome measurement as prime considerations as well as refinement of the best treatment protocol. Later phases of ICAP research are outlined, and the need for larger scale collaborative funded research is recognized. The need for more rapid translation into practice is also acknowledged, and the use of hybrid models of phased research is encouraged within the ICAP research agenda.

  2. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  3. Establishment of a National Ecological Research Program and Institute

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R.I.

    1990-12-31

    Establishment of a national ecological research program and institute is discussed. The author says we need to establish a long-term ecological research program to develop a fuller understanding of basic ecosystem process so that scientists can evaluate the health of ecological systems and can predict quantitative and qualitative changes in these systems under foreseeable natural and man-made stress. This area is beginning to be addressed by the CEES, for example, but again with insufficient funding in comparison with other aspects of the US Global Change Program. The major elements of a long-term ecological research program should focus on providing support to develop the theories and hypotheses that dictate the required ecological measurements. EMAP is an excellent example of a large program that could benefit from new funding resources for the development of ecological theory and the study of ecological processes. These understandings are particularly important, and lacking, in system interfaces such as land/water interactions and atmosphere/canopy interactions. Funding stability for long-term ecological research can only be attained through a national commitment to the need. The commitment should be directed in a way that is sensitive to, but not controlled by, policy. Policy issues are particularly important as we attempt to deal with major environmental concerns, but long-term ecological research needs to be sufficiently independent of this process in order to maintain continuity and stability.

  4. The SUPER Program: A Research-based Undergraduate Experience

    Science.gov (United States)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  5. Disaster Research Team Building: A Case Study of a Web-based Disaster Research Training Program.

    Science.gov (United States)

    Beaton, Randal D; Johnson, L Clark; Maida, Carl A; Houston, J Brian; Pfefferbaum, Betty

    2012-11-19

    This case study describes the process and outcomes of the Northwest Center for Public Health Practice Child and Family Disaster Research Training (UWDRT) Program housed at the University of Washington, which used web-based distance learning technology. The purposes of this program were to provide training and to establish a regional cadre of researchers and clinicians; to increase disaster mental health research capacity and collaboration; and to improve the scientific rigor of research investigations of disaster mental health in children and families. Despite a number of obstacles encountered in development and implementation, outcomes of this program included increased team member awareness and knowledge of child and family disaster mental health issues; improved disaster and public health instruction and training independent of the UWDRT program; informed local and state disaster response preparedness and response; and contributions to the child and family disaster mental health research literature.

  6. Applied Science Division annual report, Environmental Research Program FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  7. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  8. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  9. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  10. The Lamont-Doherty Secondary School Field Research Program

    Science.gov (United States)

    Newton, R.; Vincent, S.; Shaw, A.

    2007-12-01

    Three years ago the Lamont Doherty Earth Observatory instituted an educational outreach program with several New York City high schools. The schools all serve lower-income students (greater than 90 percent Title 1 eligible), and are focused on the STEM disciplines as potentially "leveling" areas, where motivated students can make up ground if properly supported. The program enlists high school teachers and several of their students to work alongside Lamont scientists on funded research programs that have a local (NYC/Hudson Valley) field and/or laboratory measurement component. The program runs full-time for 6 weeks in the summer and continues through laboratory visits and enhanced curriculum during the school year. Preliminary results are positive: teachers report that the program has deepened their curriculum; heightened their enthusiasm; and expanded their view of their students' potential. Nearly all of the participating students are college bound, and several are working their way through their freshmen year in college as laboratory technicians. In addition, the participating teachers and students have been able to collect large numbers of samples in the Hudson estuary, contributing concretely to funded research there. Lessons learned and best practices will be discussed for expanding such partnerships, with a focus on issues faced by partnerships between research scientists and public school science programs in urban areas.

  11. Strategies for Supporting and Sustaining Undergraduate Research Programs

    Science.gov (United States)

    Ryan, J. G.

    2004-12-01

    A key challenge in developing a viable undergraduate research program is securing adequate support for the effort, both in terms of reliable financial support, and (perhaps most importantly) in terms of providing adequate student/faculty contact time. Financial support for undergraduate research is available via the NSF Research Experiences for Undergraduates Program, which provides funds for student research efforts both on relatively small scales (i.e., 1-2 students/yr via REU Supplement funds) and on much larger scales (REU Site research projects involving 10 or more students/yr). Depending on the NSF program, funds for intermediate scale undergraduate research efforts (i.e., 3-5 students/yr) may be available as Participant Support via the normal proposal submission process. For faculty at predominantly undergraduate institutions, research support obtained via the NSF RUI program and other funding outlets (i.e., ACS-PRF) presumes substantial undergraduate participation in research projects. Securing sufficient faculty contact time for undergraduate researchers is critical to their success and professional development, as well as to the ultimate success of the research. However, the additional time required to train undergraduates in research protocols, along with the challenge of working adequate research time into their generally busier class (and often work) schedules can render such efforts unproductive for research faculty. Strategies I have found helpful in getting the necessary time-on-task and contact time with student researchers include: 1) mentoring 3-4 undergraduates in group research projects, which facilitates technical training and ensures sufficient 'hands' to complete the work; 2) building technical training into traditional courses through open-ended investigative laboratory activities, such that students can begin to develop research skills, as well as the necessary investigative mindset; 3) when possible, providing stipend support for student

  12. Integrating Research and Education in NSF's Office of Polar Programs

    Science.gov (United States)

    Wharton, R. A.; Crain, R. D.

    2003-12-01

    The National Science Foundation invests in activities that integrate research and education, and that develop reward systems to support teaching, mentoring and outreach. Effective integration of research and education at all levels can infuse learning with the excitement of discovery. It can also ensure that the findings and methods of research are quickly and effectively communicated in a broader context and to a larger audience. This strategy is vital to the accomplishment of NSF's strategic goals of ensuring a world-class science and engineering workforce, new knowledge across the frontiers of science and engineering, and the tools to get the job done efficiently and effectively. The NSF's Office of Polar Programs sponsors educational projects at all levels of learning, making full use of the variety of disciplinary and interdisciplinary studies in the polar regions to attract and invigorate students. An array of efforts from the Arctic and Antarctic scientific communities link research activities with education. There has been an advance from the beneficial but isolated impacts of individual researcher visits to K-12 classrooms to large-scale developments, such as field research experiences for teachers and undergraduate students, online sharing of polar field experiences with rural classrooms, the institution of interdisciplinary graduate research programs through NSF initiatives, and opportunities for minority and underrepresented groups in polar sciences. The NSF's criterion for evaluating proposals based upon the broader impacts of the research activity has strengthened efforts to link research and education, resulting in partnerships and innovations that infuse research into education from kindergarten through postdoctoral studies and reaching out to the general public. In addition, the Office of Polar Programs partners with other directorates at NSF to broaden OPP's efforts and benefit from resources and experience in the Education and Human Resources

  13. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  14. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  15. Sustaining health education research programs in Aboriginal communities.

    Science.gov (United States)

    Wisener, Katherine; Shapka, Jennifer; Jarvis-Selinger, Sandra

    2017-09-01

    Despite evidence supporting the ongoing provision of health education interventions in First Nations communities, there is a paucity of research that specifically addresses how these programs should be designed to ensure sustainability and long-term effects. Using a Community-Based Research approach, a collective case study was completed with three Canadian First Nations communities to address the following research question: What factors are related to sustainable health education programs, and how do they contribute to and/or inhibit program success in an Aboriginal context? Semi-structured interviews and a sharing circle were completed with 19 participants, including members of community leadership, external partners, and program staff and users. Seven factors were identified to either promote or inhibit program sustainability, including: 1) community uptake; 2) environmental factors; 3) stakeholder awareness and support; 4) presence of a champion; 5) availability of funding; 6) fit and flexibility; and 7) capacity and capacity building. Each factor is provided with a working definition, influential moderators, and key evaluation questions. This study is grounded in, and builds on existing research, and can be used by First Nations communities and universities to support effective sustainability planning for community-based health education interventions.

  16. From Biological to Program Efficacy: Promoting Dialogue among the Research, Policy, and Program Communities12

    Science.gov (United States)

    Habicht, Jean-Pierre; Pelto, Gretel H.

    2014-01-01

    The biological efficacy of nutritional supplements to complement usual diets in poor populations is well established. This knowledge rests on decades of methodologic research development and, more recently, on codification of methods to compile and interpret results across studies. The challenge now is to develop implementation (delivery) science knowledge and achieve a similar consensus on efficacy criteria for the delivery of these nutrients by public health and other organizations. This requires analysis of the major policy instruments for delivery and well-designed program delivery studies that examine the flow of a nutrient through a program impact pathway. This article discusses the differences between biological and program efficacy, and why elucidating the fidelity of delivery along the program impact pathways is essential for implementing a program efficacy trial and for assessing its internal and external validity. Research on program efficacy is expanding, but there is a lack of adequate frameworks to facilitate the process of harmonizing concepts and vocabulary, which is essential for communication among scientists, policy planners, and program implementers. There is an urgent need to elaborate these frameworks at national and program levels not only for program efficacy studies but also for the broader research agenda to support and improve the science of delivering adequate nutrition to those who need it most. PMID:24425719

  17. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  18. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  19. Teaching ethics of psychopharmacology research in psychiatric residency training programs.

    Science.gov (United States)

    Beresin, Eugene V; Baldessarini, Ross J; Alpert, Jonathan; Rosenbaum, Jerrold

    2003-12-01

    American psychiatric residency training programs are now required to teach principles of research ethics. This task is especially pressing in light of evolving guidelines pertaining to human subjects, including psychiatric patients, especially when psychopharmacology is involved. Residents need to understand principles of research ethics and implications of roles of psychiatrists as investigators and clinicians. We consider major contemporary ethical issues in clinical psychiatric research, with an emphasis on psychopharmacology, and implications of addressing them within residency training programs. We reviewed recent literature on ethical issues in clinical research and on medical education in bioethics. This report considers: (1) an overview of current training; (2) perceived needs and rationales for training in research ethics, (3) recommended educational content and methods; (4) issues that require further study (including demonstration of acquired knowledge, practice issues, and the treatment versus-investigation misconception); and (5) conclusions. Recommended components of residency training programs include basic ethical principles; scientific merit and research design; assessment of risks and benefits; selection and informed consent of patient-subjects; and integrity of the clinical investigator, including definition of roles, conflicts-of-interest, and accountability. Evaluation of educational effectiveness for both trainees and faculty is a recommended component of such programs. We recommend that psychiatric training include education about ethical aspects of clinical research, with a particular emphasis on psychopharmacology. These activities can efficiently be incorporated into teaching of other aspects of bioethics, research methods, and psychopharmacology. Such education early in professional development should help to clarify roles of clinicians and investigators, improve the planning, conduct and reporting of research, and facilitate career

  20. The 2004 NASA Faculty Fellowship Program Research Reports

    Science.gov (United States)

    Pruitt, J. R.; Karr, G.; Freeman, L. M.; Hassan, R.; Day, J. B. (Compiler)

    2005-01-01

    This is the administrative report for the 2004 NASA Faculty Fellowship Program (NFFP) held at the George C. Marshall Space Flight Center (MSFC) for the 40th consecutive year. The NFFP offers science and engineering faculty at U.S. colleges and universities hands-on exposure to NASA s research challenges through summer research residencies and extended research opportunities at participating NASA research Centers. During this program, fellows work closely with NASA colleagues on research challenges important to NASA's strategic enterprises that are of mutual interest to the fellow and the Center. The nominal starting and .nishing dates for the 10-week program were June 1 through August 6, 2004. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama, The University of Alabama in Huntsville, and Alabama A&M University. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The primary objectives of the NFFP are to: Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to the Agency s space aeronautics and space science mission. Engage faculty from colleges, universities, and community colleges in current NASA research and development. Foster a greater public awareness of NASA science and technology, and therefore facilitate academic and workforce literacy in these areas. Strengthen faculty capabilities to enhance the STEM workforce, advance competition, and infuse mission-related research and technology content into classroom teaching. Increase participation of underrepresented and underserved faculty and institutions in NASA science and technology.

  1. Scholar Quest: A Residency Research Program Aligned With Faculty Goals

    Directory of Open Access Journals (Sweden)

    Ashish R. Panchal

    2014-05-01

    Full Text Available Introduction: The ACGME requires that residents perform scholarly activities prior to graduation, but this is difficult to complete and challenging to support. We describe a residency research program, taking advantage of environmental change aligning resident and faculty goals, to become a contributor to departmental cultural change and research development. Methods: A research program, Scholar Quest (SQ, was developed as a part of an Information Mastery program. The goal of SQ is for residents to gain understanding of scholarly activity through a mentor-directed experience in original research. This curriculum is facilitated by providing residents protected time for didactics, seed grants and statistical/staff support. We evaluated total scholarly activity and resident/faculty involvement before and after implementation (PRE-SQ; 2003-2005 and POST-SQ; 2007-2009. Results: Scholarly activity was greater POST-SQ versus PRE-SQ (123 versus 27 (p<0.05 with an incidence rate ratio (IRR=2.35. Resident and faculty involvement in scholarly activity also increased PRE-SQ to POST-SQ (22 to 98 residents; 10 to 39 faculty, p<0.05 with an IRR=2.87 and 2.69, respectively. Conclusion: Implementation of a program using department environmental change promoting a resident longitudinal research curriculum yielded increased resident and faculty scholarly involvement, as well as an increase in total scholarly activity.

  2. Quantifying the benefits of the Florida Transit Research Inspection Procurement Services (TRIPS) program : [research summary].

    Science.gov (United States)

    2013-04-01

    Established in 1995 as the Florida Vehicle : Procurement Program (FVPP), Florida Transit : Research Inspection Procurement Services (TRIPS) : is a vehicle sourcing and procurement system for : Floridas public transit agencies that integrates : ins...

  3. Qualitative Research in an International Research Program: Maintaining Momentum while Building Capacity in Nurses

    Directory of Open Access Journals (Sweden)

    Judy Mill RN, PhD

    2014-02-01

    Full Text Available Nurses are knowledgeable about issues that affect quality and equity of care and are well qualified to inform policy, yet their expertise is seldom acknowledged and their input infrequently invited. In 2007, a large multidisciplinary team of researchers and decision-makers from Canada and five low- and middle-income countries (Barbados, Jamaica, Uganda, Kenya, and South Africa received funding to implement a participatory action research (PAR program entitled “Strengthening Nurses' Capacity for HIV Policy Development in sub-Saharan Africa and the Caribbean.” The goal of the research program was to explore and promote nurses' involvement in HIV policy development and to improve nursing practice in countries with a high HIV disease burden. A core element of the PAR program was the enhancement of the research capacity, and particularly qualitative capacity, of nurses through the use of mentorship, role-modeling, and the enhancement of institutional support. In this article we: (a describe the PAR program and research team; (b situate the research program by discussing attitudes to qualitative research in the study countries; (c highlight the incremental formal and informal qualitative research capacity building initiatives undertaken as part of this PAR program; (d describe the approaches used to maintain rigor while implementing a complex research program; and (e identify strategies to ensure that capacity building was locally-owned. We conclude with a discussion of challenges and opportunities and provide an informal analysis of the research capacity that was developed within our international team using a PAR approach.

  4. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  6. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  7. Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program

    Science.gov (United States)

    Charles, John B.

    2010-01-01

    The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products

  8. [Research within the reach of Osakidetza professionals: Primary Health Care Research Program].

    Science.gov (United States)

    Grandes, Gonzalo; Arce, Verónica; Arietaleanizbeaskoa, María Soledad

    2014-04-01

    To provide information about the process and results of the Primary Health Care Research Program 2010-2011 organised by the Primary Care Research Unit of Bizkaia. Descriptive study. Osakidetza primary care. The 107 health professionals who applied for the program from a total of 4,338 general practitioners, nurses and administrative staff who were informed about it. Application level, research topics classification, program evaluation by participants, projects funding and program costs. Percentage who applied, 2.47%; 95% CI 2.41-2.88%. Of the 28 who were selected and 19 completed. The research topics were mostly related to the more common chronic diseases (32%), and prevention and health promotion (18%). Over 90% of participants assessed the quality of the program as good or excellent, and half of them considered it as difficult or very difficult. Of the18 new projects generated, 12 received funding, with 16 grants, 10 from the Health Department of the Basque Government, 4 from the Carlos III Institute of Health of the Ministry of Health of Spain, and 2 from Kronikgune. A total of €500,000 was obtained for these projects. This program cost €198,327. This experience can be used by others interested in the promotion of research in primary care, as the program achieved its objectives, and was useful and productive. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  9. Econometric Assessment of Research Programs: A Bayesian Approach

    OpenAIRE

    Qin, Lin; Buccola, Steven T.

    2012-01-01

    Effective research-project assessment typically is impeded by project variety. In particular, bibliometric approaches to science assessment tend to offer little information about the content of the projects examined. We introduce here a new approach – based on Bayesian theory – of econometrically evaluating the factors affecting scientific discovery, and use the method to assess a biological research program comprised of numerous heterogeneous projects. Our knowledge metric not only flexibly ...

  10. Advancing a Program of Research within a Nursing Faculty Role

    OpenAIRE

    Nolan, Marie T.; Wenzel, Jennifer; Han, Hae-Ra.; Allen, Jerilyn K.; Paez, Kathryn A.; Mock, Victoria

    2008-01-01

    Doctoral students and new faculty members often seek advice from more senior faculty on how to advance their program of research. Students may ask whether they should choose the manuscript option for their dissertation or whether they should seek a postdoctoral fellowship. New faculty members wonder whether they should pursue a career development (K) award and whether they need a mentor as they strive to advance their research while carrying out teaching, service, and practice responsibilitie...

  11. 77 FR 36983 - Processed Raspberry Promotion, Research and Information Program; Request for Extension and...

    Science.gov (United States)

    2012-06-20

    ...-0021] Processed Raspberry Promotion, Research and Information Program; Request for Extension and... approved information collection National Processed Raspberry Promotion, Research, and Information Program... . SUPPLEMENTARY INFORMATION: Title: National Processed Raspberry Promotion, Research, and Information Program. OMB...

  12. Impact of the Surgical Research Methodology Program on surgical residents' research profiles.

    Science.gov (United States)

    Farrokhyar, Forough; Amin, Nalin; Dath, Deepak; Bhandari, Mohit; Kelly, Stephan; Kolkin, Ann M; Gill-Pottruff, Catherine; Skot, Martina; Reid, Susan

    2014-01-01

    To evaluate whether implementing the formal Surgical Research Methodology (SRM) Program in the surgical residency curriculum improved research productivity compared with the preceding informal Research Seminar Series (RSS). The SRM Program replaced the RSS in July 2009. In the SRM Program, the curriculum in Year-1 consisted of 12 teaching sessions on the principles of clinical epidemiology and biostatistics, whereas the focus in Year-2 was on the design, conduct, and presentation of a research project. The RSS consisted of 8 research methodology sessions repeated annually for 2 years along with the design, conduct, and presentation of a research project. Research productivity was measured as the number of peer-reviewed publications and the generation of studies with higher levels of evidence. Outcome measures were independently assessed by 2 authors to avoid bias. Student t test and chi-square test were used for the analysis. Frequencies, mean differences with 95% CI, and effect sizes have been reported. In this study, 81 SRM residents were compared with 126 RSS residents. The performance of the SRM residents was superior on all metrics in our evaluation. They were significantly more productive and published more articles than the RSS residents (mean difference = 1.0 [95% CI: 0.5-1.5], p research performance improved 11.0 grades (95% CI: 8.5%-13.5%, p research methodology is crucial to appropriately apply evidence-based findings in clinical practice. The SRM Program has significantly improved the research productivity and performance of the surgical residents from all disciplines. The implementation of a similar research methodology program is highly recommended for the benefit of residents' future careers and ultimately, evidence-based patient care. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  14. Evaluation of a College Freshman Diversity Research Program in Astronomy

    Science.gov (United States)

    Tremmel, Michael J.; Garner, S. M.; Schmidt, S. J.; Wisniewski, J. P.; Agol, E.

    2014-01-01

    Graduate students in the astronomy department at the University of Washington began the Pre-Major in Astronomy Program (Pre-MAP) after recognizing that underrepresented students in STEM fields are not well retained after their transition from high school. Pre-MAP is a research and mentoring program that begins with a keystone seminar where they learn astronomical research techniques that they apply to research projects conducted in small groups. Students also receive one-on-one mentoring and peer support for the duration of the academic year and beyond. Successful Pre-MAP students have declared astronomy and physics majors, expanded their research projects beyond the fall quarter, presented posters at the UW Undergraduate Research Symposium, and received research fellowships and summer internships. Here we examine the success of the program in attracting underrepresented minorities and in facilitating better STEM retention and academic performance among incoming UW students. We use the University of Washington Student Database to study both the performance of Pre-MAP students and the overall UW student body over the past 8 years. We show that Pre-MAP students are generally more diverse than the overall UW population and also come in with a variety of different math backgrounds, which we show to be an important factor on STEM performance for the overall UW population. We find that that Pre-MAP students are both more academically successful and more likely to graduate in STEM fields than their UW peers, regardless of initial math placement.

  15. Peer exchange, "strategic goals to manage research programs : building a premier research program".

    Science.gov (United States)

    2013-06-10

    The objectives of the District Department of Transportation (DDOT) Research, Development, & Technology Transfer (RDT) Branch Peer Exchange were: : 1. Receive peer input and perspective on RDT Strategic Plan. : 2. Obtain assistance in assessing validi...

  16. Preventing Hypothermia in Preterm Infants: A Program of Research ...

    African Journals Online (AJOL)

    Neonatal hypothermia is a worldwide problem and leads to increased morbidity and mortality in newborn infants. This paper describes a program of research to examine thermoregulation in premature infants and to decrease neonatal hypothermia. Our studies include 1) examining an intervention to reduce heat loss in ...

  17. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  18. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  19. THE RESEARCH ON PROGRAMED INSTRUCTION, AN ANNOTATED BIBLIOGRAPHY.

    Science.gov (United States)

    SCHRAMM, WILBUR

    AN ANNOTATED BIBLIOGRAPHY AND DISCUSSION OF THE RESEARCH ON PROGRAMED INSTRUCTION CONDUCTED SINCE 1954 HAS BEEN PREPARED. FOLLOWING AN INTRODUCTION BY THE AUTHOR, OVER 200 ANNOTATIONS WERE PRESENTED, ALPHABETICALLY BY SENIOR AUTHORS. THE ANNOTATIONS ARE DETAILED AND INFORMATIVE, AND WERE SUBMITTED TO THEIR AUTHORS FOR CHECKING. (JC)

  20. Research Program of Adolescent HIV Prevention Strategies | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Africa, HIV is having a devastating impact on young people. Globally, youth aged 15 to 24 account for almost one third of all new infections. There are unique challenges to implementing adolescent-friendly policies and HIV prevention programs. More research is needed to inform HIV prevention strategies focusing on ...

  1. Proceedings of the black liquor research program review fifth meeting

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    On June 14--17, 1988 the participants and invited guests of the Cooperative Program in Kraft Recovery gathered in Charleston, South Carolina, to review progress on four major black liquor research programs being executed at the Institute of Paper Chemistry, the University of Maine, the National Bureau of Standards, and the University of Florida. These programs include: (1) Black Liquor Properties; (2) Black Liquor Droplet Formation; (3) Black Liquor Nozzle Evaluation; and (4) Black Liquor Combustion. In addition to the objectives of previous meetings, this meeting made a direct attempt to gather ideas on how to improve our ability to move from new technology concepts to commercial implementation. Also attached is the agenda for the Charleston meeting. The first two days were involved with updates and reviews of the four major black liquor programs. A half day was spent discussing pathways to implementation and developing thoughts on what industry, DOE and academia could do to facilitate commercial implementation of the research results. This publication is a summary of the presentations made in Charleston and the industry responses to the research work. Readers are cautioned that the contents are in-progress updates on the status of the research and do not represent referred technical papers. Any questions regarding the content should be referred to the principal investigators of the project.

  2. Federal Geothermal Research Program Update Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  3. INL Advanced Radiotherapy Research Program Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  4. Research and service programs in the PHS: challenges in organization

    National Research Council Canada - National Science Library

    Institute of Medicine Staff

    1991-01-01

    ... Committee on Co-Administration of Service and Research Programs of the National Institutes of Health, the Alcohol, Drug Abuse, and Mental Health Administration, and Related Agencies INSTITUTE OF MEDICINE NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, author...

  5. Postdoctoral Fellowship Program in Educational Research. Final Technical Report.

    Science.gov (United States)

    Morgan, William P.

    During his postdoctoral fellowship year, Dr. Morgan took formal course work in computer programing, advanced research design, projective techniques, the physiology of aging, and hypnosis. He also attended weekly seminars in the Institute of Environmental Stress and conducted an investigation entitled "The Alteration of Perceptual and Metabolic…

  6. Academic and Research Programs in Exercise Science, South Korea.

    Science.gov (United States)

    Park, Kyung-Shin; Song, Wook

    We appreciate the opportunity to review academic curriculum and current research focus of Exercise Science programs in South Korea. The information of this paper was collected by several different methods, including e-mail and phone interviews, and a discussion with Korean professors who attended the 2009 ACSM annual conference. It was agreed that exercise science programming in South Korea has improved over the last 60 years since being implemented. One of distinguishable achievement is that exercise science programs after the 1980's has been expanded to several different directions. It does not only produce physical education teachers but also attributes more to research, sports medicine, sports, leisure and recreation. Therefore, it has produced various jobs in exercise-related fields. Some of exercise science departments do not require teacher preparation course work in their curriculum which allows students to focus more on their specialty. Secondly, we believe we South Korea has caught up with advanced countries in terms of research quality. Many Korean researchers have recently published and presented their investigations in international journals and conferences. The quality and quantity of these studies introduced to international societies indicate that Exercise Science programs in South Korea is continuing to develop and plays an important part in the world.

  7. DOE Fundamental and Exploratory Research Program in Photovoltaics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.; McConnell, R.; Eddy, F. P.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Overview of the Fundamental and Exploratory Research project with the DOE Basic Sciences program and the National Center for Photovoltaics. This paper presents an overview of the Fundamental and Exploratory Research project within the U.S. Department of Energy's National Center for Photovoltaics (NCPV). The idea behind the project is to identify, support, evaluate and coordinate an optimal spectrum of complementary projects that either contribute to the fundamental understanding of existing PV technologies or to explore the less conventional, or far out, technological possibilities. Two other programs, one for close collaborative university/industry partnerships in crystalline silicon and an educational/research program involving undergraduates at eight historically black colleges and universities, are also managed under this same task. In sum, this effort represents directed high-risk, long-term basic research targeting possibilities for optimal configurations of low cost, high efficiency, and reliability in PV related devices whatever form they may ultimately take.

  8. Aeronautics research and technology program and specific objectives

    Science.gov (United States)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  9. Hawaii Integrated Biofuels Research Program: Final Subcontract Report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    This report is a compilation of studies done to develop an integrated set of strategies for the production of energy from renewable resources in Hawaii. Because of the close coordination between this program and other ongoing DOE research, the work will have broad-based applicability to the entire United States.

  10. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  11. Research Program of Adolescent HIV Prevention Strategies | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Africa, HIV is having a devastating impact on young people. Globally, youth aged 15 to 24 account for almost one third of all new infections. There are unique challenges to implementing adolescent-friendly policies and HIV prevention programs. More research is needed to inform HIV prevention strategies focusing on ...

  12. Federal Geothermal Research Program Update Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  13. Observations concerning Research Literature on Neuro-Linguistic Programming.

    Science.gov (United States)

    Einspruch, Eric L.; Forman, Bruce D.

    1985-01-01

    Identifies six categories of design and methodological errors contained in the 39 empirical studies of neurolinguistic programming (NLP) documented through April 1984. Representative reports reflecting each category are discussed. Suggestions are offered for improving the quality of research on NLP. (Author/MCF)

  14. Mississippi CaP HBCU Undergraduate Research Training Program

    Science.gov (United States)

    2015-09-01

    TITLE AND SUBTITLE Mississippi CaP HBCU Undergraduate Research Training Program 5a. CONTRACT NUMBER W81XWH-14-1-0151 5b. GRANT NUMBER PC131783... Bacillus bacteria and pediatric brain malignancies. He has been listed as an author on papers from the lab of Dr. Bianca Garner of Tougaloo College

  15. Role of supercomputers in magnetic fusion and energy research programs

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained.

  16. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  17. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  18. A Guide to Evaluation Research in Terminal Care Programs

    Science.gov (United States)

    Buckingham, Robert W., III; Foley, Susan H.

    1978-01-01

    Pressure for greater accountability is being exerted on programs for care of terminally ill and increasing demand for evaluation research. Components, implications, and limitations of evaluation systems are discussed, and their application in the terminal care setting addressed. Buckingham evaluation of hospice home care service is cited as a…

  19. Atmospheric Science Program. Summaries of research in FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  20. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  1. Effectiveness of Human Research Protection Program Performance Measurements.

    Science.gov (United States)

    Tsan, Min-Fu; Nguyen, Yen

    2017-10-01

    We analyzed human research protection program performance metric data of all Department of Veterans Affairs research facilities obtained from 2010 to 2016. Among a total of 25 performance metrics, 21 (84%) showed improvement, four (16%) remained unchanged, and none deteriorated during the study period. The overall improvement from these 21 performance metrics was 81.1% ± 18.7% (mean ± SD), with a range of 30% to 100%. The four performance metrics that did not show improvement all had initial noncompliance/incidence rates of performance metrics that showed improvement ranged from 0.05% to 60%. However, of the 21 performance metrics that showed improvement, 10 had initial noncompliance/incidence rates of performance measurement is an effective tool in improving the performance of human research protection programs.

  2. Intensive Research Program on Advances in Nonsmooth Dynamics 2016

    CERN Document Server

    Jeffrey, Mike; Lázaro, J; Olm, Josep

    2017-01-01

    This volume contains extended abstracts outlining selected talks and other selected presentations given by participants throughout the "Intensive Research Program on Advances in Nonsmooth Dynamics 2016", held at the Centre de Recerca Matemàtica (CRM) in Barcelona from February 1st to April 29th, 2016. They include brief research articles reporting new results, descriptions of preliminary work or open problems, and outlines of prominent discussion sessions. The articles are all the result of direct collaborations initiated during the research program. The topic is the theory and applications of Nonsmooth Dynamics. This includes systems involving elements of: impacting, switching, on/off control, hybrid discrete-continuous dynamics, jumps in physical properties, and many others. Applications include: electronics, climate modeling, life sciences, mechanics, ecology, and more. Numerous new results are reported concerning the dimensionality and robustness of nonsmooth models, shadowing variables, numbers of limit...

  3. [Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Summer undergraduate research program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1993-12-01

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmental sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.

  4. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  5. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  6. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  7. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  8. Integrated research training program of excellence in radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, Suzanne [Washington Univ., St. Louis, MO (United States)

    2015-09-18

    The overall goal of this “Integrated Research Training Program of Excellence in Radiochemistry” is to provide a rich and deep research experience in state-of-the-art radiochemistry and in the fundamentals of radioisotopic labeling and tracer methodology to develop researchers who are capable of meeting the challenges of designing and preparing radiotracers of broad applicability for monitoring and imaging diverse biological systems and environmental processes. This program was based in the Departments of Radiology and Radiation Oncology at Washington University Medical School and the Department of Chemistry at the University of Illinois at Urbana Champaign, and it was initially directed by Professor Michael J. Welch as Principal Investigator. After his passing in 2012, the program was led by Professor Suzanne E. Lapi. Programmatic content and participant progress was overseen by an Internal Advisory Committee of senior investigators consisting of the PIs, Professor Mach from the Department of Radiology at Washington University and Professor John A. Katzenellenbogen of the Department of Chemistry at the University of Illinois. A small External Advisory Committee to give overall program guidance was also constituted of experts in radiolabeled compounds and in their applications in environmental and plant science.

  9. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  10. Reactor Safety Research Programs Quarterly Report October - December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. Reactor Safety Research Programs Quarterly Report July- September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  13. Reactor Safety Research Programs Quarterly Report April -June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Reactor Safety Research Programs Quarterly Report April- June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Sourcing Program: To identify outstanding women and ethnic minorities in research and research management

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, S.H.

    1991-08-01

    To meet the challenges of the changing demographics and a projected shortage of technically trained workers in the 21st century, Lawrence Livermore National (LLNL) is increasing its commitment to develop a diverse work force with the abilities to carry out the Laboratory's missions. In addition to the recruitment programs already established at LLNL, a sourcing program to identify outstanding women and minorities in research and research management was initiated in the summer of 1990. A research methodology, time table, selection criteria, and data generation strategy were designed and implemented for this program. Through extensive contacts with R D facilities, women's and minority professional organizations, national research councils, technical professional societies and universities, other sourcing programs were investigated and evaluated and a network of contacts and resources was developed. This report describes the design and implementation of the sourcing program targeting outstanding women and minorities in science and engineering. It details the investigation and evaluation of sourcing programs in other R D facilities and provides information regarding methods and sources used to identify potential candidates. Conclusions and recommendations are presented. 10 refs., 5 tabs.

  16. Advanced parallel programming models research and development opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  17. Cooperative Fish and Wildlife Research Units - A model partnership program

    Science.gov (United States)

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) Cooperative Fish and Wildlife Research Units (CRU) program is a unique model of cooperative partnership among the USGS, other U.S. Department of the Interior and Federal agencies, universities, State fish and wildlife agencies, and the Wildlife Management Institute. These partnerships are maintained as one of the USGS’s strongest links to Federal and State land and natural resource management agencies.Established in 1935 to meet the need for trained professionals in the growing field of wildlife management, the program currently consists of 40 Cooperative Fish and Wildlife Research Units located on university campuses in 38 States and supports 119 research scientist positions when fully funded. The threefold mission of the CRU program is to (1) conduct scientific research for the management of fish, wildlife, and other natural resources; (2) provide technical assistance to natural resource managers in the application of scientific information to natural resource policy and management; and (3) train future natural resource professionals.

  18. Interdisciplinary research career development: building interdisciplinary research careers in women's health program best practices.

    Science.gov (United States)

    Domino, Steven E; Bodurtha, Joann; Nagel, Joan D

    2011-11-01

    The Office of Research on Women's Health (ORWH) and the National Institutes of Health (NIH) Institutes and Centers and the Agency for Health Care Research and Quality (AHRQ) have sponsored an interdisciplinary research career development program in five funding cycles since 2000 through a K12 mechanism titled "Building Interdisciplinary Research Careers in Women's Health (BIRCWH)." As of 2010, 407 scholars have been supported in interdisciplinary women's health research and a total of 63 BIRCWH program awards have been made to 41 institutions across the U.S. In an effort to share practical approaches to interdisciplinary research training, currently funded BIRCWH sites were invited to submit 300-word bullet-point style summaries describing their best practices in interdisciplinary research training following a common format with an emphasis on practices that are innovative, can be reproduced in other places, and advance women's health research. Twenty-six program narratives provide unique perspectives along with common elements and themes in interdisciplinary research training best practices.

  19. A research agenda for academic petroleum engineering programs

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  20. A research agenda for academic petroleum engineering programs. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  1. The NASA program in Space Energy Conversion Research and Technology

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  2. Stimulating student interest in nursing research: a program pairing students with practicing clinician researchers.

    Science.gov (United States)

    Kennel, Susan; Burns, Suzanne; Horn, Heather

    2009-04-01

    Teaching nursing research to baccalaureate nursing (BSN) students can be challenging for nurse educators. The content of research courses often is dry and seemingly irrelevant to BSN students who are focused on more concrete tasks, such as passing clinical and academic courses. Through our search for creative ways to bring energy, excitement, passion, purpose, and reality to students' views of nursing research, we designed a program in which hospital nurses involved in clinical research projects mentored students in the clinical environment. Students were asked to perform literature reviews, collect and analyze data, and help with poster presentations. Student evaluations at the end of the program were positive, and analysis of pretest and posttest scores indicated student interest in nursing research increased significantly (p = 0.00).

  3. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  4. Review of research under the Joint Services Electronics Program

    Science.gov (United States)

    Hunt, L. R.; Su, R.; Newman, T. G.; Emre, E.; Lombardi, F.

    1983-12-01

    This report represents the seventh year of research under the auspices of the Joint Services Electronics Program at Texas Tech University. The program is in the area of information electronics and includes faculty from Computer Science, Electrical Engineering, and Mathematics. Specific work units deal with nonlinear control, parametric and nonparametric identification, pattern recognition for imaging systems, parallel computation and scheduling theory, analysis and design of large scale computing systems. The following items are provided for each work unit; a summary of the research performed in 1983, a list of publications and activities, and abstracts of published and pending papers. This annual report also contains lists of all grants and contracts administered by JSEP personnel and of all grants and contracts in the Departments of Electrical Engineering/Computer Science and Mathematics.

  5. Recruitment of Underrepresented Minority Researchers into HIV Prevention Research: The HIV Prevention Trials Network Scholars Program

    Science.gov (United States)

    Hamilton, Erica L.; Griffith, Sam B.; Jennings, Larissa; Dyer, Typhanye V.; Mayer, Kenneth; Wheeler, Darrell

    2018-01-01

    Abstract Most U.S. investigators in the HIV Prevention Trials Network (HPTN) have been of majority race/ethnicity and sexual orientation. Research participants, in contrast, have been disproportionately from racial/ethnic minorities and men who have sex with men (MSM), reflecting the U.S. epidemic. We initiated and subsequently evaluated the HPTN Scholars Program that mentors early career investigators from underrepresented minority groups. Scholars were affiliated with the HPTN for 12–18 months, mentored by a senior researcher to analyze HPTN study data. Participation in scientific committees, trainings, protocol teams, and advisory groups was facilitated, followed by evaluative exit surveys. Twenty-six trainees have produced 17 peer-reviewed articles to date. Research topics typically explored health disparities and HIV prevention among black and Hispanic MSM and at-risk black women. Most scholars (81% in the first five cohorts) continued HIV research after program completion. Alumni reported program-related career benefits and subsequent funding successes. Their feedback also suggested that we must improve the scholars' abilities to engage new research protocols that are developed within the network. Mentored engagement can nurture the professional development of young researchers from racial/ethnic and sexual minority communities. Minority scientists can benefit from training and mentoring within research consortia, whereas the network research benefits from perspectives of underrepresented minority scientists. PMID:29145745

  6. The 2013 Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.

    2014-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.

  7. Roadmap for a National Wildland Fire Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, R; Bradley, M M; Lin, R R

    2003-02-01

    Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the National Center for Atmospheric Research have formed a partnership to facilitate an innovative National Wildfire Research and Development Program. The ultimate purpose of the program will be to establish a deeper scientific understanding of the physics of fire than currently exists, to establish a solid scientific basis for strategic planning and policy making, and to develop and implement a set of advanced, scientifically based decision-making tools for the wildfire management community. The three main components of the program will be wildfire science, societal impacts, and operational applications. Smoke management, prescribed burns, wildfire mitigation and fuels assessment will be cross-cutting themes. We anticipate that this multidisciplinary, interagency program will bridge organizational and institutional barriers, and will be highly collaborative with numerous organizations and agencies, including other national laboratories; universities: federal, state, and county fire agencies; the Environmental Protection Agency; the Federal Emergency Management Agency; and the Western Governor's Association.

  8. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  9. Environmental Systems Research Candidates Program--FY2000 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Piet, Steven James

    2001-01-01

    The Environmental Systems Research Candidates (ESRC) Program, which is scheduled to end September 2001, was established in April 2000 as part of the Environmental Systems Research and Analysis Program at the Idaho National Engineering and Environmental Laboratory (INEEL) to provide key science and technology to meet the clean-up mission of the U.S. Department of Energy Office of Environmental Management, and perform research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the progress and accomplishments of the ESRC Program from April through September 2000. The ESRC Program consists of 24 tasks subdivided within four research areas: A. Environmental Characterization Science and Technology. This research explores new data acquisition, processing, and interpretation methods that support cleanup and long-term stewardship decisions. B. Subsurface Understanding. This research expands understanding of the biology, chemistry, physics, hydrology, and geology needed to improve models of contamination problems in the earth’s subsurface. C. Environmental Computational Modeling. This research develops INEEL computing capability for modeling subsurface contaminants and contaminated facilities. D. Environmental Systems Science and Technology. This research explores novel processes to treat waste and decontaminate facilities. Our accomplishments during FY 2000 include the following: • We determined, through analysis of samples taken in and around the INEEL site, that mercury emissions from the INEEL calciner have not raised regional off-INEEL mercury contamination levels above normal background. • We have initially demonstrated the use of x-ray fluorescence to image uranium and heavy metal concentrations in soil samples. • We increased our understanding of the subsurface environment; applying mathematical complexity theory to the problem of

  10. Interdisciplinary research and training program in the plant sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  11. Status of GEA review of DOE geothermal research program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.M.

    1996-12-31

    The Geothermal Energy Association (GEA) will be conducting a series of workshops related to the DOE Research and Development (R&D) program, the first of which will take place tomorrow and the next day. This workshop will be focussing on drilling research and development. The objective of these workshops is to provide information and recommendations to DOE on the R&D needs and priorities of the geothermal industry. As a GEA officer, I will be conducting these workshops and it is something you might guess I am interested in. I have been interested in geothermal R&D for 20 years now.

  12. Research on Knowledge Based Programming and Algorithm Design.

    Science.gov (United States)

    1981-08-01

    34prime finding" (including the Sieve of Eratosthenes and linear time prime finding). This research is described in sections 6,7,8, and 9. 4 ii. Summary of...algorithm and several variants on prime finding including the Sieve of Eratosthenes and a more sophisticated linear-time algorithm. In these additional...overview of our approach to improving the programming process. We briefly describe an emerging system and set of associated ideas which are being implemented

  13. Legacy of Environmental Research During the Space Shuttle Program

    Science.gov (United States)

    Lane, Helen W.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the

  14. A Training Program in Breast Cancer Research Using NMR Techniques

    Science.gov (United States)

    2006-07-01

    mortality. Breast cancer can exist not only in the form of masses, but also in the forms of microcalcifications , asymmetric density, and architectural...treatment of breast cancer calls for early detection of cancerous lesions (e.g., clustered microcalcifications and masses associated with malignant...DAMD17-00-1-0291 TITLE: A Training Program in Breast Cancer Research Using NMR Techniques PRINCIPAL INVESTIGATOR: Paul C. Wang, Ph.D

  15. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  16. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  17. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  18. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  19. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    Science.gov (United States)

    Fertis, D. G.

    1983-01-01

    On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.

  20. Research Experience for Undergraduates: an International Program Enhancing Interdisciplinary Learning

    Science.gov (United States)

    Pfiffner, S. M.; Davis, K. L.; Phelps, T. J.; Kieft, T. L.; Gihring, T. M.; Onstott, T. C.; Nthangeni, B.; Piater, L.; van Heerden, E.

    2004-12-01

    This NSF-funded research experience for undergraduates (REU) took place in South Africa, where gold mines provided outstanding field sites to investigate biogeochemical processes in deep subsurface environments. Underrepresented minorities were encouraged to participate. Cross-disciplinary training was a major ambition for this REU Site: Biogeochemical Educational Experiences - South Africa. Students were selected from diverse academic disciplines (biology, chemistry, and geology) to participate in this interdisciplinary research program. Research projects included characterizing microbial communities with molecular and biochemical techniques, cultivating microorganisms, utilizing geochemical and isotopic parameters to constrain nutrient cycling in groundwater, investigating extreme enzymes and examining functional genes. During the REU, students collected biofilms and fissure water emanating from gas-rich boreholes in 2-3 km deep mines and performed laboratory research in teams under joint mentorship of U.S. and South African scientists. Research teams consisted of three to five students with at least one student from each country and at least two of the disciplines represented. Team membership reflected students' ranking of their choices among mentor-proposed projects. The REU encouraged students to increase scientific knowledge across disciplines, improve oral and written communication skills, and explore cultural and international challenges for scientific research in the global community. Each research team presented oral progress reports to the other research teams to provide communication skill development and to provide a forum for data exchange and interpretation among the various disciplines. Oral communication training culminated in a public presentation by each team at a university/industry science symposium. Mentors reviewed students' writing skills as they prepared text on experimental design, research findings, data interpretation, and literature